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Abstract

An emerging line of research is dedicated to the problem of one-to-one matching1

markets with bandits, where the preference of one side is unknown and thus we2

need to match while learning the preference through multiple rounds of interaction.3

However, in many real-world applications such as online recruitment platform for4

short-term workers, one side of the market can select more than one participant from5

the other side, which motivates the study of the many-to-one matching problem.6

Moreover, the existence of a unique stable matching is crucial to the competitive7

equilibrium of the market. In this paper, we first introduce a more general new α̃-8

condition to guarantee the uniqueness of stable matching in many-to-one matching9

problems, which generalizes some established uniqueness conditions such as SPC10

and Serial Dictatorship, and recovers the known α-condition if the problem is11

reduced to one-to-one matching. Under this new condition, we design an MO-12

UCB-D4 algorithm withO
(

NK log(T )
∆2

)
regret bound, where T is the time horizon,13

N is the number of agents, K is the number of arms, and ∆ is the minimum14

reward gap. Extensive experiments show that our algorithm achieves uniform good15

performances under different uniqueness conditions.16

1 Introduction17

The rise of platforms for the online matching market has led to an emergence of opportunities for18

companies to participate in personalized decision-making [14, 18]. Companies (like Thumbtack19

and Taskrabbit and Upwork platforms) use online platforms to address short-term needs or seasonal20

spikes in production demands, accommodate workers who are voluntarily looking for more flexible21

work arrangements or probation period before permanent employment. The supply and demand22

sides in two-sided markets make policies on the basis of their diversified needs, which is abstracted23

as a matching market with agent side and arm side, and each side has a preference profile over the24

opposite side. They choose from the other side according to preference and perform a matching. The25

stability of the matching result is a key property of the market [32, 1, 27].26

The preferences in the online labor market may be unknown to one side in advance, thus matching27

while learning the preferences is necessary. The multi-armed bandit (MAB) [36, 13, 4] is an important28

tool for N independent agents in matching market simultaneously selecting arms adaptively from29

received rewards at each round. The idea of applying MAB to one-to-one matching problems,30

introduced by [21], assumes that there is a central platform to make decisions for all agents. Following31

this, other works [22, 34, 7] consider a more general decentralized setting where there is no central32

platform to arrange matchings, and our work is also based on this setting.33

However, it is not enough to just study the one-to-one setting. Take online short-term worker34

employment as an example, it is an online platform design with an iterative matching, where35
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employers have numerous similar short-term tasks or internships to be recruited. Workers can only36

choose one task according to the company’s needs at a time while one company can accept more37

than one employee. Each company makes a fixed ranking for candidates according to its own38

requirements but workers have no knowledge of companies’ preferences. The reward for workers39

is a comprehensive consideration of salary and job environment. Since tasks are short-term, each40

candidate can try many times in different companies to choose the most suitable job. We abstract41

companies as arms and workers as agents. Each arm has a capacity q which is the maximum number42

of agents this arm can accommodate. When an arm faces multiple choices, it accepts its most q43

preferred agents. Agents thus compete for arms and may receive zero reward if losing the conflict. It44

is worth mentioning that arms with capacity q in the many-to-one matching can not just be replaced45

by q independent individuals with the same preference since there would be implicit competition46

among different replicates of this arm, not equal treatment. In addition, when multiple agents select47

one arm at a time, there may be no collision, which will hinder the communication among different48

agents under the decentralized assumption. They cannot distinguish who is more preferred by this49

arm in one round as it can accept more than one agent while this can be done in one-to-one case.50

Communication here lets each agent learn more about the preferences of arms and other agents, so as51

to formulate better policies to reduce collisions and learn fast about their stable results.52

This work focuses on a many-to-one market under uniqueness conditions. Previous work [10, 15]53

emphasize the importance of constructing a unique stable matching for the equilibrium of matching54

problems and some existing uniqueness conditions are studied in many-to-one matching, such as55

Sequential Preference Condition (SPC) and Acyclicity [26, 2]. Our work is motivated by [7], but the56

unique one-to-one mapping between arms and agents in their study which gives a surrogate threshold57

for arm elimination does not work in the many-to-one setting. And the uniqueness conditions in58

many-to-one matching are not well-studied, which also brings a challenge to identify and leverage59

the relationship between the resulting stable matching and preferences of two sides in the design60

of bandit algorithms. We propose an α̃-condition that can guarantee a unique stable matching and61

recover α-condition [19] if reduced to the one-to-one setting. We establish the relationships between62

our new α̃-condition and existing uniqueness conditions in many-to-one setting.63

In this paper, we study the bandit algorithm for a decentralized many-to-one matching market64

with uniqueness conditions. Under our newly introduced α̃-condition, we design an MO-UCB-D465

algorithm with arm elimination and the regret can be upper bounded by O
(

NK log(T )
∆2

)
, where N66

is the number of agents, K is the number of arms, and ∆ is the minimum reward gap. Finally,67

we conduct a series of experiments to simulate our algorithm under various conditions of Serial68

dictatorship, SPC and α̃-condition to study the stability and regret of the algorithm.69

Related Work The study of matching markets has a long history in economics and operation70

research [8, 6, 32] with real applications like school enrollment, labor employment, hospital resource71

allocation, and so on [1, 23, 31, 17]. A salient feature of market matching is making decisions for72

competing players on both sides [36, 12]. MAB is an important tool to study matching problems under73

uncertainty to obtain a maximum reward, and upper confidence bound algorithm (UCB) [4] is a typical74

algorithm, which sets a confidence interval to represent uncertainty. Matching market with MAB is75

studied in both centralized and decentralized setting [21, 22]. Following these, Abishek Sankararaman76

et al. [34] propose a phased UCB algorithm under a uniqueness condition, Serial Dictatorship, to77

manage collisions. They solve the problem of the decentralized market without knowing arm-gaps78

or time horizon, and reduce the probability of linear regret through non-monotonic arm elimination.79

The introduction of the uniqueness condition plays an important role in the equilibrium of matching80

results [15, 7]. Under a stronger and robust condition, Uniqueness Consistency [19], Soumya Basu81

et.al [7] apply MAB to online matching and obtain robust results that the subset of stable matchings82

being separated from the system does not affect other stable matchings.83

We discuss many-to-one problems such as online short-term employment and MOOC [14, 24, 18] as84

the one-to-one setting has limitations in practice. Somouaoga Bonkoungo [9] runs a student-proposing85

deferred acceptance algorithm (DA) [12] to study decentralized college admission. Ahmet Altinok86

[3] considers dynamic matching in many-to-one that can be solved as if it is static many-to-one or87

dynamic one-to-one under certain assumptions. As the existence and uniqueness of competitive88

equilibrium and core are important to allocations, the unique stable results need to be considered [27].89

Similar to conditions for unique stable matching in one-to-one, some uniqueness conditions of stable90

results in the many-to-one setting also are studied [16, 28, 15, 2, 27].91
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2 Setting92

This paper considers a many-to-one matching marketM = (K,J ,P), where K = [K],J = [N ]93

are a finite arm set and a finite agent set, respectively. And each arm k has a capacity qk ≥ 1. To94

guarantee that no agents will be unmatched, we focus on the market with N ≤
∑K

i=1 qi. P is the95

fixed preference order of agents and arms, which is ranked by the mean reward. We assume that arm96

preferences for agents are unknown and needed to be learned. If agent j prefers arm k over k′, which97

also means that µj,k > µj,k′ , we denote by k ≻j k
′. And the preference is strict that µj,k ̸= µj,k′ if98

k ̸= k′. Similarly, each arm k has a fixed and known preference ≻k over all agents, and specially,99

j ≻k j
′ means that arm k prefers agent j over j′. Throughout, we focus on the market where all100

agent-arm pairs are mutually acceptable, that is, j ≻k ∅ and k ≻j ∅ for all k ∈ [K] and j ∈ [N ].101

Let mapping m be the matching result. mt(j) is the matched arm for agent j at time t, and γt(k) is102

the agents set matched with arm k1. Every time agent j selects an arm It(j), and we use Mt(j) to103

denote whether j is successfully matched with its selected arm. Mt(j) = 1 if agent j is matched with104

It(j), and Mt(j) = 0, otherwise. If multiple agents select arm k at the same time, only top qk agents105

can successfully match. The agent j matched with arm k can observe the reward Xj,mt(j)(t), where106

the random reward Xj,k(t) ∈ [0, 1] is independently drawn from a fixed distribution with mean µj,k.107

While the unmatched ones have collisions and receive zero reward. Generally, the reward obtained by108

agent j is Xj,It(j)(t)Mt(j).109

An agent j and an arm k form a blocking pair for a matching m if they are not matched but prefer110

each other over their assignments, i.e. k ≻j m(j) and ∃j′ ∈ γ(k), j ≻k j
′. We say a matching111

satisfies individually rationality (IR), if aj ≻pi
∅ and pi ≻aj

∅ for all i ∈ [N ] and j ∈ [K], that is,112

every worker prefers to find a job rather than do nothing, and every company also wants to recruit113

workers rather than not recruit anyone. Under the IR condition, a matching in the many-to-one setting114

is stable if there does not exist a blocking pair [33, 35].115

This paper considers the matching markets under the uniqueness condition. Thus the overall goal is116

to find the unique stable matching between the agent side and arm side through iterations. Let m∗(j)117

be the stable matched arm for agent j under the stable matching m∗. The reward obtained by agent j118

is compared against the reward received by matching with m∗(j) at each time. We aim to minimize119

the expected stable regret for agent j over time horizon T , which is defined as120

Rj(T ) = Tµj,m∗(j) − E

[
T∑

t=1

Mt(j)Xj,It(j)(t)

]
.

3 Algorithm121

In this section, we introduce our MO-UCB-D4 Algorithm (Many-to-one UCB with Decentralized122

Dominated arms Deletion and Local Deletion Algorithm) (Algorithm 1) for the decentralized many-123

to-one market, where there is no platform to arrange actions for agents, which leads to conflicts124

among agents. The MO-UCB-D4 algorithm for each agent j first takes agent set J and arm set K as125

input and chooses a parameter θ ∈ (0, 1/K) (discussed in Section C). It sets multiple phases, and126

each phase i mainly includes regret minimization block (line 6 - 12) and communication block (line127

13 - 16) with duration 2i−1, i = 1, 2, · · · .128

For each agent j in phase i, the algorithm adds arm deletion to reduce potential conflicts, which129

mainly contains global deletion and local deletion. The former eliminates the arms most preferred130

by agents who rank higher than agent j and obtain active set Chj [i] (line 4), and the latter deletes131

the arms that still have many conflicts with agent j after global deletion (line 6). We set a collision132

counter Cj,k[i] to record the number of collisions for agent j pulling arm k.133

In regret minimization block of phase i, we use Lj [i] = {k : Cj,k[i] ≥ ⌈θ2i⌉} to represent the134

arms that collide more times than a threshold ⌈θ2i⌉ when matching with agent j. Arms in Lj [i] are135

first locally deleted to reduce potential collisions for agent j (line 6). After that, agent j selects an136

optimal action It(j) from remaining arms in Chj [i]\Lj [i] in phase i according to UCB index, which is137

computed by µ̂j,k(t−1)+
√

2α log(t)
Nj,k(t−1) (line 7), where Nj,k(t−1) is the number that agent j and arm138

1The mapping m is not reversible as it is not a injective, thus we do not use m−1
t (k).

3



Algorithm 1 MO-UCB-D4 algorithm (for agent j)
Input:

θ ∈ (0, 1/K), α > 1.
1: Set global dominated set Gj [0] = ϕ
2: for phase i = 1, 2, ... do
3: Reset the collision set Cj,k[i] = 0, ∀k ∈ [K];
4: Reset active arms set Chj [i] = [K]\Gj [i− 1];
5: if t < 2i +NK(i− 1) then
6: Local deletion Lj [i] = {k : Cjk[i] ≥ ⌈θ2i⌉};
7: Play arm It(j) ∈ argmax

k∈Chj [i]\Lj [i]

(
µ̂j,k(t− 1) +

√
2α log(t)
Nj,k(t−1)

)
;

8: if k = It(j) is successfully matched with agent j, i.e. mt(j) = k then
9: Update estimate µ̂j,k(t) and matching count Nj,k(t);

10: else
11: Cj,k[i] = Cj,k[i] + 1;
12: end if
13: else if t = 2i +NK(i− 1) then
14: Oj [i]← most matched arm in phase i;
15: Gj [i]← COMMUNICATION(i,Oj [i]);
16: end if
17: end for

k have been matched at time t− 1. If the selected arm is successfully matched with agent j, then the139

algorithm updates estimated reward µ̂j,k(t) =
1

Nj,k(t)

∑t
s=1 1{Is(j) = k and Ms(j) = 1} Xj,k(t)140

and Nj,k(t) (line 9). Otherwise, the collision happens (line 11) and j receives zero reward. The141

regret minimization block identifies the most played arm Oj [i] for agent j in each phase i, which is142

estimated as the best arm for j, thus making optimal policy to minimize expected regret.143

Algorithm 2 COMMUNICATION
Input:

Phase number i, and most played arms Oj [i] for agent j, ∀j ∈ [N ] .
1: Set C = ∅;
2: for t = 1, 2, · · · , NK − 1 do
3: if K(j − 1) ≤ t ≤ Kj − 1 then
4: Agent j plays arm It(j) = (t mod K) + 1;
5: if Collision Occurs then
6: C = C ∪ {It(j)};
7: end if
8: else
9: Play arm It(j) = Oj [i];

10: end if
11: end for
12: RETURN C;

In the communication block (Algorithm 2), there are N sub-blocks, each with duration K. In the144

ℓ− th sub-block, only agent ℓ pulls arm 1, arm 2, · · · , arm K in round-robin while the other agents145

select their most preferred arms estimated as the most played ones (line 4). This block aims to detect146

globally dominated arms for agent j: Gj [i] ⊂ {Oj′ [i] : j
′ ≻Oj′ [i]

j}. Under stable matching m∗, the147

globally dominated arms set for agent j is denoted as G∗
j . After the communication block in phase148

i, each agent j updates its active arms set Chj [i+ 1] for phase i+ 1, by globally deleting arms set149

Gj [i], and enters into the next phase (line 4 in Algorithm 1).150

Hence, multi-phases setting can guarantee that the active set in different phases has no inclusion151

relationship so that if an agent deletes an arm in a certain phase, this arm can still be selected in the152

later rounds. This ensures that each agent will not permanently eliminate its stable matched arm, and153

when the agent mistakenly deletes an arm, it will not lead to linear regret.154
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4 Results155

4.1 Uniqueness Conditions156

4.1.1 α̃-condition157

Constructing a unique stable matching plays an important role in market equilibrium and fairness158

[10, 15]. With uniqueness, there would be no dispute about adopting stable matching preferred159

by which side, thus it is more fair. When the preferences of agents and arms are given by some160

utility functions instead of random preferences, like the payments for workers in the labor markets,161

the stable matching is usually unique. Thus the assumption of the unique stable matching is quite162

common in real applications. In this section, we propose a new uniqueness condition, α̃-condition.163

First, we introduce uniqueness consistency (Unqc) [19], which guarantees robustness and uniqueness164

of markets.165

Definition 1. A preference profile satisfies uniqueness consistency if and only if166

(i) there exists a unique stable matching m∗;167

(ii) for any subset of arms or agents, the restriction of the preference profile on this subset with their168

stable-matched pair has a unique stable matching.169

It guarantees that even if an arbitrary subset of agents are deleted out of the system with their170

respective stable matched arms, there still exists a unique stable matching among the remaining171

agents and arms. This condition allows any algorithm to identify at least one stable pair in a unique172

stable matching system and guides the system to a global unique stable matching in an iterative173

manner. To obtain consistent stable results in the many-to-one market, we propose a new α̃-condition,174

which is a sufficient and necessary condition for Unqc (proved in Appendix B).175

We considers a finite set of arms [K] = {1, 2, · · · ,K} and a finite set of agents [N ] = {1, 2, · · · , N}176

with preference profile P . Assume that [N ]r={A1, A2, · · · , AN} is a permutation of {1, 2, · · · , N}177

and [K]r={c1, c2, · · · , cK} is a permutation of {1, 2, · · · ,K}. Denote [N ], [K] as the left order and178

[N ]r, [K]r as the right order. The k-th arm in the right order set [K]r has the index ck in the left179

order set [K] and the j-th agent in the right order set [N ]r has the index Aj in the left order set [N ].180

Considering arm capacity, we denote γ∗(ck) (right order) as the stable matched agents set for arm ck.181

Definition 2. A many-to-one matching market satisfies the α̃-condition if,182

(i) The left order of agents and arms satisfies

∀j ∈ [N ],∀k > j, k ∈ [K], µj,m∗(j) > µj,k ,

where m∗(j) is agent j’s stable matched arm;183

(ii) The right order of agents and arms satisfies

∀k < k′ ≤ K, ck ∈ [K]r, Ak′ ⊂ [N ]r, γ
∗(ck) ≻ck A∑k′−1

i=1 qci+1
,

where the set γ∗(ck) is more preferred than A∑k′−1
i=1 qci+1

means that the least preferred agent in184

γ∗(ck) for ck is better than A∑k′−1
i=1 qci+1

for ck.185

Under our α̃-condition, the left order and the right order satisfy the following rule. The left order186

gives rankings according to agents’ preferences. The first agent in the left order set [N ] prefers arm 1187

in [K] most and has it as the stable matched arm. Similar properties for the agent 2 to q1 since arm 1188

has q1 capacity. Then the (q1 + 1)-th agent in the left order set [N ] has arm 2 in [K] as her stable189

matched arm and prefers arm 2 most except arm 1. The remaining agents follow similarly. Similarly,190

the right order gives rankings according to arms’ preferences. The first arm 1 in the right order set191

[K]r most prefers first qc1 agents in the right order set [N ]r and takes them as its stable matched192

agents. The remaining arms follow similarly.193

This condition is more general than existing uniqueness conditions like SPC [28] and can recover194

the known α-condition in one-to-one matching market [19]. The relationship between the existing195

uniqueness conditions and our proposed conditions will be analyzed in detail later in Section 4.1.2.196

The main idea from one-to-one to many-to-one analysis is to replace individuals with sets. In197

general, under α̃-condition, the left order satisfies that when arm 1 to arm k − 1 are removed, agents198
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(∑k−1
i=1 qi + 1

)
to
(∑k

i=1 qi
)

prefer k most, and the right order means that when A1 to agents199

A∑k−1
i=1 qi

are removed, arm k prefers agents Ak = {A∑k−1
i=1 qci+1, A

∑k−1
i=1 qci+2, · · · , A∑k

i=1 qci
},200

where Ak is the agent set that are most qk preferred by arm k among those who have not been201

matched by arm 1, 2, · · · , k − 1. Te next theorem give a summary.202

Theorem 1. If a market M = (K,J ,P) satisfies α̃-condition, then m∗(
∑j−1

i=1 qi + 1) =203

m∗(
∑j−1

i=1 qi + 2) = · · · = m∗(
∑j

i=1 qi) = j (the left order), γ∗(ck) = Ak and m∗(Aj) = cj (the204

right order) under stable matching.205

Under α̃-condition, the stable matched arm may not be the most preferred one for each agent j,206

j ∈ [N ], thus (i) we do not have m∗(j) to be dominated only by the agent 1 to agent j − 1, i.e. there207

may exist j′ > j, s.t. j′ ≻m∗(j) j; (ii) the left order may not be identical to the right order, we208

define a mapping lr to match the index of an agent in the left order with the index in the right order,209

i.e. Alr(j) = j. From Theorem 1, the stable matched set for arm k is its first qk preferred agents210

γ∗(ck) = Ak. We define lr as lr(i) = max{j : Aj ∈ γ∗(m∗(i)), j ∈ [N ]}, that is, in the right211

order, the mapping for arm k ∈ [K] is the least preferred one among its most qk preferred agents.212

Note that this mapping is not an injective, i.e. ∃j, j′, s.t. agent j = Alr(j) = Alr(j′). An intuitive213

representation can be seen in Figure 4 in Appendix A.1.214

4.1.2 Unique Stable Conditions in Many-to-one Matching215

Uniqueness consistency (Unqc) leads the stable matching to a robust one which is a desirable property216

in large dynamic markets with constant individual departure [7]. A precondition of Unqc is to ensure217

global unique stability, hence finding uniqueness conditions is essential.218

The existing unique stable conditions are well established in one-to-one setting (analysis can be219

found in Appendix B), and in this section, we focus on uniqueness conditions in many-to-one market,220

such as SPC, [28], Aligned Preference, Serial Dictatorship Top-top match and Acyclicity [26, 2, 28]221

(Definition 9, 7, 8, 10 in Appendix B.2). Takashi Akahoshi [2] proposes a necessary and sufficient222

condition for uniqueness of stable matching in many-to-one matching where unacceptable agents223

and arms may exist on both sides. We denote their condition as Acyclicity∗. Under our setting, both224

two sides are acceptable, and we first give the proof of that Acyclicity∗ is a necessary and sufficient225

condition for uniqueness in this setting (see Section B.2.4 in Appendix B). We then give relationships226

between our newly α̃-condition and other existing uniqueness conditions, intuitively expressed in227

Figure 1, and we give proof for this section in Appendix B.2.228

Lemma 1. In a many-to-one matching marketM = (K,J ,P), both Serial Dictatorship and Aligned229

Preference can produce a unique stable matching and they are equivalent.230

Theorem 2. In a many-to-one matching marketM = (K,J ,P), our α̃-condition satisfies:231

(i) SPC is a sufficient condition to α̃-condition;232

(ii) α̃-condition is a necessary and sufficient condition to Unqc;233

(iii) α̃-condition is a sufficient condition to Acyclicity∗.234

Figure 1: Relations of Uniqueness Conditions in Many-to-one Market.
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4.2 Theoretical Results of Regret235

We then provide theoretical results of MO-UCB-D4 algorithm under our α̃-condition. Recall that G∗
j236

is the globally dominated arms for agent j under stable matching m∗. For each arm k /∈ G∗
j , we give237

the definition of the blocking agents for arm k and agent j: Bjk = {j′ : j′ ≻k j, k /∈ G∗
j}, which238

contains agents more preferred by arm k than j. The hidden arms for agent j is Hj = {k : k /∈239

G∗
j} ∩ {k : Bjk ̸= ∅}. The reward gap for agent j and arm k is defined as ∆jk = |µj,m∗(j) − µj,k|240

and the minimum reward gap across all arms and agents is ∆ = minj∈[N ]{mink∈[K] ∆j,k}. We241

assume that the reward is different for each agent, thus ∆j,k > 0 for every agent j and arm k.242

Theorem 3. (Regret upper bound) Let Jmax(j) = max {j + 1, {j′ : ∃k ∈ Hj , j
′ ∈ Bjk}} be the243

max blocking agent for agent j and fα̃(j) = j + lrmax(j) is a fixed factor depends on both the left244

order and the right order for agent j. Following MO-UCB-D4 algorithm with horizon T , the expected245

regret of a stable matching under α̃-condition (Definition 2) for agent j ∈ [N ] is upper bounded by246

E [Rj(T )] ≤
∑

k/∈G∗
j∪m∗(j)

8α

∆jk

(
log(T ) +

√
π

α
log(T )

)
+
∑
k/∈G∗

j

∑
j′∈Bjk:k/∈G∗

j′

8αµj,m∗(j)

∆2
j′k

(
log(T ) +

√
π

α
log(T )

)

+ cj log2(T ) +O

(
N2K2

∆2
+
(
min(1, θ|Hj |)fα(Jmax(j)

)
+ fα̃(j)− 1)2i

∗
+N2Ki∗

)
,

where i∗ = max{8, i1, i2} (then i∗ ≤ 8 and i1, i2 are defined in equation (3)), and lrmax(j) =247

max{lr(j′) : 1 ≤ j′ ≤ j}, is the maximum right order mapping for agent j′ who ranks higher than248

j.249

From Theorem 3, the scale of the regret upper bound under α̃-condition is O
(

NK log(T )
∆2

)
and the250

proof is in Section 3.251

Proof Sketch of Theorem 3. Under α̃-condition, we only need to discuss the regret of the unique252

result. We construct a good phase (in Appendix A.2) and denote that the time point of agent j253

reaching its good phase by τj . After τj , agent j could identify its best arm and matches with his254

stable pair. Thus, from phase τj on-wards, agent j + 1 will find the set of globally dominated arms255

G∗
j+1 and will eliminate arm m∗(j) if m∗(j) brings collisions in communication block according256

to Algorithm 1. Global deletion here follows the left order. Then when agent j enters into regret257

minimization block next phase, the times it plays a sub-optimal arm is small which leads to a small258

total number of collisions experienced by agent j + 1. Then the process of each agent after good259

phase is divided into two stages: before τj and after τj . After τj , according to the causes of regret, it260

is divided into four blocks: collision, local deletion, communication, and sub-optimal play. Phases261

before τj can be bounded by induction. The regret decomposition is bound by the following.262

Lemma 2. (Regret Decomposition) For a stable matching under α̃-condition, the upper bound of263

regret for the agent j ∈ [N ] under our algorithm can be decomposed by:264

E [Rj(T )] ≤ E
[
SFαj

]︸ ︷︷ ︸
(Regret before phase Fαj )

+min(θ|Hj |, 1)E
[
SVαj

]︸ ︷︷ ︸
(Local deletion)

+
(
(K − 1 + |Bj,m∗(j)|) log2(T ) +NKE [Vαj ]

)︸ ︷︷ ︸
(Communication)

+
∑
k/∈G∗

j

∑
j′∈Bj,k:k/∈G∗

j′

8αµj,m∗(j)

∆2
j′,k

(
log(T ) +

√
π

α
log(T )

)
︸ ︷︷ ︸

(Collision)

+
∑

k/∈G∗
j∪m∗(j)

8α

∆j,k
(log(T ) +

√
π

α
log(T ))

︸ ︷︷ ︸
(Sub-optimal play)

+NK

(
1 + (ϕ(α) + 1)

8α

∆2

)
,

where Fαj , Vαj are the time points when agent j enters into α̃-Good phase and α̃-Low Collision265

phase respectively, mentioned as "good phase" above, are defined in Appendix A.2.266
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5 Difficulties and Solutions267

While putting forward our α̃-condition in the many-to-one setting, many new problems need to be268

taken into account.269

From one-to-one setting to many-to-one setting First, although we assume that arm preference is270

over individuals rather than combination of agents, the agents matched by one arm are not independent.271

Specially, arms with capacity q can not just be replaced by q independent individuals with the same272

preference. Since there would be implicit competition among different replicates of this arm, and it273

can reject the previously accepted agents when it faces a more preferred agent. Secondly, collisions274

among agents is one of main causes of regret in decentralized setting, while capacity will hinder the275

collision-reducing process. In communication block, when two agents select one arm at a time, as276

an arm can accept more than one agent, these two cannot distinguish who is more preferred by this277

arm, while it can be done in one-to-one markets. Thus it is more difficult to identify arm preferences278

for each agent. The lr in [7] is a one-to-one mapping that corresponds the agent index in the left279

order and the agent index in the right order, which is related to regret bound (Theorem 3 in [7] and280

Theorem 3 in our work). While it does not hold in our setting. To give a descriptive range of matched281

result for each arm under α̃-condition, we need to define a new mapping.282

In order to solve these problems, we explain as follows: First, since capacity influence the com-283

munication among agents, we add communication block and introduce an arm set G∗
j , which will284

be deleted before each phase to reduce collisions, where G∗
j contains arms that will block agent j285

globally under stable matching m∗. Second, the idea from one-to-one to many-to-one is a transition286

from individual to set. It is natural to split sets into individuals or design a bridge to correspond sets287

to individuals. We construct a new mapping lr (Figure 4 in Appendix A) from agent j in the left order288

to agents in the right order under α̃-condition. lr maps each arm k to the least preferred one of its289

stable matched agents in the right order, thus giving a matching between individuals and individuals290

and constructing the range of the stable matched agents set (Theorem 1). Except lr, capacity also291

influences regret mainly in communication block, as mentioned in the first paragraph.292

From α-condition to α̃-condition To extend α-condition to the many-to-one setting, it needs293

to define preferences among sets. However, there might be exponential number of sets due to the294

combinatorial structure and simply constraining preferences over all possible sets will lead to high295

complexity. Motivated by α-condition which characterizes properties of matched pairs in one-to-one296

setting, we come up with a possible constraint by regarding the arm and its least preferred agent in the297

matched set as the matched pair and define preferences according to this grouping. It turns out that298

we only need to define the preferences of arms over disjoint sets of agents to complete the extension299

as α-condition is defined under the stable matching, which can also fit the regret analysis well. As a300

summary, there might be other possible ways to extend the α-condition but we present a successful301

trial to not only give a good extension with similar inclusion relationships but also guarantee good302

regret bound.303

6 Experiments304

In this section, we verify the experimental results of our MO-UCB-D4 algorithm (Algorithm 1) for305

decentralized many-to-one matching markets. For all experiments, the rankings of all agents and306

arms are sampled uniformly. We set the reward value towards the least preferred arm to be 1/N307

and the most preferred one as 1 for each agent, then the reward gap between any adjacently ranked308

arms is ∆ = 1/N . The reward for agent j matches with arm k at time t Xj,k(t) is sampled from309

Ber(µj,k). The capacity is equally set as q = N/K. We investigate how the cumulative regret and310

cumulative market unstability depend on the size of the market and the number of arms under three311

different unique stability conditions: Serial Dictatorship, SPC, α̃-condition. The former cumulative312

regret is the total mean reward gap between the stable matching result and the simulated result, and313

the latter cumulative unstability is defined as the number of unstable matchings in round t. In our314

experiments, all results are averaged over 10 independent runs, hence the error bars are calculated as315

standard deviations divided by
√
10.316

Varying the market size To test effects on two indicators, cumulative regret and cumulative317

unstability, we first varying N with fixed K with market size of N ∈ {10, 20, 30, 40} agents318
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and K = 5 arms. The number of rounds is set to be 100, 000. The cumulative regret in Figure319

2(a)(c)(e) show an increasing trend with convergence as the number of agents increases under these320

three conditions. When the number of agents increases, there is a high probability of collisions321

among different agents, resulting in the increase of cumulative regret. Similar results for cumulative322

unstability are shown in Figure 2(b)(d)(f). When N is larger, the number of unstable pairs becomes323

more. With the increase of the number of rounds, both two indicators increase first and then tend to324

be stable. The jumping points are caused by multi-phases setting of MO-UCB-D4 algorithm.325
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Figure 2: Cumulative regret and cumulative
unstability of MO-UCB-D4 of size with N ∈
{10, 20, 30, 40} and the number of arms K = 5
under Serial Dictatorship, SPC, α̃-condition.
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Figure 3: Cumulative regret and cumulative
unstability of MO-UCB-D4 of size with K ∈
{2, 5, 10, 20} under Serial Dictatorship, SPC, α̃-
condition.

Varying arm capacity The number of arms K is chosen by K ∈ {2, 5, 10, 20}, with N = 20 and326

q = N/K. The number of rounds we set is 400, 000. With the increase of K, both the cumulative327

regret in Figure 3(a)(c)(e) and the cumulative unstability in Figure 3(b)(d)(f) increase monotonously.328

When K increases, the capacity qk for each arm k decreases, and then the number of collisions329

will increase, which leads to an increase of cumulative regret. And it also leads to more unstable330

pairs, which needs more communication blocks to converge to a stable matching. Under these three331

conditions, the performances of the algorithm are similar.332

7 Conclusion333

We are the first to study the bandit algorithm for the many-to-one matching market under the unique334

stable matching. This work focuses on a decentralized market. A new α̃-condition is proposed335

to guarantee a unique stable outcome in many-to-one market, which is more general than existing336

uniqueness conditions like SPC, Serial Dictatorship and could recover the usual α-condition in337

one-to-one setting. We propose a phase-based algorithm of MO-UCB-D4 with arm-elimination,338

which obtains O
(

NK log(T )
∆2

)
stable regret under α̃-condition. By carefully defining a mapping from339

arms to the least preferred agent in its stable matched set, we could effectively correspond arms and340

agents by individual-to-individual. A series of experiments under two environments of varying the341

market size and varying arm capacity are conducted. The results show that our algorithm performs342

well under Serial Dictatorship, SPC and α̃-condition respectively.343
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