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Abstract

Learning of e.g. a dexterous motor skill, which is common in medical training,
sports, or playing a musical instrument, is time-costly and needs supervision from a
teacher, to avoid injury and to progress. Importantly, learning a motor skill requires
active practice, and adjusting one’s own individual embodiment to perform the
target movement. We introduce a meta unit for co-constructing a computational
scaffold for learning. It targets to optimize the learning process of a student, as
well as the intervention of their teacher. This approach aims to enable the student
to discover their own optimal learning policy while being guided by the teacher on
demand, with the ultimate goal of improving beyond the capacity of the teacher.

1 Introduction

Learning of e.g. a dexterous motor skill, which is common in medical training, sports, or playing
a musical instrument, is time-costly and requires, on the one hand, supervision from a teacher, to
avoid injury and to progress. In most of the above-mentioned scenarios, in particular in medical
training and in sports associated with a high risk of injury, it is obligatory to be guided by a teacher,
and not sufficient to try out different learning strategies without being led by an expert. On the other
hand, learning a complex motor skill requires a lengthy and active practice, training and adjusting
one’s own individual embodiment1 to perform the target movement. Parents often observe, how small
children insist on self-regulatory learning, and refuse to be helped/guided. They still try to perform
the movement, such as eating with a spoon, even though the result is often not robust, as it would be,
if guided by the parents. Guidance of babies by their parents is one example in which the teacher
and the student strongly differ in embodiment. It is likely that the teacher and the student are rarely
characterized by a completely overlapping set of talents, although in this work we do not differentiate
between observable and non-observable differences yet. Another prominent example of embodiment
differences is in a motor rehabilitation setting. Here in particular, each patient has their own skills
that need to be relearned.

Open research questions are: How to adjust the teacher guidance strategy that has been optimized by
the teacher to fit their experience and embodiment, to suit the student’s own unique talents? How can
the student optimally mine their talent and improve beyond the performance of the teacher?

The main question that we are interested in exploring is: How to balance self-regulated, exploratory
practice, and develop awareness of ones’ own talents with teacher-guided practice?

1"The word embodied refers to the dual valence of the notion of body: bodiness is a combination of a physical
structure (the biological body) and an experiential structure, which corresponds to the living, moving, suffering,
and enjoying body. From here it is possible to arrive at the dual acceptation of embodied cognition, which refers,
on the one hand, to the grounding of cognitive processes in the brain’s neuroanatomical substratum, and on the
other, to the derivation of cognitive processes from our organism’s sensorimotor experiences". [5]
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In this work we propose a self-adapting scaffolding meta unit that uses an agent trained with Dyna-Q
reinforcement learning (RL) to optimally instruct a simulated student, together with a coordinator
that manages teacher guidance. This approach aims to find an optimal combination of self-regulatory
talent mining of the student and on-demand teacher guidance.

2 Related work

Scaffolding for learning [5] is a term that originates from the educational psychology. “Scaffolding is a
reciprocal feedback process in which a more expert other (e.g., teacher, or peer with greater expertise)
interacts with a less knowledgeable learner, with the goal of providing the kind of conceptual support
that enables the learner, over time, to be able to work with the task, content, or idea independently” [5].
While being a rigorously researched topic in educational domains (e.g. [6, 7, 8]), such as mathematics
and programming, the domain of computational scaffolding of motor learning is relatively new.
The domain has a huge relevance due to its range that stretches from learning musical instruments
to relearning during rehabilitation. One of the earlier works [3] describes a setup in which a
simulated student is given exercise units, termed "practice modes", that are optimized based on their
corresponding utility. A related approach maps both the student state and target parameters of the
training to a suitable exercise unit [1]. The model is trained in a supervised manner with the ground
truth provided by a teacher and recorded during the training session with the student. This approach is
teacher-driven and does not contain any exploratory or self-regulated learning that can be performed
by the student by themselves. A common motivation to use a teacher is the acceleration of learning
and the prevention of students losing motivation due to poor progress [11]. Another approach uses
reinforcement learning to schedule exercises for the student [2] based on the achieved reward and the
state of their ability. Here only the agent is used to guide the student and the teacher is not explicitly
modeled. Similar to [3], the authors of [4] propose the so-called teachable skills, segments of a motor
task that can be selected and recombined to form individual drills for the student. There are common
aspects to the above approaches. They aim to assess the capabilities of the student, and to generate an
individually tuned sequence of exercise units. The above-mentioned scaffolding principle is inspired
by the traditional literature on motor learning with a human teacher (e.g. [9]). Here, it is common for
a student to get small exercise units that are derived by simplification or related to the target task.
Here we will explore the challenge of embodiment differences between the student and the teacher,
and resulting from this, the need to empower the student to learn in self-regulatory manner and mine
their own talents, but also get support from the teacher if needed. This work aims at merging the two
approaches to computational training, teacher-driven, and the reinforcement learning-driven.

3 A self-adapting scaffolding meta unit to guide human learning

When a teacher teaches their student a new skill, the teacher contributes the knowledge of the
domain/skill to the learning process, whereas the student contributes the capability to explore their
individual talents. During the learning process the teacher tries to guide the student by supporting
them by utilizing a set of exercise units that enables the learning or deepening of a new skill. There
are, however two hindering factors:

The teacher and student differ in their embodiment Be it a difference in a physical ability or due
to the large experience gap and thus a lack of practice, there is - in most cases - a huge difference how
a student or their teacher tackles the task. As a result, the exercise units the teacher chooses for the
student might not be tailord to their current skill level and, therefore, too hard or impossible to solve.

The teacher has to choose the order and the content of the exercise units and when to support
the learning process by an educated guess When to intervene in the student’s self-learning process
and how to choose the best exercises for their current skill level are delicate questions the teacher has
to answer based on its teaching experience and known educational studies.

Our approach tackles the stated problems by proposing a self-adapting scaffolding meta-unit that
manages the interaction of the teacher with the student, while additionally guiding the choice of the
students’ exercise units for self-guided study. The agent is inspired by previous work in [2], in which
the authors pursue an adaptive and patient-customized therapeutic intervention for rehabilitation of
reaching movement. In this setting, the simulated patients interact with a Q-learning algorithm that

2



adjusts the virtual reality (VR) game according to the performance of the patient. Building upon this
approach, in our work a state corresponds to the skill level, and an action corresponds to an exercise
unit. Optimization criterion is designed to reflect how efficient the student is training, reflected in
the speed of improvement in the skill level. Extending upon the work performed in [2], our agent is
trained by ϵ-greedy Dyna-Q RL [10] from both the student training process and the teacher guidance
data. Dyna-Q blends model-free and model-based RL approaches and is employed due to its known
sample efficiency. In our approach, it integrates the teacher and the student embodiments (see next
section for a detailed description), and results in a policy that optimizes the improvement rate of the
student under this condition. During training of the policy, the teacher guides the student only in the
situation when the student’s own learning strategy is not successful. Otherwise, the student queries
the agent to provide them with an exercise unit (action), given their level of skill (state). The quality
of the agents policy is measured via the students improvement rate. It is calculated based on how
quickly the student moves from one skill state to the next, while only such transitions are associated
with a positive reward.

3.1 Designing the meta unit

The proposed meta unit combines an scaffolding agent for learning the best choice of suitable exercise
units with a self-adapting coordinator that manages the student-teacher interaction.

The scaffolding agent is a Dyna-Q reinforcement learner whose main function is to choose suitable
exercise units for the student based on their current skill level. Dyna-Q integrates model-based
elements into Q-learning. It has a model-free table q(s, a) for choosing of the action a∗ with the
highest Q-value, given state s; and a model part for simulation, consisting of the transition function
τ(s, a) that maps to (s′, r), i.e. for a state s and action a it models the state after transition s′ and the
corresponding reward r. The agent samples its policy and offers the student an exercise unit ai that
either maximizes the Q-value or is random, given the current state of the student and the available
policy. According to their improvement rate (described above) and in the case in which the action
corresponds to the optimal action defined in π∗

S , the student performs the action, moves to the next
skill level, receives the positive reward r = 1. The resulting data (st, at, st+1, r) is provided to the
agent for training. In the other case, in which the sampled value is below the improvement rate, or
the action does not match the ground truth, a reward r = 0 is emitted. As the last step, the Dyna-Q
agent updates all state-action-reward information that the experimental process yields. The agent is
implemented with an ϵ-greedy approach.

The coordinator is currently implemented as a Bernoulli distribution, and is directly parameterized
by the mean success of the student. This can be formalized by the average reward achieved ⟨RS⟩
during the previous t steps by the student. An exception is the first t steps. Here, the student is given
a chance to learn completely by themselves. The parameter that determines the teacher intervention
probability is calculated as (1 − ⟨RS⟩) in each step. Thus, the higher the average reward ⟨RS⟩ of
the student, the smaller the probability of the teacher intervention. The smaller the average student
reward, corresponding to an unsuccessful self-guided learning, the higher the probability of the
teacher intervention. In case the coordinator does not schedule the teacher to intervene and guide the
learning, the action is generated by the agent. This enables the student to either learn by themselves
or get guidance from the teacher if they seem not to improve quickly enough. The pseudo-code for
the training of the meta unit is displayed in appendix B.

In the long-term we aim to transfer the simulation described above to a human study. Each step t is
one training session of the exercise unit selected by the scaffolding agent or the teacher. If the student
successfully performs the unit, they receive the reward r = 1, otherwise r = 0.

4 Simulation and Environment

We tested our proposed approach by creating a simulated learning environment that is complex
enough to grasp the stated problems of teacher-student guidance but is otherwise designed in the
most simple way. Therefore, it is possible to set the focus on evaluating the proposed meta unit while
not being distracted by a convoluted experimental setup.

States, actions, rewards The experimental setup consists of a set of states S = {s1, . . . , sN},
which represents different skill levels for a task. The goal of the student is to move from the
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start state (i.e. their initial skill level as a beginner) s1 ∈ S0 to the end state sN (representing
the skill level of an intermediate student). In our work we assume that the states are chained to
a fixed sequence s1, . . . , sN with length N . Thus, only two state-transitions are possible: from
si to si+1 corresponding to skill improvement, or staying in same state si, which corresponds to
staying on the same skill level. In order to trigger a state transition, the student has a set of actions
A = {a1, . . . , aM} at its disposal. Each action ai represents an exercise unit, or another type of
training that the student can perform, either under guidance or by themselves. The reward is set to
r = 1, in case the chosen action results in a transition from the current state si to si+1, corresponding
to a skill improvement. Otherwise, the reward is r = 0.

Simulated Student The student P a
s⃗,s⃗′(student) is simulated with an improvement probability

threshold2 θ with θ ∈ [1, 0]. We sample from the uniform distribution x ∼ Uniform(0, 1) and check
if x > θ. If the condition holds the process results in a state transition (either to the next or recursively
to the current state) and a corresponding reward. The uniform distribution simulates that even correct
practice does not result in an improvement directly.

Simulated Teacher The teacher has one functionality - to guide the student according to their
optimal policy π∗

T . Both student and teacher share the same set of actions (exercise units). In order to
model the differences in embodiment for the teacher and the student, the transition matrices of both
are not equal, i.e. P a

s⃗,s⃗′(teacher) ̸= P a
s⃗,s⃗′(student). This leads to different optimal training policies3

π∗
T and π∗

S of the teacher and the student respectively.

π∗
T := {(sT,1, aT,1), . . . , (sT,N , aT,N )} ≠ {(sL,1, aL,1), . . . , (sL,N , aL,N )} := π∗

S (1)

Thus, the teachers guiding does not always lead to a successful state-transition - i.e. skill improvement
- of the student.

Experiment During the experiment, the scaffolding agent learns to support the simulated student
by choosing the correct sequence of actions to reach the final state sN . Aid for this task is given by
the teacher that can help by choosing an action for the student according to their own optimal policy
π∗
T in which 25% of the optimal actions are different from the optimal actions of the student. In

each step, the coordinator decides, based on the average reward analysis, whether the teacher should
guide, or the student should query the scaffolding agent to generate an action (exercise unit). Each
experiment is repeated 40 times. The results are then averaged. A summary of all parameters can be
found in Table 1 (see Appendix A).

5 Results and Discussion

We conducted three different experiments. In the first one, the student’s learning is guided by the
overall meta unit (scaffolding agent and coordinator). In the second experiment, the student is guided
by the scaffolding agent only. In the last experiment, the student is guided by the scaffolding agent but
receives help randomly from the teacher in 20% of time steps, without the reward analysis performed
by the coordinator. The results (see Figure 1 Appendix A) show that the higher number of training
episodes performed by the meta unit result in higher improvement rate achieved by the student, which
is calculated as an average of the received rewards given the number of learning steps until the end
state is achieved. Very early in the process, we observe a saturation. The resulting improvement
rate oscillates around the level of 0.3, 0.4 and 0.5 for the scaffolding agent only, added 20% random
teacher interventions, and for the meta unit, respectively. The gap in performance between the models
grows the less efficiently the simulated student learns, determined by the improvement threshold.
Importantly, using the scaffolding-agent without integrating the expert knowledge of a teacher is not
applicable in motor learning because of a possible risk of injury.

Discussion We presented a method for co-constructing a scaffold to guide the student, with a focus
on the differences between the teacher’s and student’s embodiments. Since we assume that the overlap
between the optimal actions of the teacher and student is unknown, our current approach utilizes

2The higher the improvement threshold θ of the student, the more optimal actions lead to zero reward, and
therefore, to a need for a higher intervention rate by the teacher.

3The policy maps a skill level to an optimal exercise unit.
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all available information, i.e. state, transition, action, and reward from both teacher guidance and
student actions, to train the scaffolding-agent. In future work, we aim to implement a more advanced
training method for the agent, which can identify instances where the teacher’s guiding actions do
not overlap with the student’s optimal actions and exclude such guidance from agent training. The
current approach models both the teacher’s and the student’s embodiment differences in a symmetric
way, with non-overlapping policies. The formalism in future work will differentiate between the
asymmetric functionalities of the student and the teacher, which can be roughly described as mining
of own talents and guiding based on experience, respectively.

For long-term future work, there exists an approach that, to our knowledge, has not yet found
realization in the computational motor learning research: we term it adversarial scaffolding. This
term describes giving exercises to the student that are slightly or more beyond their current capacity,
which, therefore, lead the student to get outside their comfort zone. For example, the musicians
practice playing a piece in the reverse order, or with an extended rhythmic structure. This is a
potentially interesting topic for computational modeling and we will attempt to integrate this idea
into the simulated experiment in the next step of our work.
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A Training & Results

Table 1 lists all parameters of the experiments. The Figure 1 illustrate the achieved results when
training with/without the meta unit. We evaluate the students policy w.r.t. improvement ratio for
multiple training runs. The improvement rate of the student (y-axis) achieved for different number of
training iterations while scaffolded by the the meta unit (x-axis) is illustrated in Figure 1 (solid line).
In addition, we trained the scaffolding agent without the coordinator and evaluated the performance
of its policy (dotted line). This means that just the trained Q-learner generates the exercise units
and the student either succeeds in transition or not, determined by the correctness of the action and
the improvement threshold of the student. We have trained and evaluated the meta unit for the case
in which 1/4th of the optimal actions were different for the teacher and the student (π∗

T and π∗
S ,

respectively). The results in the gray plot show that the higher number of training episodes performed
by the meta unit result in higher improvement rate achieved by the student, which is calculated as an
average of the received rewards given the number of learning steps until the end state is achieved.

Table 1: List of all parameters and their value if no entity is specified the parameter applies to all

Entity Parameter Value
student Improvement Threshold θ 0.65
– Number of states N 24
– Number of actions M 4
Agent Exploration Factor ϵ 0.1
Agent Learning Rate α 0.1
Agent Discount Factor γ 0.95
Agent Planning Steps 5

Figure 1: Comparison of improvement rate resulting with increasing number of training iterations
averaged over 40 runs. The solid line (gray) illustrates the mean and variance of improvement rate of
the student with the growing number of training iterations guided by the meta unit. The dotted line
(blue) illustrates the policy evaluation of the scaffolding agent alone. The dashed line (red) illustrates
the policy evaluation of the scaffolding agent, together with a 20% interference rate of the teacher.
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B Pseudo code for training with the meta unit (MU)

Algorithm 1 Training with the MU
1: MU calculates average reward of the student return p
2: MU parameterizes Bernoulli distribution with 1− p and samples from it return s
3: if s == 1 then
4: MU schedules teacher intervention return teacher selects a∗T
5: student performs exercise a∗T
6: return student gets reward r = 1; and improves skill level from st to st+1

7: else
8: MU queries Q-learner return a∗Q
9: x ∼ Uniform(0, 1) return x

10: if x > improvement threshold and a∗Q == a∗S then
11: perform a∗Q
12: return student gets reward r = 1, and improves skill level from st to st+1

13: else
14: return r = 0
15: end if
16: end if
17: update the Q-learner with the values of r, a, st, and st+1
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