
Augmenting Black-box LLMs with Medical Textbooks for Biomedical
Question Answering

Anonymous ACL submission

Abstract

Large Language Models (LLMs) like ChatGPT001
have demonstrated impressive abilities in gen-002
erating responses based on human instructions.003
However, their use in the medical field can be004
challenging due to their lack of specific, in-005
depth knowledge. In this study, we present006
a system called LLMs Augmented with Med-007
ical Textbooks (LLM-AMT) designed to en-008
hance the proficiency of LLMs in specialized009
domains. LLM-AMT integrates authoritative010
medical textbooks into the LLMs’ framework011
using plug-and-play modules. These modules012
include a Query Augmenter, a Hybrid Textbook013
Retriever, and a Knowledge Self-Refiner. To-014
gether, they incorporate authoritative medical015
knowledge. Additionally, an LLM Reader aids016
in contextual understanding. Our experimen-017
tal results on three medical QA tasks demon-018
strate that LLM-AMT significantly improves019
response quality, with accuracy gains ranging020
from 11.6% to 16.6%. Notably, with GPT-4-021
Turbo as the base model, LLM-AMT outper-022
forms the specialized Med-PaLM 2 model pre-023
trained on a massive amount of medical corpus024
by 2-3%. We found that despite being 100×025
smaller in size, medical textbooks as a retrieval026
corpus are proven to be a more effective knowl-027
edge database than Wikipedia in the medical028
domain, boosting performance by 7.8%-13.7%.029
We will open-source the code for this work.030

1 Introduction031

Recent advancements in Large Language Models032

(LLMs) have opened new possibilities in AI for the033

medical domain, enabling them to comprehend and034

communicate through language. The promise of035

these models is underscored by their performance036

on medical question-answering datasets (Zhang037

et al., 2018; Pal et al., 2022; Jin et al., 2019).038

LLMs are typically trained to encode world039

knowledge in their parameters. However, this can040

lead to information loss and "memory distortion"041

(Peng et al., 2023), resulting in the generation of 042

plausible but incorrect content. Augmenting LLMs 043

with external knowledge has become an interest 044

to mitigate this, but fine-tuning LLM parameters 045

for this purpose is often costly, especially as model 046

sizes increase (Luo et al., 2022; Gao et al., 2022a; 047

Singhal et al., 2023). 048

The Retrieval-Augmented Generation (RAG) 049

framework provides an efficient solution to the lim- 050

itations of fine-tuning in open-domain QA, pairing 051

a retriever for sourcing relevant documents with a 052

reader for answer extraction (Lewis et al., 2020; 053

Karpukhin et al., 2020; Izacard et al., 2022). En- 054

hancements in retrieval accuracy (Wu et al., 2021; 055

Izacard et al., 2021) and reader model co-training 056

(Lewis et al., 2020; Izacard et al., 2022) have been 057

made, with current iterations leveraging LLMs as 058

readers to adapt specifically to their capabilities 059

(Shi et al., 2023b). However, many rely on general 060

knowledge bases like Wikipedia or search engines 061

such as Google and Bing. Such sources, while vast, 062

might lack depth in domain-specific areas like med- 063

ical or financial fields. Tapping into specialized 064

resources, such as authoritative textbooks, could 065

yield deeper insights into complex domains. 066

The effectiveness of the retrieval process in en- 067

hancing LLMs with additional information is heav- 068

ily reliant on the quality of retrieval. If the re- 069

trieval process is inaccurate or contains misinfor- 070

mation, the utility of the RAG process can be signif- 071

icantly influenced (Li et al., 2022; Tan et al., 2022; 072

Shi et al., 2023a). To address these challenges, 073

several approaches have been proposed, such as 074

HyDE (Gao et al., 2022b) and query2doc (Wang 075

et al., 2023), which aim to improve retrieval by gen- 076

erating hypothetical documents to expand the query. 077

On the other hand, methods like self-RAG (Asai 078

et al., 2023) have introduced retrieval results reflec- 079

tion to filter the retrieved information for better gen- 080

eration. Building on these advancements, we have 081

developed Query Augmenter and Knowledge Self- 082
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Figure 1: Overview of our proposed pipeline. GPT-3.5-Turbo is prompted to perform a series of tasks including
query rewriting, query expansion, relevance evaluation, and usefulness evaluation. Details of the case presented in
the figure can be found in Appendix A.7.

Refiner specifically tailored for the medical RAG083

paradigm. Combining with Hybrid Textbook Re-084

triever, we have created a novel framework, LLM-085

AMT, specifically designed for the medical domain.086

This framework leverages medical textbooks to pro-087

vide LLMs with high-quality, reliable knowledge.088

This approach ensures that the information used089

during the generation process is not only accurate090

but also highly relevant to answer the questions.091

Our evaluations across MedQA-USMLE,092

MedQA-MCMLE, and MedMCQA datasets093

demonstrate LLM-AMT’s outperformance over094

GPT-3.5, achieving 11.6% to 16.6% higher accu-095

racy. Notably, our approach leverages the in-depth096

knowledge from textbooks, eclipsing Wikipedia’s097

broader scope and a 7.8% to 13.7% accuracy gain.098

With GPT-4-Turbo as a base, LLM-AMT further099

exceeds the medically pre-trained Med-PaLM 2 by100

2.3% to 2.7%. Additionally, human evaluations101

reveal a significant 16% reduction in hallucina-102

tion occurrences during open-ended QA tasks, 103

showcasing the model’s improved reliability. 104

Our contributions are fourfold: (1) We propose 105

LLM-AMT, an LLM pipeline augmented with 106

medical textbooks, which sharpens model preci- 107

sion and domain-specific expertise. (2) We in- 108

troduce the Knowledge Self-Refiner that applies 109

self-refinement to RAG models within the medi- 110

cal field. (3) We substantiate the profound impact 111

of domain-specific textbooks on LLM proficiency 112

through extensive experiments, charting new av- 113

enues for research. (4) Our ablation study dissects 114

the pipeline’s architecture, evaluating the essential 115

roles of knowledge retrieval, query augmentation, 116

and self-refinement components in a medical con- 117

text. 118

2 LLM-AMT 119

In this paper, we introduce LLM-AMT, a dedicated 120

process tailored for answering biomedical ques- 121
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tions. Figure 1 provides an overview of the process122

pipeline, which consists of four main components.123

The Query Augmenter rewrites and expands the124

input question x into a rewritten version xr and an125

expanded version xe. Following this, the Textbook126

Retriever collects related passages P1, P2, . . . , Pk127

from textbooks by concatenating the augmented128

queries xr and xe. Next, the Knowledge Self-129

Refiner employs a relevance filter to remove non-130

pertinent passages and then applies a usefulness131

filter to discard unhelpful segments from the re-132

maining passages, producing refined knowledge133

P . Finally, the LLM Reader utilizes this refined134

knowledge to construct the final answer.135

2.1 Query Augmenter136

To address the challenges in biomedical question137

answering, where non-standard terms and discrete138

numerical values often impede effective informa-139

tion retrieval, we introduce a query augmenting140

module tailored for the medical domain. Our aug-141

menter enhances queries by transforming ambigu-142

ous language and integrating key medical terms,143

which are crucial for accurate retrieval.144

The module consists of two principal compo-145

nents: query rewriting and query expansion. The146

motivation behind query rewriting is to map collo-147

quial or non-standard expressions to standardized148

medical terminology. For instance, our system con-149

verts phrases such as “high blood cell count” to the150

precise term “leukocytosis.” Such transformation151

is pivotal because it aligns patient-described symp-152

toms with professional language. This method en-153

sures the retention of crucial information and trans-154

lates it into the language of medicine, thus making155

the query more suitable for professional databases.156

On the other hand, query expansion leverages157

the LLM’s ability to reason through problems with-158

out external evidence, invoking a chain-of-thought159

approach. By instructing the LLM with: “As a160

medical doctor, systematically reason through the161

question, and provide answers step by step.” we162

introduce additional relevant medical terms into163

the query. This preemptive reasoning extracts more164

directions for retrieval and enhances the likelihood165

of accessing pertinent information.166

2.2 Textbook Retrieval Corpus167

Medical textbooks, as the epitome of knowledge168

in human medicine, serve as an invaluable external169

knowledge source. While knowledge bases like170

Wikipedia provide general information, textbooks171

Metric Textbooks Wikipedia

# of paragraphs 347,797 21,015,324
# of tokens 27,458,075 2,162,169,361

Table 1: Overall statistics of the document collection
in textbooks and Wikipedia. The Wikipedia dump is
from the DPR work (Karpukhin et al., 2020), where
Wikipedia documents are split into 100-word units.

offer richer and more specialized domain knowl- 172

edge. In contrast to search engines like Google 173

Search or Bing Search, the information in text- 174

books is more reliable. Furthermore, textbooks 175

offer clear and concise information, making them 176

a reliable source for text-based retrieval. For our 177

study, we eliminated irrelevant information, such as 178

diagrams and references, to ensure a focused, text- 179

centric corpus. Additionally, longer paragraphs in 180

the textbook were broken down according to peri- 181

ods to obtain the smallest unit for retrieval, making 182

it easier for the LLM reader to use them as context 183

for questions. In this paper, we utilized 51 text- 184

books from the MedQA dataset (Jin et al., 2021), 185

which are designated as the official preparation ma- 186

terials for the medical licensing exams. 187

An overview of the statistics for the document 188

collection in both the textbooks and Wikipedia can 189

be seen in Table 1. Our textbook corpus is sub- 190

stantially smaller in scale than Wikipedia. While 191

Wikipedia comprises millions of paragraphs and 192

billions of tokens, the textbook corpus, though spe- 193

cialized, contains fewer than 350,000 paragraphs 194

and just over 27 million tokens. This size difference 195

emphasizes the textbooks’ concentrated domain- 196

specific knowledge. 197

2.3 HybTextR (Hybrid Textbook Retriever) 198

We integrate various types of retrievers in our text- 199

book retrieval module to optimize performance, 200

which we refer to as the HybTextR. For sparse 201

retrieval, we follow the SPLADE (Formal et al., 202

2021) method. The query and document are en- 203

coded separately by BERT, and the MLM layer 204

representation (with dimension 30k) for each token 205

is aggregated at the maximum as the text represen- 206

tation. The ReLU function is used to truncate the 207

weights in the representation to be non-negative 208

so that it can fit into an inverted index after quan- 209

tization at search time. The sparsity of this repre- 210

sentation is effectively managed by a FLOP loss 211

during the training stage. For dense retrieval, we 212

follow the standard pipeline proposed in the DPR 213
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work, where the query and document embeddings214

are taken from the CLS token’s dense representa-215

tion in the last layer output (with dimension 768).216

At search time, a k-NN search is conducted to re-217

trieve the top relevant passages for the given query.218

For reranking, our model is a BERT-based cross-219

encoder. In line with the approach described in220

Tevatron by Gao et al. (Gao et al., 2022c), we221

concatenate the query and the retrieved passages222

using the [SEP] token and employ the represen-223

tation from the [CLS] token to predict relevance224

scores. This cross-encoder setup allows for a more225

nuanced understanding of the relationship between226

the query and the passages, leading to improved227

ranking accuracy.228

A core problem in the task is how to create su-229

pervised data for the neural retriever. As there is230

no human relevance judgment for the passages, we231

treat “helpful” passages as positive passages. We232

first identify questions that GPT-3.5-Turbo answers233

incorrectly when provided without any contextual234

evidence. Then, using BM25, we recall n passages,235

where n = 32, and concatenate each of them with236

the original question to serve as its context. Sub-237

sequently, GPT-3.5-Turbo is prompted to answer238

this question. Passages resulting in correct answers239

are treated as positive samples, whereas those lead-240

ing to incorrect answers are categorized as hard241

negatives. Additionally, a subset of passages is242

randomly chosen to act as easy negative samples.243

In the full pipeline of our knowledge retrieval244

stage, we utilize a fusion of sparse retrieval and245

dense retrieval as the first-phase recall model.246

Specifically, we merge and deduplicate passages247

returned by the sparse retriever (from Ps1 to Psi)248

and those returned by the dense retriever (from Pd1249

to Pdj ), resulting in a total of m unique passages250

as illustrated by Figure 1. These passages are then251

reordered by the reranker. Finally, the top-k pas-252

sages are selected for further processing. In this253

study, i, j, and k are all set to a fixed value of 32.254

2.4 Knowledge Self-Refiner255

The motivation for introducing the Knowledge Self-256

Refiner is driven by the structure of medical text-257

books, which typically present elongated passages258

dense with information on a particular topic. Given259

that not all content within these passages is per-260

tinent to addressing specific questions, and unfil-261

tered content may lead to a diffusion of the LLM262

Reader’s focus, we implemented the Knowledge263

Self-Refiner to streamline the information.264

Given the retrieved passages P1, P2, . . . , Pk, 265

our Knowledge Self-Refiner begins by apply- 266

ing a relevance filter to exclude off-topic pas- 267

sages. This filter performs a binary classifica- 268

tion on each passage to determine its relevance, 269

resulting in a subset Pr1 , Pr2 , . . . , Pra . Subse- 270

quent to this initial filtering, a decompose-then- 271

recompose algorithm is employed. Passages are 272

segmented at sentence boundaries according to 273

heuristic rules. Segments that do not meet a min- 274

imum length threshold are merged with adjacent 275

segments to ensure the combined length does not 276

exceed 80 words. This process yields segments 277

segment1, segment2, . . . , segmentn, each bal- 278

ancing substance with brevity. 279

These segments are then passed through a strin- 280

gent usefulness filter, which performs a binary clas- 281

sification to assess the utility of each segment. This 282

filter distills the content to retain only the segments 283

segmentu1 , segmentu2 , . . . , segmentub
that are 284

deemed most useful for the LLM to generate accu- 285

rate responses. The final refined knowledge set, de- 286

noted by P, is composed of these selected segments, 287

offering a concentrated and relevant reservoir of 288

information for the LLM. 289

This two-tiered filtering approach is specifically 290

designed to address the high density of knowledge 291

points in medical texts, which typically feature 292

lengthy passages with only a few sentences of criti- 293

cal importance. Applying both filters at the passage 294

level could lead to the inclusion of extensive but ir- 295

relevant content, potentially diverting the attention 296

of the LLM Reader in the subsequent Retrieval- 297

Augmented Generation (RAG) system. For an in- 298

depth discussion, see Appendix A.7. 299

3 Experiments 300

3.1 Datasets 301

We evaluate LLM-AMT on three medical open- 302

domain multiple-choice QA datasets as follows: 303

MedQA-USMLE and MedQA-MCMLE (Jin 304

et al., 2021) originate from professional medical 305

board exams in the USA and Mainland China, 306

where doctors are evaluated on their professional 307

knowledge and ability to make clinical decisions. 308

In addition to the questions and corresponding an- 309

swers, the datasets also provide associated medical 310

textbook materials. For the USMLE, the MedQA- 311

USMLE dataset includes text extracted from a 312

total of 18 English medical textbooks used by 313
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Question # MedQA-
USMLE

MedQA-
MCMLE

Med-
MCQA

Train 10,178 27,400 182,822
Dev 1,272 3,425 4,183
Test 1,273 3,426 6,150

Table 2: Number of Questions in MedQA-USMLE,
MedQA-MCMLE, and MedMCQA

USMLE candidates. For the MCMLE, the MedQA-314

MCMLE dataset features materials from 33 simpli-315

fied Chinese medical textbooks. These are desig-316

nated as the official textbooks for preparing for the317

medical licensing exam in Mainland China.318

MedMCQA (Pal et al., 2022) encompasses a319

broad spectrum of 2,400 healthcare topics and 21320

distinct medical subjects. The diversity of ques-321

tions contained within MedMCQA illustrates the322

challenges that are unique to this dataset. As the323

questions are derived from both real-world scenar-324

ios and simulated examinations, they are meticu-325

lously crafted by human experts in the field. Con-326

sequently, these questions could serve as a com-327

prehensive evaluation of a medical practitioner’s328

professional competencies and expertise.329

Table 2 shows the detail of train/dev/test splits of330

the datasets. We evaluate our pipeline and conduct331

ablation studies on the test sets of each dataset.332

3.2 Baselines333

Our evaluations encompass two primary categories334

of models. The first group consists of the Closed-335

Book Models, which are pre-trained or fine-tuned336

specifically for the medical domain. These models337

rely on their internal knowledge and do not ac-338

cess external databases or texts during the question-339

answering process. Notable models in this category340

include BioBERT, SciBERT, BioLinkBERT,341

PubmedBERT, Flan-PaLM (540B), Meditron-342

70B, Med PaLM 2 (Lee et al., 2020; Beltagy et al.,343

2019; Yasunaga et al., 2022; Gu et al., 2021; Sing-344

hal et al., 2022; Chen et al., 2023; Singhal et al.,345

2023). It is important to note that data marked346

with an asterisk* were obtained directly from the347

respective authors’ published works.348

The second group, Wikipedia-Augmented Mod-349

els, leverages the knowledge embedded in350

Wikipedia to assist in the medical QA task. Key351

models in this category are Variational ODQA352

(Liévin et al., 2023), Codex 5-shot CoT (Liévin353

et al., 2022), and we have separately employed354

Method Retriever MedQA-
USMLE

MedMCQA

Closed-Book Model

Random - 20.0 25.0
BioBERT* - 36.7 37.0
SciBERT* - - 39.0
BioLinkBERT* - 45.1 -
PubmedBERT* - 50.3 41.0
LLaMA - 31.4 35.7
GPT-3.5 - 51.3 53.9
Flan-PaLM (540B)* - 67.6 -
Meditron-70B* - 70.2 -
GPT-4 - 81.7 70.5
Med-PaLM 2* - 85.4 72.3

Wikipedia-Augmented Model

Variational ODQA* BM25+DPR 55.0 62.9
Codex 5-shot CoT* BM25 60.2 62.7
LLaMA + Wikipedia DPR 38.6 40.5
LLaMA + Wikipedia HybTextR 39.9 41.3
GPT-3.5 + Wikipedia DPR 52.8 56.8
GPT-3.5 + Wikipedia HybTextR 54.2 57.7
GPT-4 + Wikipedia DPR 80.6 69.8
GPT-4 + Wikipedia HybTextR 81.5 71.2

Textbook-Augmented Model

LLM-AMT (LLaMA) HybTextR 42.2 43.8
LLM-AMT (GPT-3.5) HybTextR 67.9 65.5
LLM-AMT (GPT-4) HybTextR 88.1 74.6

Table 3: Performance of various state-of-the-art models
on MedQA and MedMCQA datasets.

LLaMA-2-13B, GPT-3.5-Turbo1 and GPT-4- 355

Turbo as readers, enhanced by the knowledge re- 356

trieved from Wikipedia to answer questions. 357

3.3 Implementation Details 358

We employ OpenAI’s GPT-3.5-Turbo as our LLM 359

readers in different experiments. LLaMA-2-13B 360

and GPT-4-Turbo are only used in the main re- 361

sult experiments of Table 3. Subsequent Abla- 362

tion Studies only utilize GPT-3.5 as the genera- 363

tor. GPT-3.5-Turbo, accessed via its API2, handled 364

query rewriting during the augmentation phase. In 365

the evidence retrieval stage, SPLADE acts as our 366

sparse retriever, DPR is the dense retriever, and 367

we incorporate a cross-encoder for reranking. The 368

MS-MARCO dataset (Nguyen et al., 2016) is our 369

primary training source for our zero-shot model. 370

Specifics related to fine-tuning, such as batch size, 371

learning rate, and training rounds, can be found in 372

the supplementary material. 373

1In this paper, “GPT-3.5” denotes GPT-3.5-Turbo, and
similarly, references to “GPT-4” imply GPT-4-Turbo.

2https://platform.openai.com/docs/
guides/gpt
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3.4 Main Result374

In Table 3, we compare various state-of-the-art375

models with our proposed pipeline on MedQA and376

MedMCQA datasets.377

Our experiments reveal that incorporating text-378

book knowledge with our proposed method signifi-379

cantly enhances the performance of GPT-3.5-Turbo380

and GPT-4-Turbo when compared to closed-book381

models. While Wikipedia is a rich information382

source, its content may be too generalized and of-383

ten lacks the necessary depth for specialized fields384

such as medicine. Therefore, the smaller perfor-385

mance gains observed when utilizing Wikipedia386

as an external knowledge base may be due to the387

fact that these large language models have already388

incorporated Wikipedia data during pre-training.389

To explore the effectiveness of Wikipedia as a re-390

trieval corpus, we employed two distinct retrievers:391

a publicly available pre-finetuned DPR from other392

researchers (Karpukhin et al., 2020), and our own393

fine-tuned HybTextR system using the Wikipedia394

corpus as training data. Both methods indicated395

that a textbook corpus is more useful compared to396

Wikipedia for enhancing medical QA performance.397

This is evidenced by a 13.7% increase over the398

GPT-3.5 + Wiki for MedQA and a 7.8% increase399

for MedMCQA, highlighting the significance of400

integrating deep, specialized medical knowledge401

over broad, surface-level information sources.402

Moreover, when leveraging the more sophisti-403

cated GPT-4 as the base model, our approach sur-404

passes the performance of specialized closed-book405

models such as Flan-PaLM (540B) and Med-PaLM406

2. This showcases the potential of combining large407

language models with targeted domain expertise,408

emphasizing the value of domain-specific knowl-409

edge in retrieval-augmented generation methods.410

3.4.1 Component Impact Analysis411

Our investigation into the LLM-AMT pipeline re-412

veals the integral roles of the Textbook Retriever,413

Query Augmenter, and Knowledge Self-Refiner. In414

Table 4, we provide a unified analysis, demon-415

strating their collective impact on enhancing the416

model’s performance on medical QA tasks, as evi-417

denced in the MedQA-USMLE dataset and corrob-418

orated by similar trends in other datasets.419

1. Textbook Retriever (HybTextR) serves as420

the cornerstone, providing a 7.3% boost in421

accuracy by tapping into specialized medical422

literature for relevant information.423

Method MedQA-
USMLE

MedQA-
MCMLE

Med-
MCQA

GPT-3.5-Turbo 51.3 58.2 53.9

+ retriever 58.6 61.2 57.1

+ retriever
+ augmented query 62.0 65.4 63.1

+ retriever
+ knowledge self-refiner 63.9 68.1 64.4

+ retriever
+ augmented query
+ knowledge self-refiner

65.0 68.8 65.1

+ finetuned retriever 61.2 62.3 58.7

+ finetuned retriever
+ augmented query 64.1 68.9 63.4

+ finetuned retriever
+ knowledge self-refiner 65.7 70.3 64.8

+ finetuned retriever
+ augmented query
+ knowledge self-refiner

67.9 72.6 65.5

Table 4: Performance comparison (% accuracy) of var-
ious approaches on three medical QA datasets. The
table showcases the incremental improvements gained
by integrating different components. Specifically, the
retriever employed is HybTextR, and the LLM Reader
is GPT-3.5-Turbo.

2. Query Augmenter elevates recall by trans- 424

lating general inquiries into precise medical 425

terminology and through query expansion to 426

enhance relevant knowledge association, lead- 427

ing to a 3.4% incremental accuracy gain. It 428

ensures that the breadth of the search captures 429

a wide spectrum of relevant evidence. 430

3. Knowledge Self-Refiner complements by 431

scrutinizing the relevance and usefulness of 432

the retrieved information, fine-tuning preci- 433

sion, and contributing a further 1.9% accuracy 434

increase. It filters the evidence, sharpening 435

the focus on the most pertinent medical facts. 436

4. Synergistic Effect: The Query Augmenter 437

and Knowledge Self-Refiner synergize to el- 438

evate LLM performance. The augmenter 439

boosts knowledge recall, while the refiner im- 440

proves precision, providing the LLM with 441

high-quality, external medical knowledge. 442

This synergy is crucial for handling complex 443

medical queries. See the appendix A.7 for a 444

detailed case study on their interaction. 445

3.5 Ablation Study 446

Here, we perform ablation studies on the query 447

augmentation, the retrieval mechanisms and the 448

knowledge self-refinement strategy to refine and 449

identify the most optimal configuration specifically 450
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Method Accuracy

GPT-3.5-Turbo 51.3

+ retriever 58.6
+ query rewriting 61.2
+ query expansion 62.0

Table 5: Query Augmenter’s ablation study

Zero-shot Fine-tuned

MedQA-USMLE MedQA-USMLE

BM25 55.6 –
Sparse 57.4 59.3
Dense 59.7 60.9
ColBERT 58.2 61.5
Sparse + Dense 60.1 62.7
Sparse + Rerank 59.5 61.3
Dense + Rerank 60.6 63.7
HybTextR 62.0 64.1

Table 6: Evaluation of Retrieval and Reranking Strate-
gies on the Performance of LLM-AMT

tailored for question-answering tasks within the451

medical domain.452

3.5.1 Query Augmenter Components453

In this part, we performed a series of ablation ex-454

periments on the MedQA dataset to evaluate the455

efficacy of various components within our Query456

Augmenter framework. The detailed results are457

presented in Table 5. Our findings demonstrate that458

each component contributes to the overall perfor-459

mance incrementally. These results underscore the460

synergistic effect of these components in improv-461

ing the model’s ability to understand and process462

complex medical queries.463

3.5.2 Textbook Retrievers464

In Table 6, we evaluate the impact of different re-465

trieval methods in our pipeline. The late-interaction466

ColBERT retriever notably achieves 58.2% accu-467

racy on MedQA-USMLE in a zero-shot scenario,468

surpassing standalone sparse and dense retrievers.469

A hybrid approach, combining dense and sparse470

retrievers, yields a higher accuracy of 60.1%.471

Adding a reranker, the Dense + Rerank setup in-472

creases accuracy to 60.6%. The HybTextR model,473

incorporating sparse, dense, and reranking, reaches474

the peak accuracy of 62.0% on MedQA-USMLE,475

demonstrating the advantage of a layered retrieval476

approach in medical contexts. For similar experi-477

ments on MedQA-MCMLE and MedMCQA, refer478

to Appendix A.1.479

Configuration Accuracy (%)

w/o KSR 64.1
+ Relevance Filter 65.8
+ Usefulness Filter 66.2
+ Full System 67.9

Table 7: Impact of KSR components on GPT-3.5-Turbo
LLM Reader accuracy.

3.5.3 Knowledge Self-Refiner Components 480

In this part, the impact of Knowledge Self-Refiner 481

(KSR) components on a GPT-3.5-Turbo LLM 482

Reader is examined within the MedQA domain, 483

supplemented by HybTextR and Query Augmen- 484

tation strategies. As illustrated in Table 7, the Rel- 485

evance Filter marginally increases accuracy, un- 486

derscoring its role in identifying pertinent content. 487

The Usefulness Filter, contributing a slightly higher 488

gain, is instrumental in isolating content of practi- 489

cal value for responses. The concurrent application 490

of both filters results in the highest accuracy, signi- 491

fying the importance of multi-dimensional content 492

refinement in medical question-answering. 493

3.6 Further Discussion 494

In this section, we discuss and further assess our 495

models, particularly their performance in non- 496

multiple-choice medical QA tasks. 497

Tiers GPT-3.5 LLM-AMT

Correct 27 36
Mostly Correct 10 12
Partially Correct 14 19
Wrong 49 33

Table 8: Evaluation of the Non-multiple-choice Medical
Question Answering Task. GPT-3.5 as the LLM Reader.

To test medical QA models in a realistic scenario, 498

we chose 100 varied questions from the MedQA- 499

USMLE dataset and produced answers without see- 500

ing the options. Medical professionals evaluated 501

the answer quality, ranking them as: 502

• Correct: Accurate and complete. 503

• Mostly Correct: Generally accurate, with 504

some details missing. 505

• Partially Correct: Contains correct aspects 506

but lacks key information. 507

• Wrong: Inaccurate or irrelevant. 508

7



Our LLM-AMT model surpassed the GPT-3.5-509

Turbo baseline in the non-multiple-choice QA task,510

delivering 36 correct answers to the baseline’s 27.511

Notably, LLM-AMT provided more partially cor-512

rect answers (19 vs. 14) and fewer errors (33 vs.513

49). This underscores the model’s enhanced ac-514

curacy in the medical QA domain, as detailed in515

Table 8. The superior performance of LLM-AMT516

in the non-multiple-choice QA task not only illus-517

trates its advanced capabilities but also emphasizes518

its potential for practical application in real-world519

medical scenarios. Such advancements can be in-520

strumental in aiding medical professionals with521

more accurate and reliable information.522

4 Related Work523

In this section, we provide an overview of the re-524

lated work in biomedical QA, retrieval-augmented525

QA, and text retrieval.526

4.1 Biomedical question answering527

Biomedical QA plays a pivotal role in clinical deci-528

sion support (Ely et al., 2005) and the acquisition of529

biomedical knowledge (Jin et al., 2022). With the530

rise of pre-trained language models (LMs), there’s531

been a significant uptick in performance and the532

emergence of new capabilities across various natu-533

ral language processing (NLP) tasks (Chowdhery534

et al., 2022; Chung et al., 2022; Wei et al., 2022b,a).535

Nevertheless, these auto-regressive LLMs, when536

applied in domains like medicine and healthcare537

that require intensive knowledge or reasoning, are538

prone to generating hallucinations and erroneous539

content. Combining external knowledge sources540

with LLMs is a promising approach to counteract541

these pitfalls (Mialon et al., 2023).542

4.2 Retrieval Augmented Generation543

The retrieval-augmented generation paradigm, orig-544

inating from the DrQA framework by Chen et al.,545

initially used heuristic retrievers like TF-IDF to546

source evidence from Wikipedia, followed by a547

neural model to extract answers. This methodology548

was advanced by DPR (Karpukhin et al., 2020),549

using pre-trained transformers like BERT for re-550

trieval and reading. Retrieval Augmented Genera-551

tion (RAG) (Lewis et al., 2020) further evolved the552

approach by shifting from answer extraction to gen-553

eration, enabling free-form text creation. Advances554

in RAG have explored retrieval as a critical tool for555

augmentation, with Schick et al., Luo et al., and556

Asai et al. targeting enhanced information sourcing557

mechanisms. Moreover, Yan et al. explored and 558

designed corrective strategies for RAG to bolster 559

generation robustness. Concurrently, models like 560

REALM (Guu et al., 2020) and RETRO (Borgeaud 561

et al., 2022) integrated retrieval during the pre- 562

training phase. Recently, Large Language Models 563

(LLMs) have been incorporated into this frame- 564

work, as seen in REPLUG (Shi et al., 2023b) and 565

IC-RALM (Ram et al., 2023). While prior work 566

on RAG primarily addressed general knowledge, 567

this study introduces the first application of RAG 568

to medical literature, harnessing a vast collection 569

of medical textbooks. Our innovative knowledge 570

self-refinement strategies enhance the fidelity of 571

retrieved information, marking the first refinement 572

of RAG’s retrieval component for elevated perfor- 573

mance in the medical domain. 574

4.3 Neural Text Retrieval 575

Recent progress in Neural Retrieval with bi- 576

encoder architectures surpasses traditional methods 577

like BM25/TF-IDF. This technique encodes queries 578

and documents independently using pre-trained 579

transformers, measuring similarity with embedding 580

distances. Neural retrieval can be categorized into 581

dense retrieval (e.g., DPR (Karpukhin et al., 2020), 582

ANCE (Xiong et al., 2020), CoCondenser (Gao 583

and Callan, 2021)), sparse retrieval (e.g., DeepIm- 584

pact (Mallia et al., 2021), uniCOIL (Lin and Ma, 585

2021), SPLADE (Formal et al., 2021)), and late 586

interaction retrieval (e.g., ColBERT (Khattab and 587

Zaharia, 2020), COIL (Gao et al., 2021)), based 588

on the type of embedding used. In this study, we 589

apply these neural retrieval methods to medical 590

textbook retrieval, assessing their domain-specific 591

effectiveness beyond standard corpora. 592

5 Conclusion 593

We introduced LLM-AMT, a novel pipeline opti- 594

mized for medical tasks, harnessing authoritative 595

medical textbooks to enhance LLMs’ accuracy and 596

professionalism. Empirical evaluations reinforced 597

the value of integrating domain-specific textbooks 598

with LLMs, providing an avenue for future studies. 599

Further, our ablation study delineated the signifi- 600

cance of external knowledge retrieval, query aug- 601

mentation, and knowledge self-refinement strategy 602

within our proposed architecture. These findings 603

set a precedent for advancing specialized domain- 604

aware models, especially in the context of medical 605

informatics and healthcare AI applications. 606
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6 Limitations607

6.1 Model Explainability608

One significant limitation of the LLM-AMT system609

lies in its inherent lack of explainability. While the610

integration of authoritative medical textbooks en-611

hances the model’s responses, the reasoning behind612

these responses often remains opaque. Medical613

decision-making demands a high degree of trans-614

parency; however, as with many large language615

models, the LLM-AMT operates as a “black box”.616

This poses a challenge in clinical settings, where617

explanations for diagnoses or treatment recommen-618

dations are crucial for trust and accountability. In-619

correct or unexplained advice from the model could620

lead to misdiagnosis or inappropriate treatment, en-621

dangering patient health and potentially eroding622

trust in AI-assisted medical systems. The model’s623

inability to provide detailed explanations for its624

conclusions can be a significant barrier to its adop-625

tion in practice.626

6.2 Interactive Question-Answering627

Another limitation is the system’s capacity for in-628

teractive QA. In real-world medical practice, di-629

agnostic and treatment processes involve nuanced630

communications with patients, requiring a deep631

understanding of individual circumstances, empa-632

thetic engagement, and the ability to ask follow-up633

questions for clarification. The LLM-AMT, despite634

its advancements, cannot fully replicate this level635

of interaction. The model might not adequately636

handle the subtleties of patient-specific narratives637

or the dynamic nature of medical conversations.638

Thus, while LLM-AMT can provide informative639

responses, its interactive capabilities are limited in640

comparison to the rich, two-way communication641

typically found in patient-clinician interactions.642
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A Appendix 884

A.1 Exclusive Performance Evaluation on 885

MedQA-MCMLE and MedMCQA 886

Table 10 presents the performance of various re- 887

trieval and reranking strategies exclusively on 888

the MedQA-MCMLE and MedMCQA datasets. 889

These datasets pose distinct challenges compared 890

to MedQA-USMLE and thus merit a separate anal- 891

ysis. The results provide insights into the general- 892

izability and robustness of the methods when con- 893

fronted with different types of medical question- 894

answering datasets. The HybTextR method, in par- 895

ticular, shows a consistently strong performance, 896

suggesting its potential as a versatile tool for medi- 897

cal information retrieval tasks. 898

A.2 Fine-tuning Hyperparameters for 899

Retrievers 900

Table 9 presents the hyperparameters used for fine- 901

tuning retrievers. In the Seq Length column of 902

Table 9, the notation 32 + 220 for the ColBERT 903

model indicates that the maximum length for the 904

query is set to 32, while the length for the pas- 905

sage is 220. For the Reranker model, the input 906

sequence is structured as [CLS] token followed 907

by the query, then a [SEP] token, and finally the 908

passage. Therefore, its sequence length is calcu- 909

lated as 1 + 126 + 1 + 384, which sums up to 910

512. 911

Model Batch Seq Len LR

Splade 64 256 2× 10−5

DPR 8 256 1× 10−5

ColBERT 32 32+220 3× 10−6

Reranker 8 126+384 8× 10−6

Table 9: Hyperparameters for fine-tuning.
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Zero-shot Fine-tuned

MedQA-MCMLE MedMCQA MedQA-MCMLE MedMCQA

BM25 59.7 55.2 – –
Sparse 60.4 57.5 62.9 59.6
Dense 61.0 57.7 63.8 59.3
ColBERT 62.4 58.1 64.1 60.4
Sparse + Dense 64.9 58.7 65.5 61.9
Sparse + Rerank 63.8 59.2 65.2 62.8
Dense + Rerank 65.4 61.8 65.3 64.6
HybTextR 64.4 63.1 68.9 65.2

Table 10: Evaluation of Retrieval and Reranking Strategies on MedQA-MCMLE and MedMCQA Datasets

A.3 Models912

We use the following model:913

• DPR, which uses BERT-base as the backbone914

and has 110M parameters. It is under the CC-915

BY-NC 4.0 License.916

• SPLADE, which uses BERT-base as the back-917

bone and has 110M parameters. It is under918

the CC BY-NC-SA 4.0. License.919

• ColBERT, which uses BERT-base as the920

backbone and has 110M parameters. It is un-921

der the MIT License.922

• LLaMA-2-13B, 13B parameters, under the923

Llama 2 Community License Agreement.924

• GPT-3.5-Turbo and GPT-4-Turbo, which925

are not open-source and can only be accessed926

via API requests.927

A.4 Datasets928

We use the following datasets:929

• MedQA, which is under the MIT Licenses.930

The intended purpose of the MedQA dataset931

is to support and advance research in the area932

of natural language processing (NLP) and in-933

formation retrieval (IR) within the medical934

domain. MedQA is composed of both English935

and Chinese questions and answers. While the936

dataset predominantly features clinical scenar-937

ios and medical knowledge representations,938

demographic information of the represented939

groups is not explicitly detailed due to the940

nature of the data.941

• MedMCQA, which is under the MIT License942

for non-commercial research purposes. The943

MedMCQA dataset spans a broad range of944

medical domains, including but not limited to945

cardiology, oncology, pediatrics, neurology, 946

and infectious diseases. Each domain is rep- 947

resented with questions and answers that re- 948

flect the diversity of medical knowledge. The 949

dataset is primarily in English, ensuring that 950

the findings of our research are directly appli- 951

cable to English-language medical question- 952

answering systems. 953

A.5 AI Assistance in Writing 954

In the preparation of this manuscript, we utilized an 955

AI language model, specifically ChatGPT, to assist 956

with grammar checking and refining the expres- 957

sions used in our writing. This utilization was con- 958

fined to ensuring linguistic accuracy and enhancing 959

readability, without influencing the scientific con- 960

tent or the originality of the research findings pre- 961

sented. The contribution of ChatGPT was strictly 962

as a supportive tool for language polishing, and all 963

final decisions regarding the manuscript content 964

were made by the human authors. 965

A.6 Full List of Instructions For 966

GPT-3.5-Turbo 967

In Table 11, we list the instructions we used in 968

LLM-AMT. 969

A.7 Case Study 970

As part of our comprehensive case study, Tables 12, 971

13, 14, and 15 present detailed input and output 972

data corresponding to each component depicted in 973

the overview (Figure 1). These tables include the 974

full question and options, retrieved passages from 975

the textbook, retrieved passages from Wikipedia, 976

the rewritten query, the expanded query, the results 977

from the knowledge self-refinement stage, and the 978

final refined knowledge. This granular view pro- 979

vides clear insight into the information processing 980

pipeline and the effectiveness of each module. 981
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Query Rewriting:
Question: XXX
Please reformulate the given question by employing precise medical terminology. Focus on capturing
the essence of the patient’s symptoms and conditions in a generalized form that reflects common clinical
descriptions. Avoid using colloquial language and ensure that the rewritten query is clear, concise, and
can be universally understood in a professional medical context.

Query Expansion:
Question: XXX
Assume the role of a medical doctor and expand upon the initial query. Conduct a systematic analysis by
dissecting the question into its medical components. Then, elaborate on each component with detailed
medical insights that collectively build a comprehensive understanding of the underlying health issue.
Proceed methodically to ensure that each step of your explanation contributes to a logically structured
answer.

Relevance Filter:
Retrieved Passage: XXX
x: XXX
Examine the retrieved passages above carefully. Determine if each passage pertains to the context of the
specific query represented by ’x’. Respond with ’Yes’ if a passage is relevant and contributes meaningful
information to the query, or ’No’ if it does not relate to the query or provide valuable insight. Please
answer with ’Yes’ or ’No’ only for each passage assessed.

Usefulness Filter:
Retrieved Information: XXX
x: XXX
Review the information retrieved above and evaluate its utility in addressing the question represented by
’x’. Provide a response of ’Yes’ if the information is pertinent and aids in formulating a comprehensive
answer, or ’No’ if it lacks relevance or does not contribute to a substantive response to the question.
Respond with a singular ’Yes’ or ’No’ for the usefulness of each piece of information.

LLM Reader Instruction:
Medical Knowledge: XXX
Question: XXX
Using the medical knowledge provided, please answer the following medical question with a chain-of-
thought approach. Break down your reasoning into clear, logical steps that detail your clinical thought
process from initial hypothesis formation through to the final conclusion, similar to how a medical
professional would approach a diagnostic challenge. Your answer should not only be informed by the
medical knowledge but also transparent in the reasoning that led to your conclusion.

Table 11: Full List of Instructions For GPT-3.5-Turbo
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Question:
Two weeks after undergoing an emergency cardiac catheterization with stenting for unstable angina
pectoris, a 61-year-old man presents with decreased urinary output and malaise. He has type 2 diabetes
mellitus and osteoarthritis of the hips. His medications prior to admission were insulin and naproxen,
and he was started on aspirin, clopidogrel, and metoprolol after the coronary intervention. His current
vitals are: temperature 38°C (100.4°F), pulse 93/min, blood pressure 125/85 mm Hg. Examination reveals
mottled, reticulated purplish discoloration of the feet. Laboratory studies show: Hemoglobin count 14
g/dL, Leukocyte count 16,400/mm3, Segmented neutrophils 56%, Eosinophils 11%, Lymphocytes 31%,
Monocytes 2%, Platelet count 260,000/mm3, Erythrocyte sedimentation rate 68 mm/h, Serum Urea
nitrogen 25 mg/dL, Creatinine 4.2 mg/dL. Renal biopsy shows intravascular spindle-shaped vacuoles. The
question is: Which of the following is the most likely cause of this patient’s symptoms?
Options:
A) Renal papillary necrosis
B) Cholesterol embolization
C) Eosinophilic granulomatosis with polyangiitis
D) Polyarteritis nodosa

Ground Truth:
Cholesterol embolization (Choice B)

Rewritten Query:
What is the most likely etiology of the oliguria and malaise in this patient with a history
of emergency cardiac catheterization, type 2 diabetes mellitus, and osteoarthritis of the hips,
along with mottled, reticulated purplish discoloration of the feet, elevated creatinine levels, and
intravascular spindle-shaped vacuoles on renal biopsy?

Expanded Query:
Given the clinical scenario and lab findings, we should consider several factors to systematically approach
this medical question. Let’s analyze each option step by step.
A. Renal Papillary Necrosis: Presence of diabetes could predispose the patient to this condition, but the
biopsy’s intravascular spindle-shaped vacuoles are not characteristic of renal papillary necrosis, and the
discoloration of the feet isn’t a typical symptom.
B. Cholesterol Embolization: Recent cardiac catheterization could lead to this condition; however, one
would need to consider other signs and symptoms and correlate them with further tests to rule out or
confirm this diagnosis. The biopsy finding and the patient’s presentation could be suggestive, but are not
definitive without further evidence.
C. Eosinophilic Granulomatosis with Polyangiitis (EGPA): While the patient has eosinophilia, the absence
of asthma or typical respiratory symptoms and granuloma formation on biopsy makes this option less
likely.
D. Polyarteritis Nodosa (PAN): The absence of typical symptoms and biopsy findings associated with
PAN, alongside the presence of eosinophilia, which isn’t commonly seen in PAN, makes this diagnosis
less likely.
In summary, while certain features may seem to align with some of the conditions, the evidence is not
conclusive for any of the options based on the information presented. Further diagnostic workup would be
essential to come to a definitive diagnosis.

Table 12: Case Study
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Retrieved Passages from Wikipedia:
Cardiac catheterization is a medical procedure used to diagnose and treat certain cardiovascular conditions.
During cardiac catheterization, a long thin tube called a catheter is inserted in an artery or vein in your
groin, neck, or arm and threaded through your blood vessels to your heart. Using this catheter, doctors
can then perform diagnostic tests as part of a cardiac cath work-up. Procedures can include coronary
angiography, as well as treatments like coronary angioplasty or stenting to open up narrowed or blocked
arteries. ✗

Type 2 diabetes mellitus is a chronic metabolic disorder characterized by high blood sugar, insulin
resistance, and relative lack of insulin. It is often associated with obesity and a sedentary lifestyle and can
lead to severe health complications if not managed effectively. Management includes lifestyle changes,
monitoring blood sugar levels, and medication or insulin therapy. ✗

Osteoarthritis of the hips is a degenerative joint disease that affects the hip joints. It occurs when the
protective cartilage that cushions the tops of the bones wears down over time, which can lead to pain,
swelling, and reduced range of motion in the hip. While the exact cause is unknown, factors such as age,
joint injury, obesity, and genetics can increase the risk of developing hip osteoarthritis. ✗

Mottled, reticulated purplish discoloration of the feet is a skin condition that can indicate a variety
of circulatory problems. The appearance of a lace-like pattern of purplish discoloration, known as
livedo reticularis, may be due to the occlusion of small blood vessels or could be a reaction to cold
temperatures. In certain cases, it can be associated with more serious underlying conditions, such as
cholesterol embolization syndrome or vasculitis. ✗

Elevated creatinine levels in the blood can indicate impaired kidney function or kidney disease. Creatinine
is a waste product produced by muscles from the breakdown of a compound called creatine. Normally, the
kidneys filter out creatinine from the blood and excrete it in urine. High levels of creatinine may signal
that the kidneys are not working properly. ✗

Intravascular spindle-shaped vacuoles observed on renal biopsy can be indicative of a pathological process
affecting the kidneys. These structures could suggest the presence of intravascular material, such as
cholesterol emboli, which can result from the dislodgement of atheromatous plaques following procedures
like cardiac catheterization. The presence of such vacuoles requires further pathological examination to
determine the precise cause and appropriate treatment. ✗

...

Retrieved Passages from Textbooks:
Cholesterol embolization, also known as cholesterol crystal embolism (CCE) or atheroembolism, is a
pathology that arises from the showering of cholesterol crystals from atherosclerotic plaques into the
systemic circulation. The condition can result in a vasculopathy that is often systemic and can lead to
end-organ damage due to the occlusion of small to medium-sized vessels. Pathophysiology. Cholesterol
embolization occurs when cholesterol crystals dislodge from plaques in larger arteries, such as the aorta,
and travel through the bloodstream to smaller blood vessels, where they become lodged and cause
ischemia. The release of cholesterol crystals can occur spontaneously, but it is most commonly associated
with iatrogenic causes such as cardiac catheterization, vascular surgery, and anticoagulation therapy.
Clinical Presentation. The clinical manifestations of cholesterol embolization are variable and depend
on the organ systems involved. Common symptoms include: Cutaneous: Livedo reticularis, cyanotic
toes, or gangrene due to skin and soft tissue ischemia. Renal: Acute or chronic renal insufficiency
presenting as an increase in serum creatinine, proteinuria, and hematuria. Gastrointestinal: Abdominal
pain, gastrointestinal bleeding, and pancreatitis. Neurological: Transient ischemic attacks, strokes, and
multi-infarct dementia. ✓

Table 13: Continued Case Study
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Retrieved Passages from Textbook:
Diagnosis of Cholesterol embolization is often challenging due to the nonspecific nature of the symptoms.
Cholesterol embolization is frequently underdiagnosed or misdiagnosed. Laboratory findings may include
eosinophilia and elevated erythrocyte sedimentation rate (ESR). Definitive diagnosis typically requires
histological examination of affected tissue, which would reveal biconvex, needle-shaped clefts within the
vessel lumen, indicative of cholesterol crystals. There is no specific treatment for cholesterol embolization.
Management is primarily supportive and focuses on treating complications and symptomatic relief. Statin
therapy may be used to stabilize atherosclerotic plaques and reduce the risk of further embolization. In
cases related to medication, such as anticoagulants or thrombolytics, discontinuation or adjustment of the
drugs may be required. The prognosis for patients with cholesterol embolization varies and can range
from benign to severe, life-threatening multiorgan failure. Early recognition and management of the
condition are crucial to improving outcomes. ✓

Cardiac Catheterization Cardiac catheterization is an invasive diagnostic procedure that provides compre-
hensive information about the heart and surrounding blood vessels. This procedure involves the insertion
of a catheter, which is a thin, flexible tube, into the coronary arteries and heart chambers under X-ray
guidance. Indications Cardiac catheterization is typically indicated for the following purposes: Diagnosing
coronary artery disease Evaluating heart muscle function Determining the need for further treatment
(such as angioplasty or coronary artery bypass surgery) Assessing the effectiveness of prior procedures
Measuring the pressure within the heart chambers Diagnosing congenital heart abnormalities ✗

...

Passages after Relevance Filter:
Cholesterol embolization, also known as cholesterol crystal embolism (CCE) or atheroembolism, is a
pathology that arises from the showering of cholesterol crystals from atherosclerotic plaques into the
systemic circulation. The condition can result in a vasculopathy that is often systemic and can lead to
end-organ damage due to the occlusion of small to medium-sized vessels. Pathophysiology. Cholesterol
embolization occurs when cholesterol crystals dislodge from plaques in larger arteries, such as the aorta,
and travel through the bloodstream to smaller blood vessels, where they become lodged and cause
ischemia. The release of cholesterol crystals can occur spontaneously, but it is most commonly associated
with iatrogenic causes such as cardiac catheterization, vascular surgery, and anticoagulation therapy.
Clinical Presentation. The clinical manifestations of cholesterol embolization are variable and depend
on the organ systems involved. Common symptoms include: Cutaneous: Livedo reticularis, cyanotic
toes, or gangrene due to skin and soft tissue ischemia. Renal: Acute or chronic renal insufficiency
presenting as an increase in serum creatinine, proteinuria, and hematuria. Gastrointestinal: Abdominal
pain, gastrointestinal bleeding, and pancreatitis. Neurological: Transient ischemic attacks, strokes, and
multi-infarct dementia.
Diagnosis of Cholesterol embolization is often challenging due to the nonspecific nature of the symptoms.
Cholesterol embolization is frequently underdiagnosed or misdiagnosed. Laboratory findings may include
eosinophilia and elevated erythrocyte sedimentation rate (ESR). Definitive diagnosis typically requires
histological examination of affected tissue, which would reveal biconvex, needle-shaped clefts within the
vessel lumen, indicative of cholesterol crystals. There is no specific treatment for cholesterol embolization.
Management is primarily supportive and focuses on treating complications and symptomatic relief. Statin
therapy may be used to stabilize atherosclerotic plaques and reduce the risk of further embolization. In
cases related to medication, such as anticoagulants or thrombolytics, discontinuation or adjustment of the
drugs may be required. The prognosis for patients with cholesterol embolization varies and can range
from benign to severe, life-threatening multiorgan failure. Early recognition and management of the
condition are crucial to improving outcomes.

Table 14: Continued Case Study
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Segments after Usefulness Filter:
Cholesterol embolization, also known as cholesterol crystal embolism (CCE) or atheroembolism, is a
pathology that arises from the showering of cholesterol crystals from atherosclerotic plaques into the
systemic circulation. The condition can result in a vasculopathy that is often systemic and can lead to
end-organ damage due to the occlusion of small to medium-sized vessels. ✓

Pathophysiology. Cholesterol embolization occurs when cholesterol crystals dislodge from plaques in
larger arteries, such as the aorta, and travel through the bloodstream to smaller blood vessels, where they
become lodged and cause ischemia. The release of cholesterol crystals can occur spontaneously, but it is
most commonly associated with iatrogenic causes such as cardiac catheterization, vascular surgery, and
anticoagulation therapy. ✓

Clinical Presentation. The clinical manifestations of cholesterol embolization are variable and depend
on the organ systems involved. Common symptoms include: Cutaneous: Livedo reticularis, cyanotic
toes, or gangrene due to skin and soft tissue ischemia. Renal: Acute or chronic renal insufficiency
presenting as an increase in serum creatinine, proteinuria, and hematuria. Gastrointestinal: Abdominal
pain, gastrointestinal bleeding, and pancreatitis. Neurological: Transient ischemic attacks, strokes, and
multi-infarct dementia. ✓

Diagnosis of Cholesterol embolization is often challenging due to the nonspecific nature of the symptoms.
Cholesterol embolization is frequently underdiagnosed or misdiagnosed. Laboratory findings may include
eosinophilia and elevated erythrocyte sedimentation rate (ESR). Definitive diagnosis typically requires
histological examination of affected tissue, which would reveal biconvex, needle-shaped clefts within the
vessel lumen, indicative of cholesterol crystals. ✓

There is no specific treatment for cholesterol embolization. Management is primarily supportive and
focuses on treating complications and symptomatic relief. Statin therapy may be used to stabilize
atherosclerotic plaques and reduce the risk of further embolization. In cases related to medication, such as
anticoagulants or thrombolytics, discontinuation or adjustment of the drugs may be required. ✗

The prognosis for patients with cholesterol embolization varies and can range from benign to severe,
life-threatening multiorgan failure. Early recognition and management of the condition are crucial to
improving outcomes. ✗

Refined Knowledge:
Cholesterol embolization, also known as cholesterol crystal embolism (CCE) or atheroembolism, is a
pathology that arises from the showering of cholesterol crystals from atherosclerotic plaques into the
systemic circulation. The condition can result in a vasculopathy that is often systemic and can lead to
end-organ damage due to the occlusion of small to medium-sized vessels. Pathophysiology. Cholesterol
embolization occurs when cholesterol crystals dislodge from plaques in larger arteries, such as the aorta,
and travel through the bloodstream to smaller blood vessels, where they become lodged and cause ischemia.
The release of cholesterol crystals can occur spontaneously, but it is most commonly associated with
iatrogenic causes such as cardiac catheterization, vascular surgery, and anticoagulation therapy. Clinical
Presentation. The clinical manifestations of cholesterol embolization are variable and depend on the organ
systems involved. Common symptoms include: Cutaneous: Livedo reticularis, cyanotic toes, or gangrene
due to skin and soft tissue ischemia. Renal: Acute or chronic renal insufficiency presenting as an increase
in serum creatinine, proteinuria, and hematuria. Gastrointestinal: Abdominal pain, gastrointestinal
bleeding, and pancreatitis. Neurological: Transient ischemic attacks, strokes, and multi-infarct dementia.
Diagnosis of Cholesterol embolization is often challenging due to the nonspecific nature of the symptoms.
Cholesterol embolization is frequently underdiagnosed or misdiagnosed. Laboratory findings may include
eosinophilia and elevated erythrocyte sedimentation rate (ESR). Definitive diagnosis typically requires
histological examination of affected tissue, which would reveal biconvex, needle-shaped clefts within the
vessel lumen, indicative of cholesterol crystals.

Table 15: Continued Case Study
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