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Abstract001

With the rapid development of artificial intelli-002
gence, multimodal methods have received in-003
creasing attention in the field of mental health004
disorder detection. Most of the existing re-005
search focuses on depression and schizophre-006
nia, but there are relatively few studies on anx-007
iety disorders. To further explore the clin-008
ical applicability of multimodal learning in009
anxiety disorder detection, we propose Mul-010
timodal Anxiety Detection via Clinical Inter-011
views (MADCI), a framework designed to auto-012
matically identify anxiety disorders from real-013
world patient-doctor interview data. MADCI014
comprises three main components: modality-015
specific feature extractors, a hierarchical cross-016
modal attention fusion module, and a residual-017
enhanced multilayer perceptron classifier. In018
particular, the hierarchical cross-modal atten-019
tion fusion module captures semantic correla-020
tions and complementary information across021
modalities by integrating cross-modal interac-022
tions at multiple levels, thereby enhancing the023
robustness and discriminative capacity of the024
fused representations. The validity of MADCI025
was verified on the MMDA dataset, and its per-026
formance was significantly better than that of027
the current state-of-the-art multimodal models.028

1 Introduction029

Anxiety disorder is a prevalent emotional mental030

illness characterized primarily by persistent ten-031

sion, worry, and fear, which severely impairs pa-032

tients’ daily quality of life (Sarmiento and Lau,033

2020). According to statistics from the World034

Health Organization (WHO), approximately 3.6%035

of the global population suffers from anxiety dis-036

orders, with the prevalence showing an increasing037

trend annually (Organization, 2017). Anxiety not038

only diminishes patients’ quality of life but may039

also lead to comorbidities such as depression and040

cardiovascular diseases (Bandelow and Michaelis,041

2015). Consequently, accurate and objective de-042

tection and classification of anxiety patients are of043

Figure 1: Comparison of emotional word clouds and
audio features between normal subjects and anxiety
patients. (a) Emotional word cloud generated from in-
terview texts of normal subjects. (b) Emotional word
cloud generated from interview texts of anxiety patients.
(c) Visualization of audio features from normal subjects,
including waveform, F0, RMS energy, zero crossing
rate, and spectrogram. (d) Visualization of audio fea-
tures from anxiety patients, highlighting speech signal
energy and frequency differences.

significant importance for early intervention, pre- 044

cise treatment, and mental health management. 045

Currently, the diagnosis of anxiety disorders 046

primarily relies on psychological questionnaires, 047

clinical interviews, and self-assessment scales (As- 048

sociation, 2013). However, these methods have 049

limitations such as strong subjectivity, low effi- 050

ciency, susceptibility to situational influences, and 051

a lack of real-time monitoring capabilities. In re- 052

cent years, with the continuous advancement of 053

multimodal technologies, it has become possible 054

to achieve more efficient and objective recognition 055

of emotional disorders by automatically analyzing 056

patients’ linguistic expressions, acoustic features, 057
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facial expressions, and behavioral data during inter-058

views (Abdullah et al., 2021) using computational059

methods. Multimodal learning not only captures060

information from different modalities but also ex-061

tracts complementary interactions between them,062

thereby enhancing the model’s ability to understand063

the complex psychological states of individuals064

with anxiety (Tang et al., 2017).065

Fig. 1 and previous studies (Ekman, 1992) in-066

dicate that patients with anxiety differ from others067

in terms of text, language and vision. Relying068

solely on a single model may lead to incomplete069

assessment, be susceptible to noise, and be overly070

subjective. This problem is particularly evident in071

complex clinical settings, where patients may inten-072

tionally or unintentionally hide symptoms in one073

form and manifest them in others. To address the074

shortcomings of single-modal methods, researchers075

have increasingly turned to multimodal fusion tech-076

niques such as early and late fusion, which integrate077

diverse signals to enable more accurate and holistic078

mental health assessments.079

Early fusion (Baltrušaitis et al., 2019) strate-080

gies typically operated at the feature level, where081

low-level features from different patterns were con-082

catenated and fed into a unified classifier for joint083

learning. In contrast, the late-stage fusion (Atrey084

et al., 2010) strategy models each modality inde-085

pendently and combines their predictions at the086

decision-making level. However, these methods087

still face two major challenges: (1) The seman-088

tic gap between heterogeneous modalities hinders089

simple join or summation operations (Ramachan-090

dram and Taylor, 2017); (2) The dynamic depen-091

dency relationship between patterns changes with092

the variation of context information, making the093

fixed fusion strategy not optimal.094

To solve these problems and make full use of the095

information of different modalities, we propose a096

multimodal fusion anxiety detection model, called097

Multimodal Anxiety Detection through Clinical098

Interviews (MADCI). This model uses a modal-099

specific feature extractor to capture the feature100

information of each modality, and uses a hierar-101

chical cross-modal attention fusion module to in-102

tegrate the features of different modalities. Fi-103

nally, the fused features are classified through the104

residue-enhanced multi-layer perceptron to deter-105

mine whether the patient shows anxiety symptoms.106

The main contributions of this work are summa-107

rized as follows:108

• To improve the performance of the anxiety di- 109

agnosis task, MADCI designs specific feature 110

encoders for each modality, which can extract 111

the features suitable for the anxiety diagnosis 112

task more effectively. 113

• MADCI adopts a Hierarchical Cross-Modal 114

Attention Fusion mechanism, enabling the 115

model to focus on the most significant fea- 116

tures within and between modalities, hereby 117

promoting the information interaction among 118

text, audio and video and improving the clas- 119

sification performance. 120

• MADCI can assist clinicians in rapidly assess- 121

ing patients’ anxiety status, thereby shorten- 122

ing initial screening time, improving diagnos- 123

tic efficiency, and alleviating the shortage of 124

mental health resources. 125

2 Related Work 126

In recent years, multimodal sentiment analysis and 127

psychological disorder recognition have emerged 128

as critical research directions in AI-driven mental 129

health studies. Existing research primarily focuses 130

on the following aspects. 131

2.1 Machine Learning Apporaches for 132

Anxiety Detection 133

Early research on anxiety disorder detection pri- 134

marily relied on manual assessment tools and tra- 135

ditional machine learning algorithms (Low et al., 136

2010). To diagnose anxiety in patients, at least 137

20 minutes are required for an interview with the 138

patient, during which the patient must correctly un- 139

derstand the questionnaire content and complete 140

the questionnaire (Arif et al., 2020). This mainly 141

depends on the patient’s subjective feedback, mak- 142

ing it difficult to achieve efficient and objective 143

anxiety screening. To overcome the limitations of 144

manual assessment, researchers have focused on 145

using machine learning algorithms to assist clini- 146

cians in diagnosing anxiety disorders, as machine 147

learning has been applied in various fields. 148

For example, text-based methods use Bag of 149

Words models (Qader et al., 2019), TF-IDF 150

(Ramos, 2003), or LIWC (Tausczik and Pen- 151

nebaker, 2010) to extract linguistic features, fol- 152

lowed by classifiers like SVM (Wang and Hu, 153

2005), Logistic Regression (Peng et al., 2002), or 154

Random Forest (Rigatti, 2017) to perform binary 155

anxiety prediction. Niva et al. analyzed the blink 156
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data of 44 participants aged 18-30 using machine157

learning techniques, achieving detection rates rang-158

ing from 88% to 94% with ten-fold cross-validation159

(Das et al., 2025). Li et al. developed a model us-160

ing MRI to quantify EPVS markers and machine161

learning algorithms to assess the severity of anxi-162

ety and depression symptoms in patients who have163

used mobile phones for extended periods (Li et al.,164

2025). Abdulrahman et al. used machine learn-165

ing models to analyze the distribution characteris-166

tics of various physiological signals (Alkurdi et al.,167

2025). Ancillon et al. reviewed research on anxi-168

ety detection using biosignals combined with ma-169

chine learning methods, systematically analyzing170

the strengths, weaknesses, and challenges of differ-171

ent signal types, feature extraction methods, and172

classification models (Ancillon et al., 2022). Bhat-173

nagar et al. (Bhatnagar et al., 2023) collected ques-174

tionnaire data from university students and used175

machine learning algorithms to detect and classify176

the anxiety levels of students.177

While these models demonstrate potential in anx-178

iety detection applications, they largely rely on179

handcrafted features, lack the ability to model non-180

linear relationships and cross-modal dependencies,181

and are limited in their generalization ability in182

clinical settings.183

2.2 Deep Learning Approaches for Anxiety184

Detection185

Multimodal anxiety emotion recognition, by in-186

tegrating multi-source behavioral signals and de-187

picting an individual’s psychological state from188

multiple dimensions, has become one of the key di-189

rections in the current research on intelligent recog-190

nition of mental disorders. Diep et al. (Diep et al.,191

2022) collected the speech and text data of the192

subjects in the self-management speech task, and193

extracted deep learning features and manual fea-194

tures from them. Among them, the F1 score of195

anxiety detection increased by 3% compared with196

the model that only used manual features. The197

Multimodal Transformer model proposed by Tsai198

et al. (Tsai et al., 2019) introduces a cross-modal199

attention mechanism, which can explicitly model200

interaction dependencies and temporal dynamics201

among different modalities, providing a powerful202

modeling ability for the recognition of complex203

emotional states.204

Although the above-mentioned deep learning205

methods have certain advantages in specific scenar-206

ios, they generally have problems such as insuffi-207

cient information volume, weak anti-interference 208

ability and poor generalization. Especially in 209

the context of complex and changeable emotional 210

states such as anxiety, relying solely on a certain 211

modal often makes it difficult to capture complete 212

emotional characteristics and meet the require- 213

ments of high-precision recognition. 214

3 Multimodal Anxiety Detection via 215

Clinical Interviews 216

To effectively identify anxiety states in patients 217

during clinical interview interactions, we propose 218

a multimodal anxiety diagnosis model based on 219

clinical interviews. The overall architecture is illus- 220

trated in Fig. 2. 221

3.1 Modality-Specific Feature Extractors 222

3.1.1 Text Feature Extraction 223

In multimodal mental health analysis tasks, the text 224

modality often carries rich semantic information. 225

This is particularly true in doctor-patient dialogue 226

scenarios, where patients’ linguistic expression, 227

emotional tendencies, and language structure can 228

all reflect their mental state (Cambria and White, 229

2014). Therefore, the effective extraction of tex- 230

tual features is crucial for the detection of anxiety 231

disorders. In this work, we employ BERT (Devlin 232

et al., 2019) as the encoder for the text modality, 233

leveraging its bidirectional Transformer architec- 234

ture (Han et al., 2022) for deep semantic modeling 235

of context. 236

Specifically, we isolate and encode only the pa- 237

tient’s spoken content using the pretrained bert- 238

large-uncased model (Yu et al., 2022). Given 239

an input sentence consisting of n words S = 240

{w1, w2, . . . , wn}, the corresponding dialogue is 241

tokenized using the WordPiece tokenizer into a 242

sequence T = {[CLS], t1, t2, . . . , tk, [SEP]}. 243

This token sequence is then mapped into embed- 244

ding vectors E ∈ Rk×d, where d = 1024 denotes 245

the hidden dimension. The embeddings are fed into 246

a 24-layer Transformer encoder to obtain contextu- 247

alized representations for each token. The semantic 248

representation of the entire sequence is given by 249

the output corresponding to the [CLS] token, for- 250

mulated as Traw = BERTlarge(T )[0] ∈ R1024. 251

To further enhance the non-linear modeling ca- 252

pacity of the extracted features, we design a resid- 253

ual fully connected block to transform Traw. This 254

block contains a ReLU-activated dense layer and 255

a shortcut path aligned in dimension. The two 256
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(a) Modality-Specific
Feature Extractors

(b) Hierarchical Cross-Modal Attention Fusion (c) Residual-Enhanced MLP 
Classification
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Figure 2: The framework structure of a multimodal anxiety detection model based on clinical interviews (MADCI).
(a) Modality-Specific Feature Extractors, which independently encode text, audio, and video inputs; (b) a Hierarchi-
cal Cross-Modal Attention Fusion Module, designed to capture inter-modal interactions at multiple semantic levels;
and (c) a Residual-Enhanced MLP Classifier, which integrates the fused features for final prediction.

branches are combined as the final output. The257

main transformation branch is defined as Eq. (1):258

T ′ = ReLU(W1Traw + b1),W1 ∈ R512×1024 (1)259

If the input and output dimensions are inconsis-260

tent, a linear projection is applied to the shortcut261

path:262

Tshortcut = W2Traw + b2,W2 ∈ R512×1024 (2)263

Otherwise, the shortcut is directly taken as264

Tshortcut = Traw. The residual output is then265

obtained by combining the main and shortcut266

branches Tres = T ′ + Tshortcut. To improve the267

robustness and generalization ability of the model,268

we apply Batch normalization and Conditional269

Dropout to Tres. Specifically, the transformation270

is formulated as ftext = Dropout(BN(Tres), p =271

0.2), where BN denotes Batch Normalization. The272

resulting feature ftext serves as the intermediate se-273

mantic representation of the text modality and is274

fed into the subsequent multimodal fusion module.275

3.1.2 Audio Feature Extraction276

To capture rich acoustic information for down-277

stream anxiety detection, we focus on the speech278

modality derived from clinical interview sessions.279

Based on the timestamp annotations in the doctor-280

patient dialogue transcripts, we segment the origi-281

nal audio recordings and retain only the segments282

corresponding to the patient’s speech. This en- 283

sures temporal alignment with other modalities. 284

And use the librosa library to extract low-level and 285

high-level audio features from the original speech, 286

and combine time-frequency domain features with 287

manually designed features to form complementary 288

acoustic representations. 289

Finally, an 185-dimensional audio feature vec- 290

tor was extracted, including MFCC (20-d) (Zheng 291

et al., 2001), Chroma (24-d), Mel-Spectrogram 292

(128-d), and 13 low-level descriptors (e.g., zero- 293

crossing rate, energy, spectral centroid). All fea- 294

tures were standardized via z-score normalization. 295

Given an audio signal x(t), we compute its Short- 296

Time Fourier Transform (Benesty et al., 2011), 297

apply the Discrete Cosine Transform (Khayam, 298

2003), and obtain average MFCCs over T frames. 299

Chroma features are extracted using a 24-bin 300

constant-Q transform, enhancing pitch sensitiv- 301

ity. The final feature vector is defined as A = 302

[MFCC1:20,Chroma,Mel,Contrast,Tonnetz]. 303

To incorporate acoustic features into the 304

model, we adopt a lightweight BiLSTM struc- 305

ture. Since A is non-temporal, we reshape it 306

using ExpandDims(A) to simulate sequential in- 307

put. The encoded representation is obtained 308

as: h1 = BiLSTM256(ExpandDims(A)), h2 = 309

BiLSTM128(h1), followed by layer normaliza- 310

tion to obtain the final audio feature faudio = 311
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LayerNorm(h2), where BiLSTMN denotes a bidi-312

rectional LSTM with N hidden units per direction.313

LayerNorm is applied to stabilize training and en-314

hance convergence.315

3.1.3 Video Feature Extraction316

The video modality serves as a critical source of317

emotional cues, offering valuable visual informa-318

tion such as facial expressions, body posture, and319

eye movement, which are essential for evaluating a320

patient’s mental state (Canal et al., 2022). In this321

study, we adopt DenseNet201, pre-trained on Ima-322

geNet, as the backbone network to extract deep vi-323

sual representations from clinical interview videos.324

This network captures both local texture features325

(e.g., facial muscle movements, wrinkles, skin tone326

variation) and global visual semantics (e.g., head327

pose, gaze aversion), providing insights into psy-328

chological health via spatiotemporal cues.329

To ensure temporal alignment with other modal-330

ities, we segment the video according to the times-331

tamp annotations in the transcript JSON files, ex-332

tracting only the segments during which the patient333

is speaking. For each segment, we uniformly sam-334

ple a fixed number of keyframes and resize them to335

224×224 pixels. All frames are normalized before336

being fed into DenseNet201.337

For each sampled frame Fi, a 1920-dimensional338

deep semantic representation is extracted using339

the DenseNet201 model, formulated as x
(i)
frame =340

DenseNet201(Fi), where x
(i)
frame ∈ R1920. To341

summarize the temporal dynamics of a segment,342

we apply global average pooling across all M343

frames, resulting in the aggregated feature vector344

V = 1
M

∑M
i=1 x

(i)
frame.345

To enhance feature expressiveness and mitigate346

vanishing gradients, we design a Residual Dense347

Block. The global feature vector V is projected348

into a lower-dimensional latent space via a fully349

connected layer as V′ = ReLU(WvV + bv),350

where V′ ∈ R1024. To ensure compatibility for351

residual connections, the original input V is pro-352

jected into the same latent space through a linear353

transformation, formulated as Vproj = WpV+bp,354

where Wp ∈ R1024×1920. The final residual fea-355

ture representation is then computed by element-356

wise addition Vres = V′ + Vproj. To improve357

stability and generalization, we apply batch nor-358

malization and dropout:359

BN(Vres) = γ · Vres − µ√
σ2 + ϵ

+ β (3)360

361
fvideo = Dropout(BN(Vres), p = 0.2) (4) 362

where µ and σ2 denote the batch-wise mean and 363

variance, γ and β are learnable parameters, and 364

ϵ is a small constant for numerical stability. The 365

resulting feature vector fvideo is used as the input to 366

the multimodal fusion network. 367

3.2 Hierarchical Cross-Modal Attention 368

Fusion 369

We propose a Hierarchical Cross-Modal Attention 370

Fusion (HCAF) module. The core innovation lies 371

in a two-stage attention mechanism that performs 372

fine-grained alignment followed by global integra- 373

tion. Specifically, we introduce a local-to-global 374

attention design, where local (fine-grained) inter- 375

actions between two modalities are first captured, 376

and then aggregated through global multi-modal 377

integration. As illustrated in Fig. 3. 378

fvideo
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Video Fusion with Fused Text-Audio
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faudio

Key

Value
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Add & 
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Figure 3: Hierarchical Cross-Modal Attention Fusion
Framework for Multimodal Anxiety Detection. The di-
agram illustrates a hierarchical fusion strategy where
textual and audio features are first integrated via bidi-
rectional cross-modal attention, followed by fusion with
video features. Each fusion step employs multi-head
attention, global pooling, and residual connections to
preserve and enhance multimodal information represen-
tation.

3.2.1 Modality Alignment Projection Layer 379

To address the inherent heterogeneity of mul- 380

timodal feature spaces, we design a modality- 381

specific projection network to map each modality 382

into a unified latent space while preserving modal- 383

ity characteristics. Given the extracted modality- 384

specific features ftext ∈ Rdt , faudio ∈ Rda , and 385

fvideo ∈ Rdv , we project them into a common 386

feature space of dimension d = 256 via inde- 387

pendent fully connected layers, formulated as 388

T′ = Wtftext + bt, where Wt ∈ Rd×dt for 389

the text modality, A′ = Wafaudio + ba, where 390

Wa ∈ Rd×da for the audio modality, and V′ = 391
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Wvfvideo + bv, where Wv ∈ Rd×dv for the video392

modality.393

All projection matrices Wt, Wa, and Wv are394

initialized using orthogonal initialization to miti-395

gate modality dominance during training. To fur-396

ther promote modality balance and adaptivity, we397

introduce a learnable scaling factor αm for each398

modality m ∈ {text, audio, video}, which dynam-399

ically adjusts the contribution of each modality400

based on its projected representation, defined as401

αm = σ(v⊤
mM′) with vm ∈ Rd. where M′ ∈402

{T′,A′,V′} corresponds to the projected feature403

of modality m, and σ(·) denotes the sigmoid activa-404

tion function to ensure αm ∈ (0, 1). The adaptively405

scaled features are then computed as:406

T̃ = αtext·T′, Ã = αaudio·A′, Ṽ = αvideo·V′

(5)407

This adaptive mechanism enables the model to auto-408

matically calibrate the relative importance of each409

modality under different contexts, while maintain-410

ing compatibility for downstream shared attention-411

based fusion mechanisms.412

3.2.2 Bidirectional Cross-Modal Attention413

Layer414

To enable fine-grained interactions across modali-415

ties, we propose a hierarchical progressive fusion416

strategy based on a two-stage cross-modal atten-417

tion mechanism. This strategy builds upon standard418

multi-head attention and enhances multimodal rep-419

resentation through step-wise fusion.420

Stage 1: Text-Audio Cross-Modal Fusion.421

Given the modality-specific projected features422

T̃, Ã ∈ Rd, we first perform bi-directional at-423

tention between the text and audio modalities424

using a multi-head attention mechanism with425

M = 4 heads. The general formulation of cross-426

attention is defined as CrossAttn(Q,K,V) =427

softmax
(
QK⊤
√
dh

)
V, where Q,K,V ∈ Rd×M are428

computed from the concatenated features [T̃; Ã]429

as Q = W⊤
q [T̃; Ã], K = W⊤

k [T̃; Ã], and V =430

W⊤
v [T̃; Ã], where Wq,Wk,Wv ∈ R2d×dh are431

learnable parameters and dh denotes the head di-432

mension. The attention outputs are then processed433

with a residual connection and layer normalization434

to stabilize training and preserve original informa-435

tion:436

T̃′ = T̃+ LayerNorm
(

CrossAttnT (Ã, T̃)
)

(6)437

438

Ã′ = Ã+LayerNorm
(

CrossAttnA(T̃, Ã)
)

(7)439

To obtain a compact representation, we apply 440

global average pooling to the attended features 441

T̃′ and Ã′, and then concatenate the pooled re- 442

sults to form the fused text-audio representation 443

FTA = AvgPool(T̃′)∥AvgPool(Ã′) ∈ R2d, where 444

AvgPool(·) denotes global average pooling and ∥ 445

denotes vector concatenation. 446

Stage 2: Video Fusion with Fused Text-Audio. 447

In the second stage, we hierarchically incorpo- 448

rate the video modality by fusing FTA with the 449

projected video features Ṽ ∈ Rd. Following 450

the same cross-attention formulation as in Stage 451

1, we perform bi-directional attention and resid- 452

ual fusion, resulting in the fused representation 453

FTAV = CrossAttnFusion(FTA, Ṽ). 454

3.3 Residual-Enhanced Multi-Layer 455

Perceptron Classification Module 456

To further enhance the discriminative power of the 457

model and improve the nonlinear representation of 458

the fused features, we employ a residual multilayer 459

perceptron (ResMLP) as the final classifier. Specif- 460

ically, the fused feature Ffused is passed through a 461

stack of three residual fully connected (FC) blocks. 462

Each block is formulated asz = ReLU(Whin+b), 463

hout = z + Proj(hin), where W and b denote 464

the learnable weights and biases of the current 465

layer. The projection function Proj(·) is defined 466

as Eq. (8): 467

Proj(hin) =

{
hin, if din = dout

Wprojhin, otherwise
(8) 468

where din and dout represent the input and output 469

feature dimensions, respectively. 470

Residual connections help mitigate the vanish- 471

ing gradient problem, accelerate convergence, and 472

improve generalization by preserving feature prop- 473

agation through identity mapping. The complete 474

ResMLP pipeline is summarized as follows: 475

h1 = Dropout (BN (ResBlock (Ffused, 1024)) , p = 0.5)

(9) 476477

h2 = Dropout (BN (ResBlock (h1, 512)) , p = 0.4)

(10) 478479

h3 = BN (ResBlock (h2, 256)) (11) 480

where BN(·) denotes batch normalization, and 481

Dropout(·, p) denotes dropout with probability p. 482

Finally, the output h3 is mapped to the binary clas- 483

sification probability ŷ ∈ [0, 1] through a sigmoid- 484

activated linear transformation, formulated as ŷ = 485

σ(W⊤h3 + b), where σ(·) denotes the sigmoid 486
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function. As this task is binary classification, we487

adopt the binary cross-entropy loss as the optimiza-488

tion objective:489

L = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

(12)490

yi ∈ {0, 1} denotes the ground truth label, and ŷi491

is the predicted probability for the i-th sample. The492

model is optimized using the Adam optimizer.493

4 Experiments494

In this study, we conducted the validation of the495

experimental validity on the MMDA (Jiang et al.,496

2022) clinical interview dataset. For the detailed497

introduction of the dataset, please refer to the ap-498

pendix.499

4.1 Comparison with State-of-the-Art Models500

To further validate the effectiveness of the pro-501

posed MADCI in multimodal fusion scenarios, we502

compare it with several representative multimodal503

learning baselines on the preprocessed MMDA504

dataset. The comparison includes MuIT (Bhat-505

tacharjee et al., 2022), FLAVA (Singh et al., 2022),506

Data2Vec2.0 (Baevski et al., 2023), and CrossNet.507

All models utilize three modalities: text, audio,508

and video. Table 1 summarizes the performance in509

terms of accuracy, precision, recall, and F1-score.510

As shown, MADCI consistently outperforms exist-511

ing methods across all evaluation metrics, demon-512

strating its superior capacity for multimodal repre-513

sentation learning.514

Modality Method Pub. ACC Precision Recall F1-Score AUC

T+A+V

MuIT CVPR22 0.802 0.789 0.666 0.779 0.850
FLAVA CVPR22 0.792 0.781 0.634 0.759 0.848

Data2Vec2.0 PMLR23 0.812 0.796 0.601 0.771 0.843
MADCI Ours 0.871 0.876 0.721 0.854 0.883

Table 1: Comparison of model performance on the mul-
timodal classification task. T, A, and V denote the text,
audio, and video modalities, respectively.

As shown in Table 1, the proposed MADCI515

model consistently outperforms all baselines across516

evaluation metrics. This improvement stems from517

its multi-head hierarchical attention architecture,518

which enables fine-grained cross-modal interac-519

tions at various abstraction levels, effectively cap-520

turing complex inter-modal dependencies and ad-521

dressing the limitations of traditional fusion ap-522

proaches. Additionally, modality-specific encoders523

and residual dense blocks enhance feature repre- 524

sentation by preserving deep semantic information 525

and improving fusion quality. 526

In contrast, baseline models show notable weak- 527

nesses. MuIT relies on token-level fusion and 528

lacks dynamic weighting across modalities, reduc- 529

ing adaptability to noisy inputs. FLAVA suffers 530

from low recall and F1 scores, likely due to limited 531

temporal modeling, leading to misclassification 532

near decision boundaries. Data2Vec 2.0 achieves 533

relatively balanced performance but lags behind 534

MADCI, possibly due to its generic self-supervised 535

features and the absence of explicit modality align- 536

ment. 537

4.2 Ablation Experiment 538

The effectiveness of Hierarchical Cross-Modal 539

Attention Fusion: To investigate the impact of 540

multimodal fusion strategies on model performance 541

and to identify the most effective method for affec- 542

tive disorder recognition, we conduct a comprehen- 543

sive comparison of several representative fusion 544

approaches. Table 2 summarizes the performance 545

of each fusion strategy on the MMDA dataset for 546

anxiety disorder classification. 547

Fusion Strategy ACC Precision Recall F1-score
Early fusion 0.832 0.821 0.712 0.823
Attention fusion 0.851 0.857 0.675 0.826
Cross model fusion 0.822 0.805 0.673 0.806
Gated Attention fusion 0.822 0.808 0.689 0.811
Hierarchical Fusion (Ours) 0.871 0.876 0.721 0.854

Table 2: Ablation study on different multimodal fusion
strategies. We compare early fusion, attention-based
fusion, cross-modal fusion, and gated attention fusion.
Our hierarchical fusion method achieves the best overall
performance across all metrics.

Early Fusion performs direct concatenation of 548

raw modality features at the input level. While 549

computationally simple and efficient, it is often sen- 550

sitive to differences in scale and distribution across 551

modalities. Attention-based Fusion introduces 552

modality-specific attention weights, enabling the 553

model to emphasize salient features and suppress 554

irrelevant information. Cross-Modal Fusion seeks 555

to align features across modalities by modeling 556

inter-modal correlations explicitly. Gated Atten- 557

tion Fusion further incorporates gating mechanisms 558

to dynamically modulate the contribution of each 559

modality under different contexts. In contrast, the 560

hierarchical fusion adopted in the MADCI model 561

simulates human cognitive processes by gradually 562

integrating multimodal information across abstract 563
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levels. It achieves the best results in all indicators,564

highlighting its superior ability to effectively utilize565

the complementary information of text, audio, and566

visual patterns, and is conducive to more in-depth567

modeling of complex cross-modal dependencies.

Configuration Residual Dropout ACC Precision Recall F1-Score
No Residual

(1024-512-256)
× [0.5, 0.4] 0.842 0.836 0.669 0.817

No Dropout
(1024-512-256)

✓ None 0.802 0.775 0.595 0.764

Shallow(1024-512) ✓ None 0.832 0.817 0.679 0.815
Deeper

(1024-768-512-256)
✓ [0.5] 0.842 0.847 0.653 0.811

Wider(1024-1024-512) ✓ [0.5, 0.4, 0.3] 0.802 0.842 0.545 0.731
Ours(1024-512-256) ✓ [0.5, 0.4] 0.871 0.876 0.721 0.854

Table 3: Ablation study on key components of the clas-
sifier. We examine the effects of residual connections,
depth, width, and dropout on multimodal anxiety detec-
tion performance. The "Configuration" column specifies
the architecture’s layer dimensions.

568
The effectiveness of Residual-Enhanced MLP569

Classification: We conduct a systematic abla-570

tion study on ResMLP architectural components.571

Specifically, we assess the model performance un-572

der different configurations by removing residual573

connections and dropout, reducing or increasing574

the network depth (with 2 and 4 hidden layers, re-575

spectively), and widening the hidden layers.576

As shown in Table 3, the ResMLP module577

achieves the best overall performance. While resid-578

ual connections slightly increase model complex-579

ity, they effectively mitigate the vanishing gradient580

problem in deep networks. Dropout helps prevent581

overfitting by regularizing the network. Shallow582

networks converge faster but often suffer from lim-583

ited representational capacity, whereas deeper ar-584

chitectures offer stronger expressiveness at the cost585

of increased training difficulty. Similarly, wider586

layers can capture more complex patterns but re-587

quire more parameters.588

To further analyze the anxiety detection per-589

formance of the MADCI model in different590

modes: Tables 4 and 5 present the performance of591

anxiety detection tasks using different multimodal592

models in single-modal and dual-modal combina-593

tions respectively. In the single-modal text task,594

FLAVA performs the best, followed by MuIT. In595

other single-modal and dual-modal anxiety detec-596

tion tasks, the MADCI we proposed achieved the597

best performance.598

Compared to large multimodal models like599

MuIT, FLAVA, and Data2Vec 2.0, the proposed600

MADCI demonstrates superior suitability for anxi-601

ety detection. While MuIT offers dynamic cross-602

Modality Model ACC Precision Recall F1-Score

T

MuIT 0.812 0.813 0.660 0.782
FLAVA 0.832 0.845 0.686 0.805
Data2Vec2.0 0.782 0.612 0.5 0.687
MADCI (Ours) 0.792 0.768 0.539 0.724

A

MuIT 0.792 0.781 0.634 0.759
FLAVA 0.822 0.824 0.679 0.797
Data2Vec2.0 0.782 0.612 0.5 0.687
MADCI (Ours) 0.832 0.836 0.630 0.795

V

MuIT 0.743 0.551 0.5 0.633
FLAVA 0.762 0.736 0.576 0.712
Data2Vec2.0 0.218 0.047 0.5 0.078
MADCI (Ours) 0.802 0.796 0.693 0.799

Table 4: Performance comparison of different models
on individual modalities (Text, Audio, Video).

Modality Model Accuracy Precision Recall F1-Score

T+A

MuIT 0.822 0.817 0.692 0.802
FLAVA 0.841 0.835 0.743 0.831
Data2Vec2.0 0.782 0.612 0.5 0.687
MADCI (Ours) 0.851 0.843 0.708 0.836

T+V

MuIT 0.762 0.736 0.576 0.712
FLAVA 0.752 0.719 0.544 0.684
Data2Vec2.0 0.812 0.848 0.568 0.750
MADCI (Ours) 0.832 0.824 0.646 0.803

V+A

MuIT 0.743 0.551 0.5 0.633
FLAVA 0.772 0.753 0.595 0.729
Data2Vec2.0 0.723 0.732 0.609 0.727
MADCI (Ours) 0.852 0.847 0.692 0.832

Table 5: Performance comparison of different models on
bimodal combinations in multimodal anxiety detection.

modal interaction, it requires substantial computa- 603

tional resources and large annotated datasets, limit- 604

ing practicality. FLAVA shows stable performance 605

but struggles to capture fine-grained emotional 606

cues. Data2Vec 2.0, though modality-agnostic, 607

relies on teacher-generated pseudo-labels, risking 608

bias and loss of modality-specific details. 609

In contrast, MADCI employs a hierarchical fu- 610

sion strategy to progressively integrate text, au- 611

dio, and video features. With cross-modal atten- 612

tion, bidirectional interaction, residual connections, 613

batch normalization, and dropout, it enhances cross- 614

modal exchange and semantic alignment, improv- 615

ing model robustness and generalization in anxiety 616

detection. 617

5 Conclusions 618

To advance anxiety detection, this paper proposes 619

MADCI. It encodes emotional and nonverbal sig- 620

nals from semantic, acoustic, and visual modali- 621

ties, each processed separately and fused through 622

a hierarchical strategy with cross-modal attention, 623

bidirectional interaction, and residual connections. 624

Experiments on the MMDA dataset show MADCI 625

achieves 87.13% accuracy and 88.36% AUC. 626
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Limitations627

Despite the promising performance of our model628

in anxiety detection using multimodal clinical in-629

terview data, with competitive results in terms of630

accuracy and AUC, several limitations remain:631

First, the study is based on the MMDA clinical632

interview dataset, where each subject has complete633

data across text, audio, and video modalities. How-634

ever, the overall dataset size is limited, and the data635

collection is geographically and culturally homo-636

geneous, which may hinder the generalizability of637

the model. Due to the scarcity of publicly avail-638

able multimodal anxiety datasets, we trained and639

evaluated the model on a single dataset without640

cross-domain or transfer learning validation. Fu-641

ture work will focus on validating the model across642

diverse datasets to better assess its robustness and643

effectiveness.644

Secondly, although the proposed MADCI frame-645

work effectively integrates textual, acoustic, and646

visual modalities for improved anxiety detection, it647

currently lacks the capability for fine-grained clas-648

sification of anxiety severity. Extending the model649

to support multi-level anxiety assessment remains650

an important direction for future research.651

Finally, while this study validates the model us-652

ing real clinical interview data, MADCI has not653

yet been deployed or evaluated in actual clinical654

settings. Future work will focus on investigating655

its feasibility and performance in real-time clinical656

applications to further enhance its practicality and657

clinical applicability.658

Ethical Considerations659

This work uses previously collected human data660

from the MMDA dataset. Please see the paper661

that introduces this dataset (Jiang et al., 2022) for662

information about the data collection procedure.663

The authors foresee no ethical problems arising664

from the work presented here.665
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A Appendix 834

A.1 Supplementary explanation of Fig. 1 835

Fig. 1 presents the comparison between anxious 836

and non-anxious patients during clinical interviews, 837
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including text emotion word clouds and visualiza-838

tions of acoustic features. As shown in Fig. 1(b),839

the texts of anxious patients frequently contain neg-840

ative emotional words such as "afraid", "nervous",841

"insomnia", "anxiety", "stress", and "Fidget", indi-842

cating a clear tendency toward negative emotional843

expression. In contrast, Fig. 1(a) shows that non-844

anxious patients predominantly use more neutral845

and stable emotional words, such as "relax", "ex-846

ited", "tired" et. al. In order to further compare847

the differences in acoustic characteristics between848

the two types of patients, Fig. 1(c) and 1(d) re-849

spectively show the visualization results of speech850

features when non-anxious patients and anxious851

patients have conversations with doctors. It can852

be seen from the figures that there are significant853

differences in speech features such as MFCC and854

F0 between the two types of patients. Moreover,855

previous research has indicated that anxious indi-856

viduals are more likely to exhibit tense and anxious857

facial expressions (e.g., frowning, lip-biting) and858

more frequent micro-expression changes (Ekman,859

1992).860

A.2 Datasets861

The MMDA dataset contains clinical interview data862

of 501 participants conducted by licensed psychol-863

ogists, among which 108 are healthy controls and864

393 are clinically diagnosed anxiety cases. The865

dataset comprises de-identified original interview866

videos, manually transcribed dialogue text, and867

HAMA (Zimmerman et al., 2017) scores. An868

overview of the MMDA dataset is provided in Ta-869

ble 6.870

Dataset Modality Sample Size Scale Age (Avg./Min/Max)
MMDA A, V, T 501 (108:393) HAMA 40.53 / 13 / 83

Table 6: Overview of MMDA Clinical Anxiety Dataset.

To develop a multimodal anxiety disorder detec-871

tion framework, we extract audio segments from872

the original video recordings and construct a com-873

prehensive dataset comprising text, audio, and874

video modalities. To ensure both the accuracy and875

efficiency of the clinical anxiety diagnosis model,876

rigorous data preprocessing was conducted on the877

textual modality. This includes the removal of ex-878

traneous whitespace, special characters, and other879

textual noise. Based on the annotated time seg-880

ments indicating the patient’s speech within the881

transcription files, we synchronously extracted the882

corresponding audio and video segments for subse-883

quent multimodal feature extraction. 884

A.3 Implementation Details 885

Model optimization is performed using the Adam 886

optimizer with a learning rate of 1 × 10−4. We 887

apply gradient clipping, dropout, label smoothing 888

(with a factor of 0.1), and weight decay (0.01) to 889

stabilize training. The binary cross-entropy loss 890

is used for supervision. The dataset is split into 891

training and test sets using an 80/20 stratified split 892

(seed = 42). All experiments are conducted with 893

fixed random seeds to ensure reproducibility. 894
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