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Abstract

With the rapid development of artificial intelli-
gence, multimodal methods have received in-
creasing attention in the field of mental health
disorder detection. Most of the existing re-
search focuses on depression and schizophre-
nia, but there are relatively few studies on anx-
iety disorders. To further explore the clin-
ical applicability of multimodal learning in
anxiety disorder detection, we propose Mul-
timodal Anxiety Detection via Clinical Inter-
views (MADCI), a framework designed to auto-
matically identify anxiety disorders from real-
world patient-doctor interview data. MADCI
comprises three main components: modality-
specific feature extractors, a hierarchical cross-
modal attention fusion module, and a residual-
enhanced multilayer perceptron classifier. In
particular, the hierarchical cross-modal atten-
tion fusion module captures semantic correla-
tions and complementary information across
modalities by integrating cross-modal interac-
tions at multiple levels, thereby enhancing the
robustness and discriminative capacity of the
fused representations. The validity of MADCI
was verified on the MMDA dataset, and its per-
formance was significantly better than that of
the current state-of-the-art multimodal models.

1 Introduction

Anxiety disorder is a prevalent emotional mental
illness characterized primarily by persistent ten-
sion, worry, and fear, which severely impairs pa-
tients’ daily quality of life (Sarmiento and Lau,
2020). According to statistics from the World
Health Organization (WHO), approximately 3.6%
of the global population suffers from anxiety dis-
orders, with the prevalence showing an increasing
trend annually (Organization, 2017). Anxiety not
only diminishes patients’ quality of life but may
also lead to comorbidities such as depression and
cardiovascular diseases (Bandelow and Michaelis,
2015). Consequently, accurate and objective de-
tection and classification of anxiety patients are of

Pressure

| .
Nervous s e INnsomnia
Rela)r(“ . :’ e r VO u S
INnSomnlaAngrys SUR° ey Sy
Sad Fidget © a
£ 1d:
o Anxlety Fidget st
(a) (b)
0.2 05
00 ‘W 00 W
-0.2 -0.5
0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0 015 03 045 06 075 09 11 1.2
Time Time
. p—

60 ——— . —\,—/"Y\Wl_\
100
— FO (H2)

20— RMS Energy
— Zero Crossing Rate

0 4
o 5 10 15 20 25 30 35 0 20 40 60 80 100
= - 200 200
- . 0 o
= Lot - -200 | 200
B | -a00 2o
ime

— FO (H2)
—— RMS Energy
— Zero Crossing Rate

0

0.0000.0500.1000.1500.2000.2500.3000.3500.400 0 015 03 045 06 075 09 11 12
Time i

(©) (d)

Figure 1: Comparison of emotional word clouds and
audio features between normal subjects and anxiety
patients. (a) Emotional word cloud generated from in-
terview texts of normal subjects. (b) Emotional word
cloud generated from interview texts of anxiety patients.
(c) Visualization of audio features from normal subjects,
including waveform, FO, RMS energy, zero crossing
rate, and spectrogram. (d) Visualization of audio fea-
tures from anxiety patients, highlighting speech signal
energy and frequency differences.

significant importance for early intervention, pre-
cise treatment, and mental health management.

Currently, the diagnosis of anxiety disorders
primarily relies on psychological questionnaires,
clinical interviews, and self-assessment scales (As-
sociation, 2013). However, these methods have
limitations such as strong subjectivity, low effi-
ciency, susceptibility to situational influences, and
a lack of real-time monitoring capabilities. In re-
cent years, with the continuous advancement of
multimodal technologies, it has become possible
to achieve more efficient and objective recognition
of emotional disorders by automatically analyzing
patients’ linguistic expressions, acoustic features,



facial expressions, and behavioral data during inter-
views (Abdullah et al., 2021) using computational
methods. Multimodal learning not only captures
information from different modalities but also ex-
tracts complementary interactions between them,
thereby enhancing the model’s ability to understand
the complex psychological states of individuals
with anxiety (Tang et al., 2017).

Fig. 1 and previous studies (Ekman, 1992) in-
dicate that patients with anxiety differ from others
in terms of text, language and vision. Relying
solely on a single model may lead to incomplete
assessment, be susceptible to noise, and be overly
subjective. This problem is particularly evident in
complex clinical settings, where patients may inten-
tionally or unintentionally hide symptoms in one
form and manifest them in others. To address the
shortcomings of single-modal methods, researchers
have increasingly turned to multimodal fusion tech-
niques such as early and late fusion, which integrate
diverse signals to enable more accurate and holistic
mental health assessments.

Early fusion (BaltrusSaitis et al., 2019) strate-
gies typically operated at the feature level, where
low-level features from different patterns were con-
catenated and fed into a unified classifier for joint
learning. In contrast, the late-stage fusion (Atrey
et al., 2010) strategy models each modality inde-
pendently and combines their predictions at the
decision-making level. However, these methods
still face two major challenges: (1) The seman-
tic gap between heterogeneous modalities hinders
simple join or summation operations (Ramachan-
dram and Taylor, 2017); (2) The dynamic depen-
dency relationship between patterns changes with
the variation of context information, making the
fixed fusion strategy not optimal.

To solve these problems and make full use of the
information of different modalities, we propose a
multimodal fusion anxiety detection model, called
Multimodal Anxiety Detection through Clinical
Interviews (MADCI). This model uses a modal-
specific feature extractor to capture the feature
information of each modality, and uses a hierar-
chical cross-modal attention fusion module to in-
tegrate the features of different modalities. Fi-
nally, the fused features are classified through the
residue-enhanced multi-layer perceptron to deter-
mine whether the patient shows anxiety symptoms.

The main contributions of this work are summa-
rized as follows:

* To improve the performance of the anxiety di-
agnosis task, MADCI designs specific feature
encoders for each modality, which can extract
the features suitable for the anxiety diagnosis
task more effectively.

* MADCI adopts a Hierarchical Cross-Modal
Attention Fusion mechanism, enabling the
model to focus on the most significant fea-
tures within and between modalities, hereby
promoting the information interaction among
text, audio and video and improving the clas-
sification performance.

* MADCI can assist clinicians in rapidly assess-
ing patients’ anxiety status, thereby shorten-
ing initial screening time, improving diagnos-
tic efficiency, and alleviating the shortage of
mental health resources.

2 Related Work

In recent years, multimodal sentiment analysis and
psychological disorder recognition have emerged
as critical research directions in Al-driven mental
health studies. Existing research primarily focuses
on the following aspects.

2.1 Machine Learning Apporaches for
Anxiety Detection

Early research on anxiety disorder detection pri-
marily relied on manual assessment tools and tra-
ditional machine learning algorithms (Low et al.,
2010). To diagnose anxiety in patients, at least
20 minutes are required for an interview with the
patient, during which the patient must correctly un-
derstand the questionnaire content and complete
the questionnaire (Arif et al., 2020). This mainly
depends on the patient’s subjective feedback, mak-
ing it difficult to achieve efficient and objective
anxiety screening. To overcome the limitations of
manual assessment, researchers have focused on
using machine learning algorithms to assist clini-
cians in diagnosing anxiety disorders, as machine
learning has been applied in various fields.

For example, text-based methods use Bag of
Words models (Qader et al., 2019), TF-IDF
(Ramos, 2003), or LIWC (Tausczik and Pen-
nebaker, 2010) to extract linguistic features, fol-
lowed by classifiers like SVM (Wang and Hu,
2005), Logistic Regression (Peng et al., 2002), or
Random Forest (Rigatti, 2017) to perform binary
anxiety prediction. Niva et al. analyzed the blink



data of 44 participants aged 18-30 using machine
learning techniques, achieving detection rates rang-
ing from 88% to 94% with ten-fold cross-validation
(Das et al., 2025). Li et al. developed a model us-
ing MRI to quantify EPVS markers and machine
learning algorithms to assess the severity of anxi-
ety and depression symptoms in patients who have
used mobile phones for extended periods (Li et al.,
2025). Abdulrahman et al. used machine learn-
ing models to analyze the distribution characteris-
tics of various physiological signals (Alkurdi et al.,
2025). Ancillon et al. reviewed research on anxi-
ety detection using biosignals combined with ma-
chine learning methods, systematically analyzing
the strengths, weaknesses, and challenges of differ-
ent signal types, feature extraction methods, and
classification models (Ancillon et al., 2022). Bhat-
nagar et al. (Bhatnagar et al., 2023) collected ques-
tionnaire data from university students and used
machine learning algorithms to detect and classify
the anxiety levels of students.

While these models demonstrate potential in anx-
iety detection applications, they largely rely on
handcrafted features, lack the ability to model non-
linear relationships and cross-modal dependencies,
and are limited in their generalization ability in
clinical settings.

2.2 Deep Learning Approaches for Anxiety
Detection

Multimodal anxiety emotion recognition, by in-
tegrating multi-source behavioral signals and de-
picting an individual’s psychological state from
multiple dimensions, has become one of the key di-
rections in the current research on intelligent recog-
nition of mental disorders. Diep et al. (Diep et al.,
2022) collected the speech and text data of the
subjects in the self-management speech task, and
extracted deep learning features and manual fea-
tures from them. Among them, the F1 score of
anxiety detection increased by 3% compared with
the model that only used manual features. The
Multimodal Transformer model proposed by Tsai
et al. (Tsai et al., 2019) introduces a cross-modal
attention mechanism, which can explicitly model
interaction dependencies and temporal dynamics
among different modalities, providing a powerful
modeling ability for the recognition of complex
emotional states.

Although the above-mentioned deep learning
methods have certain advantages in specific scenar-
ios, they generally have problems such as insuffi-

cient information volume, weak anti-interference
ability and poor generalization. Especially in
the context of complex and changeable emotional
states such as anxiety, relying solely on a certain
modal often makes it difficult to capture complete
emotional characteristics and meet the require-
ments of high-precision recognition.

3 Multimodal Anxiety Detection via
Clinical Interviews

To effectively identify anxiety states in patients
during clinical interview interactions, we propose
a multimodal anxiety diagnosis model based on
clinical interviews. The overall architecture is illus-
trated in Fig. 2.

3.1 Modality-Specific Feature Extractors

3.1.1 Text Feature Extraction

In multimodal mental health analysis tasks, the text
modality often carries rich semantic information.
This is particularly true in doctor-patient dialogue
scenarios, where patients’ linguistic expression,
emotional tendencies, and language structure can
all reflect their mental state (Cambria and White,
2014). Therefore, the effective extraction of tex-
tual features is crucial for the detection of anxiety
disorders. In this work, we employ BERT (Devlin
et al., 2019) as the encoder for the text modality,
leveraging its bidirectional Transformer architec-
ture (Han et al., 2022) for deep semantic modeling
of context.

Specifically, we isolate and encode only the pa-
tient’s spoken content using the pretrained bert-
large-uncased model (Yu et al., 2022). Given
an input sentence consisting of n words S =
{w1,wa, ..., w,}, the corresponding dialogue is
tokenized using the WordPiece tokenizer into a
sequence T' = {[CLS], t1,to, ..., tx, [SEP]}.

This token sequence is then mapped into embed-
ding vectors £ € R¥*?, where d = 1024 denotes
the hidden dimension. The embeddings are fed into
a 24-layer Transformer encoder to obtain contextu-
alized representations for each token. The semantic
representation of the entire sequence is given by
the output corresponding to the [CLS] token, for-
mulated as 71, = BERT e (77)[0] € R1024,

To further enhance the non-linear modeling ca-
pacity of the extracted features, we design a resid-
ual fully connected block to transform 7},y,. This
block contains a ReLLU-activated dense layer and
a shortcut path aligned in dimension. The two
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Figure 2: The framework structure of a multimodal anxiety detection model based on clinical interviews (MADCI).
(a) Modality-Specific Feature Extractors, which independently encode text, audio, and video inputs; (b) a Hierarchi-
cal Cross-Modal Attention Fusion Module, designed to capture inter-modal interactions at multiple semantic levels;
and (c) a Residual-Enhanced MLP Classifier, which integrates the fused features for final prediction.

branches are combined as the final output. The
main transformation branch is defined as Eq. (1):

T" = ReLU(W1Tray + by), Wy € RO12X1024 (7

If the input and output dimensions are inconsis-
tent, a linear projection is applied to the shortcut
path:

Tinortcut = WoTaw + ba, Wo € R¥12X1024 (9

Otherwise, the shortcut is directly taken as
Tshortewt = Traw. The residual output is then
obtained by combining the main and shortcut
branches Ties = T + Tyhorewr- TO improve the
robustness and generalization ability of the model,
we apply Batch normalization and Conditional
Dropout to 7. Specifically, the transformation
is formulated as fiexy = Dropout(BN(T1es), p =
0.2), where BN denotes Batch Normalization. The
resulting feature fiex; serves as the intermediate se-
mantic representation of the text modality and is
fed into the subsequent multimodal fusion module.

3.1.2 Audio Feature Extraction

To capture rich acoustic information for down-
stream anxiety detection, we focus on the speech
modality derived from clinical interview sessions.
Based on the timestamp annotations in the doctor-
patient dialogue transcripts, we segment the origi-
nal audio recordings and retain only the segments

corresponding to the patient’s speech. This en-
sures temporal alignment with other modalities.
And use the librosa library to extract low-level and
high-level audio features from the original speech,
and combine time-frequency domain features with
manually designed features to form complementary
acoustic representations.

Finally, an 185-dimensional audio feature vec-
tor was extracted, including MFCC (20-d) (Zheng
et al., 2001), Chroma (24-d), Mel-Spectrogram
(128-d), and 13 low-level descriptors (e.g., zero-
crossing rate, energy, spectral centroid). All fea-
tures were standardized via z-score normalization.
Given an audio signal z(t), we compute its Short-
Time Fourier Transform (Benesty et al., 2011),
apply the Discrete Cosine Transform (Khayam,
2003), and obtain average MFCCs over 1" frames.
Chroma features are extracted using a 24-bin
constant-Q transform, enhancing pitch sensitiv-
ity. The final feature vector is defined as A =
[MFCC .99, Chroma, Mel, Contrast, Tonnetz].

To incorporate acoustic features into the
model, we adopt a lightweight BiLSTM struc-
ture. Since A is non-temporal, we reshape it
using ExpandDims(A) to simulate sequential in-
put. The encoded representation is obtained
as: h; = BiLSTMas6(ExpandDims(A)), hy =
BiLSTMj25(h1), followed by layer normaliza-
tion to obtain the final audio feature fuug0 =



LayerNorm(hs), where BILSTM y denotes a bidi-
rectional LSTM with N hidden units per direction.
LayerNorm is applied to stabilize training and en-
hance convergence.

3.1.3 Video Feature Extraction

The video modality serves as a critical source of
emotional cues, offering valuable visual informa-
tion such as facial expressions, body posture, and
eye movement, which are essential for evaluating a
patient’s mental state (Canal et al., 2022). In this
study, we adopt DenseNet201, pre-trained on Ima-
geNet, as the backbone network to extract deep vi-
sual representations from clinical interview videos.
This network captures both local texture features
(e.g., facial muscle movements, wrinkles, skin tone
variation) and global visual semantics (e.g., head
pose, gaze aversion), providing insights into psy-
chological health via spatiotemporal cues.

To ensure temporal alignment with other modal-
ities, we segment the video according to the times-
tamp annotations in the transcript JSON files, ex-
tracting only the segments during which the patient
is speaking. For each segment, we uniformly sam-
ple a fixed number of keyframes and resize them to
224 x 224 pixels. All frames are normalized before
being fed into DenseNet201.

For each sampled frame F;, a 1920-dimensional
deep semantic representation is extracted using

the DenseNet201 model, formulated as xlgr?me =

DenseNet201(F;), where xgme € RY20. To
summarize the temporal dynamics of a segment,
we apply global average pooling across all M
frames, resulting in the aggregated feature vector

V= ﬁ Zz]\il Xlgrl'zme'

To enhance feature expressiveness and mitigate
vanishing gradients, we design a Residual Dense
Block. The global feature vector V is projected
into a lower-dimensional latent space via a fully
connected layer as V/' = ReLU(W,V + b,),
where V' € R'0%4 To ensure compatibility for
residual connections, the original input V is pro-
jected into the same latent space through a linear
transformation, formulated as Vo = W,V +b,,
where W, € R1024x1920 " The final residual fea-
ture representation is then computed by element-
wise addition Ve = V' + Vproj- To improve
stability and generalization, we apply batch nor-
malization and dropout:

Vies —

BNV =7 e

+68 3)

fiideo = Dropout(BN(Vies),p = 0.2)  (4)

where 11 and o2 denote the batch-wise mean and
variance, v and ( are learnable parameters, and
€ is a small constant for numerical stability. The
resulting feature vector fy4e0 is used as the input to
the multimodal fusion network.

3.2 Hierarchical Cross-Modal Attention
Fusion

We propose a Hierarchical Cross-Modal Attention
Fusion (HCAF) module. The core innovation lies
in a two-stage attention mechanism that performs
fine-grained alignment followed by global integra-
tion. Specifically, we introduce a local-to-global
attention design, where local (fine-grained) inter-
actions between two modalities are first captured,
and then aggregated through global multi-modal
integration. As illustrated in Fig. 3.
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Figure 3: Hierarchical Cross-Modal Attention Fusion
Framework for Multimodal Anxiety Detection. The di-
agram illustrates a hierarchical fusion strategy where
textual and audio features are first integrated via bidi-
rectional cross-modal attention, followed by fusion with
video features. Each fusion step employs multi-head
attention, global pooling, and residual connections to
preserve and enhance multimodal information represen-
tation.

3.21

To address the inherent heterogeneity of mul-
timodal feature spaces, we design a modality-
specific projection network to map each modality
into a unified latent space while preserving modal-
ity characteristics. Given the extracted modality-
specific features fiox € R%, fugioc € R%, and
frideo € R¥, we project them into a common
feature space of dimension d = 256 via inde-
pendent fully connected layers, formulated as
T = Wfex + b, where W, € R4xdt for
the text modality, A’ = W fuugio + ba, Where
W, € R¥d for the audio modality, and V' =

Modality Alignment Projection Layer



W o fyideo + by, Wwhere W, € R4% for the video
modality.

All projection matrices W, W, and W,, are
initialized using orthogonal initialization to miti-
gate modality dominance during training. To fur-
ther promote modality balance and adaptivity, we
introduce a learnable scaling factor o, for each
modality m € {text, audio, video}, which dynam-
ically adjusts the contribution of each modality
based on its projected representation, defined as
am = o(v) M') with v,,, € R% where M’ €
{T’, A’, V'} corresponds to the projected feature
of modality m, and o (-) denotes the sigmoid activa-
tion function to ensure c,, € (0, 1). The adaptively
scaled features are then computed as:

T = atext'T/> A= aaudio'A/7 V = avideo'V/

®)
This adaptive mechanism enables the model to auto-
matically calibrate the relative importance of each
modality under different contexts, while maintain-
ing compatibility for downstream shared attention-

based fusion mechanisms.

3.2.2 Bidirectional Cross-Modal Attention
Layer

To enable fine-grained interactions across modali-
ties, we propose a hierarchical progressive fusion
strategy based on a two-stage cross-modal atten-
tion mechanism. This strategy builds upon standard
multi-head attention and enhances multimodal rep-
resentation through step-wise fusion.

Stage 1: Text-Audio Cross-Modal Fusion.
Given the modality-specific projected features
T,A € R we first perform bi-directional at-
tention between the text and audio modalities
using a multi-head attention mechanism with
M = 4 heads. The general formulation of cross-
attention is defined as CrossAttn(Q,K,V) =
softmax (Q—\/Ig) V, where Q, K,V € R>*M are
computed from the concatenated features [T; A]
asQ = W/ [T;A],K = W/[T;Al,and V =
WI[T;A], where W,, W, W, € R24%dn gre
learnable parameters and d;, denotes the head di-
mension. The attention outputs are then processed
with a residual connection and layer normalization
to stabilize training and preserve original informa-
tion:

T’ = T + LayerNorm (CrossAttnT(A, ’i‘)) (6)

A’ = A +LayerNorm <CrossAttn A(T, A)) (7)

To obtain a compact representation, we apply
global average pooling to the attended features
T’ and A/, and then concatenate the pooled re-
sults to form the fused text-audio representation
Fra = AvgPool(T’) || AvgPool(A’) € R??, where
AvgPool(+) denotes global average pooling and ||
denotes vector concatenation.

Stage 2: Video Fusion with Fused Text-Audio.
In the second stage, we hierarchically incorpo-
rate the video modality by fusing Fta with the
projected video features V. € R Following
the same cross-attention formulation as in Stage
1, we perform bi-directional attention and resid-
ual fusion, resulting in the fused representation
Frav = CrossAttnFusion(Fra, \7).

3.3 Residual-Enhanced Multi-Layer
Perceptron Classification Module

To further enhance the discriminative power of the
model and improve the nonlinear representation of
the fused features, we employ a residual multilayer
perceptron (ResMLP) as the final classifier. Specif-
ically, the fused feature Fyeq is passed through a
stack of three residual fully connected (FC) blocks.
Each block is formulated asz = ReLU(Why, +b),
hoy = z + Proj(hj,), where W and b denote
the learnable weights and biases of the current
layer. The projection function Proj(-) is defined
as Eq. (8):

hi,, if din = d
Proj(h;,) = { 1 M (8)

Wroihin, otherwise

where di, and doy; represent the input and output
feature dimensions, respectively.

Residual connections help mitigate the vanish-
ing gradient problem, accelerate convergence, and
improve generalization by preserving feature prop-
agation through identity mapping. The complete
ResMLP pipeline is summarized as follows:

h; = Dropout (BN (ResBlock (Fiysed, 1024)), p = 0.5)

©)

hy = Dropout (BN (ResBlock (hi,512)), p = 0.4)
(10)

h; = BN (ResBlock (hg, 256)) (11)

where BN(-) denotes batch normalization, and
Dropout(-, p) denotes dropout with probability p.
Finally, the output h3 is mapped to the binary clas-
sification probability § € [0, 1] through a sigmoid-
activated linear transformation, formulated as y =
(W Thz + b), where o(-) denotes the sigmoid



function. As this task is binary classification, we
adopt the binary cross-entropy loss as the optimiza-
tion objective:

N
1 )
=~ 2 [wilog(d:) + (1 = i) log(1 — )]
=1

(12)
y; € {0,1} denotes the ground truth label, and y;
is the predicted probability for the i-th sample. The
model is optimized using the Adam optimizer.

4 Experiments

In this study, we conducted the validation of the
experimental validity on the MMDA (Jiang et al.,
2022) clinical interview dataset. For the detailed
introduction of the dataset, please refer to the ap-
pendix.

4.1 Comparison with State-of-the-Art Models

To further validate the effectiveness of the pro-
posed MADCI in multimodal fusion scenarios, we
compare it with several representative multimodal
learning baselines on the preprocessed MMDA
dataset. The comparison includes MulT (Bhat-
tacharjee et al., 2022), FLAVA (Singh et al., 2022),
Data2Vec2.0 (Baevski et al., 2023), and CrossNet.
All models utilize three modalities: text, audio,
and video. Table 1 summarizes the performance in
terms of accuracy, precision, recall, and F1-score.
As shown, MADCI consistently outperforms exist-
ing methods across all evaluation metrics, demon-
strating its superior capacity for multimodal repre-
sentation learning.

Modality Method Pub. ACC Precision Recall F1-Score AUC
MulT  CVPR220.802 0.789 0.666 0.779 0.850

FLAVA CVPR220.792 0.781 0.634 0.759 0.848
Data2Vec2.0 PMLR23 0.812 0.796 0.601 0.771 0.843

MADCI Ours 0.871 0.876 0.721 0.854 0.883

T+A+V

Table 1: Comparison of model performance on the mul-
timodal classification task. T, A, and V denote the text,
audio, and video modalities, respectively.

As shown in Table 1, the proposed MADCI
model consistently outperforms all baselines across
evaluation metrics. This improvement stems from
its multi-head hierarchical attention architecture,
which enables fine-grained cross-modal interac-
tions at various abstraction levels, effectively cap-
turing complex inter-modal dependencies and ad-
dressing the limitations of traditional fusion ap-
proaches. Additionally, modality-specific encoders

and residual dense blocks enhance feature repre-
sentation by preserving deep semantic information
and improving fusion quality.

In contrast, baseline models show notable weak-
nesses. MulT relies on token-level fusion and
lacks dynamic weighting across modalities, reduc-
ing adaptability to noisy inputs. FLAVA suffers
from low recall and F1 scores, likely due to limited
temporal modeling, leading to misclassification
near decision boundaries. Data2Vec 2.0 achieves
relatively balanced performance but lags behind
MADCI, possibly due to its generic self-supervised
features and the absence of explicit modality align-
ment.

4.2 Ablation Experiment

The effectiveness of Hierarchical Cross-Modal
Attention Fusion: To investigate the impact of
multimodal fusion strategies on model performance
and to identify the most effective method for affec-
tive disorder recognition, we conduct a comprehen-
sive comparison of several representative fusion
approaches. Table 2 summarizes the performance
of each fusion strategy on the MMDA dataset for
anxiety disorder classification.

Fusion Strategy ACC Precision Recall F1-score
Early fusion 0.832 0.821 0.712 0.823
Attention fusion 0.851 0.857 0.675 0.826
Cross model fusion 0.822 0.805 0.673 0.806
Gated Attention fusion 0.822 0.808 0.689 0.811
Hierarchical Fusion (Ours) 0.871 0.876 0.721 0.854

Table 2: Ablation study on different multimodal fusion
strategies. We compare early fusion, attention-based
fusion, cross-modal fusion, and gated attention fusion.
Our hierarchical fusion method achieves the best overall
performance across all metrics.

Early Fusion performs direct concatenation of
raw modality features at the input level. While
computationally simple and efficient, it is often sen-
sitive to differences in scale and distribution across
modalities. Attention-based Fusion introduces
modality-specific attention weights, enabling the
model to emphasize salient features and suppress
irrelevant information. Cross-Modal Fusion seeks
to align features across modalities by modeling
inter-modal correlations explicitly. Gated Atten-
tion Fusion further incorporates gating mechanisms
to dynamically modulate the contribution of each
modality under different contexts. In contrast, the
hierarchical fusion adopted in the MADCI model
simulates human cognitive processes by gradually
integrating multimodal information across abstract



levels. It achieves the best results in all indicators,
highlighting its superior ability to effectively utilize
the complementary information of text, audio, and
visual patterns, and is conducive to more in-depth
modeling of complex cross-modal dependencies.

Configuration Residual Dropout ACC Precision Recall F1-Score

No Residual
(1024-512-256) X [0.5,0.4] 0.842 0.836 0.669 0.817

No Dropout
(1024-512-256) v None 0.802 0.775 0.595 0.764
Shallow(1024-512) v None 0.832 0.817 0.679 0.815

Deeper

(1024-768-512-256) v [0.5] 0.842 0.847 0.653 0.811
Wider(1024-1024-512)  v* [0.5,0.4,0.3]0.802 0.842 0.545 0.731
Ours(1024-512-256) v [0.5,0.4] 0.871 0.876 0.721 0.854

Table 3: Ablation study on key components of the clas-
sifier. We examine the effects of residual connections,
depth, width, and dropout on multimodal anxiety detec-
tion performance. The "Configuration" column specifies
the architecture’s layer dimensions.

The effectiveness of Residual-Enhanced MLP
Classification: We conduct a systematic abla-
tion study on ResMLP architectural components.
Specifically, we assess the model performance un-
der different configurations by removing residual
connections and dropout, reducing or increasing
the network depth (with 2 and 4 hidden layers, re-
spectively), and widening the hidden layers.

As shown in Table 3, the ResMLP module
achieves the best overall performance. While resid-
ual connections slightly increase model complex-
ity, they effectively mitigate the vanishing gradient
problem in deep networks. Dropout helps prevent
overfitting by regularizing the network. Shallow
networks converge faster but often suffer from lim-
ited representational capacity, whereas deeper ar-
chitectures offer stronger expressiveness at the cost
of increased training difficulty. Similarly, wider
layers can capture more complex patterns but re-
quire more parameters.

To further analyze the anxiety detection per-
formance of the MADCI model in different
modes: Tables 4 and 5 present the performance of
anxiety detection tasks using different multimodal
models in single-modal and dual-modal combina-
tions respectively. In the single-modal text task,
FLAVA performs the best, followed by MulT. In
other single-modal and dual-modal anxiety detec-
tion tasks, the MADCI we proposed achieved the
best performance.

Compared to large multimodal models like
MulT, FLAVA, and Data2Vec 2.0, the proposed
MADCI demonstrates superior suitability for anxi-
ety detection. While MulT offers dynamic cross-

Modality Model ACC Precision Recall F1-Score
MulT 0.812 0.813 0.660 0.782
T FLAVA 0.832 0.845 0.686 0.805
Data2Vec2.0 0.782 0.612 0.5 0.687
MADCI (Ours)  0.792 0.768 0.539 0.724
MulT 0.792 0.781 0.634 0.759
A FLAVA 0.822 0.824 0.679 0.797
Data2Vec2.0 0.782 0.612 0.5 0.687
MADCI (Ours) 0.832 0.836 0.630 0.795
MulT 0.743 0.551 0.5 0.633
v FLAVA 0.762 0.736 0.576 0.712
Data2Vec2.0 0.218 0.047 0.5 0.078
MADCI (Ours) 0.802 0.796 0.693 0.799

Table 4: Performance comparison of different models
on individual modalities (Text, Audio, Video).

Modality Model Accuracy Precision Recall F1-Score
MulT 0.822 0.817 0.692 0.802
T4A FLAVA 0.841 0.835 0.743 0.831
Data2Vec2.0 0.782 0.612 0.5 0.687
MADCI (Ours) 0.851 0.843 0.708 0.836
MulT 0.762 0.736 0.576 0.712
T+V FLAVA 0.752 0.719 0.544 0.684
Data2Vec2.0 0.812 0.848 0.568 0.750
MADCI (Ours) 0.832 0.824 0.646 0.803
MulT 0.743 0.551 0.5 0.633
VA FLAVA 0.772 0.753 0.595 0.729
Data2Vec2.0 0.723 0.732 0.609 0.727
MADCI (Ours) 0.852 0.847 0.692 0.832

Table 5: Performance comparison of different models on
bimodal combinations in multimodal anxiety detection.

modal interaction, it requires substantial computa-
tional resources and large annotated datasets, limit-
ing practicality. FLAVA shows stable performance
but struggles to capture fine-grained emotional
cues. Data2Vec 2.0, though modality-agnostic,
relies on teacher-generated pseudo-labels, risking
bias and loss of modality-specific details.

In contrast, MADCI employs a hierarchical fu-
sion strategy to progressively integrate text, au-
dio, and video features. With cross-modal atten-
tion, bidirectional interaction, residual connections,
batch normalization, and dropout, it enhances cross-
modal exchange and semantic alignment, improv-
ing model robustness and generalization in anxiety
detection.

5 Conclusions

To advance anxiety detection, this paper proposes
MADCI. It encodes emotional and nonverbal sig-
nals from semantic, acoustic, and visual modali-
ties, each processed separately and fused through
a hierarchical strategy with cross-modal attention,
bidirectional interaction, and residual connections.
Experiments on the MMDA dataset show MADCI
achieves 87.13% accuracy and 88.36% AUC.



Limitations

Despite the promising performance of our model
in anxiety detection using multimodal clinical in-
terview data, with competitive results in terms of
accuracy and AUC, several limitations remain:

First, the study is based on the MMDA clinical
interview dataset, where each subject has complete
data across text, audio, and video modalities. How-
ever, the overall dataset size is limited, and the data
collection is geographically and culturally homo-
geneous, which may hinder the generalizability of
the model. Due to the scarcity of publicly avail-
able multimodal anxiety datasets, we trained and
evaluated the model on a single dataset without
cross-domain or transfer learning validation. Fu-
ture work will focus on validating the model across
diverse datasets to better assess its robustness and
effectiveness.

Secondly, although the proposed MADCI frame-
work effectively integrates textual, acoustic, and
visual modalities for improved anxiety detection, it
currently lacks the capability for fine-grained clas-
sification of anxiety severity. Extending the model
to support multi-level anxiety assessment remains
an important direction for future research.

Finally, while this study validates the model us-
ing real clinical interview data, MADCI has not
yet been deployed or evaluated in actual clinical
settings. Future work will focus on investigating
its feasibility and performance in real-time clinical
applications to further enhance its practicality and
clinical applicability.

Ethical Considerations

This work uses previously collected human data
from the MMDA dataset. Please see the paper
that introduces this dataset (Jiang et al., 2022) for
information about the data collection procedure.
The authors foresee no ethical problems arising
from the work presented here.
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A Appendix
A.1 Supplementary explanation of Fig. 1

Fig. 1 presents the comparison between anxious
and non-anxious patients during clinical interviews,



including text emotion word clouds and visualiza-
tions of acoustic features. As shown in Fig. 1(b),
the texts of anxious patients frequently contain neg-
ative emotional words such as "afraid", "nervous",
"insomnia", "anxiety", "stress", and "Fidget", indi-
cating a clear tendency toward negative emotional
expression. In contrast, Fig. 1(a) shows that non-
anxious patients predominantly use more neutral
and stable emotional words, such as "relax", "ex-
ited", "tired" et. al. In order to further compare
the differences in acoustic characteristics between
the two types of patients, Fig. 1(c) and 1(d) re-
spectively show the visualization results of speech
features when non-anxious patients and anxious
patients have conversations with doctors. It can
be seen from the figures that there are significant
differences in speech features such as MFCC and
FO between the two types of patients. Moreover,
previous research has indicated that anxious indi-
viduals are more likely to exhibit tense and anxious
facial expressions (e.g., frowning, lip-biting) and
more frequent micro-expression changes (Ekman,
1992).

A.2 Datasets

The MMDA dataset contains clinical interview data
of 501 participants conducted by licensed psychol-
ogists, among which 108 are healthy controls and
393 are clinically diagnosed anxiety cases. The
dataset comprises de-identified original interview
videos, manually transcribed dialogue text, and
HAMA (Zimmerman et al., 2017) scores. An
overview of the MMDA dataset is provided in Ta-
ble 6.

Scale
HAMA

Dataset Modality
MMDA A,V,T

Age (Avg./Min/Max)
40.53/13/83

Sample Size
501 (108:393)

Table 6: Overview of MMDA Clinical Anxiety Dataset.

To develop a multimodal anxiety disorder detec-
tion framework, we extract audio segments from
the original video recordings and construct a com-
prehensive dataset comprising text, audio, and
video modalities. To ensure both the accuracy and
efficiency of the clinical anxiety diagnosis model,
rigorous data preprocessing was conducted on the
textual modality. This includes the removal of ex-
traneous whitespace, special characters, and other
textual noise. Based on the annotated time seg-
ments indicating the patient’s speech within the
transcription files, we synchronously extracted the
corresponding audio and video segments for subse-
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quent multimodal feature extraction.

A.3 Implementation Details

Model optimization is performed using the Adam
optimizer with a learning rate of 1 x 10™4. We
apply gradient clipping, dropout, label smoothing
(with a factor of 0.1), and weight decay (0.01) to
stabilize training. The binary cross-entropy loss
is used for supervision. The dataset is split into
training and test sets using an 80/20 stratified split
(seed = 42). All experiments are conducted with
fixed random seeds to ensure reproducibility.
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