
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHEN MACHINES WRITE: A METHOD FOR DETECTING
AI-EDITED TEXT

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing AI-text detectors have reported great success in detecting AI-generated
content created by text completion and question answering. We consider a more
challenging problem—distinguishing between human-written content and human-
written, AI-edited content (hwAI text), in which the signals are weaker and existing
methods are less satisfying. We propose word-list-assisted prompting as a new
method. It is based on two empirical observations: (i) Word-count features, despite
being sparse, are powerful in detecting hwAI text. (ii) The direct prompting
approach, though conventionally not recommended, becomes effective after being
supplied a selected word list in the prompt. To this end, we develop two feature
selection methods, leveraging the advancement in large-scale multiple testing and
topic modeling. Our prompting approach, powered by these feature selection
methods, achieves appealing performance in detecting hwAI text in several data
sets containing academic abstracts, movie reviews, news, and student essays.

1 INTRODUCTION

The rapid advancement of artificial intelligence motivates the problem of detecting AI-generated
text, to help prevent harmful misinformation (Kreps et al., 2022) or incorrect advice in AI-generated
content. Many methods have been proposed (Solaiman et al., 2019; Gehrmann et al., 2019; Liu et al.,
2019; Mitchell et al., 2023; Bao et al.; Hans et al., 2024; Guo et al., 2024a; Tian et al.; Zhang et al.;
Yang et al.; Mao et al.; Wang et al.; Chakraborty et al., 2024; Verma et al., 2024; Guo et al., 2024b),
and the performance of state-of-art methods on various benchmark data sets has been appealing.
However, the AI-generated text in most studies were created from either text completion or question
answering. In the former, a small number of initial tokens of human-written text were fed into a large
language model (LLM) to generate the remaining text. In the latter, a question was given to an LLM
to generate the answer. The discriminative signals in these settings were relatively strong.

However, in many situations, the content to examine involves human-AI collaboration. Two examples
are the human-written & AI-edited text and the AI-written & human-edited text. How to distinguish
them from the purely human-written text and the purely AI-generated text is a problem of great
interest. For example, many journals and conferences now require authors to disclose their use of AI,
including polishing writing (Liang et al., 2023; 2024). An automatic detector of AI-editing provides
a double-check in addition to author self declaration. As another example, a public article drafted
by AI and then edited by human is likely to be less harmful than an article purely generated by AI
without human input. The first example above is about distinguishing between human-written text
and human-written & AI-edited text, and the second is about distinguishing between AI-written text
and AI-written & human-edited text. A common feature in these two problems is that the text from
two classes are quite similar and the discriminative signals are much weaker (Hashemi et al., 2024;
Tao et al., 2024; Wang et al.) than in the standard setting in the literature. Our experiments (see
Section 3) show that popular detectors have less satisfying performance in such cases.

In this paper, we develop a new classifier particularly suitable for such weak discriminative signals.
We mainly focus on distinguishing between human-written text and human-written & AI-edited text,
because it is cheap to obtain such data by using commercial LLMs.1 Our method differs from all

1Our method can also be directly applied to distinguishing between AI-written text and AI-written & human-
edited text, simply by changing the input data. However, since obtaining human-edited text is expensive, we do
not include such experiments in this paper.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: The comparison between a human-written text abstract (left) and its AI-edited version (right).
Both abstracts are abbreviated with [...] to save space. The figure is generated by diffchecker.com.

existing methods in two aspects: First, we utilize multiple testing and topic modeling techniques to
select a word list that has discriminative power. This step explores intrinsic sparsity in our problem to
harness maximum power from weak discriminative signals. Second, we introduce a new prompting
technique that utilizes the selected word list to obtain a classification decision. Since this step prompts
an LLM, it will capture the higher-order signals beyond bag-of-words features. We demonstrate that
our method is tuning-free, computationally much faster than many existing methods, and significantly
outperforms several strong baselines.

The hwAI-text detection problem, our method, and experiment designs: Given an academic
abstract or a product review, we prompt an LLM to modify it. Such content is harder to detect than
purely AI-written content. For brevity, we call it hwAI-text detection. Existing AI-text detection tools
do not have satisfactory performance in detecting hwAI text. For example, when we apply RoBERTa
(Liu et al., 2019) and DetectGPT (Mitchell et al., 2023) to AI-edited academic abstracts, the accuracy
is always below 80%, sometimes even much lower (but our method consistently achieves an accuracy
above 90%). To see why the hwAI-text detection is a challenging problem, we show in Figure 1 a
human-written abstract (Kerman & Gelman, 2007) and its revision by GPT-4o-mini with the prompt:

“Given the following abstract, make some revisions. Make sure not to change the length too much.” We
observe that the edited version uses many identical words as the original one, leading to weak signals.

We propose a new solution to hwAI-text detection, based on two empirical observations.

Observation 1: Bag-of-word features alone capture a lot of discriminative signals. Furthermore,
exploring sparsity in such features can significantly prevent over-fitting. The example in Figure 1
suggests that most edit by AI is word replacement. For instance, “involves manipulating and
summarizing” is changed to “encompasses the manipulation and summarization”. Such difference
can be revealed in word counts. 2 Since useful word-count features are very sparse, we can apply
sparse feature selection methods from traditional statistics and machine learning. Due to the simplicity
of bag-of-word models and the focus on sparsity, these methods are resistant to over-fitting and can
perform well even when training data are not homogeneous as testing data.

Observation 2: The direct-prompting approach (asking an LLM to distinguish human- and AI-written
text) becomes very effective after being supplied bag-of-word features. In the literature, the direct
prompting approach was conventionally not recommended for AI-text detection (Bhattacharjee &
Liu, 2024; Huang et al., 2025). However, we discover surprisingly that the prompting approach can
be effective in detecting hwAI-generated text, as long as we include in the prompt a list of selected
words that have discriminative power. For example, in one of our experiments (see Table 5), directly
prompting GPT yields an error rate of over 50%, but after we incorporate a selected list of words by
HC (to be introduced), the error rate immediately drops to less than 10%.

Motivated by the above observations, we propose the word-list-assisted prompting approach. It takes
a training data set (which size needs not be large) and applies a word-count-based feature selection
method. The selected word list, together with the text to classify, is used to prompt an LLM to get

2We consider the counts of natural words, without stemming and lemmatization. This is one of the keys
for the success of our method. In fact, the AI edits in our experiments also involve operations such as token
reordering, paraphrasing, or sentence splitting. Fortunately, these operations can still be reflected in the counts
of natural words. For example, in the example in Figure 1, “we illustrate the use of this new programming
environment with examples of Bayesian computing, demonstrating miss-value imputation” is re-ordered to “to
exemplify this new programming environment, we present examples of Bayesian computations that demonstrate
missing-value imputation.” Here, examples and demonstrating appear in the human-written abstract, while
exemplify and demonstrate appear in the AI-edited version

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Human hwAI

Training Data

Word counts

Feature selection
(by a HC classifier, or

topic modeling)

additionally,
used,

shown,
effectively,
demonstrate,
…

Selected word list

Prompting

New text

Yes or No

Figure 2: An illustration of our proposed method.

an answer (see Figure 2). To pass more information to the LLM, we use a signed word list in the
prompt, where each word is marked to be preferred by either human or AI.

The remaining question is to find a good feature selection method. We hope that it is easy to compute,
requires no tuning, and takes advantage of feature sparsity. We propose two methods. The first is for
the case where training data are from the same domain and relatively homogeneous. We assume that
text documents in each class (human or hwAI) are i.i.d. from a discrete distribution on the vocabulary
and test whether the two distributions are equal (Balakrishnan & Wasserman, 2018; Cai et al., 2024).
We select features by first computing a p-value for each word and then using Higher Criticism (HC)
Donoho & Jin (2004; 2008), a statistical testing framework for rare and weak signals, to obtain a
data-driven threshold on p-values. This method is entirely tuning-free. The second method assumes
that text documents in each class are drawn from mixtures of K discrete distributions—a topic model
Blei et al. (2003); Ke et al. (2024). We first adapt the algorithm in Ke & Wang (2024) to estimate the
topic model for each class and then select the words whose topic loadings are most different between
two classes. This method has only two tuning parameters, which can be chosen by cross validation.

In our experiments, we tried both (i) training a linear classifier on selected word-count features and (ii)
using selected words in a prompt as in Figure 2. The first one already achieves good performance in
hwAI-text detection and sometimes even outperforms state-of-art algorithms. But (ii) is consistently
better than (i). These results confirm that word counts capture most-but-not-all discriminative signals.
The combination of word selection and prompting turns out to be a satisfying solution.

Since our method requires training data, it is interesting to investigate how many training samples are
sufficient and whether our method permits heterogeneity between training and testing. Among the
data sets in our experiments, two (academic abstracts (Ke et al., 2024) and movie reviews) have the
author information. We propose three experiment designs: PAD (pooling-author design), where both
the training and testing data come from many authors, CAD (cross-author design), where the training
data are from one author and the testing data are from another, and SAD (same-author design), where
the training and testing data are from the same author. PAD is a standard design, and CAD and SAD
involve small training sample size (often less than 25 text documents). CAD is more challenging
than SAD, because the writing styles of different authors can be significantly different, leading to
heterogeneity between training and testing data. We find that our method works for all three designs.

Comparison with the literature: DetectGPT Mitchell et al. (2023) is a popular method for AI-
text detection. It uses a novel perturbation-evaluation framework, which relies on a key insight:
perturbations of AI-generated text tend to decrease the log probability, while perturbations of human-
written text may increase or decrease the log probability. Besides the log-probability, other statistical
metrics such as entropy and probability rank (Gehrmann et al., 2019) have also been used. Many
variants of the DetectGPT framework have been proposed. Fast DetectGPT (Bao et al.) modifies the
perturbation step from mask-filling to a fast sampling procedure; DNA-GPT (Yang et al.) perturbs
text by feeding the first γ fraction of tokens and asking the source LLM to generate the remaining
tokens; Raidar (Mao et al.) perturbs text with ‘re-writing’; and Binoculars (Hans et al., 2024) adopts
new evaluation metrics utilizing the cross-perplexity between two LLMs.

While perturbation/rewriting is used as a tool in such methods, the original text to classify is still purely
AI-generated. However, in our problem, the AI-generated content is by itself a minor perturbation of
human-written content; and DetectGPT and its variants become unsatisfactory. Other disadvantages
include the need to compute log-probabilities through an API and the lack of an explicit threshold
on evaluation metrics (hence, these methods still do not directly output a classification decision). In
comparison, our method is crafted for detecting AI-edited text, leveraging statistical techniques of
sparse feature selection and tuning-free threshold choice; and our method interacts with an LLM only

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

through prompting, without the need to compute log-probabilities. On the other hand, DetectGPT is
a zero-shot detector, while our method requires a small training sample.

Fine-tuning a neural-network-based classifier is another approach for AI-text detection. For example,
Uchendu et al. (2020) considered the RNN and CNN architecture; Tay et al. (2020) used transformers;
Zellers et al. (2019) fine-tuned the GROVER model; and Ippolito et al. (2020) fine-tuned the BERT
model. The fine-tuned RoBERTa Liu et al. (2019); Solaiman et al. (2019); Fagni et al. (2021); Adelani
et al. (2020) is most popular within this class. Other methods include Badaskar et al. (2008); Tian
et al.; Zhang et al.; Guo et al. (2024a), which also aim to train complex classifiers. These methods
require a large training sample. In contrast, our training step only uses word counts and can work
well with a small training sample (especially by leveraging sparsity). Although word-count features
are conventionally thought to be less informative than neural-network features, they indeed work
very well for our problem, likely due to the nature of AI-editing. Recent work has also focused on
improved baselines for AI-text detection. Verma et al. (2024) introduced Ghostbuster, which uses
structured n-gram features and probability features from multiple models.

The direct prompting approach is generally not recommended for AI-text detection (e.g., Bhat-
tacharjee & Liu (2024) found that ChatGPT struggled to identify AI-generated text), but we make a
surprising discovery that the word-list-assisted prompting can dramatically improve it. This draws
an interesting connection to the recent studies of advanced prompting strategies, such as Chain-of-
Thought (CoT) prompting Wei et al. (2022), Self-Consistency prompting Wang et al. (2023), and
Tree-of-Thoughts Yao et al. (2023). Our prompting strategy is different: Essentially, we incorporate a
summary/description of a separately trained (shallow) model. This prompting strategy may be useful
for other prediction tasks. So far, we have only used the form of a word list. Possible extensions
could be incorporating an n-gram list.

Our work is also connected to the statistical literature about authorship attribution (Mosteller &
Wallace, 1963; Kipnis, 2022; Cai et al., 2024). All of them used the bag-of-word models, but
our method involves prompting an LLM. In our problem, if we merely use word-count features
to build a classifier, it cannot achieve the best accuracy. Additionally, we propose new ideas for
word-count feature selection. For example, the equal-weight topic modeling (see Section 2.2) for
paired documents is new and has never been proposed in the literature.

2 THE PROMPT AND TWO FEATURE SELECTION METHODS

The prompt contains both a signed word list and the test document. Since the word list is generated by
feature selection and varies across experiments, we use Python code to generate the prompt, as shown
in Figure 3, where human words and ai words are two string lists (see Table 3 for example), and
text is the testing document. We may change ChatGPT to a different LLM name, but this does not
have much impact on the final classification results.

Figure 3: The python code for prompt generation.

We then develop two feature selection algorithms for obtaining human words and ai words from
training data. They are both easy to implement and require no or little tuning.

2.1 THE HIGHER CRITICISM (HC) METHOD FOR FEATURE SELECTION

Suppose we have nh human-written documents and nai hwAI-written documents. Let Xh
j,i be the

count of word j in human-written document i, and let Xai
j,i be the count of word j in hwAI-written

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

document i. We model these counts as Poisson variables. For 1 ≤ j ≤ p (p is the vocabulary size),{
Xh

j,i
iid∼ Poisson(λj), 1 ≤ i ≤ nh,

Xai
j,i

iid∼ Poisson(µj), 1 ≤ i ≤ nai.
(1)

Let δj = |λj − µj |, 1 ≤ j ≤ p. A word is considered discriminative if δj ̸= 0. Presumably, for only
a small fraction of j, δj > 0, and each nonzero δj is relatively small, so the signals are Rare/Weak.

For each word, we compute a t-statistic comparing its frequencies in human- and hwAI-texts:

zj = (X̄j − Ȳj)/
√
s2Xj/nh + s2Y j/nai, (2)

where Xj and s2Xj are the empirical mean and variance of {Xh
j,i : 1 ≤ i ≤ nh}, respectively, and Yj

and s2Y j are defined similarly for {Xai
j,i : 1 ≤ i ≤ nai}. When j is a non-discriminative word, as its

total count (in all training documents) tends to infinity, it can be shown that zj → N(0, 1) in law, so
we can approximate the p-value by πj = 2Φ(|zj |)− 1, where Φ is the CDF of N(0, 1).

We first threshold πj to obtain the list of discriminative words and then use the sign of zj as the sign
for each selected word. This gives the signed word list.

Despite that this approach is simple, there is a critical question: how to select a data-driven threshold
for p-values? Cross-validation (CV) is not ideal, especially when the training sample size is small,
where the CV-threshold is often unstable. False discover rate (FDR) control faces another issue: It
requires the user to choose a target FDR level, which becomes another tuning parameter by itself.

In the statistical literature, Higher Criticism (HC) Donoho & Jin (2004; 2008; 2009); Jin (2009); Jin &
Wang (2016) is a convenient approach to data-driven threshold selection, and it has been successfully
applied in large-scale multiple testing and high-dimensional sparse classification and clustering. We
apply HC to our problem as follows: Sort the p-values and let π(m) denote the mth smallest value
among π1, π2, . . . , πp. Compute

m∗ = argmax
1≤m≤p

{HCp,m}, HCp,m =

√
p
[
m/p− π(m)

]√
(m/p)(1−m/p)

, 1 ≤ m ≤ p. (3)

To explain (3), let Nα be the the number of significant p-values under a threshold α. When all words
are non-discriminative, p-values are uniformly distributed in [0, 1], so that Nα ∼ Binomial(p, α).
As a result, Uα :=

√
p(Nα/p−α)√

(Nα/p)(1−Nα/p)
is a properly-scaled t-statistic. Meanwhile, when α = π(m),

the number of significant p-values is exactly m/p. Then, HCp,m is nothing but Uα evaluated at
α = π(m). To this end, HCp,m measures the evidence of rejecting the global null hypothesis when
we only look at the m smallest p-values. We choose m∗, at which this evidence is the strongest. Let

Ŝ = {1 ≤ j ≤ p : πj ≤ π(m∗)}. (4)

We further divide Ŝ = Ŝ1 ∪ Ŝ2, where a word in Ŝ1 (and in Ŝ2) has a positive (negative) z-score; see
(2). These are the word lists to insert into the prompt. The whole method is entirely tuning-free.

Remark 1: HC was originally proposed in Donoho & Jin (2004) for large-scale multiple testing and
shown to achieve an optimal phase diagram (Donoho & Jin, 2004). In Donoho & Jin (2008; 2009);
Jin (2009); Jin & Wang (2016), HC was used in high-dimensional classification when useful features
are Rare/Weak, and it was shown to have optimal performance. In our problem, useful features are
rare: Despite a large vocabulary, only a small fraction of words show meaningful differences between
human and AI usage. This reflects the fact that modern language models are trained to mimic human
writing patterns for most common words. Additionally, useful features are weak: When differences in
word usage exist, they are typically small relative to the natural variation in text, and each individual
useful word only contributes weakly to the classification decision (but they will act collectively to
enhance classification). HC is particularly well-suited for our problem.

Remark 2: After having Ŝ1 and Ŝ2, we can also run a linear classifier. Let d ∈ Rp be the word count
vector of a test document. Let utest

j = dj−(nhX̄j+naiȲj)/(nh+nai) be the centerdized word count,
1 ≤ j ≤ p (notations are the same as those in (2)). Compute L(d) = (

∑
j∈Ŝ1

utest
j)− (

∑
j∈Ŝ2

utest
j).

This classifier predicts ‘human’ if L(d) ≥ 0 and ‘hwAI’ otherwise. We call it the HC classifier, and
call the prompting approach that incorporates Ŝ1 and Ŝ2 the HC-LLM classifier.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2.2 THE TOPIC MODELING METHOD FOR FEATURE SELECTION

In (1), we assume that the distribution of word counts is the same for all documents by human (or
hwAI). This assumption can be restrictive in practice. We replace it by a more realistic model, the
topic model (Hofmann, 1999; Blei et al., 2003; Ke et al., 2024). Suppose that we have n documents
written on a vocabulary of p words, discussing K different topics. For each 1 ≤ k ≤ K, we have
a topic vector Ak ∈ Rp, which is a probability mass function (PMF) defined on the vocabulary.
Also, for each 1 ≤ i ≤ n, let Xi ∈ Rp be the word count vector for document i, and let Ni

denote the document length. Suppose that each document i is associated with a topic weight vector
wi ∈ RK , where wi(k) is the fractional weight that document i puts on topic k. We model Xi

by Xi ∼ Multinomial(Ni,Ωi), with Ωi =
∑K

k=1 wi(k)Ak. Topic modeling aims to estimate
A = [A1, A2, . . . , AK] using Xi’s. There are many topic modeling algorithms. We mainly use the
fast spectral algorithm Topic-SCORE (Ke & Wang, 2024).

We assume that there are K topics in both human-written documents and hwAI-written documents,
and the two sets of topics have one-to-one correspondence. Write Ah = [Ah

1 , . . . , A
h
K] and Aai =

[Aai
1 , . . . , Aai

K]. Let e1, e2, . . . , ep ∈ Rp be the standard basis vectors. We assume
e′j(A

h −Aai) is a nonzero vector only for a small fraction of words. (5)

Let Âh and Âai be the estimated topic matrices by applying Topic-SCORE to two classes of training
documents separately. Since the estimated topic matrix is subject to an arbitrary column permutation,
we search for a permutation τ(·) to minimize

∑K
k=1 ∥Âh

k−Âai
τ(k)∥1. After the topics are well-aligned,

we compute a statistic Tj for each word as below. For a threshold t > 0 to be determined, we select
only words such that the difference is bigger than t:

Ŝ(t) = {1 ≤ j ≤ p : Tj ≥ t}, Tj = ∥e′j(Âh − Âai)∥1, 1 ≤ j ≤ p. (6)

We further divide Ŝ(t) into two subsets: Ŝ1(t) contains those words where
∑K

k=1 e
′
j(Â

h − Âai) ≥ 0

and Ŝ2(t) contains those words where
∑K

k=1 e
′
j(Â

h − Âai) < 0. This method has tuning parameters
(K, t). Unlike in Section 2.1, we don’t have a perfect data-driven threshold choice here. In our
experiments, we use cross-validation to choose (K, t) (see Section 3).

Variant: Equal-weight Topic Modeling. In most of our experiments, the training documents are one-
to-one paired: For each human-written document, we have an AI-edited version. To take advantage
of the pairing information, we propose a equal-weight topic model. Suppose nh = nai = n. Let Xh

i

and Xai
i be the word count vectors for the ith pair. We assume that Xh

i satisfies the topic model with
its own (Nh

i ,Ω
h
i , A

h, wh
i), and Xai

i also satisfies the topic model with (Nai
i ,Ωai

i , Aai, wai
i), and

wh
i = wai

i = wi, for 1 ≤ i ≤ n. We adapt Topic-SCORE to estimate (Ah, Aai) under this constraint.
Our method is based on a key observation: Recall that Ωh

i and Ωai
i are the population word frequency

vectors in a pair of documents, respectively. If we stack them together into a 2p-dimensional vector,

we obtain that
[
Ωh

i

Ωai
i

]
=

∑K
k=1 wi(k)

[
Ah

k
Aai

k

]
, for 1 ≤ i ≤ n. This is a structure similar to that in the

topic model, except that the vocabulary size is now 2p. It inspires us to apply Topic-SCORE to the
stacked word count vectors Xi = [(Xh

i)
′, (Xai

i)′] ∈ R2p. Let Â ∈ R2p×K be the estimated topic
matrix. We take its first p rows as Âh and the last p rows as Âai. The remaining steps of obtaining
word lists are the same as in (6).

Remark 3: We also define a simple classifier after obtaining Ŝ. Let d ∈ Rp be the empirical word
frequency vector of a test document. Let (Âh

Ŝ
, Âai

Ŝ
, dŜ) be the counterpart of (Âh, Âai, d) restricted

to the rows in Ŝ. Compute minw{∥Âh
Ŝ
w − dŜ∥} and minw{∥Âai

Ŝ
w − dŜ∥}, subject to that w is

nonnegative and 1′
Kw = 1. We classify the test document to human or hwAI, depending on which

of the above two quantities is smaller. We call it the ewTS (equal-weight Topic-SCORE) classifier,
while naming the prompting approach that incorporates Ŝ1(t) and Ŝ2(t) the ewTS-LLM classifier.

3 NUMERICAL EXPERIMENTS

Data sets, and generation of AI-edited and AI-written text. We use three data sets. The first
one is MADStat Ji et al. (2022); Ke et al. (2024) (link) which contains the title and text abstracts of

6

http://www.tracyke.net/MADStat.html

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison with baselines. In each row, the method achieving the highest
accuracy is bolded, and the method achieving the second highest accuracy is marked with ∗.

Data set Source LLM HC HC-GPT DetectGPT Binoculars Detective MPU RoBERTa
F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy

MADStat
GPT-4o-mini 0.8264 0.8497 0.9251 0.9215 0.5411 0.5711 0.6698 0.5116 0.8612 0.8432 0.8853 0.8747* 0.6667 0.5023
DeepSeek-V3 0.8761 0.8695 0.9050 0.9068 0.6084 0.6123 0.6643 0.5000 0.8312 0.8333 0.8674 0.8785* 0.8057 0.7826
Claude Haiku 0.5860 0.6970 0.9222 0.9207 0.6087 0.6128 0.6916 0.5581 0.8711 0.8723* 0.8625 0.8413 0.8054 0.7807

Movie
GPT-4o-mini 0.8996 0.9011* 0.9342 0.9363 0.6252 0.7034 0.7121 0.7162 0.9012 0.9002 0.7294 0.7877 0.7531 0.8022
DeepSeek-V3 0.9116 0.9054 0.9223 0.9214* 0.3315 0.5792 0.6259 0.4608 0.8112 0.8219 0.8974 0.8868 0.9196 0.9269
Claude Haiku 0.8118 0.8705 0.9227 0.9216 0.6498 0.6435 0.6434 0.5000 0.8912 0.8942* 0.8624 0.8427 0.8569 0.8336

Rewrite
Llama-2 0.8162 0.8275 0.9389 0.9380 0.6640 0.5970 0.6950 0.5690 0.8692 0.8630 0.7213 0.7328 0.8502 0.8701*
Llama-3 0.6790 0.7505 0.9900 0.9900 0.6650 0.6030 0.7100 0.6020 0.9207 0.9220* 0.7437 0.7528 0.8475 0.8675
GPT-3.5 0.9319 0.9300* 0.9630 0.9630 0.0960 0.5080 0.6636 0.5010 0.8719 0.8754 0.5725 0.6132 0.8506 0.8698

83331 papers published in 36 statistics-related journals in between 1975 and 2015. We take a random
sample of this dataset to include authors having at least 20 papers which gives us a final dataset of
2145 documents. The second is an Amazon movie review dataset (link). We mainly focus on the
”text review” column containing the actual reviews as well as the ”userID” column which uniquely
identifies the reviewer. We again take a random sample of userID having more than 20 reviews and
end up with a dataset of 3146 reviews. The third one is CUDRT (Tao et al., 2024) (link), a recent
benchmark for AI text detection. It crafts different datasets for different tasks such as Translation,
Rewrite, and so on. The Rewrite operation is the closest to our definition of hwAI, so we use three of
their crafted Rewrite data sets, including BBC news and thesis from arXiv.

In the CUDRT-Rewrite data set, the AI-edited content was given. We used three of them, produced
by Llama3, Llama2 and GPT-3.5, respectively. For the MADStat and Movie data sets, we generated
the AI-edited content by ourself. Specifically, we prompted three different LLMs, Claude-Haiku,
GPT-4o-mini and Deepseek-V3 with the prompt: “Given the following abstract, make some revisions.
Make sure not to change the length too much.” This gave a total of 9 data sets, as shown in Table 1.

The MADStat data set provides paper titles additional to abstracts. We leverage this to create purely
AI-written text by providing the title to an LLM and asking it to write an abstract for this title. Now,
we have both AI-edited and AI-written text for MADStat. We will mainly use MADStat to explore
our own methods, while using all (MADStat, Movie, and Rewrite) for comparison with baselines.

Comparison with baseline methods. We consider several baselines for fair comparison. The first
is DetectGPT (Mitchell et al., 2023). It uses a scoring model to compute log-probabilities and a
mask-filling model to produce perturbations. We use gpt2-medium for scoring and T5 for mask-filling,
with algorithm parameters (e.g., number of perturbations) following the default values in the code.
DetectGPT only outputs a statistic for each test document. To actually use it for classification, we
need to choose a threshold. Some papers chose to report the AUROC for DetectGPT without setting
an explicit threshold. However, since our methods directly output the classification decision, we
must choose a threshold for DetectGPT to enable the comparison. We choose the threshold by
minimizing the training error over a grid of 100 equally spaced thresholds. Therefore, even though
DetectGPT is a zero-shot classifier, we have used the training data for threshold choice, giving more
favor to this method. The other baselines include MPU (Tian et al.), RoBERTa, Binoculars (Hans
et al., 2024), Ghostbuster (Verma et al., 2024), and Detective (Guo et al., 2024b). RoBERTa is a
state-of-art classification method for AI-text detection. Following Kumarage et al. (2023), we use the
RoBERTa-Stylo version and fine-tune it on training data following the standard procedure. MPU Tian
et al. utilizes a special loss function to combine with RoBERTa. Binoculars is a zero-shot method
using cross-perplexity between model pairs. Ghostbuster uses structured n-gram and probability
features from multiple models. Detective employs multi-level contrastive learning for distinguishing
AI-generated text from real data. For our own methods, we include HC and HC-GPT (see Section 2.1),
both entirely tuning-free. The LLM used for classification is GPT-4o-mini (in all experiments below,
we always use GPT-4o-mini as the default LLM to use, unless another LLM is mentioned). For
MADStat and Movie, we sample 80% of documents for training and 20% for testing. For Rewrite,
we use the same train-test split as in the original paper (Tao et al., 2024). The F1-score and accuracy
are reported in Table 1. HC-GPT has the best accuracy in 8 out of 9 settings.

Cross-domain robustness: We also conducted cross-domain experiments to evaluate robustness
to domain shift. We used all abstracts in MADStat for training and all movie reviews for testing.
The performance comparison is shown in Table 2. While the performance of our method declines

7

https://www.kaggle.com/datasets/ryati131457/web-data-amazon-movie-reviews-processed
https://github.com/TaoZhen1110/CUDRT/tree/LLMs

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

when moving from in-domain to out-of-domain, it still significantly outperforms zero-shot detectors,
demonstrating reasonable robustness to domain shift.

Method Accuracy F1-score

HC-GPT (cross-domain) 0.823 0.831
Binoculars (cross-domain) 0.710 0.701
HC-GPT (in-domain) 0.936 0.934
Binoculars (in-domain) 0.712 0.716

Table 2: Cross-domain performance:
training on MADStat, testing on Movie
reviews.

Human vs. AI Human vs. HwAI
HC ewTS HC ewTS

1 (-) findings (-) contributed (-) additionally (+) connect
2 (-) practical (-) learned (+) used (-) additionally
3 (-) framework (+) followed (+) shown (-) demonstrate
4 (-) various (-) failed (-) effectively (+) conversely
5 (-) traditional (-) statistical (-) demonstrate (+) derive
6 (-) techniques (-) framework (+) considered (-) contain
7 (-) statistical (-) findings (-) introduce (-) conducts
8 (-) novel (+) hard (-) utilizing (-) characterized
9 (-) demonstrate (-) distribution (-) novel (+) author
10 (-) comprehensive (-) traditional (-) scenarios (-) findings

· · · · · · · · · · · ·
(135 in total) (403 in total) (69 in total) (309 in total)

Table 3: Most discriminative words in MADStat (+: human-
indicative, -: AI-indicative).

The selected words: We study the selected word lists by HC and ewTS. We focused on MADStat
and used the AI-edited (hwAI) and purely AI-written (AI) abstracts, both generated by GPT-4o-mini.
We selected 15000 abstracts, which came from many different authors. Each abstract and its AI
counterpart (the AI or hwAI version) form a pair. We randomly assigned 80% of document pairs
for training and 20% for testing. Except ewTS and ewTS-GPT, the other methods don’t use pairing
information in training. For these two methods, we use a pair-reserving 5-fold cross-validation to
select the number of topics K and the threshold t. No pairing information is used in testing (same
for other settings below). Table 3 shows the top ten words selected by HC and ewTS, respectively.
For HC, words are ranked in the increasing order of p-values; and for ewTS, they are ranked in
the descending order of Tj . We find that words like ‘findings’, ‘framework’ and ‘demonstrate’ are
favored by AI. In comparison, there are fewer human-indicative words selected. One reason is that
the human-written abstracts come from diversified authors and don’t have a strong consistent pattern.

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r
Ra

te

human vs AI human vs hwAI
BERT
GPT
ewTS

ewTS-GPT
HC
HC-GPT

Figure 4: The testing errors in the CAD setting.
The boxplots are from results of 153 author pairs.

Train Test GPT HC-GPT

James O. Ramsay Stephen Fienberg 0.375 0.344
Peter Bickel Stephen Feinberg 0.375 0.172
Atanu Biswas Stephen Feinberg 0.375 0.197
Stephen Fienberg Wolfgang Härdle 0.340 0.264
Stephen Fienberg Robert Serfling 0.321 0.089
Stephen Fienberg Jon Wellner 0.368 0.226

Table 4: The testing errors in the CAD setting
(human-vs-hwAI) for some author pairs.

The cross-author design (CAD): We consider a setting where the training data have a small size and
are heterogeneous from testing data. We still focus on MADStat, as it contains author information.
We randomly selected N = 18 authors and considered the

(
N
2

)
= 153 author pairs. For each pair, we

trained classifiers using all abstracts written by the first author, along with the AI counterparts; and
the testing error were evaluated using all abstracts and AI counterparts of the second author. Since
there are 153 errors for each method, we present the results with a boxplot per method; see Figure 4.
Besides our four methods, we have also included two simple baselines. The first is a transfer-learning
approach by training a classifier using BERT features. Specifically, we use the ‘all-MiniLM-L6-v2’
variant of a pre-trained BERT (Wang et al., 2020) to get 384-dimensional features for each document.
We then build a classifier on these features, using a Random Forest with 100 trees. The second is
directly prompting GPT-4o-mini without any word list inserted. The human-vs-AI setting uses the
AI-written abstracts with given titles, and human-vs-hwAI is the same as before. For human-vs-AI,
HC has a remarkable performance, even better than HC-GPT. One possible reason is that HC is
most sensitive to author writing styles. In the current CAD setting, classifiers often incur with
unseen writing styles in testing documents, and HC is powerful in harnessing such signals. For
human-vs-hwAI, HC-GPT is the best, and ewTS-GPT is the second best (in terms of median error).
The direct prompting approach by GPT performs poorly. The transfer learning approach by BERT
performs well for human-vs-AI but unsatisfactorily for human-vs-hwAI. Table 4 shows the errors for
some author pairs. We don’t observe clear patterns related to authors’ research interests. The errors
are mostly affected by author writing styles.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The same-author design (SAD): In this setting, we still focus on MADStat but let the training and
testing documents come from the same author. We randomly selected N = 15 authors that have more
than 30 abstracts in MADStat. For each author, we randomly assigned 80% of his/her abstracts (along
with AI counterparts) to the training set and used the remaining 20% (along with AI counterparts) for
testing. We restricted to authors with more than 30 abstracts to ensure that there are enough training
documents (as only 80% of each author’s abstracts are used for training). We consider using two
different LLMs for generating the AI-content, GPT-4o-mini and Claude-Haiku. The LLM used in
classification is always GPT-4o-mini. For each author, we obtain a testing error for each method.
The boxplots based on 15 errors are shown in Figure 5. Most methods have similar performance on
GPT-generated and Claude-generated content. Focusing on GPT-generated content, BERT performs
well in the human-vs-AI problem setting, but much worse in human-vs-hwAI. The direct prompting
approach is always the worst. For human-vs-AI, HC is the best. For human-vs-hwAI, ewTS-GPT
and HC-GPT have the smallest median errors.

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r
Ra

te

human vs AI human vs hwAI
BERT
GPT
ewTS
ewTS-GPT

HC
HC-GPT
GPT-4o-mini
Claude-haiku

Figure 5: The testing errors in the SAD setting
using both GPT-4o-mini and Claude-Haiku to gen-
erate the AI content. Boxplots are based on the
results on 15 authors.

LLM Without HC With HC

Claude-Haiku 0.071 (0.0178) 0.017 (0.0172)
DeepSeek-R1 0.364 (0.013) 0.124 (0.021)
Gemini-1.5-flash 0.206 (0.019) 0.089 (0.029)
GPT-4o-mini 0.513 (0.0163) 0.098 (0.026)
LLaMA-8B 0.599 (0.028) 0.402 (0.018)

Table 5: The results about using different LLMs in
classification (but the AI-content is still generated by
GPT-4o-mini). For each LLM, we compare the direct
prompting (‘Without HC’) and our word-list-assisted
prompting (’With HC’).

Comparison of 5 LLMs in classification: In previous experiments, we prompt GPT-4o-mini for
classification. In this experiment, we consider using other LLMs (see Table 5). For each LLM, we
consider both prompting without/with the HC-selected word list. The training/testing data are the
same as those in the previous SAD experiment, with the AI- and hwAI- content still generated by
GPT-4o-mini. Table 5 shows that across all LLMs tested, adding a discriminative word list from HC
consistently improves performance. Claude and Gemini already perform reasonably well with direct
prompting, but still benefit from HC-based guidance. For weaker models like GPT and LLaMA, the
improvements are dramatic, e.g., for GPT, the error drops from 0.513 to 0.098. This supports our
main claim: even when the LLM alone struggles, guiding it with statistically selected features can
greatly enhance accuracy with minimal additional cost.

LLM-pairs for editing and classification: We consider using LLM1 to generate AI-content and
LLM2 for classification. In our previous experiments, we either fix LLM2 and vary LLM1 (Table 1
and Figure 5) or fix LLM1 and vary LLM2 (Table 5). In this experiment, we let both LLMs range
in ChatGPT, DeepSeek-V3, and Claude-Haiku, giving 3 × 3 = 9 combinations. The results are
in Table 6. Without HC-guided prompting (right half of Table 6), there is no clear evidence that a
given LLM is particularly effective at detecting the outputs it generated—performance is low and
inconsistent. For example, ChatGPT achieves only 54.5% accuracy and 16.7% F1 when trying to
detect its own generations, and DeepSeek fails entirely with 50% accuracy and zero F1 across all
cases. In contrast, with HC-assisted prompting (left half), we observe a strong diagonal pattern: each
LLM achieves its best performance when classifying documents generated by itself (highlighted in
bold). This suggests that while direct prompting is unreliable, adding HC-selected discriminative
word lists enables each model to more effectively recognize its own generation style.

Table 6: Cross-LLM comparison (row: classification LLM, column: source LLM, each entry is
accuracy / F1). For each column, the best method is in marked in bold.

ChatGPT Claude DeepSeek ChatGPT Claude DeepSeek

HC-ChatGPT .932 / .930 .909 / .905 .886 / .878 ChatGPT .545 / .167 .682 / .533 .523 / .087
HC-Claude .932 / .927 .932 / .927 .795 / .743 Claude .659 / .483 .795 / .743 .614 / .370
HC-DeepSeek .864 / .857 .795 / .769 .932 / .933 DeepSeek .500 / .000 .500 / .000 .500 / .000

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

David Ifeoluwa Adelani, Haotian Mai, Fuming Fang, Huy H Nguyen, Junichi Yamagishi, and Isao
Echizen. Generating sentiment-preserving fake online reviews using neural language models and
their human-and machine-based detection. In Advanced information networking and applica-
tions: Proceedings of the 34th international conference on advanced information networking and
applications (AINA-2020), pp. 1341–1354. Springer, 2020.

Sameer Badaskar, Sachin Agarwal, and Shilpa Arora. Identifying real or fake articles: Towards
better language modeling. In Proceedings of the Third International Joint Conference on Natural
Language Processing: Volume-II, 2008.

S Balakrishnan and L Wasserman. Hypothesis testing for high-dimensional multinomials: A selective
review. Annals of Applied Statistics, 12(2):727–749, 2018.

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, and Yue Zhang. Fast-detectgpt: Efficient
zero-shot detection of machine-generated text via conditional probability curvature. In The Twelfth
International Conference on Learning Representations.

Amrita Bhattacharjee and Huan Liu. Fighting fire with fire: can chatgpt detect ai-generated text?
ACM SIGKDD Explorations Newsletter, 25(2):14–21, 2024.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022, 2003.

T Tony Cai, Zheng T Ke, and Paxton Turner. Testing high-dimensional multinomials with applications
to text analysis. Journal of the Royal Statistical Society Series B: Statistical Methodology, 86(4):
922–942, 2024.

Souradip Chakraborty, Amrit Bedi, Sicheng Zhu, Bang An, Dinesh Manocha, and Furong Huang.
Position: On the possibilities of ai-generated text detection. In Forty-first International Conference
on Machine Learning, 2024.

David Donoho and Jiashun Jin. Higher criticism for detecting sparse heterogeneous mixtures. Ann.
Statist., 32:962–994, 2004.

David Donoho and Jiashun Jin. Higher criticism thresholding: Optimal feature selection when
useful features are rare and weak. Proceedings of the National Academy of Sciences, 105(39):
14790–14795, 2008.

David Donoho and Jiashun Jin. Feature selection by higher criticism thresholding achieves the
optimal phase diagram. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 367(1906):4449–4470, 2009.

Tiziano Fagni, Fabrizio Falchi, Margherita Gambini, Antonio Martella, and Maurizio Tesconi.
Tweepfake: About detecting deepfake tweets. Plos one, 16(5):e0251415, 2021.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander M Rush. Gltr: Statistical detection and
visualization of generated text. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, pp. 111–116, 2019.

Hanxi Guo, Siyuan Cheng, Xiaolong Jin, Zhuo Zhang, Kaiyuan Zhang, Guanhong Tao, Guangyu
Shen, and Xiangyu Zhang. Biscope: Ai-generated text detection by checking memorization of
preceding tokens. Advances in Neural Information Processing Systems, 37:104065–104090, 2024a.

Xun Guo, Shan Zhang, Yongxin He, Ting Zhang, Wanquan Feng, Haibin Huang, and Chongyang
Ma. Detective: Detecting ai-generated text via multi-level contrastive learning, 2024b. URL
https://arxiv.org/abs/2410.20964.

Abhimanyu Hans, Avi Schwarzschild, Valeriia Cherepanova, Hamid Kazemi, Aniruddha Saha, Micah
Goldblum, Jonas Geiping, and Tom Goldstein. Spotting llms with binoculars: Zero-shot detection
of machine-generated text. In Forty-first International Conference on Machine Learning, 2024.

10

https://arxiv.org/abs/2410.20964

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ahmad Hashemi, Wei Shi, and Jean-Pierre Corriveau. Ai-generated or ai touch-up? identifying ai
contribution in text data. International Journal of Data Science and Analytics, pp. 1–12, 2024.

Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
50–57. ACM, 1999.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information
Systems, 43(2):1–55, 2025.

Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, and Douglas Eck. Automatic detection of
generated text is easiest when humans are fooled. Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 1808–1822, 2020.

Pengsheng Ji, Jiashun Jin, Zheng Tracy Ke, and Wanshan Li. Co-citation and co-authorship networks
of statisticians (with discussion). Journal of Business & Economic Statistics, 40(2):469–485, 2022.

Jiashun Jin. Impossibility of successful classification when useful features are rare and weak.
Proceedings of the National Academy of Sciences, 106(22):8859–8864, 2009.

Jiashun Jin and Wanjie Wang. Influential features pca for high dimensional clustering. Ann. Statist.,
(with discusssions), 44:2323–2359, 2016.

Zheng Tracy Ke and Minzhe Wang. Using SVD for topic modeling. Journal of the American
Statistical Association, 119(545):434–449, 2024.

Zheng Tracy Ke, Pengsheng Ji, Jiashun Jin, and Wanshan Li. Recent advances in text analysis.
Annual review of statistics and its application, 11:347–372, 2024.

Jouni Kerman and Andrew Gelman. Manipulating and summarizing posterior simulations using
random variable objects. Statistics and Computing, 17:235–244, 2007.

Alon Kipnis. Higher criticism for discriminating word-frequency tables and authorship attribution.
The Annals of Applied Statistics, 16(2):1236–1252, 2022.

Sarah Kreps, R. Miles McCain, and Miles Brundage. All the news that’s fit to fabricate: Ai-generated
text as a tool of media misinformation. Journal of Experimental Political Science, 9(1):104–117,
2022. doi: 10.1017/XPS.2020.37.

Tharindu Kumarage, Joshua Garland, Amrita Bhattacharjee, Kirill Trapeznikov, Scott Ruston, and
Huan Liu. Stylometric detection of ai-generated text in twitter timelines. 2023. URL https:
//arxiv.org/abs/2303.03697.

Weixin Liang, Mert Yuksekgonul, Yining Mao, Eric Wu, and James Zou. Gpt detectors are biased
against non-native english writers. Patterns, 4(7), 2023.

Weixin Liang, Yaohui Zhang, Zhengxuan Wu, Haley Lepp, Wenlong Ji, Xuandong Zhao, Hancheng
Cao, Sheng Liu, Siyu He, Zhi Huang, et al. Mapping the increasing use of llms in scientific papers.
In First Conference on Language Modeling, 2024.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Chengzhi Mao, Carl Vondrick, Hao Wang, and Junfeng Yang. Raidar: generative ai detection via
rewriting. In The Twelfth International Conference on Learning Representations.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn.
Detectgpt: Zero-shot machine-generated text detection using probability curvature. In International
Conference on Machine Learning, pp. 24950–24962. PMLR, 2023.

11

https://arxiv.org/abs/2303.03697
https://arxiv.org/abs/2303.03697

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Frederick Mosteller and David L Wallace. Inference in an authorship problem: A comparative study
of discrimination methods applied to the authorship of the disputed federalist papers. Journal of
the American Statistical Association, 58(302):275–309, 1963.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release strategies and the social
impacts of language models. arXiv preprint arXiv:1908.09203, 2019.

Zhen Tao, Zhiyu Li, Dinghao Xi, and Wei Xu. Cudrt: Benchmarking the detection of human vs. large
language models generated texts. arXiv preprint arXiv:2406.09056, 2024.

Yi Tay, Dara Bahri, Che Zheng, Clifford Brunk, Donald Metzler, and Andrew Tomkins. Reverse
engineering configurations of neural text generation models. arXiv preprint arXiv:2004.06201,
2020.

Yuchuan Tian, Hanting Chen, Xutao Wang, Zheyuan Bai, QINGHUA ZHANG, Ruifeng Li, Chao
Xu, and Yunhe Wang. Multiscale positive-unlabeled detection of ai-generated texts. In The Twelfth
International Conference on Learning Representations.

Adaku Uchendu, Thai Le, Kai Shu, and Dongwon Lee. Authorship attribution for neural text
generation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 8384–8395, 2020.

Vivek Verma, Eve Fleisig, Nicholas Tomlin, and Dan Klein. Ghostbuster: Detecting text ghostwritten
by large language models, 2024. URL https://arxiv.org/abs/2305.15047.

Pengyu Wang, Linyang Li, Ke Ren, Botian Jiang, Dong Zhang, and Xipeng Qiu. Seqxgpt: Sentence-
level ai-generated text detection. In The 2023 Conference on Empirical Methods in Natural
Language Processing.

Wenhui Wang, Furu Wei, Li Dong, Hang Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. In Advances in
Neural Information Processing Systems, volume 33, 2020.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, and Denny Zhou. Self-consistency
improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. arXiv preprint arXiv:2201.11903, 2022.

Xianjun Yang, Wei Cheng, Yue Wu, Linda Ruth Petzold, William Yang Wang, and Haifeng Chen.
Dna-gpt: Divergent n-gram analysis for training-free detection of gpt-generated text. In The Twelfth
International Conference on Learning Representations.

Shinn Yao, Jeffrey Zhao, Dian Yu, Raghav Anil, Kaifu Yu, and Yuan Zhao. Tree of thoughts:
Deliberate problem solving with large language models. arXiv preprint arXiv:2305.10601, 2023.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. Defending against neural fake news. Advances in neural information processing
systems, 32, 2019.

Shuhai Zhang, Yiliao Song, Jiahao Yang, Yuanqing Li, Bo Han, and Mingkui Tan. Detecting machine-
generated texts by multi-population aware optimization for maximum mean discrepancy. In The
Twelfth International Conference on Learning Representations.

12

https://arxiv.org/abs/2305.15047

	Introduction
	The prompt and two feature selection methods
	The Higher Criticism (HC) method for feature selection
	The topic modeling method for feature selection

	Numerical Experiments

