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Abstract001

We introduce CHEF, a novel Comparative Hal-002
lucination Evaluation Framework that lever-003
ages the HaluEval2.0 LLM-in-the-loop hal-004
lucination detection pipeline to directly mea-005
sure the relative effectiveness of hallucination006
mitigation techniques, specifically retrieval-007
augmented generation (RAG) and fine-tuning.008
While HaluEval2.0 provides absolute halluci-009
nation scores using a single evaluator LLM,010
CHEF demonstrates that by evaluating an iden-011
tical model architecture across three distinct012
configurations, we can effectively attribute013
the resulting differences in hallucination rates014
to each specific technique. Our experiments015
across science, biomedical, and other domains,016
conducted using CHEF, reveal variable ef-017
fectiveness of both RAG and fine-tuning ap-018
proaches, with significant domain-dependent019
performance differences. Offering valuable and020
actionable insights into mitigation strategies.021

1 Introduction022

Large Language Models (LLMs) have demon-023

strated remarkable capabilities across numerous024

tasks, yet hallucination remains a persistent chal-025

lenge for their deployment in high-stakes domains026

(Li et al., 2023). While various mitigation strate-027

gies exist, there is a critical gap in our ability to028

systematically compare their effectiveness under029

consistent evaluation conditions. Existing evalua-030

tion frameworks like HaluEval2.0 (Li et al., 2024b)031

face a fundamental limitation: evaluator halluci-032

nation confounds absolute scores (Manakul et al.,033

2023; Kossen et al., 2024), making it difficult to034

reliably compare mitigation techniques.035

Our key contribution is CHEF, a comparative evalu-036

ation framework that shifts focus from single-score037

reporting to controlled differential analysis. By sys-038

tematically applying the same evaluation pipeline039

to three variants of the same base model, CHEF040

obtains relative hallucination reductions that re-041

main robust to evaluator error. We hypothesize that 042

measuring percentage changes relative to a shared 043

baseline isolates true mitigation effects from evalu- 044

ator bias. This controlled experimental design iso- 045

lates the effects of specific mitigation techniques 046

while controlling for model architecture, evalua- 047

tion methodology, and domain characteristics, rep- 048

resenting a systematic comparison of RAG and 049

fine-tuning for hallucination mitigation. 050

CHEF provides key advantages over traditional 051

benchmarking approaches: (1) Isolation of miti- 052

gation effects: By controlling model architecture 053

and evaluation methodology, CHEF attributes per- 054

formance differences specifically to RAG or fine- 055

tuning interventions; (2) Robustness to evalua- 056

tor inconsistency: Relative improvements remain 057

meaningful despite potential systematic error in ab- 058

solute scores; (3) Practical guidance: Our results 059

quantify the relative effectiveness of these mitiga- 060

tion strategies, informing cost-benefit decisions for 061

applications. 062

2 Related Work 063

LLM-in-the-loop evaluators Recent work has 064

developed various approaches to detect hallucina- 065

tions in large language models using the models 066

themselves as evaluators. SelfCheckGPT lever- 067

ages the insight that if an LLM has knowledge of 068

a given concept, sampled responses are likely to 069

be similar and contain consistent facts, while hallu- 070

cinated facts tend to cause stochastically sampled 071

responses to diverge and contradict one another 072

(Manakul et al., 2023). This sampling-based ap- 073

proach performs well but increases computational 074

overhead by requiring multiple model generations. 075

TofuEval (Tang et al., 2024) specifically examines 076

hallucinations in dialogue summarization, high- 077

lighting limitations in LLM-based evaluators when 078

tasked with verifying factual consistency. Hallu- 079
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Lens (Bang et al., 2025) extends this work by of-080

fering a dynamic taxonomy-based benchmark that081

distinguishes between intrinsic and extrinsic hallu-082

cinations. Meanwhile, Phare’s multilingual bench-083

mark (Dora, 2025) confirms the pervasiveness of084

evaluator errors across languages, emphasizing the085

need for our comparative framework that controls086

for such biases.087

Mitigation via RAG vs. fine-tuning The effec-088

tiveness of RAG and fine-tuning approaches has089

been investigated in several studies, with comple-090

mentary findings to our work. Soudani et al. (2024)091

and Ovadia et al. (2023) demonstrate that RAG par-092

ticularly excels at addressing low-frequency knowl-093

edge queries compared to fine-tuning approaches,094

supporting our hypothesis that these techniques pro-095

vide different benefits in hallucination mitigation.096

End-to-end RAG pipelines have shown signifi-097

cant improvement in domain-specific factuality098

(Li et al., 2024a), while fine-tuning remains more099

resource-intensive (Lakatos et al., 2024). Our work100

builds on these insights by providing a direct com-101

parative analysis of both approaches within a con-102

sistent evaluation framework, allowing for more103

precise quantification of their relative benefits.104

Meta-evaluation and evaluator fallibility A105

critical challenge in hallucination research is the106

reliability of the evaluators themselves. McKenna107

et al. (2023) identify behavioral biases in Natu-108

ral Language Inference (NLI) tasks that contribute109

to evaluator hallucinations. FACTOID (Rawte110

et al., 2024) introduces factual entailment for more111

precise detection, while HALoGEN (Ravichander112

et al., 2025) provides a taxonomy and multi-domain113

verification framework specifically designed to114

identify evaluator errors.115

Our comparative benchmarking approach (CHEF)116

directly addresses these concerns by focusing on117

relative improvements rather than absolute scores.118

By controlling for evaluator biases through differ-119

ential analysis, we isolate the true effects of miti-120

gation strategies while acknowledging the inherent121

limitations of LLM-in-the-loop evaluation. The122

proposed CHEF framework approach aligns with123

recent work on semantic uncertainty quantifica-124

tion (Kossen et al., 2024), which similarly recog-125

nizes the value of comparative metrics over abso-126

lute scores for robust hallucination detection.127

3 Proposed Framework 128

CHEF builds upon the HaluEval2.0 hallucina- 129

tion detection pipeline to evaluate three distinct 130

test-time LLM configurations—the baseline test 131

LLM, the same model augmented with Retrieval- 132

Augmented Generation (RAG), and a version fine- 133

tuned using Low-Rank Adaptation (LoRA) (Hu 134

et al., 2022)—all under a shared, LLM-in-the-loop 135

hallucination detection setup. 136

See Appendix A.1 for a visual overview of the 137

CHEF framework architecture. 138

The evaluation unfolds in two key stages: (1) iden- 139

tification of hallucinations using HaluEval2.0’s ex- 140

traction and verification procedure, and (2) com- 141

parative analysis across the three model variants. 142

This structured setup enables quantification of rela- 143

tive hallucination rates across different mitigation 144

strategies under consistent evaluation conditions. 145

3.1 Hallucination Detection Pipeline 146

We adopt HaluEval2.0’s three-stage detection 147

pipeline (Li et al., 2024b), applied consistently 148

across all model configurations: 149

• Answer Generation: For each benchmark 150

query, the test LLM generates an answer, 151

forming a QA pair. 152

• Fact Extraction: A separate evaluation LLM 153

identifies atomic factual claims from the QA 154

output using a template-based prompt. 155

• Fact Evaluation: The same evaluator LLM 156

verifies each claim, assigning one of three 157

labels: True, False (with justification), or 158

Unknown. 159

3.2 Mitigation Strategies 160

Retrieval-Augmented Generation (RAG) The 161

RAG strategy supplements the LLM with exter- 162

nal factual knowledge at inference time through a 163

structured pipeline: 164

• Key-Topic Extraction: Identifying key terms 165

from each query 166

• Document Collection: Retrieving relevant 167

sources 168

• Embedding and Retrieval: Processing docu- 169

ments into chunks for contextual retrieval 170

The full RAG pipeline implementation is detailed 171

in Appendix A.2. 172
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LoRA-Based Fine-Tuning We apply Low-Rank173

Adaptation (LoRA) to fine-tune the base LLM with174

domain-grounded knowledge:175

• Synthetic QA Generation: Creating domain-176

specific training examples177

• Training Procedure and Configuration: Ap-178

plying parameter-efficient adaptation tech-179

niques and balancing knowledge integration180

with generalization181

3.3 Comparative Evaluation182

By comparing each variant against the shared base-183

line, we quantify changes in hallucination rates184

attributable to each mitigation strategy, controlling185

for model architecture and evaluation methodology.186

4 Experimental Setup187

4.1 Dataset188

We conduct experiments on the HaluEval2.0 bench-189

mark, comprising 8,770 fact-intensive questions190

across five domains: Biomedicine (1,535 ques-191

tions), Finance (1,125), Science (1,409), Educa-192

tion (1,701), and Open Domain (3,000) (Li et al.,193

2024b). Questions are drawn from BioASQ, NF-194

Corpus, FiQA-2018, SciFact, LearningQ, and Hot-195

potQA, filtered to include only those requiring fac-196

tual reasoning.197

4.2 RAG Implementation Details198

For each input question, we first perform key-topic199

extraction by prompting LLM with a lightweight200

template. This yields a compact, semantically-201

focused bag of terms (e.g., "colorectal cancer,"202

"metastases," "regional spread," "cancer statistics"),203

which we have found to generalize more broadly204

than using the raw questions themselves. We then205

use the Wikipedia API to retrieve the full text of206

the top 2–3 pages matching each extracted key-207

word, yielding 32 thousand pages in total across208

our benchmark queries. All documents are split209

into 512-token chunks with 50-token overlap to210

preserve context, embedded via a local sentence211

embedding model. At inference, we retrieve the212

top-k chunks (we set k = 3) for answer synthesis.213

4.3 Fine-Tuning Implementation Details214

Rather than fine-tuning on the original bench-215

mark Q&A pairs, we generate a synthetic, topic-216

grounded dataset from our scraped documents. For217

each document in the Science and Bio-Medical do-218

main, we instructed the LLM to generate up to 10219

fact-checking questions along with their precise 220

answers based solely on the provided text. This 221

yields over 18,000 Q&A pairs that cover the same 222

topical space as the benchmark yet differ in surface 223

form. 224

We then fine-tune the base LLaMA (Team, 2024) 225

model using Low-Rank Adaptation (LoRA) (Hu 226

et al., 2022), targeting the Query and Value pro- 227

jection matrices in each attention layer. We set 228

the LoRA rank r = 36 and scaling factor α = 36 229

(so that α/r = 1) to balance adaptation capacity 230

against parameter efficiency. Training is run for 4 231

epochs with effective batch size of 24, which we 232

found sufficient to integrate new factual knowledge 233

without overfitting. 234

4.4 Evaluation & Comparision Metrics 235

We adopt the standard HaluEval2.0 metrics, record- 236

ing for each predicted answer: 237

• Accuracy: proportion of claims labeled True. 238

• False Rate: proportion labeled False. 239

• Unknown Rate: proportion labeled Unknown. 240

• Micro-Hallucination Rate (MiHR): the av- 241

erage, over all responses, of the fraction of 242

claims in a response flagged as hallucinated: 243

• Macro-Hallucination Rate (MaHR): propor- 244

tion of responses with at least one hallucinated 245

claim: 246

• Comparison: To isolate the effect of each 247

mitigation technique, we compute percentage 248

reductions in MiHR and MaHR, as well as 249

accuracy differences, all relative to our shared 250

baseline. 251

5 Results 252

5.1 Baseline Performance 253

The LLaMA 3.2 8B base model demonstrates var- 254

ied performance across domains. In the Science 255

domain, it achieves the highest accuracy (90.28%) 256

with the lowest hallucination rate (MiHR 6.58%, 257

MaHR 24.28%). In contrast, the Open-Domain ex- 258

hibits the lowest accuracy (73.29%) and highest hal- 259

lucination rates (MiHR 17.54%, MaHR 55.50%). 260

Other domains fall between these extremes, with 261

Bio-Medical and Education domains showing sim- 262

ilar patterns. 263

5.2 Effects of RAG 264

Retrieval-Augmented Generation (RAG) demon- 265

strates mixed effectiveness across domains. In 266
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Table 1: Performance Metrics for Base and RAG Models Across Different Domains

Domain LLaMA 3.2 8B Base Model LLaMA 3.2 8B + RAG Model

Acc (%) MiHR (%) MaHR (%) FR (%) Acc (%) MiHR (%) MaHR (%) FR (%)

Bio-Medical 87.32 11.50 33.62 11.48 86.78 9.89 34.33 10.57
Science 90.28 6.58 24.28 8.17 89.74 6.87 29.88 7.79
Finance 77.28 9.53 39.47 13.39 79.18 11.69 46.31 13.91

Education 87.57 11.11 35.39 10.94 85.35 8.88 34.22 10.62
Open-Domain 73.29 17.54 55.50 17.35 79.04 4.67 13.73 15.16

Table 2: Performance Metrics for Fine-Tuned Model

Domain Acc (%) MiHR (%) MaHR (%) FR (%)

Bio-Medical 78.93 16.96 50.42 16.32
Science 91.59 4.97 14.48 5.66

Table 3: RAG Model: Performance Delta vs Base
Model

Domain ∆Acc (%) ∆MiHR (%) ∆MaHR (%)

Bio-Medical -0.62 14.17 -2.11
Science -0.60 -4.41 -23.06
Finance 2.46 -22.67 -17.33

Education -2.54 20.07 3.31
Open-Domain 7.85 73.38 75.26

Table 4: Fine-Tuned Model: Performance Delta vs Base
Model

Domain ∆Acc (%) ∆MiHR (%) ∆MaHR (%)

Bio-Medical -9.61 -47.48 -49.55
Science 1.45 24.47 40.36

Open-Domain, RAG was able to drastically de-267

crease the hallucination rates (decreased 73.38%268

for MiHR and 75.26% for MaHR). In the Science269

domain, RAG slightly decreases accuracy while in-270

creasing hallucination rates, particularly MaHR (a271

23.06% increse). For Bio-Medical queries, RAG272

reduces MiHR by 14.17% while slightly increas-273

ing MaHR. In the Finance domain, RAG improves274

accuracy but increases both hallucination metrics,275

while in Education, it decreases accuracy but re-276

duces hallucination rates.These mixed results sug-277

gest domain-specific factors influence RAG effec-278

tiveness.279

5.3 Effects of Fine-Tuning280

Our fine-tuning experiments reveal contrasting out-281

comes between domains. In the Science domain,282

fine-tuning produces the most promising results,283

with increased accuracy (90.28% to 91.59%) and284

substantial reductions in hallucination rates (MiHR285

from 6.58% to 4.96%, MaHR from 24.28% to 286

14.48%). In stark contrast, fine-tuning in the 287

Bio-Medical domain significantly degrades per- 288

formance, with decreased accuracy (87.32% to 289

78.93%) and dramatically increased hallucination 290

rates. This domain-dependent variability sug- 291

gests that fine-tuning effectiveness is contingent 292

on domain-specific knowledge characteristics. 293

5.4 Mitigation Strategy Performance Factors 294

We believe RAG’s inconsistent performance stems 295

from context window limitations in our LLaMA 296

8B model, which struggled to process retrieved 297

information while maintaining query focus, along- 298

side variable Wikipedia coverage quality across 299

domains and degraded responses when confronted 300

with information gaps. Meanwhile, fine-tuning 301

exhibited stark domain dependence, with Science 302

benefiting from high-quality synthetic training data 303

while Bio-Medical suffered significant degradation, 304

possibly due to domain-specific synthetic data chal- 305

lenges or our LoRA implementation (r=36) provid- 306

ing insufficient capacity for specialized terminol- 307

ogy domains. 308

6 Conclusion 309

In this paper, we introduced CHEF, a Comparative 310

Hallucination Evaluation Framework that enables 311

direct measurement of the relative effectiveness of 312

hallucination mitigation techniques. By evaluating 313

identical model architectures across three configu- 314

rations CHEF successfully isolates the impact of 315

specific mitigation strategies while controlling for 316

evaluator biases that confound absolute hallucina- 317

tion scores. CHEF’s comparative approach repre- 318

sents an important step toward more reliable hal- 319

lucination benchmarking. By focusing on relative 320

improvements rather than absolute scores, we miti- 321

gate the impact of evaluator inconsistency that has 322

hampered previous hallucination detection frame- 323

works. 324
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Limitations325

While CHEF provides valuable comparative in-326

sights, several limitations remain. First, our eval-327

uation is currently limited to a single base model328

architecture (LLaMA), which may not generalize329

to other model families with different pre-training330

objectives or architectural designs. Second, our331

RAG implementation relies solely on Wikipedia,332

potentially limiting its effectiveness for specialized333

domains requiring more technical resources. Third,334

the HaluEval2.0 prompts we adopted may not opti-335

mally extract or evaluate claims across all domains.336

Future work should address these limitations337

through:338

1. Model diversity: Extending CHEF to eval-339

uate a wider variety of model architectures340

(e.g., Mixtral, PaLM, GPT-4, Claude) to un-341

derstand how mitigation techniques perform342

across different foundation models.343

2. Prompt refinement: Enhancing the HaluE-344

val2.0 prompts with domain-specific terminol-345

ogy and structured claim formats to improve346

fact extraction and evaluation reliability. Ex-347

ploring chain-of-thought approaches may also348

lead to more consistent evaluations.349

3. Domain-specific knowledge sources: Inte-350

grating domain-specific databases and litera-351

ture repositories beyond Wikipedia to better352

address specialized knowledge domains.353

4. Comprehensive fine-tuning: Extending our354

fine-tuning methodology to all domains (Fi-355

nance, Education, and Open-Domain) to pro-356

vide a complete comparative analysis across357

the entire benchmark. This would allow for358

more robust conclusions about the relative ef-359

fectiveness of fine-tuning as a hallucination360

mitigation strategy across diverse knowledge361

areas.362

5. Evaluator uncertainty quantification: In-363

corporating Semantic Entropy Probes (SEPs)364

as an additional comparison metric to detect365

and account for evaluator uncertainty. SEPs366

offer a computationally efficient approach to367

measuring semantic uncertainty by directly ap-368

proximating semantic entropy from the hidden369

states of a single model generation, eliminat-370

ing the need for multiple sampling runs. This371

technique would provide a more robust mea-372

sure of evaluator confidence when determin- 373

ing hallucination rates, potentially improving 374

the reliability of our comparative framework. 375

The comparative benchmarking approach pio- 376

neered in CHEF opens new possibilities for sys- 377

tematic evaluation of hallucination mitigation tech- 378

niques. As the field continues to advance, we be- 379

lieve this focus on controlled differential analysis, 380

rather than absolute scoring, will be essential for 381

reliable progress measurement in reducing LLM 382

hallucinations. 383
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A Appendix467

To support future work in explicit content detection,468

we release the full dataset, annotation scripts, and469

category definitions at Anonymous Repository.470

A.1 CHEF Framework Architecture 471

Figure 1 provides a visual overview of our 472

CHEF framework, illustrating how we evalu- 473

ate three distinct configurations of the same 474

base model—baseline, RAG-enhanced, and fine- 475

tuned—using a consistent hallucination detection 476

pipeline. 477

Figure 1: Detailed overview of the CHEF Comparative
Benchmarking Framework architecture.

A.2 RAG Pipeline Details 478

Figure 2 illustrates our RAG implementation, 479

which follows a three-stage process of key-topic 480

extraction, document collection, and embedding- 481

based retrieval as described in Section 3.2. 482

A.3 Equations 483

MiHR =
1

n

n∑
i=1

Count
(
hallucinatory facts in ri

)
Count

(
all facts in ri

)
MaHR =

Count
(
hallucinatory responses

)
n

(1) 484

∆MiHR =
MiHRbaseline −MiHRmethod

MiHRbaseline
× 100%,

∆MaHR =
MaHRbaseline −MaHRmethod

MaHRbaseline
× 100%.

(2) 485
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Figure 2: Detailed view of the RAG pipeline used in our
experiments.

A.4 Prompts486

A.4.1 Key Word Extraction Prompt487

attached is a json file488

filled with queries about489

[Domain name] domain490

subjects, i want you to go491

through each question and492

generate keywords and topics493

about the question that494

could be used in Wikipedia495

api search to help find496

documents related to that497

question. The keywords and498

topics should be not too499

large. your output format500

should be a json array in501

this style : [502

{503

"id": query id as integer,504

"keywords": [505

"keywords related to query",506

"topics related to query",507

...508

]509

}, ... ].510

A.4.2 Synthetic Q&A Generation Prompt511

You are provided with the512

following document:513

"""514

{document_content}515

"""516

Your task is to extract517

straightforward, fact-based518

questions and answers solely519

from the document. Rules:520

521

1. Source Strictness: Only 522

use information from the 523

document! 524

2. Extraction: Generate 525

questions with answers 526

from key details. 527

3. Clarity: Questions must 528

be clear and unambiguous. 529

4. Question Styles: Use 530

varied types (True/false, 531

What/How is/are, etc.) 532

5. Quantity: Max 15 quality 533

questions. 534

6. Format: JSON format as: 535

536

[{ 537

"question": "Question?", 538

"answer": "Answer." 539

}, ... ] 540

541

Provide only the JSON output. 542
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