
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EDGE IMPORTANCE INFERENCE TOWARDS NEIGHBOR-
HOOD AWARE GNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Comprehensive model tuning and meticulous training for determining proper
scope of neighborhood where graph neural networks (GNNs) aggregate informa-
tion requires high computation overhead and significant human effort. We propose
a probabilistic GNN model that captures the expansion of neighborhood scope as
a stochastic process and adaptively sample edges to identify critical pathways con-
tributing to generating informative node features. We develop a novel variational
inference algorithm to jointly approximate the posterior of the count of neighbor-
hood hops and learn GNN weights while accounting for edge importance. Exper-
iments on multiple benchmarks demonstrate that by adapting the neighborhood
scope to a given dataset our model outperforms GNN variants that require grid
search or heuristics for neighborhood scope selection.

1 INTRODUCTION

Graph neural networks (GNNs) (Kipf & Welling, 2016; Bhagat et al., 2011) gain significant atten-
tion in recent years due to their success in various areas, such as social information analysis (Li &
Goldwasser, 2019), recommender systems (Ying et al., 2018) and biomedical domain (Kishan et al.,
2021; Huang et al., 2020). They are considered essential methods for graph representation learning
as GNNs can effectively exploit rich topological information by generating a node’s features from
its neighborhood.

However, selecting an appropriate scope of the neighborhood where GNNs aggregate information
remains an important challenge: a narrow scope that covers a limited range of neighborhoods can
hurt the predictive performance, and a broad scope that covers long-range neighborhoods can lead
to over-smoothing (Li et al., 2018) and unnecessary complexity. Automatic search algorithms (e.g.,
grid search) face the same issue since careful design of the search space is a daunting task, and
validating large GNN structures incurs high computation and time costs.

Extensive research efforts show that appropriately setting neighborhood scopes for GNNs can be
critical to their performance improvement (Abu-El-Haija et al., 2019; Zeng et al., 2021; Veličković
et al., 2017). However, prior works mainly focus on designing aggregation schemes via regulariza-
tion (Srivastava et al., 2014; Rong et al., 2019; Hasanzadeh et al., 2020) or network structures (Xu
et al., 2018; Klicpera et al., 2018; Chen et al., 2020). These methods inevitably rely on grid search
and heuristics to determine the neighborhood scopes, which leads to heavy tuning and unnecessary
model complexity.

In this paper, we propose a probabilistic GNN model inferring the most appropriate neighborhood
scope given the graph while aggregating node information. Specifically, we model the expansion
of neighborhood scope as a stochastic process by defining a beta process (Broderick et al., 2012)
over the count of neighborhood hops to allow it to go to infinity. The beta process induces hop-
wise activation probabilities and its conjugate Bernoulli process enables us to adaptively sample the
edges in the neighborhood. In addition, the importance of the edges is evaluated based on the feature
similarity between the adjacent nodes. We can thus identify significant pathways that contribute to
the node latent features during training. We propose an efficient variational inference method that
jointly approximates the posterior of the neighborhood scopes and learns GNN weights. Our model
strikes a balance between the neighborhood scope expansion and the number of activated edges
within the neighborhood while providing well-calibrated predictions. It enhances GNN performance
across various benchmark datasets, as demonstrated by our experiments.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a)

10 20 30 40
Layer (l)

0

1

l

Edge Activation Mask

(b)

Figure 1: (a) Our GNN model jointly infers the proper neighborhood scope and aggregates informa-
tion through important pathways identified within it. We model the count of neighborhood hops as
a beta process to enable it to go infinity. (b) A stick-breaking construction of a beta process and its
conjugate Bernoulli process. The sticks located at the top represent random draws from the beta pro-
cess, serving as layer-wise activation probabilities. Each stick location, denoted by δfl , corresponds
to a GNN layer function fl, with the height indicating its activation probability πl. The bottom shows
the conjugate Bernoulli process. The binary vectors (column-wise) activate or deactivate edges in
each layer by elementwisely multiplying the flattened adjacency matrix.

The contributions of our research are: i) We propose a probabilistic solution for automatically de-
termining the appropriate neighborhood scope for GNNs, which eliminates the need for extensive
pre-training and enhances model performance. ii) Our model adaptively samples edges within the
neighborhood to identify the important pathways contributing to node encoding. iii) We develop
a variational inference to jointly infer the count of neighborhood hops and learn GNN weights.
iv) We conduct a comprehensive analysis of our method’s neighborhood inference capability and
demonstrate its ability to mitigate over-smoothing effectively.

2 RELATED WORK

2.1 BAYESIAN INFERENCE FOR GNNS

Graph Gaussian Processes (GGPs) (Ng et al., 2018) extends traditional Gaussian Processes (GPs) by
incorporating graph topology into the model, enabling it to handle uncertainty in both node features
and the graph structure. This approach is designed for situations with limited labeled data, using
the graph to propagate information to unlabeled nodes. The Bayesian-GCNN (Pal et al., 2019)
framework, as another Bayesian method, interprets the input graph as a single instance drawn from
a parametric family of random graphs and estimates the joint posterior distribution of both the graph
parameters and the node labels. BBGDC (Beta-Bernoulli Graph DropConnect) (Hasanzadeh et al.,
2020) can be viewed as a generalized stochastic Bayesian technique to train GCNs. It enables GCNs
to independently drop out edges and convolution channels. However, these methods are not capable
of inferring the number of hops automatically during training and require expensive hyper-parameter
tuning of network depth.

2.2 GNNS WITH MULTI-HOP NEIGHBORHOOD SCOPES

Mixhop (Abu-El-Haija et al., 2019) introduces a novel approach that allows for the mixing of infor-
mation from different hops in the neighborhood, enhancing the model’s ability to learn from local
and more distant nodes. It demonstrates how varied neighborhood scopes can be combined to im-
prove representation learning. (Zeng et al., 2021) addresses the limitations of traditional graph neural
networks (GNNs) in balancing depth (number of layers) and scope (size of the local neighborhood)
by substituting the input graph with a subgraph that preserves essential information. Graph Attention
Networks (GATs) (Veličković et al., 2017) introduces the attention mechanism to GCNs, allowing
the model to weigh the importance of neighbors during aggregation. By adapting the neighborhood

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

scope dynamically, GATs improve performance in scenarios where the relevance of neighbors varies
significantly.

2.3 EDGE IMPORTANCE EVALUATION

Dropout (Srivastava et al., 2014) for GNNs is applied to randomly drop node features from the
previous hidden layer at each training iteration, based on independent Bernoulli random draws with
a constant drop rate. Compared to Dropout, DropEdge (Rong et al., 2019) randomly drops edges
from the adjacency matrix instead of node features in each hidden layer during training iterations,
based on independent Bernoulli random draws with a constant drop rate. But both methods just
randomly choose drop portions, which means they treat each node or edge as equally important ones.
Compared with DropEdge, DropEdge++ (Han et al., 2023) introduces a feature-dependent sampler
that correlates edge sampling probabilities with the feature similarity of node pairs, determining
which edges should be retained or removed.

3 NEIGHBORHOOD-AWARE GNN

Instead of incurring computational overhead to predetermine the appropriate neighborhood scope
for information aggregation, we propose a probabilistic GNN model to automatically infer neighbor-
hood scopes, embodied as network depth, along with identifying important pathways by modeling
the count of neighborhood hops as a Beta process over hidden layers while learning GNN weights,
as illustrated in Figure 1(a).

3.1 NOTATION

In the following section, G(V, E ,X) represents a graph with N nodes/vertices V , edges E , and node
features X. A ∈ RN×N denotes the adjacency matrix of the graph. The adjacency matrix of the
graph with added self-connections is denoted by Ã = A+ IN , where IN is the identity matrix. Its
normalized counterpart is denoted by Â = D− 1

2 ÃD
1
2 where Dii =

∑
j Ãij .

3.2 ADAPTIVELY SAMPLING EDGES WITHIN AN INFINITE NEIGHBORHOOD SCOPE

Let Hl represent the feature output by the GNN’s l-th hidden layer for all nodes V . We formulate
an infinitely deep GNN with skip-connection as

Hl = σ
(
(Â⊙ Zl)Hl−1Wl

)
+Hl−1, l ∈ {1, . . . ,∞} (1)

where Wl ∈ RM×M denotes the weight of layer l, with M representing the layer width (i.e., the
number of neurons in the layer). Since GNN layer l aggregates information within l-th neighborhood
hop, we thus adaptively sample edges within l-th neighborhood hop by element-wisely multiply (as
denoted by ⊙) the adjacency matrix with a binary matrix Zl which is generated from a Bernoulli
process, as demonstrated in Figure 1(b).

Given a graph-structured dataset D = {X,y, Â} with ground-truth labels y, the likelihood can be
expressed as:

p(D|Z,W) =

N∏
n=1

p(yn|fn(X, Â;Z,W)) (2)

where yn is the target label and fn(·) denotes the prediction for the nth node from the network head,
which is softmax for classification. W = {Wl} denotes the weight tensor, accumulated across the
network layers.

3.3 CONSTRUCTION OF BETA PROCESS PRIOR

We treat the expansion of neighborhood scope as a stochastic process by modeling the count of
neighborhood hops as a Beta process (Paisley et al., 2010; Broderick et al., 2012; KC et al., 2021),

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

as in Figure 1 (b). A stick-breaking construction of a beta process can be realized as follows:

πl =

l∏
j=1

νj , νl ∼ Beta(α, β) (3)

We start by sequentially drawing νl from a beta distribution with hyperparameters α and β. The
cumulative product of νk s until l gives the activation probability for neighborhood hop l, which is
denoted as πl. These probabilities decrease exponentially as l increases, restricting the unbounded
growth of the network. We then sample the binary mask for the edges in each neighborhood hop l
from a conjugate Bernoulli process zl ∼ Ber(πl) which is conjugate to the beta process in Eq. (3).
zle = 1 activates the edge e in the neighborhood hop l and zle = 0 de-activate it. The binary vector
zl is then reshaped to obtain a full mask matrix Zl as in Eq. (1).

Thus, we formulate the prior over the neighborhood hops and the edge sampling matrix Z as

p(Z,ν|α, β) = p(ν|α, β)p(Z|ν) =
∞∏
l=1

Beta(νl|α, β)
|E|∏
e=1

Ber(zle|πl) (4)

where Z = {Zl} and ν = {νl} represent the sets of hop-wise edge masks and activation probabili-
ties, respectively.

3.4 MARGINAL LIKELIHOOD FOR NEIGHBORHOOD SCOPE SELECTION

We combine the Beta-Bernoulli process prior in Eq. (4) and the likelihood in Eq. (2), and then
marginalize over the edge masks and activation probabilities to obtain the marginal likelihood:

p(D|W, L, α, β) =

∫
p(D|Z,W)p(Z,ν|α, β)dZdν (5)

3.5 VARIATIONAL INFERENCE

Due to the inherent complexity and non-linearity of neural networks, exact marginalization in Eq. (5)
over the edge sampling masks is intractable. We propose to approximate it via variational inference.

We adopt the structured variational inference framework (Hoffman & Blei, 2015) to capture the
dependency between the activation probabilities and edge sampling masks. We define the variational
distribution as

q
(
Z,ν|{at, bt}Tt=1

)
= q(ν)q(Z|ν) =

T∏
t=1

Beta(νt|at, bt)
N∏

m=1

N∏
n=1

ConBer (ztmn|πt; τ) (6)

with variational parameters {at, bt}Tt=1. We employ a truncation level T in the variational distri-
bution. Setting T to a sufficiently large number, we can approximate the theoretical assumption
of an infinite count of neighborhood hops in the Beta process. We relax the discrete variables by
using a concrete Bernoulli distribution ConBer(πt; τ) (Maddison et al., 2016; Jang et al., 2016)
with temperature parameter τ . This continuous relaxation of the Bernoulli distribution allows back-
propagation while sampling the variables.

The evidence lower bound (ELBO) to the marginal likelihood in Eq. (5) is the objective for opti-
mization:

log p(D|W, L, α, β) ≥ Eq(Z,ν)][log p(D|Z,W)]−DKL[q(ν)||p(ν)]−DKL[q(Z|ν)||p(Z|ν)] (7)

The first term on the RHS is the expectation of the log likelihood with respect to the variational
distribution which fits the model to the data. The last two regularization terms are Kullback–Leibler
divergence between the model prior and the variational distribution.

3.6 EVALUATING THE IMPORTANCE OF EDGES

Sampling the binary edge mask Zl results in a random dropping of edges in each layer. However,
some edges may be more informative than others for the overall performance of the GNN. For an

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0

1

l

Epoch: 10

0

1

l

Epoch: 50

0

1

l

Epoch: 100

0

1

l

Epoch: 500

Figure 2: Neighborhood scope evolution and activated edges across different training epochs on
Cora dataset during the traing of our method. πl is the hop activation probability (ratio of activated
edges) for each neighborhood hop l. The neighborhood scope increases as training progresses.

edge e ∈ E connecting nodes n and n′, we define a kernel function κ(xn, xn′) to compute the
similarity between nodes n and n′. Given the hop activation probability πl, we weight the edge
mask with node similarity as

z̃lnn′ ∼ Bernoulli

(
πlκ(xn, xn′)∑
(i,j)∈E κ(xi, xj)

)
(8)

This helps preserving the edges whose connecting nodes sharing similar features measured by the
kernel. To reduce computational demands during training, we pre-compute the kernel values to
avoid recalculating them iteratively.

3.7 PREDICTIVE DISTRIBUTION

By applying MAP estimation on the network weights, we obtain the predictive distribution for any
node n as follows:

p
(
y|Ŵ, â, b̂

)
=

∫
p
(
y|fn

(
Â,x;Z,Ŵ

))
q
(
Z,ν|â, b̂

)
dZdν (9)

where, Ŵ is the MAP estimation of network weights and â = {ât}, and b̂ = {b̂t} denote the
optimized varionatal parameters. We perform a Monte Carlo approximation of Eq. (9) by sampling
from the variational posterior distribution q

(
Z,ν|â, b̂

)
.

4 EXPERIMENTS AND DISCUSSION

We analyze the behavior of our proposed probabilistic GNN model on various tasks. First, we
illustrate how our model adapts the neighborhood scope during training. Then, we compare our
method’s performance with GNN variants on the benchmark datasets. These GNN variants rely on
grid search to determine the neighborhood hops. Furthermore, we investigate the impact of different
kernel functions and evaluate the performance on larger datasets. Along with the ablation study, we
assess time complexity, over-smoothing prevention, and uncertainty quantification.

4.1 DATASETS

We experiment with three publicly available citation network datasets: Citeseer, Cora, and Pubmed
(Sen et al., 2008), as well as two Co-author/Co-purchase network datasets: Co-author CS and Co-
author Physics (Shchur et al., 2018), to explore semi-supervised node classification tasks. Addi-
tionally, we evaluate the potential of our method on five medium-scale graph datasets: ogb-Arxiv,
ogb-Mag (Hu et al., 2020), Flickr (McAuley & Leskovec, 2012), ogb-Proteins and ogb-Products.
The details of these datasets are provided in Table 1. All the datasets undergo preprocessing and are

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: The details of the datasets.
Dataset #Nodes #Edges #Classes #Features

Cora 2,708 5,429 7 1,433
Citeseer 3,327 4,732 6 3,703
Pubmed 19,717 44,338 3 500

CoauthorCS 18,333 163,788 15 6,805
CoauthorPhysics 34,493 495,924 5 8,415

Flickr 89,250 899,756 7 500
ogb-Arxiv 169,343 1,166,243 40 128
ogb-Mag 1,939,743 21,111,007 349 128

ogb-Proteins 132,534 39,561,252 2 8
ogb-Products 2,449,029 61,859,140 47 100

(a) (b)

Figure 3: (a) Evaluating the effectiveness of our method in preventing over-smoothing. The x-axis
represents the inverse of Total Variation (1/TV), as a quantification of over-smoothing, while the
y-axis displays the corresponding test accuracy. Each dot on the graph is annotated with the count
of neighborhood hops where the models aggregate information. (b) Test accuracies for different
kernels on the Cora dataset.

partitioned following (Yang et al., 2016). Within our training set, each class was represented by 20
labeled nodes, totaling 1000 nodes within the test set. Notably, the remaining nodes retained their
unlabeled status. Concurrently, for hyperparameter tuning, 500 validation nodes were incorporated,
aligning with the approach adopted by (Kipf & Welling, 2016).

4.2 EXPERIMENT SETUP

To mitigate potential out-of-memory complications, we adopt a conservative mini-batch size of 10
and a truncation level K = 2. The hidden layers of our model incorporate ReLU activation. We use
RBF kernel function in our model to evaluate edge importance. We train our models using the Adam
optimizer (Kingma & Ba, 2014) with a learning rate of 0.01 and other parameters set as default. We
adhere to the original parameters delineated in (Kipf & Welling, 2016), which encompass a layer
width consisting of 16 neurons and a dropout probability of 0.5 applied to the hidden layers.

4.3 NETWORK STRUCTURE EVOLUTION OVER EPOCHS

We demonstrate how the proposed method inferring neighborhood scope during training on the Cora
dataset. The results in Figure 2 show that the expasion of neighborhood hops as training progresses.
Specifically, we observe that the activation probabilities per neighborhood hop increase, which, in
turn, activates more edges in the graph during later epochs. This graph evolution process continues
until it converges to an optimal configuration, after which no further changes in the graph structure
are observed.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Test accuracy (%) on semi-supervised node classification tasks. The best performances
across the benchmark datasets are bolded.

GCN ResGCN GCN+DE JKNet GCNII GAT Ours
Cora 78.7 80.9 81.2 79.7 83.8 81.7 83.2±0.5

Citeseer 66.2 67.3 69.3 68.9 69.8 66.0 71.5±0.3
Pubmed 77.5 77.6 78.1 77.3 77.4 77.4 78.5±0.2

CoauthorCS 88.2 88.5 89.4 90.1 89.7 89.9 91.1±0.2
CoauthorPhysics 91.4 91.7 92.2 92.1 92.7 90.8 93.1±0.3

20 21 22 23 24 25 26 27

Number of Layers / Truncation (T)
20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Cora

20 21 22 23 24 25 26 27

Number of Layers / Truncation (T)

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

Citeseer

20 21 22 23 24 25 26 27

Number of Layers / Truncation (T)

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

Pubmed

GCN+Dropout GCN+DropEdge GCN+DropEdge++ BBGDC JKNet Ours

Figure 4: Analysis of the effect of the truncation level T of our method and neighborhood scope
of other methods on three citation datasets. The reported performance metric is the classification
accuracy (in percentage) on the test sets. The performance of our model (red) is robust. Other
methods suffer from over-smoothing.

4.4 OVERALL PERFORMANCE COMPARISON

Table 2 presents the semi-supervised learning performance evaluation, highlighting the instances of
the best performance. In this evaluation, we compare our method against competing GNN variants
on citation and Co-author/Co-purchase network datasets. GCN+DE refers to the vanilla GCN with
DropEdge regularization. The competitive performance of GCN+DE shows the advantage of the
edge masks, which is consistent with our model’s superior performance on all the datasets. Note
that there is no statistical significance between our method and GCNII on the Cora dataset.

4.5 THE MECHANISMS MITIGATING OVER-SMOOTHING

We examine the total variation (TV) of the outputs from our model’s hidden layers throughout the
training process. TV quantifies the smoothness of a signal distributed across the nodes of a graph
(Chen et al., 2015). Specifically, given a graph with adjacency matrix A and a signal H defined
across its nodes, the TV is defined as TV(H) = ∥H− 1/|λmax|AH∥22 where, λmax denotes the
eigenvalue of the adjacency matrix A with the largest magnitude. A lower TV indicates that the
signal on adjacent nodes is more consistent across orders, serving as an indicator of the presence of
the over-smoothing problem.

Figure 3(a) shows the effectiveness of our method in preventing over-smoothing compared to other
regularization techniques. In this experiment, we compare our method against vanilla GCN, GCN
with dropout regularization, and GCN with DropEdge regularization. The results show that vanilla
GCN and GCN with dropout suffer from a more pronounced over-smoothing issue. The total vari-
ation decreases as these models aggregate information from long-range neighborhoods and lead to
a rapid decline in test accuracy. On the other hand, GCN with DropEdge partially alleviates this
oversmoothing problem as the total variation is less impacted compared to the previous two models.
In contrast, our method demonstrates superior effectiveness and robustness, particularly for large
neighborhood scopes.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5
Uncertainty Threshold

0.2

0.4

0.6

0.8
PA

 v
s P

U

Cora

0.0 0.5 1.0 1.5 2.0
Uncertainty Threshold

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PA
 v

s P
U

Citeseer

0.0 0.5 1.0 1.5
Uncertainty Threshold

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PA
 v

s P
U

Pubmed

GCN GCNII BBGDC Ours

Figure 5: Evaluation of uncertainty estimation on the three citation datasets. The x-axis represents
the uncertainty threshold, which discerns the demarcation point between certain and uncertain pre-
dictions. Plotted on the y-axis is the PAvsPU metric (Mukhoti & Gal, 2019), which reveals the
increasing trend of correctly estimated uncertainty as thresholds rise.

4.6 KERNEL FUNCTION EVALUATION

We evaluate edge importance using three kernels: linear, polynomial, and Radial basis function
(RBF) kernels, which are represented by κlinear(xn,xn′) = xT

nxn′ ; κpoly(xn,xn′ ;n) = (xT
nxn′)n;

κRBF(xn,xn′ ; γ) = exp(−γ∥xn − xn′∥2), respectively. Figure 3(b) shows the results of using dif-
ferent kernels. The model without a kernel function is the one we disregard edge importance. This
leads to significant fluctuations in performance as observed by the large variation for the test accu-
racy. This instability arises because, during training, important edges are randomly dropped, result-
ing in a loss of crucial information. This issue becomes particularly problematic when the dataset is
small or the edges are sparsely distributed. Applying kernels significantly stabilizes performance as
observed by reduced variations in the test accuracies. For the polynomial and RBF kernels, we learn
the parameters degree n and the parameter γ, respectively. The RBF kernel function outperforms
the other two kernel functions.

4.7 PERFORMANCE ON LARGER DATASETS

We also test our method on five medium-scale graph datasets: Flickr, ogb-Arxiv, ogb-Mag, ogb-
Proteins and ogb-Products to assess the scalability of our method. Table 3 shows the performance
compared to different baseline methods. Our model achieves the best performance on these datasets,
as we retain critical information while dropping out redundant edges. Note that rather than relying
on any search algorithms to determine the neighborhood scopes, our model automatically balances
the neighborhood scope and the activated pathways within it while learning GNN weights on these
larger dataset.

Table 3: Test accuracy (%) comparisons with larger datasets on semi-supervised node classification
task. The results are the best performance achieved by the baseline methods.

GCN ResGCN JKNet GCNII GAT Ours
Flickr 51.4 51.9 51.6 46.1 52.2 53.5 ± 1.3

ogb-Arxiv 72.1 72.3 72.2 72.7 73.6 75.2 ± 0.4
ogb-Mag 37.3 37.9 38.4 42.3 43.7 44.3 ± 1.7

ogb-Proteins 72.5 73.4 69.5 74.1 85.0 83.6 ± 0.3
ogb-Products 82.3 82.5 82.9 83.7 81.7 83.8 ± 0.4

4.8 ABLATION STUDY

To evaluate the effectiveness of each module in our model, we present the results of an ablation study
in Table 4. By comparing the vanilla GCN model (w/o kernel, beta process, and skip-connection)
and our model, we assess the contribution of individual components, including skip connection,
the beta process, and the kernel function. The results indicate that the beta process significantly

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

enhances performance, particularly on the Citeseer dataset, where using the beta process alone yields
improved results. However, the performance is not stable without the kernel function, indicated by
larger standard deviation. Incorporating the kernel function not only stabilizes the outcomes but also
statistically improves performance.

Table 4: Ablation study of different modules’ effectiveness in our model. The best performance is
bolded.

Cora Citeseer Pubmed ogb-Arxiv ogb-Mag
Ours 83.2 ± 0.5 71.5 ± 0.3 78.5 ± 0.2 75.2± 0.4 44.3 ± 1.7

w/o kernel 82.2 ± 1.2 71.7 ± 1.1 77.9 ± 0.6 74.3 ± 1.1 42.7 ± 3.1
w/o beta process 79.4 ± 0.3 67.8 ± 0.2 77.9 ± 0.2 72.3 ± 0.2 43.1 ± 0.7

w/o skip-connection 81.2 ± 0.4 69.8 ± 0.1 77.6 ± 0.3 71.5 ± 0.6 42.9 ± 0.4
w/o kernel, beta process

and skip-connection 78.7 ± 0.2 66.2 ± 0.3 77.5 ± 0.2 70.2 ± 1.3 37.2 ± 0.6

4.9 TIME COMPLEXITY ANALYSIS

For training a GCN structure with depth L and width M , the time complexity of our method is
O(NBLM2) where N represents number of training nodes and B represents number of epochs.
Let T be the time cost of a single forward pass, with S samples our method is linearly scalable as
ST .

We conduct a comparison of the training time costs using the same mini-batch size. Table 5 shows
the results for S = 1. More experiment results with different settings of sample S can be seen in
the Appendix. Although our method requires more time during training, it automatically infers the
optimal neighborhood scope, eliminating the overhead with automatic search algorithms. The time
and space consumption during training is still comparable to the baseline methods, demonstrating
the efficiency of our approach.

Table 5: Semi-supervised node classification training time comparison between vanilla GCN and
ours. The training time unit is in seconds (s) and the space unit is in Megabyte (MB).

Methods Cora Citeseer Pubmed ogb-Arxiv ogb-Mag
Time Space Time Space Time Space Time Space Time Space

GCN 62.53 39 77.37 164 96.54 129 643.72 2421 2765.45 4805
GCNII 60.14 42 79.22 175 95.76 133 614.37 2525 2840.32 4953
JKNet 61.27 41 80.15 184 100.33 136 661.44 2606 2911.59 4904
Ours 67.38 57 88.51 194 102.36 166 677.58 2788 3033.75 5277

4.10 OVER-SMOOTHING PREVENTION

To illustrate the effectiveness of our approach in alleviating the over-smoothing problem, we show-
case the effectiveness of our method in counteracting the over-smoothing issue by comparing it with
other techniques. Figure 4 illustrates the changes in prediction accuracy as we expand neighborhood
scope to aggregate more information in our method. In addition to comparing with benchmark mod-
els, we also evaluate various regularization techniques, including Dropout, DropEdge, and DropE-
dge++. Our method, which decouples the truncation level from the neighborhood order of data
aggregation, is presented to be the most robust technique, maintaining consistent performance as
the truncation level increases. This demonstrates its superior ability to mitigate over-smoothing
compared to other techniques.

4.11 UNCERTAINTY QUANTIFICATION

We compare our method with vanilla GCN, GCNII, and BBGDC (Hasanzadeh et al., 2020) to assess
uncertainty quantification. First, we evaluate using the PAvsPU metric (Mukhoti & Gal, 2019). The
horizontal axis represents the uncertainty threshold, which delineates predictions deemed certain or
uncertain. Predictions falling below the threshold are deemed certain, while those surpassing it are

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

considered uncertain. The PAvsPU metric captures the proportion of correctly estimated uncertain-
ties relative to all model predictions made on the test dataset. Figure 5 shows the results of this
metric across different thresholds, showing our method’s capability of better uncertainty estimation.

Table 6: Evaluating the uncertainty estimation of models with ECE metric.

Cora Citeseer Pubmed ogb-Arxiv ogb-Mag
GCN 23.51 ± 1.89 21.80 ± 1.21 10.62 ± 1.28 8.43 ± 1.22 6.56 ± 0.97

GCNII 26.14 ± 0.16 28.96 ± 0.48 15.24 ± 0.06 10.04 ± 0.08 6.92 ± 0.04
BBGDC 14.57 ± 0.33 20.58 ± 0.12 OOM OOM OOM

Ours 6.49 ± 1.64 14.62 ± 1.39 4.97 ± 0.92 5.02 ± 1.03 3.53 ± 0.88

Besides PAvsPU, we also employ the Expected Calibration Error (ECE) (Naeini et al., 2015) to eval-
uate our model. A lower ECE indicates better calibration, meaning that the predicted probabilities
more accurately reflect the true likelihood of outcomes. Table 6 presents the results measured by the
ECE metric. Our method consistently demonstrates better performance in both metrics, highlight-
ing its effectiveness in assessing its own confidence or uncertainty in predictions, thereby providing
reliable uncertainty estimates.

5 CONCLUSION

We introduce a neighborhood-aware GNN model with adaptive edge sampling. Our method lever-
ages the power of the beta process that enables us to determine the appropriate neighborhood scope
based on the given dataset. Additionally, we also utilize kernel functions to discover important path-
ways within the neighborhood. This approach eliminates the computational overhead caused by
grid search. The experimental results showcase the effectiveness of our method in enhancing the
performance across various datasets.

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine learn-
ing, pp. 21–29. PMLR, 2019.

Smriti Bhagat, Graham Cormode, and S Muthukrishnan. Node classification in social networks.
arXiv preprint arXiv:1101.3291, 2011.

Tamara Broderick, Michael I. Jordan, and Jim Pitman. Beta processes, stick-breaking and power
laws. Bayesian Analysis, 7(2):439–476, Jun 2012. ISSN 1936-0975. doi: 10.1214/12-ba715.
URL http://dx.doi.org/10.1214/12-BA715.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph con-
volutional networks. In International Conference on Machine Learning, pp. 1725–1735. PMLR,
2020.

Siheng Chen, Aliaksei Sandryhaila, José MF Moura, and Jelena Kovačević. Signal recovery on
graphs: Variation minimization. IEEE Transactions on Signal Processing, 63(17):4609–4624,
2015.

Jiaqi Han, Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Structure-
aware dropedge toward deep graph convolutional networks. IEEE Transactions on Neural Net-
works and Learning Systems, 2023.

Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield, Krishna
Narayanan, and Xiaoning Qian. Bayesian graph neural networks with adaptive connection sam-
pling. In International conference on machine learning, pp. 4094–4104. PMLR, 2020.

Matthew Hoffman and David Blei. Stochastic structured variational inference. In Proc. of the
Artificial Intelligence and Statistics (AISTATS), pp. 361–369, 2015.

10

http://dx.doi.org/10.1214/12-BA715

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Kexin Huang, Cao Xiao, Lucas M Glass, Marinka Zitnik, and Jimeng Sun. Skipgnn: predicting
molecular interactions with skip-graph networks. Scientific reports, 10(1):1–16, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Kishan KC, Rui Li, and MohammadMahdi Gilany. Joint inference for neural network depth and
dropout regularization. Advances in Neural Information Processing Systems, 34:26622–26634,
2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

KC Kishan, Rui Li, Feng Cui, and Anne R Haake. Predicting biomedical interactions with higher-
order graph convolutional networks. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 19(2):676–687, 2021.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Chang Li and Dan Goldwasser. Encoding social information with graph convolutional networks
forpolitical perspective detection in news media. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pp. 2594–2604, 2019.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Julian McAuley and Jure Leskovec. Image labeling on a network: using social-network metadata for
image classification. In Computer Vision–ECCV 2012: 12th European Conference on Computer
Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part IV 12, pp. 828–841. Springer,
2012.

Jishnu Mukhoti and Yarin Gal. Evaluating bayesian deep learning methods for semantic segmenta-
tion, 2019.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated proba-
bilities using bayesian binning. In Proceedings of the AAAI conference on artificial intelligence,
volume 29, 2015.

Yin Cheng Ng, Nicolò Colombo, and Ricardo Silva. Bayesian semi-supervised learning with graph
gaussian processes. Advances in Neural Information Processing Systems, 31, 2018.

John Paisley, Aimee Zaas, Christopher W. Woods, Geoffrey S. Ginsburg, and Lawrence Carin. A
stick-breaking construction of the beta process. In Proc. of the 27th International Conference on
Machine Learning (ICML), pp. 2902–2911. JMLR. org, 2010.

Soumyasundar Pal, Florence Regol, and Mark Coates. Bayesian graph convolutional neural net-
works using non-parametric graph learning. arXiv preprint arXiv:1910.12132, 2019.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pp. 5453–5462. PMLR, 2018.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–
983, 2018.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32, 2019.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kan-
nan, Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neural
networks. Advances in Neural Information Processing Systems, 34:19665–19679, 2021.

Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu. Dirichlet
energy constrained learning for deep graph neural networks. Advances in Neural Information
Processing Systems, 34:21834–21846, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Figure 6: The architecture of our proposed model with a potentially infinite number of neighborhood
scope. We use a beta process to enable the neighborhood scope to go infinity. In the l-th neighbor-
hood hop, we generate a binary matrix Zl as a mask by using the conjugate Bernoulli process to
drop edges from the adjacency matrix.

A DETAILS ON NEIGHBORHOOD SCOPE INFERENCE OF GNN

The architecture of our proposed model with a potentially infinite number of neighborhood hops is
shown in Figure 6. To compute the expectation in Eq. (6) samples the mask, we employ Monte Carlo
estimation with S samples of the edge sampling matrix Z(s), which represents the sets of hop-wise
edge masks along with the hop-wise activation probabilities. We utilize the Beta and the Bernoulli
processes, where the activation probability decreases exponentially as the value of l increases. For
neighborhood hop with large enough l values, the activation probability becomes small, resulting in
no edges being activated in that neighborhood hop. The count of neighborhood hops with activated
edges is then determined as:

lc = max
l

l|
|E|∑

m=1

zlm > 1

 (10)

where
∑|E|

m=1 zlm represents total activation of edges in neighborhood hop l. We can compute the
expectation of log-likelihood based on S samples of GNN structure:

Eq(Z,ν)[log p(D|Z,W)]≈ 1

S

S∑
s=1

[log p(D|Z(s),W)], (11)

where Z(s) are sampled from the Bernoulli process. The variational parameters {at, bt}l
c

t=1and
{W}lct=1 are learned through an end-to-end optimization of the ELBO as depicted in Eq. (7).

B MORE EXPERIMENTS

B.1 TIME COMPLEXITY ANALYSIS WITH DIFFERENT SAMPLE COUNTS

Table 7 presents additional results from the time consumption experiments. Compared to the vanilla
GCN method, our approach shows a linear increase in time consumption, which corroborates the
earlier time complexity analysis. Specifically, with S samples, our method scales linearly as ST ,
where T represents the time for single pass.

B.2 DIRICHLET ENERGY ANALYSIS

Dirichlet energy (Zhou et al., 2021) of node embeddings is defined to measure their smoothness
within a graph [1]. This formulation captures the total variation of the embeddings across con-

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 7: Semi-supervised node classification training time comparison with different sample S set-
tings. The training time unit is in seconds(s)

Cora Citeseer Pubmed
GCN 62.53 77.37 96.54

GCNII 60.14 79.22 95.76
Ours S = 1 67.38 88.51 102.36
Ours S = 3 205.45 263.13 298.96
Ours S = 5 340.72 438.17 506.45

0 10 20 30 40 50
Layer Index

0

10

20

30

Di
ric

hl
et

 E
ne

rg
y

Ours
GCNII
GCN+Dropout
GCN+DropEdge
GCN

Figure 7: Dirichlet Energy variation with layers in Cora dataset.

nected nodes, serving as an indicator of how much the embeddings change between adjacent nodes.
In Graph Neural Networks (GNNs), monitoring the Dirichlet energy across layers helps in under-
standing and mitigating the over-smoothing phenomenon, where node embeddings become overly
similar, leading to a loss of discriminative power.

Figure 7 shows the variation of Dirichlet energy with increasing layers in Cora dataset. The higher
value indicates that the node embeddings are over-separating even for those nodes with the same
value, while the lower value shows the presence of over-smoothing problem. Our method shows
higher Dirichlet energy than other methods as we increase the truncation level in our method and
layers in other methods. The results is consistency with the ones we showed using total variation.

B.3 NEIGHBORHOOD SCOPE INFERENCE ANALYSIS ON SYNTHETIC DATASET

In this section, we present a detailed analysis of neighborhood determination using two synthetic
datasets: BA-Shapes and Tree-Cycles, which are commonly utilized in GNN explanation exper-
iments (Ying et al., 2019). These datasets are selected because they provide ground-truth expla-
nations in the form of motifs, which can be viewed as subgraphs that contribute to predictions in
various tasks.

Figure 8 illustrates the results for both synthetic datasets. The inferred neighborhood scope identifies
the most suitable range for extracting meaningful information during training for each dataset. For
example, in the BA-Shapes dataset, the motif indicates that up to second-order neighborhoods are
sufficient to provide adequate information for node classification tasks. Similarly, in the Tree-Cycles
dataset, the motif, which forms a ring structure, suggests that up to third-order neighborhoods are
necessary to capture the required information.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

BA-Shapes

Tree-Cycles

Dataset
Base Structure

Ground-Truth
Explanations

(Motifs)

Inferred
Neighborhood

Scope

2

3

Neighborhood
Activation

Probabilities

Figure 8: Neighborhood scope inference results and inferred neighborhood activation probabilities
for BA-Shapes and Tree-Cycles datasets.

15

	Introduction
	Related Work
	Bayesian Inference for GNNs
	GNNs with Multi-hop Neighborhood Scopes
	Edge Importance Evaluation

	Neighborhood-aware GNN
	Notation
	Adaptively Sampling Edges within an Infinite Neighborhood Scope
	Construction of Beta Process Prior
	Marginal Likelihood for Neighborhood Scope Selection
	Variational Inference
	Evaluating the Importance of Edges
	Predictive Distribution

	Experiments and Discussion
	Datasets
	Experiment Setup
	Network Structure Evolution over Epochs
	Overall Performance comparison
	The Mechanisms Mitigating Over-smoothing
	Kernel Function Evaluation
	Performance on Larger Datasets
	Ablation Study
	Time Complexity Analysis
	Over-smoothing Prevention
	Uncertainty Quantification

	Conclusion
	Details on Neighborhood Scope Inference of GNN
	More Experiments
	Time Complexity Analysis with Different Sample Counts
	Dirichlet Energy Analysis
	Neighborhood Scope Inference Analysis on Synthetic Dataset

