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ABSTRACT

Comprehensive model tuning and meticulous training for determining proper
scope of neighborhood where graph neural networks (GNNs) aggregate informa-
tion requires high computation overhead and significant human effort. We propose
a probabilistic GNN model that captures the expansion of neighborhood scope as
a stochastic process and adaptively sample edges to identify critical pathways con-
tributing to generating informative node features. We develop a novel variational
inference algorithm to jointly approximate the posterior of the count of neighbor-
hood hops and learn GNN weights while accounting for edge importance. Exper-
iments on multiple benchmarks demonstrate that by adapting the neighborhood
scope to a given dataset our model outperforms GNN variants that require grid
search or heuristics for neighborhood scope selection.

1 INTRODUCTION

Graph neural networks (GNNs) (Kipf & Welling, 2016; Bhagat et al., 2011) gain significant atten-
tion in recent years due to their success in various areas, such as social information analysis (Li &
Goldwasser, 2019), recommender systems (Ying et al., 2018) and biomedical domain (Kishan et al.,
2021; Huang et al., 2020). They are considered essential methods for graph representation learning
as GNNs can effectively exploit rich topological information by generating a node’s features from
its neighborhood.

However, selecting an appropriate scope of the neighborhood where GNNs aggregate information
remains an important challenge: a narrow scope that covers a limited range of neighborhoods can
hurt the predictive performance, and a broad scope that covers long-range neighborhoods can lead
to over-smoothing (Li et al., 2018) and unnecessary complexity. Automatic search algorithms (e.g.,
grid search) face the same issue since careful design of the search space is a daunting task, and
validating large GNN structures incurs high computation and time costs.

Extensive research efforts show that appropriately setting neighborhood scopes for GNNs can be
critical to their performance improvement (Abu-El-Haija et al., 2019; Zeng et al., 2021; Veličković
et al., 2017). However, prior works mainly focus on designing aggregation schemes via regulariza-
tion (Srivastava et al., 2014; Rong et al., 2019; Hasanzadeh et al., 2020) or network structures (Xu
et al., 2018; Klicpera et al., 2018; Chen et al., 2020). These methods inevitably rely on grid search
and heuristics to determine the neighborhood scopes, which leads to heavy tuning and unnecessary
model complexity.

In this paper, we propose a probabilistic GNN model inferring the most appropriate neighborhood
scope given the graph while aggregating node information. Specifically, we model the expansion
of neighborhood scope as a stochastic process by defining a beta process (Broderick et al., 2012)
over the count of neighborhood hops to allow it to go to infinity. The beta process induces hop-
wise activation probabilities and its conjugate Bernoulli process enables us to adaptively sample the
edges in the neighborhood. In addition, the importance of the edges is evaluated based on the feature
similarity between the adjacent nodes. We can thus identify significant pathways that contribute to
the node latent features during training. We propose an efficient variational inference method that
jointly approximates the posterior of the neighborhood scopes and learns GNN weights. Our model
strikes a balance between the neighborhood scope expansion and the number of activated edges
within the neighborhood while providing well-calibrated predictions. It enhances GNN performance
across various benchmark datasets, as demonstrated by our experiments.
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Figure 1: (a) Our GNN model jointly infers the proper neighborhood scope and aggregates informa-
tion through important pathways identified within it. We model the count of neighborhood hops as
a beta process to enable it to go infinity. (b) A stick-breaking construction of a beta process and its
conjugate Bernoulli process. The sticks located at the top represent random draws from the beta pro-
cess, serving as layer-wise activation probabilities. Each stick location, denoted by δfl , corresponds
to a GNN layer function fl, with the height indicating its activation probability πl. The bottom shows
the conjugate Bernoulli process. The binary vectors (column-wise) activate or deactivate edges in
each layer by elementwisely multiplying the flattened adjacency matrix.

The contributions of our research are: i) We propose a probabilistic solution for automatically de-
termining the appropriate neighborhood scope for GNNs, which eliminates the need for extensive
pre-training and enhances model performance. ii) Our model adaptively samples edges within the
neighborhood to identify the important pathways contributing to node encoding. iii) We develop
a variational inference to jointly infer the count of neighborhood hops and learn GNN weights.
iv) We conduct a comprehensive analysis of our method’s neighborhood inference capability and
demonstrate its ability to mitigate over-smoothing effectively.

2 RELATED WORK

2.1 BAYESIAN INFERENCE FOR GNNS

Graph Gaussian Processes (GGPs) (Ng et al., 2018) extends traditional Gaussian Processes (GPs) by
incorporating graph topology into the model, enabling it to handle uncertainty in both node features
and the graph structure. This approach is designed for situations with limited labeled data, using
the graph to propagate information to unlabeled nodes. The Bayesian-GCNN (Pal et al., 2019)
framework, as another Bayesian method, interprets the input graph as a single instance drawn from
a parametric family of random graphs and estimates the joint posterior distribution of both the graph
parameters and the node labels. BBGDC (Beta-Bernoulli Graph DropConnect) (Hasanzadeh et al.,
2020) can be viewed as a generalized stochastic Bayesian technique to train GCNs. It enables GCNs
to independently drop out edges and convolution channels. However, these methods are not capable
of inferring the number of hops automatically during training and require expensive hyper-parameter
tuning of network depth.

2.2 GNNS WITH MULTI-HOP NEIGHBORHOOD SCOPES

Mixhop (Abu-El-Haija et al., 2019) introduces a novel approach that allows for the mixing of infor-
mation from different hops in the neighborhood, enhancing the model’s ability to learn from local
and more distant nodes. It demonstrates how varied neighborhood scopes can be combined to im-
prove representation learning. (Zeng et al., 2021) addresses the limitations of traditional graph neural
networks (GNNs) in balancing depth (number of layers) and scope (size of the local neighborhood)
by substituting the input graph with a subgraph that preserves essential information. Graph Attention
Networks (GATs) (Veličković et al., 2017) introduces the attention mechanism to GCNs, allowing
the model to weigh the importance of neighbors during aggregation. By adapting the neighborhood
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scope dynamically, GATs improve performance in scenarios where the relevance of neighbors varies
significantly.

2.3 EDGE IMPORTANCE EVALUATION

Dropout (Srivastava et al., 2014) for GNNs is applied to randomly drop node features from the
previous hidden layer at each training iteration, based on independent Bernoulli random draws with
a constant drop rate. Compared to Dropout, DropEdge (Rong et al., 2019) randomly drops edges
from the adjacency matrix instead of node features in each hidden layer during training iterations,
based on independent Bernoulli random draws with a constant drop rate. But both methods just
randomly choose drop portions, which means they treat each node or edge as equally important ones.
Compared with DropEdge, DropEdge++ (Han et al., 2023) introduces a feature-dependent sampler
that correlates edge sampling probabilities with the feature similarity of node pairs, determining
which edges should be retained or removed.

3 NEIGHBORHOOD-AWARE GNN

Instead of incurring computational overhead to predetermine the appropriate neighborhood scope
for information aggregation, we propose a probabilistic GNN model to automatically infer neighbor-
hood scopes, embodied as network depth, along with identifying important pathways by modeling
the count of neighborhood hops as a Beta process over hidden layers while learning GNN weights,
as illustrated in Figure 1(a).

3.1 NOTATION

In the following section, G(V, E ,X) represents a graph with N nodes/vertices V , edges E , and node
features X. A ∈ RN×N denotes the adjacency matrix of the graph. The adjacency matrix of the
graph with added self-connections is denoted by Ã = A+ IN , where IN is the identity matrix. Its
normalized counterpart is denoted by Â = D− 1

2 ÃD
1
2 where Dii =

∑
j Ãij .

3.2 ADAPTIVELY SAMPLING EDGES WITHIN AN INFINITE NEIGHBORHOOD SCOPE

Let Hl represent the feature output by the GNN’s l-th hidden layer for all nodes V . We formulate
an infinitely deep GNN with skip-connection as

Hl = σ
(
(Â⊙ Zl)Hl−1Wl

)
+Hl−1, l ∈ {1, . . . ,∞} (1)

where Wl ∈ RM×M denotes the weight of layer l, with M representing the layer width (i.e., the
number of neurons in the layer). Since GNN layer l aggregates information within l-th neighborhood
hop, we thus adaptively sample edges within l-th neighborhood hop by element-wisely multiply (as
denoted by ⊙) the adjacency matrix with a binary matrix Zl which is generated from a Bernoulli
process, as demonstrated in Figure 1(b).

Given a graph-structured dataset D = {X,y, Â} with ground-truth labels y, the likelihood can be
expressed as:

p(D|Z,W) =

N∏
n=1

p(yn|fn(X, Â;Z,W)) (2)

where yn is the target label and fn(·) denotes the prediction for the nth node from the network head,
which is softmax for classification. W = {Wl} denotes the weight tensor, accumulated across the
network layers.

3.3 CONSTRUCTION OF BETA PROCESS PRIOR

We treat the expansion of neighborhood scope as a stochastic process by modeling the count of
neighborhood hops as a Beta process (Paisley et al., 2010; Broderick et al., 2012; KC et al., 2021),
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as in Figure 1 (b). A stick-breaking construction of a beta process can be realized as follows:

πl =

l∏
j=1

νj , νl ∼ Beta(α, β) (3)

We start by sequentially drawing νl from a beta distribution with hyperparameters α and β. The
cumulative product of νk s until l gives the activation probability for neighborhood hop l, which is
denoted as πl. These probabilities decrease exponentially as l increases, restricting the unbounded
growth of the network. We then sample the binary mask for the edges in each neighborhood hop l
from a conjugate Bernoulli process zl ∼ Ber(πl) which is conjugate to the beta process in Eq. (3).
zle = 1 activates the edge e in the neighborhood hop l and zle = 0 de-activate it. The binary vector
zl is then reshaped to obtain a full mask matrix Zl as in Eq. (1).

Thus, we formulate the prior over the neighborhood hops and the edge sampling matrix Z as

p(Z,ν|α, β) = p(ν|α, β)p(Z|ν) =
∞∏
l=1

Beta(νl|α, β)
|E|∏
e=1

Ber(zle|πl) (4)

where Z = {Zl} and ν = {νl} represent the sets of hop-wise edge masks and activation probabili-
ties, respectively.

3.4 MARGINAL LIKELIHOOD FOR NEIGHBORHOOD SCOPE SELECTION

We combine the Beta-Bernoulli process prior in Eq. (4) and the likelihood in Eq. (2), and then
marginalize over the edge masks and activation probabilities to obtain the marginal likelihood:

p(D|W, L, α, β) =

∫
p(D|Z,W)p(Z,ν|α, β)dZdν (5)

3.5 VARIATIONAL INFERENCE

Due to the inherent complexity and non-linearity of neural networks, exact marginalization in Eq. (5)
over the edge sampling masks is intractable. We propose to approximate it via variational inference.

We adopt the structured variational inference framework (Hoffman & Blei, 2015) to capture the
dependency between the activation probabilities and edge sampling masks. We define the variational
distribution as

q
(
Z,ν|{at, bt}Tt=1

)
= q(ν)q(Z|ν) =

T∏
t=1

Beta(νt|at, bt)
N∏

m=1

N∏
n=1

ConBer (ztmn|πt; τ) (6)

with variational parameters {at, bt}Tt=1. We employ a truncation level T in the variational distri-
bution. Setting T to a sufficiently large number, we can approximate the theoretical assumption
of an infinite count of neighborhood hops in the Beta process. We relax the discrete variables by
using a concrete Bernoulli distribution ConBer(πt; τ) (Maddison et al., 2016; Jang et al., 2016)
with temperature parameter τ . This continuous relaxation of the Bernoulli distribution allows back-
propagation while sampling the variables.

The evidence lower bound (ELBO) to the marginal likelihood in Eq. (5) is the objective for opti-
mization:

log p(D|W, L, α, β) ≥ Eq(Z,ν)][log p(D|Z,W)]−DKL[q(ν)||p(ν)]−DKL[q(Z|ν)||p(Z|ν)] (7)

The first term on the RHS is the expectation of the log likelihood with respect to the variational
distribution which fits the model to the data. The last two regularization terms are Kullback–Leibler
divergence between the model prior and the variational distribution.

3.6 EVALUATING THE IMPORTANCE OF EDGES

Sampling the binary edge mask Zl results in a random dropping of edges in each layer. However,
some edges may be more informative than others for the overall performance of the GNN. For an
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Figure 2: Neighborhood scope evolution and activated edges across different training epochs on
Cora dataset during the traing of our method. πl is the hop activation probability (ratio of activated
edges) for each neighborhood hop l. The neighborhood scope increases as training progresses.

edge e ∈ E connecting nodes n and n′, we define a kernel function κ(xn, xn′) to compute the
similarity between nodes n and n′. Given the hop activation probability πl, we weight the edge
mask with node similarity as

z̃lnn′ ∼ Bernoulli

(
πlκ(xn, xn′)∑
(i,j)∈E κ(xi, xj)

)
(8)

This helps preserving the edges whose connecting nodes sharing similar features measured by the
kernel. To reduce computational demands during training, we pre-compute the kernel values to
avoid recalculating them iteratively.

3.7 PREDICTIVE DISTRIBUTION

By applying MAP estimation on the network weights, we obtain the predictive distribution for any
node n as follows:

p
(
y|Ŵ, â, b̂

)
=

∫
p
(
y|fn

(
Â,x;Z,Ŵ

))
q
(
Z,ν|â, b̂

)
dZdν (9)

where, Ŵ is the MAP estimation of network weights and â = {ât}, and b̂ = {b̂t} denote the
optimized varionatal parameters. We perform a Monte Carlo approximation of Eq. (9) by sampling
from the variational posterior distribution q

(
Z,ν|â, b̂

)
.

4 EXPERIMENTS AND DISCUSSION

We analyze the behavior of our proposed probabilistic GNN model on various tasks. First, we
illustrate how our model adapts the neighborhood scope during training. Then, we compare our
method’s performance with GNN variants on the benchmark datasets. These GNN variants rely on
grid search to determine the neighborhood hops. Furthermore, we investigate the impact of different
kernel functions and evaluate the performance on larger datasets. Along with the ablation study, we
assess time complexity, over-smoothing prevention, and uncertainty quantification.

4.1 DATASETS

We experiment with three publicly available citation network datasets: Citeseer, Cora, and Pubmed
(Sen et al., 2008), as well as two Co-author/Co-purchase network datasets: Co-author CS and Co-
author Physics (Shchur et al., 2018), to explore semi-supervised node classification tasks. Addi-
tionally, we evaluate the potential of our method on five medium-scale graph datasets: ogb-Arxiv,
ogb-Mag (Hu et al., 2020), Flickr (McAuley & Leskovec, 2012), ogb-Proteins and ogb-Products.
The details of these datasets are provided in Table 1. All the datasets undergo preprocessing and are
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Table 1: The details of the datasets.
Dataset #Nodes #Edges #Classes #Features

Cora 2,708 5,429 7 1,433
Citeseer 3,327 4,732 6 3,703
Pubmed 19,717 44,338 3 500

CoauthorCS 18,333 163,788 15 6,805
CoauthorPhysics 34,493 495,924 5 8,415

Flickr 89,250 899,756 7 500
ogb-Arxiv 169,343 1,166,243 40 128
ogb-Mag 1,939,743 21,111,007 349 128

ogb-Proteins 132,534 39,561,252 2 8
ogb-Products 2,449,029 61,859,140 47 100

(a) (b)

Figure 3: (a) Evaluating the effectiveness of our method in preventing over-smoothing. The x-axis
represents the inverse of Total Variation (1/TV), as a quantification of over-smoothing, while the
y-axis displays the corresponding test accuracy. Each dot on the graph is annotated with the count
of neighborhood hops where the models aggregate information. (b) Test accuracies for different
kernels on the Cora dataset.

partitioned following (Yang et al., 2016). Within our training set, each class was represented by 20
labeled nodes, totaling 1000 nodes within the test set. Notably, the remaining nodes retained their
unlabeled status. Concurrently, for hyperparameter tuning, 500 validation nodes were incorporated,
aligning with the approach adopted by (Kipf & Welling, 2016).

4.2 EXPERIMENT SETUP

To mitigate potential out-of-memory complications, we adopt a conservative mini-batch size of 10
and a truncation level K = 2. The hidden layers of our model incorporate ReLU activation. We use
RBF kernel function in our model to evaluate edge importance. We train our models using the Adam
optimizer (Kingma & Ba, 2014) with a learning rate of 0.01 and other parameters set as default. We
adhere to the original parameters delineated in (Kipf & Welling, 2016), which encompass a layer
width consisting of 16 neurons and a dropout probability of 0.5 applied to the hidden layers.

4.3 NETWORK STRUCTURE EVOLUTION OVER EPOCHS

We demonstrate how the proposed method inferring neighborhood scope during training on the Cora
dataset. The results in Figure 2 show that the expasion of neighborhood hops as training progresses.
Specifically, we observe that the activation probabilities per neighborhood hop increase, which, in
turn, activates more edges in the graph during later epochs. This graph evolution process continues
until it converges to an optimal configuration, after which no further changes in the graph structure
are observed.
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Table 2: Test accuracy (%) on semi-supervised node classification tasks. The best performances
across the benchmark datasets are bolded.

GCN ResGCN GCN+DE JKNet GCNII GAT Ours
Cora 78.7 80.9 81.2 79.7 83.8 81.7 83.2±0.5

Citeseer 66.2 67.3 69.3 68.9 69.8 66.0 71.5±0.3
Pubmed 77.5 77.6 78.1 77.3 77.4 77.4 78.5±0.2

CoauthorCS 88.2 88.5 89.4 90.1 89.7 89.9 91.1±0.2
CoauthorPhysics 91.4 91.7 92.2 92.1 92.7 90.8 93.1±0.3
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Figure 4: Analysis of the effect of the truncation level T of our method and neighborhood scope
of other methods on three citation datasets. The reported performance metric is the classification
accuracy (in percentage) on the test sets. The performance of our model (red) is robust. Other
methods suffer from over-smoothing.

4.4 OVERALL PERFORMANCE COMPARISON

Table 2 presents the semi-supervised learning performance evaluation, highlighting the instances of
the best performance. In this evaluation, we compare our method against competing GNN variants
on citation and Co-author/Co-purchase network datasets. GCN+DE refers to the vanilla GCN with
DropEdge regularization. The competitive performance of GCN+DE shows the advantage of the
edge masks, which is consistent with our model’s superior performance on all the datasets. Note
that there is no statistical significance between our method and GCNII on the Cora dataset.

4.5 THE MECHANISMS MITIGATING OVER-SMOOTHING

We examine the total variation (TV) of the outputs from our model’s hidden layers throughout the
training process. TV quantifies the smoothness of a signal distributed across the nodes of a graph
(Chen et al., 2015). Specifically, given a graph with adjacency matrix A and a signal H defined
across its nodes, the TV is defined as TV(H) = ∥H− 1/|λmax|AH∥22 where, λmax denotes the
eigenvalue of the adjacency matrix A with the largest magnitude. A lower TV indicates that the
signal on adjacent nodes is more consistent across orders, serving as an indicator of the presence of
the over-smoothing problem.

Figure 3(a) shows the effectiveness of our method in preventing over-smoothing compared to other
regularization techniques. In this experiment, we compare our method against vanilla GCN, GCN
with dropout regularization, and GCN with DropEdge regularization. The results show that vanilla
GCN and GCN with dropout suffer from a more pronounced over-smoothing issue. The total vari-
ation decreases as these models aggregate information from long-range neighborhoods and lead to
a rapid decline in test accuracy. On the other hand, GCN with DropEdge partially alleviates this
oversmoothing problem as the total variation is less impacted compared to the previous two models.
In contrast, our method demonstrates superior effectiveness and robustness, particularly for large
neighborhood scopes.
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Figure 5: Evaluation of uncertainty estimation on the three citation datasets. The x-axis represents
the uncertainty threshold, which discerns the demarcation point between certain and uncertain pre-
dictions. Plotted on the y-axis is the PAvsPU metric (Mukhoti & Gal, 2019), which reveals the
increasing trend of correctly estimated uncertainty as thresholds rise.

4.6 KERNEL FUNCTION EVALUATION

We evaluate edge importance using three kernels: linear, polynomial, and Radial basis function
(RBF) kernels, which are represented by κlinear(xn,xn′) = xT

nxn′ ; κpoly(xn,xn′ ;n) = (xT
nxn′)n;

κRBF(xn,xn′ ; γ) = exp(−γ∥xn − xn′∥2), respectively. Figure 3(b) shows the results of using dif-
ferent kernels. The model without a kernel function is the one we disregard edge importance. This
leads to significant fluctuations in performance as observed by the large variation for the test accu-
racy. This instability arises because, during training, important edges are randomly dropped, result-
ing in a loss of crucial information. This issue becomes particularly problematic when the dataset is
small or the edges are sparsely distributed. Applying kernels significantly stabilizes performance as
observed by reduced variations in the test accuracies. For the polynomial and RBF kernels, we learn
the parameters degree n and the parameter γ, respectively. The RBF kernel function outperforms
the other two kernel functions.

4.7 PERFORMANCE ON LARGER DATASETS

We also test our method on five medium-scale graph datasets: Flickr, ogb-Arxiv, ogb-Mag, ogb-
Proteins and ogb-Products to assess the scalability of our method. Table 3 shows the performance
compared to different baseline methods. Our model achieves the best performance on these datasets,
as we retain critical information while dropping out redundant edges. Note that rather than relying
on any search algorithms to determine the neighborhood scopes, our model automatically balances
the neighborhood scope and the activated pathways within it while learning GNN weights on these
larger dataset.

Table 3: Test accuracy (%) comparisons with larger datasets on semi-supervised node classification
task. The results are the best performance achieved by the baseline methods.

GCN ResGCN JKNet GCNII GAT Ours
Flickr 51.4 51.9 51.6 46.1 52.2 53.5 ± 1.3

ogb-Arxiv 72.1 72.3 72.2 72.7 73.6 75.2 ± 0.4
ogb-Mag 37.3 37.9 38.4 42.3 43.7 44.3 ± 1.7

ogb-Proteins 72.5 73.4 69.5 74.1 85.0 83.6 ± 0.3
ogb-Products 82.3 82.5 82.9 83.7 81.7 83.8 ± 0.4

4.8 ABLATION STUDY

To evaluate the effectiveness of each module in our model, we present the results of an ablation study
in Table 4. By comparing the vanilla GCN model (w/o kernel, beta process, and skip-connection)
and our model, we assess the contribution of individual components, including skip connection,
the beta process, and the kernel function. The results indicate that the beta process significantly
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enhances performance, particularly on the Citeseer dataset, where using the beta process alone yields
improved results. However, the performance is not stable without the kernel function, indicated by
larger standard deviation. Incorporating the kernel function not only stabilizes the outcomes but also
statistically improves performance.

Table 4: Ablation study of different modules’ effectiveness in our model. The best performance is
bolded.

Cora Citeseer Pubmed ogb-Arxiv ogb-Mag
Ours 83.2 ± 0.5 71.5 ± 0.3 78.5 ± 0.2 75.2± 0.4 44.3 ± 1.7

w/o kernel 82.2 ± 1.2 71.7 ± 1.1 77.9 ± 0.6 74.3 ± 1.1 42.7 ± 3.1
w/o beta process 79.4 ± 0.3 67.8 ± 0.2 77.9 ± 0.2 72.3 ± 0.2 43.1 ± 0.7

w/o skip-connection 81.2 ± 0.4 69.8 ± 0.1 77.6 ± 0.3 71.5 ± 0.6 42.9 ± 0.4
w/o kernel, beta process

and skip-connection 78.7 ± 0.2 66.2 ± 0.3 77.5 ± 0.2 70.2 ± 1.3 37.2 ± 0.6

4.9 TIME COMPLEXITY ANALYSIS

For training a GCN structure with depth L and width M , the time complexity of our method is
O(NBLM2) where N represents number of training nodes and B represents number of epochs.
Let T be the time cost of a single forward pass, with S samples our method is linearly scalable as
ST .

We conduct a comparison of the training time costs using the same mini-batch size. Table 5 shows
the results for S = 1. More experiment results with different settings of sample S can be seen in
the Appendix. Although our method requires more time during training, it automatically infers the
optimal neighborhood scope, eliminating the overhead with automatic search algorithms. The time
and space consumption during training is still comparable to the baseline methods, demonstrating
the efficiency of our approach.

Table 5: Semi-supervised node classification training time comparison between vanilla GCN and
ours. The training time unit is in seconds (s) and the space unit is in Megabyte (MB).

Methods Cora Citeseer Pubmed ogb-Arxiv ogb-Mag
Time Space Time Space Time Space Time Space Time Space

GCN 62.53 39 77.37 164 96.54 129 643.72 2421 2765.45 4805
GCNII 60.14 42 79.22 175 95.76 133 614.37 2525 2840.32 4953
JKNet 61.27 41 80.15 184 100.33 136 661.44 2606 2911.59 4904
Ours 67.38 57 88.51 194 102.36 166 677.58 2788 3033.75 5277

4.10 OVER-SMOOTHING PREVENTION

To illustrate the effectiveness of our approach in alleviating the over-smoothing problem, we show-
case the effectiveness of our method in counteracting the over-smoothing issue by comparing it with
other techniques. Figure 4 illustrates the changes in prediction accuracy as we expand neighborhood
scope to aggregate more information in our method. In addition to comparing with benchmark mod-
els, we also evaluate various regularization techniques, including Dropout, DropEdge, and DropE-
dge++. Our method, which decouples the truncation level from the neighborhood order of data
aggregation, is presented to be the most robust technique, maintaining consistent performance as
the truncation level increases. This demonstrates its superior ability to mitigate over-smoothing
compared to other techniques.

4.11 UNCERTAINTY QUANTIFICATION

We compare our method with vanilla GCN, GCNII, and BBGDC (Hasanzadeh et al., 2020) to assess
uncertainty quantification. First, we evaluate using the PAvsPU metric (Mukhoti & Gal, 2019). The
horizontal axis represents the uncertainty threshold, which delineates predictions deemed certain or
uncertain. Predictions falling below the threshold are deemed certain, while those surpassing it are
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considered uncertain. The PAvsPU metric captures the proportion of correctly estimated uncertain-
ties relative to all model predictions made on the test dataset. Figure 5 shows the results of this
metric across different thresholds, showing our method’s capability of better uncertainty estimation.

Table 6: Evaluating the uncertainty estimation of models with ECE metric.

Cora Citeseer Pubmed ogb-Arxiv ogb-Mag
GCN 23.51 ± 1.89 21.80 ± 1.21 10.62 ± 1.28 8.43 ± 1.22 6.56 ± 0.97

GCNII 26.14 ± 0.16 28.96 ± 0.48 15.24 ± 0.06 10.04 ± 0.08 6.92 ± 0.04
BBGDC 14.57 ± 0.33 20.58 ± 0.12 OOM OOM OOM

Ours 6.49 ± 1.64 14.62 ± 1.39 4.97 ± 0.92 5.02 ± 1.03 3.53 ± 0.88

Besides PAvsPU, we also employ the Expected Calibration Error (ECE) (Naeini et al., 2015) to eval-
uate our model. A lower ECE indicates better calibration, meaning that the predicted probabilities
more accurately reflect the true likelihood of outcomes. Table 6 presents the results measured by the
ECE metric. Our method consistently demonstrates better performance in both metrics, highlight-
ing its effectiveness in assessing its own confidence or uncertainty in predictions, thereby providing
reliable uncertainty estimates.

5 CONCLUSION

We introduce a neighborhood-aware GNN model with adaptive edge sampling. Our method lever-
ages the power of the beta process that enables us to determine the appropriate neighborhood scope
based on the given dataset. Additionally, we also utilize kernel functions to discover important path-
ways within the neighborhood. This approach eliminates the computational overhead caused by
grid search. The experimental results showcase the effectiveness of our method in enhancing the
performance across various datasets.
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graphs: Variation minimization. IEEE Transactions on Signal Processing, 63(17):4609–4624,
2015.

Jiaqi Han, Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Structure-
aware dropedge toward deep graph convolutional networks. IEEE Transactions on Neural Net-
works and Learning Systems, 2023.

Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield, Krishna
Narayanan, and Xiaoning Qian. Bayesian graph neural networks with adaptive connection sam-
pling. In International conference on machine learning, pp. 4094–4104. PMLR, 2020.

Matthew Hoffman and David Blei. Stochastic structured variational inference. In Proc. of the
Artificial Intelligence and Statistics (AISTATS), pp. 361–369, 2015.

10

http://dx.doi.org/10.1214/12-BA715


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Kexin Huang, Cao Xiao, Lucas M Glass, Marinka Zitnik, and Jimeng Sun. Skipgnn: predicting
molecular interactions with skip-graph networks. Scientific reports, 10(1):1–16, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Kishan KC, Rui Li, and MohammadMahdi Gilany. Joint inference for neural network depth and
dropout regularization. Advances in Neural Information Processing Systems, 34:26622–26634,
2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

KC Kishan, Rui Li, Feng Cui, and Anne R Haake. Predicting biomedical interactions with higher-
order graph convolutional networks. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 19(2):676–687, 2021.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
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Figure 6: The architecture of our proposed model with a potentially infinite number of neighborhood
scope. We use a beta process to enable the neighborhood scope to go infinity. In the l-th neighbor-
hood hop, we generate a binary matrix Zl as a mask by using the conjugate Bernoulli process to
drop edges from the adjacency matrix.

A DETAILS ON NEIGHBORHOOD SCOPE INFERENCE OF GNN

The architecture of our proposed model with a potentially infinite number of neighborhood hops is
shown in Figure 6. To compute the expectation in Eq. (6) samples the mask, we employ Monte Carlo
estimation with S samples of the edge sampling matrix Z(s), which represents the sets of hop-wise
edge masks along with the hop-wise activation probabilities. We utilize the Beta and the Bernoulli
processes, where the activation probability decreases exponentially as the value of l increases. For
neighborhood hop with large enough l values, the activation probability becomes small, resulting in
no edges being activated in that neighborhood hop. The count of neighborhood hops with activated
edges is then determined as:

lc = max
l

l|
|E|∑

m=1

zlm > 1

 (10)

where
∑|E|

m=1 zlm represents total activation of edges in neighborhood hop l. We can compute the
expectation of log-likelihood based on S samples of GNN structure:

Eq(Z,ν)[log p(D|Z,W)]≈ 1

S

S∑
s=1

[log p(D|Z(s),W)], (11)

where Z(s) are sampled from the Bernoulli process. The variational parameters {at, bt}l
c

t=1and
{W}lct=1 are learned through an end-to-end optimization of the ELBO as depicted in Eq. (7).

B MORE EXPERIMENTS

B.1 TIME COMPLEXITY ANALYSIS WITH DIFFERENT SAMPLE COUNTS

Table 7 presents additional results from the time consumption experiments. Compared to the vanilla
GCN method, our approach shows a linear increase in time consumption, which corroborates the
earlier time complexity analysis. Specifically, with S samples, our method scales linearly as ST ,
where T represents the time for single pass.

B.2 DIRICHLET ENERGY ANALYSIS

Dirichlet energy (Zhou et al., 2021) of node embeddings is defined to measure their smoothness
within a graph [1]. This formulation captures the total variation of the embeddings across con-
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Table 7: Semi-supervised node classification training time comparison with different sample S set-
tings. The training time unit is in seconds(s)

Cora Citeseer Pubmed
GCN 62.53 77.37 96.54

GCNII 60.14 79.22 95.76
Ours S = 1 67.38 88.51 102.36
Ours S = 3 205.45 263.13 298.96
Ours S = 5 340.72 438.17 506.45
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Figure 7: Dirichlet Energy variation with layers in Cora dataset.

nected nodes, serving as an indicator of how much the embeddings change between adjacent nodes.
In Graph Neural Networks (GNNs), monitoring the Dirichlet energy across layers helps in under-
standing and mitigating the over-smoothing phenomenon, where node embeddings become overly
similar, leading to a loss of discriminative power.

Figure 7 shows the variation of Dirichlet energy with increasing layers in Cora dataset. The higher
value indicates that the node embeddings are over-separating even for those nodes with the same
value, while the lower value shows the presence of over-smoothing problem. Our method shows
higher Dirichlet energy than other methods as we increase the truncation level in our method and
layers in other methods. The results is consistency with the ones we showed using total variation.

B.3 NEIGHBORHOOD SCOPE INFERENCE ANALYSIS ON SYNTHETIC DATASET

In this section, we present a detailed analysis of neighborhood determination using two synthetic
datasets: BA-Shapes and Tree-Cycles, which are commonly utilized in GNN explanation exper-
iments (Ying et al., 2019). These datasets are selected because they provide ground-truth expla-
nations in the form of motifs, which can be viewed as subgraphs that contribute to predictions in
various tasks.

Figure 8 illustrates the results for both synthetic datasets. The inferred neighborhood scope identifies
the most suitable range for extracting meaningful information during training for each dataset. For
example, in the BA-Shapes dataset, the motif indicates that up to second-order neighborhoods are
sufficient to provide adequate information for node classification tasks. Similarly, in the Tree-Cycles
dataset, the motif, which forms a ring structure, suggests that up to third-order neighborhoods are
necessary to capture the required information.
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Figure 8: Neighborhood scope inference results and inferred neighborhood activation probabilities
for BA-Shapes and Tree-Cycles datasets.
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