Under review as a conference paper at ICLR 2026

REINFORCING QUERY-LEVEL META-AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper proposes a query-level meta-agent named FLOWREASONER to automate
the design of query-level multi-agent systems, i.e., one system per user query. Our
core idea is to incentivize a reasoning-based meta-agent via external execution feed-
back. Concretely, by distilling DeepSeek R1, we first endow the basic reasoning
ability regarding the generation of multi-agent systems to FLOWREASONER. Then,
we further enhance it via reinforcement learning (RL) with external execution feed-
back. A multi-purpose reward is designed to guide the RL training from aspects
of performance, complexity, and efficiency. In this manner, FLOWREASONER
is enabled to generate a personalized multi-agent system for each user query via
deliberative reasoning. Experiments on both engineering and competition code
benchmarks demonstrate the superiority of FLOWREASONER. Remarkably, it
surpasses ol-mini by 10.52% accuracy across three benchmarks. All the code is
included in the Supplemental Material.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023; Reid et al., 2024; Team, 2024a; Yang et al., 2024;
Liu et al., 2024) have exhibited remarkable power in various meaningful yet challenging domains,
like chatbots (OpenAl, 2022), code (CognitionAl, 2024), math (OpenAl, 2024), robotics (Kim et al.,
2024), etc. LLM-based multi-agent systems (Hong et al., 2023; Wu et al., 2023; Li et al., 2023),
which are characterized by planning, reasoning, tool use, and memory, become the foundation of
these LLM-driven applications.! While effective, most of them are manually designed, increasing
human resource costs and limiting scalability.

To mitigate this challenge, early automatic methods are proposed to optimize the prompts (Yuk-
sekgonul et al., 2024; Khattab et al., 2024; Zhou et al., 2024a; Yang et al., 2023) or hyper-
parameters (Saad-Falcon et al., 2024). But they still rely on the fixed workflow of the multi-agent
system, which requires human effort to manually design workflows for each new scenario. From this
motivation, various graph-based methods (Zhuge et al., 2024; Liu et al., 2023; Zhang et al., 2024a;
Feng et al., 2025) formulate the workflows as graphs or networks and automate the workflow designs.
However, the structural complexity of graphs limits their scalability (Hu et al., 2024). To overcome
this limitation, state-of-the-art methods represent the multi-agent systems as programming codes (Hu
et al., 2024) and prompt a performant LLM, e.g., GPT-40, as a meta-agent to optimize workflows via
complex search algorithms on carefully designed search sets (Zhang et al., 2024b; Shang et al., 2024;
Zhang et al., 2025).

These previous methods focus on task-level meta-agents, generating merely a single task-specific
multi-agent system that applies to one kind of task, e.g., code generation task, as in Figure 1 (a).
However, for individual user queries, these one-size-fits-all systems lack the capability for automatic
adaptation. To enhance the adaptability of multi-agent systems for individual user queries, this paper
aims to design a query-level meta-agent to generate a query-specific multi-agent system for each
user query, e.g., build a 2048 game, as shown in Figure 1 (b).

We first identify that the success of task-level meta-agents largely depends on carefully designed
search sets, as they rely on complex search algorithms. However, such search sets are unavailable
in the setting of query-specific multi-agent systems. To address this issue, instead of relying on
search algorithms, we propose to integrate external execution feedback of the generated multi-agent
system, based on which a reasoning-driven meta-agent is leveraged to polish the system.

'This paper defines a multi-agent system as a system consisting of multiple agents operating under a workflow.

Under review as a conference paper at ICLR 2026

At Inference Time

one kind of task t ~ P(q) one user query ¢
1: develop a to-do list.
1: develop a to-do list.«71 [K build § 204 game. N

k. build a 2048 game.* »-

ne systerh per task

T

|

I

I

|
v 1

Ve
Task-level { < Query-level
Me‘ra -Agent p IIE Meta-Agent
meta task 9 Q -Ameta,query
|
|
S(:(é\)ery Ame?a,query (q @)

Séﬁ)ery = -Ameta,query (q(k))

Stask = Ameta,task(t)

onhe system\per query J' |
2 I
Query-specific |~ |
o Multi-Agent System !
Task-specific ° 9 Y /
Multi-Agent System = Sautry !
Stask Ellelle] Lﬁaﬁ Sc(lﬁ)ery
(a) (b)

Figure 1: Task-Level Meta-Agents vs. Query-Level Meta-Agents at Inference Time. ¢ denotes a
user query, e.g., build a 2048 game. t ~ P(q) denotes one kind of task, e.g., code generation task,
which is a distribution of user queries. Given ¢, previous task-level meta-agent Apeta_task @ims to
search a task-specific multi-agent system Sy, to solve all queries sampled from ¢, i.e., one system per
task. Differently, given one user query q("’), our query-level meta-agent .Amemiquery conducts reasoning

and output a query-specific multi-agent system Séf%ry for ¢V, i.e., one system per query.

We dub such a meta-agent as FLOWREASONER. We first synthesize thousands of warm-up SFT
data using DeepSeek R1-671B (Team, 2025a) as the meta-agent to generate multi-agent systems
and process user queries individually. These synthetic data are then used to finetune DeepSeek-
R1-Distill-Qwen-7B, enabling basic reasoning for multi-agent system generation. Furthermore, we
enhance its reasoning capabilities for generating novel query-level multi-agent systems through
reinforcement learning (RL), incorporating external execution feedback. A multi-purpose reward is
designed to guide RL training, focusing on performance, complexity, and efficiency. During inference,
FLOWREASONER leverages deliberative reasoning to generate a novel query-level multi-agent system
for each user query, achieving one system per user query. The main contributions are summarized as
follows:

* We propose a query-level meta-agent termed FLOWREASONER to automate the designs of query-
level multi-agent systems, improving their adaptability in real-world scenarios.

* We train FLOWREASONER to reason from external execution feedback via RL, guided by a
multi-purpose reward considering performance, complexity, and efficiency.

* We demonstrate the superiority of FLOWREASONER via extensive experiments and open-source it.

2 RELATED WORK

LLM-Based Multi-Agent Systems. LLM-based multi-agent systems (Guo et al., 2024; Du et al.,
2023; Chen et al., 2023b; Park et al., 2023; Huang et al., 2024; Jin et al., 2025) serve as the
foundation of various LLM-powered real-world applications, e.g., code intelligence (CognitionAl,
2024), computer use (Anthropic, 2024), and deep research (OpenAl, 2025). LLM-based agents are
equipped with planning capabilities, database access, and tool function invocation. These agents
collaborate within a multi-agent system, leading to promising performance. Most multi-agent systems
are manually designed, increasing the costs of human resources and limiting the scalability. To
address this issue, researchers propose automation methods to automate the design of multi-agent

Under review as a conference paper at ICLR 2026

systems. Early methods (Yang et al., 2023; Khattab et al., 2024; Zhou et al., 2024a) are proposed to
automate the agentic designs via optimizing prompts (Yuksekgonul et al., 2024) or hyper-parameters
(Saad-Falcon et al., 2024). For example, (Chen et al., 2023a; Yuan et al., 2024; Fernando et al., 2023)
adopt the evolution algorithms to automate the agent profiling.

Although effective, they merely optimize the agents but keep the workflow of the multi-agent system
fixed, which still requires human effort to manually design for each new scenario. To address this
problem, several methods (Li et al., 2024; Zhou et al., 2024b; Zhang et al., 2024c; Shang et al., 2024;
Zhuge et al., 2023) are proposed to automate the design of the entire agentic workflow. For example,
researchers (Zhuge et al., 2024; Khattab et al., 2024; Liu et al., 2023; Zhang et al., 2024a; Feng et al.,
2025) formulate the workflows as graphs or networks and then optimize the connections between
nodes. To improve the efficiency, ADAS (Hu et al., 2024) proposes to use programming codes to
represent both agents and workflows. It also introduces a meta-agent to generate these workflows
and presents the meta-agent search to optimize the designs of multi-agent systems. At the same
time, AFLOW (Zhang et al., 2024b) also adopts the code representation but proposes Monte Carlo
Tree Search (MCTS) to optimize it. In addition, MaAS (Zhang et al., 2025) presents the agentic
supernet and then conducts the multi-agent architecture search. Differently, ScoreFlow (Wang et al.,
2025) trains a workflow generator to generate better workflows via direct preference optimization
(DPO) (Rafailov et al., 2023).

This paper argues that the previous methods are task-level meta-agents. As shown in Figure 1 (a),
they merely generate a single task-specific multi-agent system for solving one kind of task. However,
these one-size-fits-all systems are rigid and unable to automatically adapt or customize to individual
user queries within a task. From this motivation, we aim to propose a query-level meta-agent to
generate a query-specific multi-agent system for each user query as shown in Figure 1 (b).

Reasoning in LLMs. The ability to reason is essential for LLMs, enabling them to emulate
human thinking patterns. Pioneering work (Wei et al., 2022; Kojima et al., 2022) has facilitated
this by prompting LLMs to think step by step. Beyond this approach, reasoning capabilities are
further enhanced through frameworks such as self-correction (Kumar et al., 2024), self-critique (Ke
et al., 2023), debate (Liang et al., 2023; Du et al., 2023), and plan-and-solve (Wang et al., 2023).
Additionally, efforts like (Hao et al., 2024; Goyal et al., 2023) seek to transition LLMs’ reasoning
processes into the latent space. OpenAl has advanced reasoning in LLMs by developing the ol model,
demonstrating the potential for improvement through test-time scaling. Inspired by this, models such
as QwQ (Team, 2024c), QvQ (Team, 2024b), DeepSeek (Team, 2025a), and Kimi (Team, 2025b)
have followed suit, developing ol-like reasoning architectures. Moreover, OpenAI’s 03 model has
been announced to achieve promising results on the ARG-AGI benchmark (ARC-AGI, 2024). LLMs
progressively shift from intuitive processing (System 1) to deliberative reasoning (System 2) (Li et al.,
2025). Besides, researchers demonstrate that reasoning can improve safety (Liu et al., 2025a) and
alleviate hallucination (Gao et al., 2025). However, Chen et al. (2024) examines the overthinking
problem observed in ol-like models. To alleviate this problem, token efficiency methods (Liu et al.,
2025b) are proposed to reduce the token costs while maintaining the reasoning quality. This paper
develops an ol-like reasoning model to serve as a query-level meta-agent, getting rid of complex
search algorithms and the carefully designed search set.

3 PROBLEM DEFINITION

We denote a user query as g, e.g., build a 2048 game. Then a user task is defined as a distribution of
user queries, denoted as t = P(q), e.g., code generation task. A multi-agent system is denoted as
S = {A, W}, where A = {A, ..., A,,} denotes the agents in the system and W is the workflow of
collaboration among the agents.

As shown in Figure 2 (a), in traditional multi-agent systems (Hong et al., 2023; Wu et al., 2023;
Li et al., 2023), the agents and the workflows are designed manually according to one kind of task
t = P(q), as formulated Sy« = H(¢), where H denotes human experts, and S;,g denotes the
task-level multi-agent system which is fixed for all queries in one task. This kind of manually
designed multi-agent system leads to extensive human costs. Besides, such a one-size-fits-all system
fails to allocate inference resources dynamically for different user queries within the task.

As illustrated in Figure 2 (b), search-based automatic multi-agent systems (Zhang et al., 2024b; Hu
et al., 2024; Chen et al., 2023a) are proposed to reduce human effort. Specifically, these approaches

Under review as a conference paper at ICLR 2026

(a) Manually-designed Multi-agent System

Human Experts H Multi-agent System Si.q = {A, W}

Agents Workflow
A={A,... n} w

Tasks t ~ P(q)
code generation task

1: build a 2048 game.
2: create a snake game.
3: develop a to-do list.

o4
Mzmor'y % Plannmg T ﬁ ﬁ _ &
k. design a calendar tool,\ K W‘; - % !%
Tool Use Perception == -
D — One-size-fits-all

i ——-ige

(b) Search-based Automatic Multi-agent System

/ \ Meta-Agent Search Multi-agent System Sy = {4, W}

Tasks ¢ ~ P(q) Algorithm
code generation task Agents Workflow
1: build a 2048 game. [= — A={A,.., A} w
2: create a snake game. . e
3: develop a to-do list. i = U ’& !ﬁ!
w Memory _é Planning | iy
- I

k. design a calendar tool. K L .
Tool Use Perception
| One-size-fits-all

I:]‘ Iﬂ'
i-‘iﬂ

i

(C) Reasoning-based Automatic Multi-agent System

one user query g

Reasoning-based Meta- Agenti Multi-agent System g _ 4(1) 1) }
[1: build a 2048 game. } Squery = {A”, W}

w : / Multi-agent System Séﬁlry ={A® Wk}

[one user query q©
2

: create a snake game. Feedback
Agents Workflow
one user query g(® < IIE A® = gA® 4y w®
3: develop a to-do list. 'n' R . - N
| E = ﬁ' & i
Ameta,query \ Memory ___!% Planning | AL >< |
one user query g™ o X LR [— & &
k: design a calendar tool. One-size-fitfs-one «<———\ Tool Use Perception 4L AL

Figure 2: Architectural Comparison of Three Multi-Agent Systems. (a) Manually-designed
Multi-agent System, (b) Search-based Automatic Multi-agent System, and (c) Reasoning-based
Automatic Multi-agent System.

first prompt an LLM, such as GPT-4o, to act as a meta-agent, generating multiple candidate multi-
agent system designs. Subsequently, complex search algorithms are employed on the carefully
designed search set to identify the optimal system for completing the task. We denote this kind
of meta-agent as task-level meta-agent A, sk since they can merely generate one task-level
multi-agent system S, to solve one kind of task ¢. Although effective, they are still one-size-fits-all
systems. Besides, the search algorithm is time-consuming and relies on the search set, which is absent
in one user query.

4 META-AGENT FLOWREASONER

To solve these problems, we develop a reasoning-based automatic multi-agent system shown in
Figure 2 (c). Concretely, by guiding the model to reason from external execution feedback, we
train a query-level meta-agent denoted as Ameta_query, Which can automatically propose a novel
query-level multi-agent system for each user query ¢, as formulated Squery = Ameta_query (¢)- Then,
Squery accomplishes the specific user query and obtain the result a, i.e., ¢ = Squery(¢). Subsequently,
the evaluator £ evaluates the performance of the proposed multi-agents system Squery by comparing
the result @ with ground truth a, as formulated &(a, ag). Our proposed method is more practical

Under review as a conference paper at ICLR 2026

(3) Reinforce Reasoning
from External Execution Feedback

Instruction Rollout 1
/ Rollout 2

(1) Reasoning Data Distillation (2) Reasoning SFT Warmup

3 3
(o Q LT_E / Rollout 3 GRPO

Training Reasoning
Set Data
DeepSeek -R1- f

one user query q(® Query-level Distill-Qwen-78B Aumeta_query ~-Rollout m-
build a 2048 game Multi-agent System oo

S, =
query = {A, W} + Cheasong '
Sy = LAW) Sy = (AW = AW
Reward: 0.5 fkeward 03 Reward: 0.8

|

Query-level
MLIH'I -agent System

DeepSeek R1671B Search Algorithm Squery = {A, W}

External [= kul‘e}basfz o g

- . Performance Q-
Sandbox : g = 2. Complexity o
3. Diversity

Figure 3: Training Pipeline of FLOWREASONER. It consists of (1) Reasoning Data Distillation, (2)
Reasoning SFT Warmup, (3) Reinforce Reasoning from external execution feedback.

in real-world scenarios, as it can design an optimal multi-agent system for each specific query. The
training pipeline of our method is demonstrated in Figure 3.

4.1 LEARN TO REASON

Reasoning Data Syntheses. To enable our model to learn how to reason workflows based on external
execution feedback, we first generate multi-round reasoning data using R1-671B(Team, 2025a). For
a given input query g, the R1 model generates [rounds of reasoning R query and a multi-agent system
Squery With external execution feedback at each round as follows:

{{unerya Squery}(1)7 ceey {uner)u Squery}(l)} = Amelafquery(Q)- (1)

Then, we concatenate the model’s [rounds of reasoning and multi-agent system to form a reasoning
process R and final multi-agent system S, and pair it with the instruction Z and query ¢ to construct
our training sample {Z, ¢, R, S}. Based on this, we construct a warmup SFT dataset D.

Reasoning SFT Warmup. After creating the reasoning training dataset D, we proceed to perform
reasoning SFT for warmup. We input the instruction Z and query ¢, then guide DeepSeek-R1-Distill-
Qwen-7B to output reasoning process R and final multi-agent system S. It can be formulated as
follows: o

L:SFT = _E(I’qyfz"s‘)wp IOg Py (R7 S | I7 CI)»)

where 6 denotes the model parameters. Through SFT, we unlock the model’s reasoning ability
regarding workflow generation.

4.2 REINFORCE REASONING FROM EXTERNAL EXECUTION FEEDBACK

After the SFT stage, we use reinforcement learning phase to further enhance the model’s reasoning
capabilities through workflows built on external execution feedback. We aims to leverage feedback to
improve performance on complex tasks in multi-round multi-agent systems. Following the DeepSeek-
R1-Zero (Team, 2025a), we adopt standard GRPO (Grouped Relative Policy Optimization) as our
training method. GRPO works by sampling multiple outputs for each query and computing relative
advantages based on the rewards these outputs receive. The policy is then updated by maximizing
an objective function incorporating these relative advantages. The GRPO objective function can be
expressed as follows:

Larro(f) = Ew {0}y ~70,4 (Ola)

1 . . -
el Z {mln [rratio; Clip(Tratio, 1 — €, 1+ €)] - Ejm — ﬁDKL(MHFref)})

=1

where G represents the number of sampled trajectories in each group, o; denotes the i-th trajectory,
79 (0i,m 19,04, <m)

|o;| is the length of trajectory o;, rraio = e o Pm—
o1d \ 9%, m 4,04, <m

represents the probability ratio between

Under review as a conference paper at ICLR 2026

new and old policies, Ei’m is the estimated advantage for the m-th token in the ¢-th trajectory,
€ is a small positive clipping parameter that prevents excessively large update steps, and the KL
regularization term constrains policy drift to maintain stability during training.

Since we can obtain a reward from the external environment in every round, we use process reward
supervision. The reward for each reasoning round is normalized, and the advantage function is
calculated as the sum of subsequent normalized rewards.

Eim =37 @
i>T

Here, the normalized reward for the j-th round of the i-th candidate output is defined as f(i) =

J
: T(l) —Imean
kI - JSTR)(R)’ where k is a scaling factor and 7T’ is a threshold used to exclude the first 7" items

from the calculation. The set R represents the list of scores for each round across all candidates, and
71V is the score of candidate 7 in round j. Each score rj(.z) is calculated by the performance of the
proposed solution (i.e., pass rate), algorithm complexity (i.e., complexity score of abstract syntax

tree) and diversity (i.e., distinctness ratio followed by Chen et al. (2024)) of workflow.

4.3 GENERATE MULTI-AGENT SYSTEMS WITH FLOWREASONER

Constructing a multi-agent system is essentially an optimization problem with the goal of designing
an optimized system, Sqery, that responds to user queries. When a user submits a query ¢, the system
produces an answer @ = Squery (¢). The performance of the system in each round is evaluated using an
external feedback function £(a, agl), where ag; represents the ground truth answer. In this framework,
a meta-agent, Ameta_query, is responsible for optimizing the workflow with external execution feedback
E(a,ag) in every round. The pass rate of the proposed solution for the given query, as the key
performance indicator of the system, serves as the external execution feedback. The optimization
space is defined by all possible configurations of nodes and edges. Here, nodes represent various
parameters (such as language models, prompts, temperature, and output formats), and edges capture
the interactions or data flows between these nodes.

By representing both nodes and edges in code and employing predefined operators (such as Ensemble,
Review, and Revise) along with a custom operator to combine these elements, FLOWREASONER
utilizes an [-round optimization process same as Aflow (Zhang et al., 2024b) to arrive at the final
multi-agent system:

Shery = 218 o & Sy ().).)

where Sg.y i8 the optimal multi-agent system refined through optimization. By optimizing a multi-

agent system through iterative external execution feedback, FLOWREASONER can construct a highly
adaptive system that maximizes the accuracy and performance of solution for a query.

5 EXPERIMENTS

Datasets. Given our focus on creating workflows tailored to individual user queries rather than
the general task, we restrict our scope to code generation tasks, as they can provide test cases as
external execution feedback for the workflow construction process. Among various benchmarks,
we consider three representative datasets: BigCodeBenchZhuo et al. (2024), which emphasizes
engineering-oriented tasks, and two algorithmically focused benchmarks, HumanEval(Chen et al.,
2021) and MBPP (Austin et al., 2021). This selection enables us to comprehensively evaluate
workflow discovery across a diverse spectrum of code generation challenges.

Baselines. In line with prior work (Hu et al., 2024; Zhang et al., 2024b), we evaluate FLOWREA-
SONER against three categories of baselines: (1) single-model direct invocation, where a single LLM
is prompted to solve the problem without additional structure; (2) manually designed workflows,
including Self-Refine (Madaan et al., 2023), LLM-Debate (Du et al., 2023), and LLM-Blender (Jiang
et al., 2023), which incorporate human-crafted reasoning strategies; and (3) automated workflow opti-
mization methods, such as Aflow (Zhang et al., 2024b), ADAS (Hu et al., 2024), and MaAS (Zhang
et al., 2025), which construct workflows through search or optimization over possible reasoning

Under review as a conference paper at ICLR 2026

Table 1: Performance Evaluation. Accuracy comparison across three code benchmarks for three
categories of baselines - individual models, manual workflows, and automated workflow methods -
alongside our FLOWREASONER-14B. For manual methods, model names in parentheses indicate the
worker model used.

Type Method BigCodeBench HumanEval MBPP Overall
Vanill ol-mini 57.67 95.42 74.19 71.37
aniia GPT-40-mini 56.33 88.55 7173 68.60
Self-Refine (40-mini) (Madaan et al., 2023) 54.78 89.83 69.64 67.29
LLM-Debate (40-mini) (Du et al., 2023) 56.88 91.64 70.28 68.69
Manual LLM-Blender (40-mini) (Jiang et al., 2023) 57.46 89.44 76.39 71.25
Self-Refine (01-mini) (Madaan et al., 2023) 56.68 94.74 73.64 70.63
LLM-Debate (01-mini) (Du et al., 2023) 57.25 95.83 74.28 71.33
LLM-Blender (ol-mini) (Jiang et al., 2023) 59.51 96.37 78.65 74.22
AutoAgents (Chen et al., 2023a) 56.65 88.91 72.03 68.92
Auto ADAS (Hu et al., 2024) 53.87 84.26 68.47 65.48
u Aflow (Zhang et al., 2024b) 59.83 94.15 82.40 75.63
MaAS (Zhang et al., 2025) 60.33 95.42 84.16 76.81
ScoreFlow (Wang et al., 2025) 60.71 95.67 84.73 77.25
Ours FLOWREASONER-14B 63.53 97.26 92.15 81.89

Table 2: Ablation Study on Model Sizes and Training Stages. Accuracy(%) comparison across
three code benchmarks for models of different sizes (7B/14B) at both the Supervised Fine-Tuning
(SFT) stage and the combined SFT with Reinforcement Learning (SFT+RL) stage.

Stage Size BigCodeBench HumanEval MBPP Overall

SFT 7B 61.79 96.38 87.22 78.89
SFT+RL 7B 62.78 96.95 89.86 80.53
SFT 14B 62.83 97.18 91.91 81.50
SFT+RL 14B 63.53 97.26 92.15 81.89

structures. This comparison enables a comprehensive assessment of FLOWREASONER’s effectiveness
relative to both static and adaptive baselines.

Implementation Details. For the manually designed workflow baselines, we employed both ol-mini
and GPT-40-mini as worker models for each method. For the automated workflow optimization
baselines, we adopted the original configurations as described in MaAS (Zhang et al., 2025). In our
proposed method, FLOWREASONER, we trained two variants of DeepSeek-R1-Distill-Qwen with
7B and 14B parameters, respectively, and used ol-mini as the worker model. We fixed the number
of workflow iterations to 10. To assess performance, we used the standard pass @ 1 metric for code
accuracy, consistent with prior work (Chen et al., 2021). More details can be found in Appendix A.

5.1 EXPERIMENT RESULTS

Performance Comparison. Table 1 presents the performance comparison between our proposed
method and the baselines. FLOWREASONER-14B consistently outperforms all competing approaches
across the three benchmark datasets. Notably, it achieves an overall improvement of 5 percentage
points over the strongest baseline, MaAS, and exceeds the performance of its underlying worker
model, ol-mini, by a substantial margin of 10%. These results highlight the effectiveness of our
workflow-based reasoning framework in enhancing code generation accuracy.

Ablation on Model Size and Training Stages. To investigate the impact of model size and train-
ing stages on performance, we conducted an ablation study comparing different configurations of
FLOWREASONER in Table 2. We observed that the 14B variant consistently outperformed the
7B counterpart across all benchmarks, indicating a positive correlation between model scale and
reasoning effectiveness. Furthermore, within each model size, versions trained with both SFT and RL
exhibited notable improvements over those trained with SFT alone, demonstrating the complementary
benefits of incorporating RL in enhancing workflow-guided code generation.

Ablation of Meta-agents and Workers. To analyze the impact of meta-agent and worker selection,
we conducted an ablation study on the BigCodeBench dataset. Figure 1 presents performance

Under review as a conference paper at ICLR 2026

Deepseek-R1-7B: 6.87 57.01

Deepseek-R1-14B 19.15 5728 62.15 61.81 63.17

60
56.21
Qwen2.5-7B 6.45 53.85
Qwen2.5-14B 12.68 57.98 50

56.99
Qwen2.5-Coder-78 W

58.12
Qwen2.5-Coder-14B: 15.26

Accuracy (%)

63.17
Claude3.5 62.01

. 61.78
GPT-40-mini 58.79

g 62.98 10
ol-mini P

10 20 30 50 60 70 80

0
Accuracy (%) QwenCoder Claude3.5 GPT-40-mini ol-mini

(a) Ablation of Meta-agent (b) Ablation of Workers

Figure 4: Ablation of Meta-agent and Workers. (a) Accuracy of different meta-agents with ol-mini
as workers. (B) Accuracy of the generated workflow with different workers.

Table 3: Generalization Evaluation. Accuracy of our trained meta-agent FLOWREASONER-7B/14B
when paired with alternative workers including Qwen2.5 Coder, Claude, and GPT40-mini.

FLOWREASONER-7B (SFT+RL) FLOWREASONER-14B (SFT+RL)
Worker/Meta-agent
BigCodeBench HumanEval MBPP BigCodeBench HumanEval MBPP
ol-mini 62.77 96.95 89.86 63.53 97.26 92.15
Qwen2.5Coder-32b 50.17 92.89 80.40 52.67 93.69 78.90
Claude3.5 60.67 96.07 87.63 61.12 96.52 89.82
GPT-40-mini 59.18 94.24 82.19 59.75 94.52 82.27

comparisons under various meta-agent and worker configurations. As shown in Figure 4 (a), open-
source models exhibited poor performance when paired with ol-mini as the worker and no initial
workflow, frequently generating error-prone workflows. This highlights a limitation of current
open-source models, which struggle to produce reliable workflows solely based on instruction
prompts and are heavily reliant on predefined, manually crafted workflows. In contrast, API-based
models demonstrated stronger performance, likely attributable to their superior instruction-following
capabilities. Figure 4 (b) further examines worker effectiveness when using a high-performing meta-
agent (Claude 3.5). We compared the open-source model Qwen2.5-Coder-32B and three API-based
models, including Claude 3.5, GPT-40-mini, and ol-mini. Among these, o1-mini achieved the best
overall performance, suggesting its suitability as a worker model in the FLOWREASONER framework.

Generalization Capability. To evaluate whether FLOWREASONER, trained with ol-mini as the
worker, can generalize its planning capabilities to alternative workers, we conducted experiments
by substituting the worker with Qwen2.5-Coder, Claude, and GPT-40-mini, while keeping the
meta-agent fixed as either FLOWREASONER-7B or FLOWREASONER-14B. As shown in Table 3,
FLOWREASONER exhibits a notable degree of transferability, maintaining consistent performance
across different worker models on the same tasks. These results suggest that the planner is not tightly
bound to a specific worker and can adapt its strategies effectively across diverse execution agents.

Case Study. Figure 5 illustrates two example workflows generated by FLOWREASONER-14B for
representative tasks from BigCodeBench and HumanEval, respectively. The workflow correspond-
ing to the BigCodeBench task exhibits greater complexity, reflecting the more challenging and
engineering-oriented nature of the task. In contrast, the HumanEval workflow is substantially more
concise, aligning with the relative simplicity and algorithmic focus of the task. These examples
demonstrate FLOWREASONER s ability to adapt the structure and granularity of workflows based on
task complexity. More cases can be found in Appendix B.

6 CONCLUSION

In this paper, we present FLOWREASONER, a query-level meta-agent designed to automate the
creation of personalized multi-agent systems for individual user queries. Unlike previous task-level
approaches that create fixed, one-size-fits-all systems, FLOWREASONER dynamically generates tai-
lored workflows for each specific query through reasoning-based optimization. The system leverages

Under review as a conference paper at ICLR 2026

1| async def __call__ (self, problem: str, test_cases: list):

2 max_retries = 3

3 solutions = []

4

5 for _ in range (max_retries):

6 for attempt in range(3):

7 # Try generating code up to 3 times

8 solution = await self.custom_code_generate (

9 problem=problem, instruction=prompt_custom.GENERATE_CODE_PROMPT

10)

11 test_result = await self.test (

12 problem=problem, solution=solution[’response’], test_cases=test_cases

13)

14

15 if test_result[’result’]:

16 solutions.append(solution[’ response’]

17 break # Break the inner loop if a correct solution is found

18 elif attempt < 2:

19 # If it’s not the last attempt, try to improve the solution

20 error_analysis = await self.custom/(

21 input=f"Problem: {problem}\nFailed solution: {solution[’response’]}\
nError: {test_result[’solution’]}", instruction=prompt_custom.
ERROR_ANALYSIS_PROMPT

22)

23 prompt_custom.GENERATE_CODE_PROMPT = f"{prompt_custom.
GENERATE_CODE_PROMPT}\n{error_analysis[’response’]}"

24

25 if not solutions: # If no correct solution was found after 3 attempts

26 solutions.append(solution[’ response’]) # Add the last generated solution

27

28 best_solution = await self.sc_ensemble (solutions=solutions, problem=problem)

29 return best_solution[’response’], self.llm.cost_manager.total_cost

(a) Workflow generated by FLOWREASONER-14B for the BigCodeBench task of generating traffic data
for various vehicle types over a specified number of hours, saving the data to a CSV file with columns, and
plotting it in a line chart.

1 async def _ _call__(self, problem: str, test_cases: list):
2 solution = await self.custom_code_generate (problem=problem, entry_point=
entry_point, instruction=prompt_custom.CODE_GENERATE_PROMPT)

4 # Add review to check the solution
5 review = await self.custom/(
6 input=f"Problem: {problem}\nGenerated solution: {solution[’response’]}",

instruction=prompt_custom.REVIEW_PROMPT
7)

9 # Improve the solution based on the review information

10 improved_solution = await self.custom_code_generate (

1 problem=problem, instruction=f"{prompt_custom.CODE_IMPROVE_PROMPT}\n\nConsider
this review: {review[’response’]}"

12)

14 return improved_solution[’response’], self.llm.cost_manager.total_cost

(b) Workflow generated by FLOWREASONER-14B for the HumanEval task of spliting the string into words
and returning an array of the words.

Figure 5: Cases of Workflows generated by FLOWREASONER-14B for the tasks of BigCodeBench
and HumanEval.

external execution feedback and reinforcement learning with multi-purpose rewards focusing on
performance, complexity, and efficiency to generate optimized workflows without relying on complex
search algorithms or carefully designed search sets. Experimental results demonstrate that FLOWREA-
SONER-14B outperforms both manually designed workflows and existing automated methods across
multiple code generation benchmarks, notably improving ol-mini’s performance by overall 10.52%
on three benchmarks, thus proving the effectiveness and adaptability of reasoning-driven workflow
generation. Besides, the observation when pairing FLOWREASONER with different worker models
further confirms its generalization capabilities. Our approach reduces human resource costs while
enhancing scalability by enabling more adaptive and efficient multi-agent systems that dynamically
optimize their structure based on specific user queries rather than relying on fixed workflows for
entire task categories.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our research on automated multi-agent system design does not involve human subjects and does not
raise concerns regarding discrimination, bias, fairness, privacy, or security. The entire construction
process focuses solely on technical methodology for code generation workflow optimization without
involving sensitive data or human participation.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we have included all the code required to reproduce
our experimental results in the supplementary material. Furthermore, we are committed to making
our code, data, and trained models publicly available upon publication. This will allow the research
community to verify our results and build upon our work.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Introducing computer use, a new claude 3.5 sonnet, and claude 3.5 haiku.
https://www.anthropic.com/news/3-5-models-and-computer-use, 2024.

ARC-AGI. Abstraction and reasoning corpus for artificial general intelligence.
https://github.com/fchollet/ARC-AGI/, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Borje F Karlsson, Jie Fu, and Yemin
Shi. Autoagents: A framework for automatic agent generation. arXiv preprint arXiv:2309.17288,
2023a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia
Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and exploring
emergent behaviors in agents. arXiv preprint arXiv:2308.10848, 2(4):6, 2023b.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
ol-like llms. arXiv preprint arXiv:2412.21187, 2024.

CognitionAl. Introducing devin, the first ai software engineer.
https://www.cognition.ai/blog/introducing-devin/, 2024.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate, 2023. URL https://arxiv.
org/abs/2305.14325, 3, 2023.

Shangbin Feng, Zifeng Wang, Palash Goyal, Yike Wang, Weijia Shi, Huang Xia, Hamid Palangi,
Luke Zettlemoyer, Yulia Tsvetkov, Chen-Yu Lee, et al. Heterogeneous swarms: Jointly optimizing
model roles and weights for multi-llm systems. arXiv preprint arXiv:2502.04510, 2025.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rock-
taschel. Promptbreeder: Self-referential self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

10

Under review as a conference paper at ICLR 2026

Hongcheng Gao, Jiashu Qu, Jingyi Tang, Baolong Bi, Yue Liu, Hongyu Chen, Li Liang, Li Su, and
Qingming Huang. Exploring hallucination of large multimodal models in video understanding:
Benchmark, analysis and mitigation. arXiv preprint arXiv:2503.19622, 2025.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens. arXiv preprint
arXiv:2310.02226, 2023.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. arXiv preprint arXiv:2402.01680, 2024.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 3(4):6, 2023.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

Yichong Huang, Xiaocheng Feng, Baohang Li, Yang Xiang, Hui Wang, Ting Liu, and Bing Qin.
Ensemble learning for heterogeneous large language models with deep parallel collaboration.
In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.),
Advances in Neural Information Processing Systems, volume 37, pp. 119838-119860. Curran
Associates, Inc., 2024.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.

Can Jin, Hongwu Peng, Qixin Zhang, Yujin Tang, Dimitris N Metaxas, and Tong Che. Two heads
are better than one: Test-time scaling of multi-agent collaborative reasoning. arXiv preprint
arXiv:2504.09772, 2025.

Pei Ke, Bosi Wen, Zhuoer Feng, Xiao Liu, Xuanyu Lei, Jiale Cheng, Shengyuan Wang, Aohan
Zeng, Yuxiao Dong, Hongning Wang, et al. Critiquellm: Scaling llm-as-critic for effective and
explainable evaluation of large language model generation. arXiv preprint arXiv:2311.18702,
2023.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Saiful
Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, Heather Miller, et al. Dspy: Compiling
declarative language model calls into state-of-the-art pipelines. In The Twelfth International
Conference on Learning Representations, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199-22213, 2022.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Igbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-

municative agents for" mind" exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008, 2023.

11

Under review as a conference paper at ICLR 2026

Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Balaji Rama, Om Raheja, Hao Wang, He Zhu, and
Yongfeng Zhang. Autoflow: Automated workflow generation for large language model agents.
arXiv preprint arXiv:2407.12821, 2024.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint arXiv:2502.17419, 2025.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi,
and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent
debate. arXiv preprint arXiv:2305.19118, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Yue Liu, Hongcheng Gao, Shengfang Zhai, Jun Xia, Tianyi Wu, Zhiwei Xue, Yulin Chen, Kenji
Kawaguchi, Jiaheng Zhang, and Bryan Hooi. Guardreasoner: Towards reasoning-based 1lm
safeguards. arXiv preprint arXiv:2501.18492, 2025a.

Yue Liu, Jiaying Wu, Yufei He, Hongcheng Gao, Hongyu Chen, Baolong Bi, Jiaheng Zhang, Zhiqi
Huang, and Bryan Hooi. Efficient inference for large reasoning models: A survey. arXiv preprint
arXiv:2503.23077, 2025b.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network: An
llm-agent collaboration framework with agent team optimization. arXiv preprint arXiv:2310.02170,
2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534—46594, 2023.

OpenAl. Introducing chatgpt. https://openai.com/index/chatgpt/, 2022.
OpenAl. Learning to reason with llms. https://openai.com/index/learning-to-reason-with-llms/, 2024.
OpenAl. Introducing deep research. https://openai.com/index/introducing-deep-research/, 2025.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
annual acm symposium on user interface software and technology, pp. 1-22, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728-53741, 2023.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok Natarajan, Nahum Maru, Hristo Todorov, Etash
Guha, E Kelly Buchanan, Mayee Chen, Neel Guha, Christopher Ré, et al. Archon: An architecture
search framework for inference-time techniques. arXiv preprint arXiv:2409.15254, 2024.

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic
llm agent search in modular design space. arXiv preprint arXiv:2410.06153, 2024.

Anthropic Team. The claude 3 model family: Opus, sonnet, haiku. https://www-
cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf,
2024a.

Deepseek Team. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025a.

12

Under review as a conference paper at ICLR 2026

Kimi Team. Kimi k1.5: Scaling reinforcement learning with llms. arXiv preprint 2501.12599v1,
2025b.

Qwen Team. Qvq: To see the world with wisdom. https://qwenlm.github.io/blog/qvq-72b-preview/,
2024b.

Qwen Team. Qwgq: Reflect deeply on the boundaries of the unknown.
https://qwenlm. github.io/blog/qwq-32b-preview/, 2024c.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091, 2023.

Yinjie Wang, Ling Yang, Guohao Li, Mengdi Wang, and Bryon Aragam. Scoreflow: Mastering llm
agent workflows via score-based preference optimization. arXiv preprint arXiv:2502.04306, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent
conversation. arXiv preprint arXiv:2308.08155, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoagent: Towards
automatic multi-agent generation via evolutionary algorithms. arXiv preprint arXiv:2406.14228,
2024.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic" differentiation" via text. arXiv preprint arXiv:2406.07496,
2024.

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
and Dawei Cheng. G-designer: Architecting multi-agent communication topologies via graph
neural networks. arXiv preprint arXiv:2410.11782, 2024a.

Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, Lei Bai, and Xiang Wang. Multi-agent
architecture search via agentic supernet. arXiv preprint arXiv:2502.04180, 2025.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen Zhuge,
Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow generation. arXiv
preprint arXiv:2410.10762, 2024b.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun
Wu. Offline training of language model agents with functions as learnable weights. In Forty-first
International Conference on Machine Learning, 2024c.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqgiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. arXiv
preprint arXiv:2403.13372, 2024.

Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V Le, Ed Chi, Denny Zhou,
Swaroop Mishra, and Huaixiu Steven Zheng. Self-discover: Large language models self-compose
reasoning structures. Advances in Neural Information Processing Systems, 37:126032—126058,
2024a.

13

Under review as a conference paper at ICLR 2026

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving agents.
arXiv preprint arXiv:2406.18532, 2024b.

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R Ashley, Rébert Csordds, Anand Gopalakr-
ishnan, Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vincent Herrmann, Kazuki Irie, et al.
Mindstorms in natural language-based societies of mind. arXiv preprint arXiv:2305.17066, 2023.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jiirgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. arXiv preprint arXiv:2406.15877,

2024.

14

Under review as a conference paper at ICLR 2026

A MORE IMPLEMENTATION DETAILS

In the workflow optimization process of our method, we evaluate each workflow for 3 times as
external execution feedback. We use the following 6 operators based on Aflow (Zhang et al., 2024b)
as our base operators:

* Code Generator: generates code solutions for a given problem.
» Format Generator: produces formatted answers for a given problem.

* Ensemble Operator: combines multiple solutions or approaches to create a more robust final
result.

* Review Operator: evaluates solutions for correctness, efficiency, and adherence to require-
ments.

* Revise Operator: refines solutions based on feedback from the review process.

* Code Test Operator: executes and validates code solutions against test cases to ensure
functionality.

For our supervised fine-tuning (SFT), we utilized approximately 1,400 items sourced from three
datasets generated by R1 through our optimization process. We conducted the training using LLaMA-
Factory (Zheng et al., 2024), with a per-device training batch size of 1, gradient accumulation over 2
steps, a learning rate of le-5, and max train epochs of 3. For the reinforcement learning (RL) phase,
we set the scaling factor & to 1.1, the threshold 7" to 3, rollout number m to 5, and max episodes to 5.
All experiments are conducted on NVIDIA A100 GPUs with 80GB of memory. The total cost of
training stage is about 150 GPU hours.

B MORE CASES OF WORKFLOW

In this section, we present additional cases of both successful and failed results generated by
FLOWREASONER.

B.1 SUCCESSFUL CASES

Fig. 6, Fig. 8 and Fig. 7 demonstrate three successful cases generated by FLOWREASONER for
BigCodeBench, HumanEval and MBPP.

B.2 FAILURE CASES

Fig. 10, Fig. 11 and Fig. 9 demonstrate three failure cases generated by FLOWREASONER for
BigCodeBench, HumanEval and MBPP.

C LIMITATION

Despite demonstrating superior performance over existing approaches, FLOWREASONER faces
the limitation of the need for training, which needs some computational cost. Besides, while some
generalization capability is shown when switching worker agent, performance still varies based on
the worker agent used, suggesting partial dependency of the trained meta-agent on the underlying
execution agent.

D LLM USAGE

We used an OpenAl LLM (GPT-5) as a writing and formatting assistant. In particular, it helped refine
grammar and phrasing, improve clarity, and suggest edits to figure/table captions and layout (e.g.,
column alignment, caption length, placement). The LLM did not contribute to research ideation, exper-
imental design, implementation, data analysis, or technical content beyond surface-level edits. All out-
puts were reviewed and edited by the authors, who take full responsibility for the final text and visuals.

15

Under review as a conference paper at ICLR 2026

1| async def __call__ (self, problem: str, test_cases: list):

2 # Extract key problem requirements and constraints

3 problem_analysis = await self.custom(

4 input=problem,

5 instruction=prompt_custom.GRAPH_ANALYZE_PROMPT

6)

7

8 # Generate initial solution with problem analysis context

9 solution = await self.custom_code_generate (

10 problem=problem,

11 entry_point=entry_point,

12 instruction=f" {prompt_custom.GRAPH_GENERATE_PROMPT}\nProblem Analysis: {

problem_analysis|[’response’]}"

13)

14

15 current_solution = solution[’response’]

16

17 # Loop for max_iterations to improve the solution if tests fail

18 for iteration in range(3):

19 # Test current solution

20 test_results = await self.custom(

2 input=f"Solution: {current_solution}\nTest Cases: {test_cases}",

22 instruction=prompt_custom.GRAPH_TEST_PROMPT

23)

24

25 # If tests pass, return the solution

26 if "failed" not in test_results|[’response’].lower():

27 return current_solution, self.llm.cost_manager.total_cost

28

29 # Improve solution with test feedback and problem analysis

30 improved_solution = await self.custom_code_generate (

31 problem=problem,

32 entry_point=entry_point,

33 instruction=f" {prompt_custom.GRAPH_IMPROVE_PROMPT}\nProblem Analysis: {
problem_analysis [’ response’]}\nCurrent Solution: {current_solution}\nTest
Results: {test_results[’response’]}\nIteration: {iteration + 1}/{
max_iterations}"

34)

35

36 # Update current solution

37 current_solution = improved_solution[’ response’]

38

39 # Return the last solution attempt

40 return current_solution, self.llm.cost_manager.total_cost

Figure 6: Successful workflow generated by FLOWREASONER-14B for the BigCodeBench task of
Generating and plot weather data for a specified date range.

I| async def __call__ (self, problem: str, test_cases: list):

2 # Generate solution

3 solution = await self.custom_code_generate (problem=problem, entry_point=entry_point,
instruction=prompt_custom.GRAPH_GENERATE_PROMPT)

4

5 # Test solution

6 test_results = await self.custom(

7 input=f"Solution: {solution[’response’]}\nTest Cases: {test_cases}",

8 instruction=prompt_custom.GRAPH_TEST_PROMPT

9)

10

11 # Optimize solution if tests fail

12 if "failed" in test_results[’response’].lower () :

13 improved_solution = await self.custom_code_generate (

14 problem=problem,

15 instruction=f" {prompt_custom.GRAPH_IMPROVE_PROMPT}\n\nTest Results: {test_results

["response’]}"

16)

17 return improved_solution[’response’], self.llm.cost_manager.total_cost

18

19 return solution[’response’], self.llm.cost_manager.total_cost

Figure 7: Successful workflow generated by FLOWREASONER-14B for the MBPP task of Writing a
function to reverse words in a given string.

16

Under review as a conference paper at ICLR 2026

16
17
18
19
2

21
22
23
24
25

26

async def __call__ (self, problem: str, test_cases: list):
1. Prepare generation prompts
gen_prompts = [

prompt_custom.CODE_GENERATE_PROMPT_A,
prompt_custom.CODE_GENERATE_PROMPT_B,
prompt_custom.CODE_GENERATE_PROMPT_C,

1

2. Generate three candidate solutions
sols = [
(await self.custom_code_generate (
problem=problem,
instruction=inst
)) [response’] for inst in gen_prompts

1

3. Ensemble: pick or merge the best solution
ensemble_input = "Solutions:\n" + "\n---\n".join(sols)

best = (await self.custom(
input=ensemble_input,
instruction=prompt_custom.ENSEMBLE_PROMPT
)) [’ response’]

4. Return the best solution and total cost
return best, self.llm.cost_manager.total_cost

Figure 8: Successful workflow generated by FLOWREASONER-14B for the HumanEval task of
Returning list of prime factors of given integer in the order from smallest to largest.

16

18

28

async def __call__ (self, problem: str, test_cases: list):
1. Analyze the problem
analysis = await self.custom(
input=problemn,
instruction=prompt_custom.ANALYZE_PROMPT
)

2. Generate initial solution

solution = await self.custom_code_generate (
problem=problem,
instruction=prompt_custom.GENERATE_PROMPT,
context=analysis[’ response’]

)

3. Test with a subset of test cases

sample_tests = test_cases[:min(3, len(test_cases))]
test_result = await self.custom/(
input=f"Solution:\n{solution[’response’]}\nTests:\n{sample_tests}",

instruction=prompt_custom.TEST_PROMPT
)

4. Handle based on test results
if "all passed" in test_result[’response’].lower ()
Optimize if all tests pass
final = await self.custom_code_generate (
problem=problem,
instruction=prompt_custom.OPTIMIZE_PROMPT,
context=f"Solution:\n{solution[’response’]} "
)
return final[’response’], self.llm.cost_manager.total_cost
else:
Fix issues if tests fail
fixed = await self.custom_code_generate
problem=problem,
instruction=prompt_custom.FIX_PROMPT,
context=f"Solution:\n{solution[’response’]}\nTest results:\n{test_result[’response
r1yn
)

return fixed[’response’], self.llm.cost_manager.total_cost

Figure 9: Failed workflow generated by FLOWREASONER-14B for the MBPP task of Writing a
function to count those characters which have vowels as their neighbors in the given string.

17

Under review as a conference paper at ICLR 2026

1| async def __call__ (self, problem: str, test_cases: list):

2 async def __call__ (self, problem: str, test_cases: list):

3 # Extract key problem requirements and constraints with detailed specifications

4 problem_analysis = await self.custom(

5 input=problem,

6 instruction=prompt_custom.GRAPH_ANALYZE_PROMPT

7)

8

9 # Initial approach planning with appropriate algorithm selection

10 algorithm _selection = await self.custom(

11 input=f"Problem: {problem}\nAnalysis: {problem_analysis[’response’]}",

12 instruction=prompt_custom.GRAPH_ALGORITHM SELECTION_PROMPT

13)

14

15 # Generate solution with problem analysis and algorithm selection

16 solution = await self.custom_code_generate (

17 problem=problem,

18 entry_point=entry_point,

19 instruction=f"{prompt_custom.GRAPH_GENERATE_PROMPT}\nProblem Analysis: {
problem_analysis [’ response’]}\nAlgorithm Selection: {algorithm_selection[’
response’]} "

20)

21

22 # Self-review for logical errors and optimization opportunities

23 code_review = await self.custom(

24 input=f"Code: {solution[’response’]}",

25 instruction=prompt_custom.GRAPH_CODE_REVIEW_PROMPT

26)

2

28 # Generate improved solution with comprehensive context

29 improved_solution = await self.custom_code_generate (

30 problem=problem,

31 entry_point=entry_point,

32 instruction=f"{prompt_custom.GRAPH_IMPROVE_PROMPT}\nProblem Analysis: {
problem_analysis[’response’]}\nAlgorithm Selection: {algorithm_selection[’
response’] }\nCode Review: {code_review[’response’]}"

33)

34

35 # Add explanation to the solution

36 solution_explanation = await self.custom(

37 input=f"Solution: {improved_solution[’response’]}\nProblem: {problem}",

38 instruction=prompt_custom.GRAPH_SOLUTION_EXPLANATION_PROMPT

39)

40

41 final_solution = f"# Solution\n{improved_solution[’response’]}\n\n# Explanation\n({

solution_explanation[’response’]}"

42 return final_solution, self.llm.cost_manager.total_cost

Figure 10: Failed workflow generated by FLOWREASONER-14B for the BigCodeBench task of
Extracting the text and href attributes of all anchor tags from a given URL’s HTML content.

1| async def __call__ (self, problem: str, test_cases: list):

2 # 1. Generate solution

3 solution = (await self.custom_code_generate (

4 problem=problem,

5 instruction=prompt_custom.CODE_GENERATE_PROMPT

6)) [response’]

7

8 # 2. Test and refine solution

9 refined_solution = (await self.custom_code_generate (

10 problem=problem,

11 instruction=prompt_custom.REFINE_PROMPT,

12 context=f"Initial solution:\n{solution}\n\nTest cases:\n{test_cases}"
13)) [’ response’]

14

15 # 3. Return the solution and total cost

16 return refined_solution, self.llm.cost_manager.total_cost

Figure 11: Failed workflow generated by FLOWREASONER-14B for the HumanEval task of Evaluat-
ing whether the given number n can be written as the sum of exactly 4 positive even numbers.

18

	Introduction
	Related Work
	Problem Definition
	Meta-Agent FlowReasoner
	Learn to Reason
	Reinforce Reasoning from External Execution Feedback
	Generate Multi-Agent Systems with FlowReasoner

	Experiments
	Experiment Results

	Conclusion
	More Implementation Details
	More Cases of Workflow
	Successful Cases
	Failure Cases

	Limitation
	LLM usage

