
trlX: A Framework for Large Scale Reinforcement Learning from Human
Feedback

Alexander Havrilla1,2, Maksym Zhuravinskyi1,3, Duy Van Phung1,3,
Aman Tiwari4, Jonathan Tow1,3, Shivanshu Purohit5, Stella Biderman5,6,

Quentin Gregory Anthony5,7, Ethan Kim8, and Louis Castricato1

1CarperAI, 2Georgia Tech, 3Stability AI, 4Independent Researcher∗,
5EleutherAI, 6Booz Allen Hamilton, 7Ohio State University, 8vectorshift.ai

Abstract

Reinforcement learning from human feedback
(RLHF) utilizes human feedback to better align
large language models with human preferences
via online optimization against a learned reward
model. Current RLHF paradigms rely on Proxi-
mal Policy Optimization (PPO), which quickly
becomes a challenge to implement and scale
up to large architectures. To address this diffi-
culty we present the trlX library as a feature-
complete open-source framework for RLHF
fine-tuning of models up to and exceeding 70
billion parameters. We implement support for
multiple types of distributed training including
distributed data parallel, model sharded, as well
as tensor, sequential, and pipeline parallelism.

To increase the accessibility of RLHF to
researchers, we implement compute- and
memory-saving features that give trlX the flexi-
bility to support users with a wide range of com-
pute resources. This includes offline RL meth-
ods like Implicit Language Q Learning (ILQL),
low-rank adapters, and the Hydra architecture.
We find offline fine-tuning offers competitive
performance relative to online algorithms while
being easier to implement, train, and scale. To
evaluate our framework we train RLHF models
on two separate well-known tasks using pub-
licly available human preference data. Models
trained with trlX achieve preference win-rates
over baselines at rates comparable to the origi-
nal works.

1 Introduction

Since 2019, the prevailing training paradigm for
large-language models (Brown et al., 2020; Raffel
et al., 2019; Devlin et al., 2019) has comprised two
parts: First a pre-training phase during which mod-
els are trained on a large corpus of text. Pretrain-
ing produces a general-purpose model which has
learned the syntax and some semantics of natural
text but is not easily controllable for any particular
task. Fine-tuning is then used to adapt this general-
purpose pre-trained model to a smaller, specialized

corpus. However, this often comes with a decrease
in model performance on other tasks. Further, the
resulting model can be difficult to work with, re-
quiring extensive prompt engineering.

Reinforcement learning from human feedback
(RLHF), has presented itself as an additional third
stage of the language model training pipeline. In
this stage, gathered human preference data is used
to supervise fine-tune the pre-trained model and
then train a reward model. The reward model
assigns scalar values to (prompt, response) pairs
that correspond to human preference. The super-
vised fine-tuned model can then be trained using
Proximal Policy Optimization (PPO) (Schulman
et al., 2017), an online reinforcement learning al-
gorithm, to optimize against the learned reward
model. The resulting models are better aligned
with human preferences, leading to win-rates over
the base model by up to 80% (Askell et al., 2021;
Bai et al., 2022a; Ouyang et al., 2022), and produc-
ing more desirable and less harmful text with less
prompting.

However, the study of RLHF models in the aca-
demic community has been limited thus far by
a need for open-source training frameworks and
datasets. Online reinforcement learning via PPO
is compute expensive and challenging to scale as
we must store three copies of the model in mem-
ory during training. To address these issues we
present trlX: a library supporting online and offline
RLHF fine-tuning for language models of up to
and exceeding 70 billion parameters. At smaller
scales, we emphasize low-resource accessibility by
incorporating features such as Hydra model archi-
tectures (Glaese et al., 2022), LoRA adapters (Hu
et al., 2021), and DeepSpeed (Rajbhandari et al.,
2019), which, when combined, can reduce memory
overhead on GPT-J (Wang & Komatsuzaki, 2021)
by up to 75% with minimal impact on the achieved

* work done while at CarperAI
Correspondence to: ahavrilla3@gatech.edu



RL Algorithms Parallelization Strategies Features

Online Offline Tensor Pipeline Sequence LoRA Sweeps

RL4LM ✓

trl ✓ ✓ * ✓

DS Chat ✓ ✓ ✓ ✓

trlX (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: trlX feature comparisons with other libraries. * trl supports naive pipeline parallelism, which allows larger
models to be run but is far less efficient.

reward. trlX training at this scale is compatible
with most encoder-decoder and decoder-only ar-
chitecture supported on the popular Hugging Face
Hub (Wolf et al., 2019). For large, 20 billion pa-
rameter plus, training jobs we implement support
for tensor, sequence, and pipeline parallelism via
both the GPT-NeoX library (Andonian et al., 2021)
and NeMO-Megatron (Kuchaiev et al., 2019).

trlX also supports Implicit Language Q Learn-
ing, ILQL, as an offline alternative to online RL
methods. We find fine-tuning via ILQL achieves
preference win-rates with baselines close to PPO
but at a fraction of the compute cost. Further ILQL
is more robust to reward model overfitting, which
online algorithms can suffer from. To evaluate our
framework we provide open-source replications of
well-known papers from the RLHF literature in-
cluding learning summaries from human feedback
(Stiennon et al., 2020) and Helpful/Harmless prefer-
ence learning for a general purpose language assis-
tant (Bai et al., 2022a). We find models trained with
trlX achieve preference win-rates, as judged by hu-
man annotators, over baselines at rates comparable
to the original works, validating our implemen-
tation. We open-source all supervised fine-tuned
models, reward models, and RLHF models for fur-
ther research, as well as the training framework,
trlX.

In summary, we make the following contribu-
tions:

• trlX as a feature complete, open-source library
for reinforcement learning from human feed-
back supporting model sizes up to and ex-
ceeding 70 billion parameters. This includes
benchmark examples implementing the first
known open-source replications of several
well known RLHF models, offering insights
into training and evaluation.

• A novel evaluation of offline RL based fine-

tuning for preference learning at scale.

• Release of all models at all scales involved in
the training pipeline including supervised-fine
tuned, reward, and RL tuned models.

2 Background

Reinforcement Learning from Human Feedback
Reinforcement learning from human feedback at-
tempts to improve agent performance, either in sam-
ple efficiency or performance on downstream tasks,
by incorporating some form of human feedback on
agent behavior (Knox & Stone, 2009; Christiano
et al., 2017; Stiennon et al., 2020). We focus on
the 3-stage fine-tuning pipeline outlined by Stien-
non et al. (2020) in which researchers first assem-
ble a dataset of human-annotated preferences, then
train a reward model to predict these preferences,
and lastly train a policy to maximize the score of
the resulting reward model. Similarly structured
pipelines have been adapted to train many of the
most recent interactive natural language assistance
tools (Nakano et al., 2021; Ouyang et al., 2022; Bai
et al., 2022a; Glaese et al., 2022).

Nevertheless, collecting human preferences at
scale can be cost-inefficient. Recent work by Bai
et al. (2022b) proposes tractable oversight by us-
ing synthetic AI preferences instead of direct hu-
man labels. Similar works by Honovich et al.
(2022); Wang et al. (2022a,b) generate instruction-
following datasets by querying already aligned
models like text-davinci-003 to generate both
task and instruction-following responses.

Scalable Training Frameworks There are many
notable choices of distributed training frameworks
for large-scale language model pre-training and
fine-tuning, each implementing various parallelism
schemes. These include DeepSpeed (Rajbhandari
et al., 2019), Megatron-LM (Shoeybi et al., 2019;



Kuchaiev et al., 2019), the GPT-NeoX library (An-
donian et al., 2021) which combines DeepSpeed
and Megatron-LM, Fairseq (Ott et al., 2019; Zhang
et al., 2022), and T5X (Roberts et al., 2022) for
TPU-based training.

However, none of these frameworks are de-
signed explicitly to support fine-tuning via RL
and would, therefore, require significant work to
retrofit. More recently, RL-specific fine-tuning li-
braries have become available. RL4LM’s (Rama-
murthy et al., 2022) implements online algorithms
for fine-tuning mid-sized language models with
reinforcement learning from human feedback and
supports an impressive range of tasks and metrics.
TRL (Leandro, 2019), initially a smaller-scale li-
brary for transformer reinforcement learning, is a
re-implementation of Ziegler et al. (2019) in Py-
Torch for doing sentiment-based fine-tuning. It has
since been expanded in a manner similar to trlX to
include training with DeepSpeed via Hugging Face
accelerate. More recently, DeepSpeed-Chat (Yao
et al., 2023) was released allowing for larger model
training with better throughput. However, they do
not allow for more advanced forms of parallelism
supported in trlX.

3 Training with trlX

trlX is designed to help mitigate the heavy com-
putational costs felt by low-resource users while
still allowing high-resource users the ability to get
good performance. Roughly we break our users
into three separate resource profiles:

1. Single GPU users. In this low-resource use
case we recommend our native PyTorch inte-
gration plus memory saving features including
Hydra architectures, low-rank adaptors, and
8-bit adam (Dettmers et al., 2021).

2. Multi-GPU users. In this mid-resource user
case we recommend our integration with Hug-
ging Face accelerate (Gugger et al., 2022)
leveraging DeepSpeed plus memory saving
features. We use this integration to comfort-
ably train up to 20 billion parameter language
models on a single node.

3. Multi-Node users. In this high-resource user
case we recommend our integration with GPT-
NeoX or NeMO-Megatron which allows for
higher gpu efficiency and scaling than acceler-
ate and DeepSpeed. We use this integration to

train models up to 70 billion parameters: an
unprecedented scale for open-source RLHF
models.

The framework is built around a base trainer
from which integration specific trainers can inherit.
Independently, online and offline algorithms are
implemented allowing for reuse in separate inte-
grations. In particular trlX supports PPO and A2C
for online RL and ILQL for offline RL. The most
expensive part of online PPO training is the model
rollout, which can take up to 10x as long as a com-
bined forward and backward pass. To efficiently
maximize batch size for both rollouts and opti-
mization steps, we decouple the rollout inference
batch size from the PPO batch size via an orches-
trator class. This allows online models to perform
batched rollouts to reduce the amount of bottleneck
time spent infering each model.

We integrate closely with the Hugging Face
ecosystem, allowing for the training of most
encoder-decoder and decoder-only models on the
Hugging Face Hub, including widely used models
such as T5 (Raffel et al., 2019) and Flan-T5 (Chung
et al., 2022), GPT-J (Wang & Komatsuzaki, 2021),
Pythia (Biderman et al., 2023), OPT (Zhang et al.,
2022), and LLaMA (Touvron et al., 2023a,b).

Fine-tuning large language models via human
feedback with PPO is prohibitively expensive in
terms of memory and FLOPs, requiring the user to
store a student model, reference model, and sim-
ilarly sized reward model in memory at all times.
Additionally, reinforcement learning is notoriously
brittle to hyperparameter choice, often requiring
extensive sweeping to find optimal settings. To
mitigate these costs we support parameter saving
techniques like LoRA (Hu et al., 2021) and a Hy-
dra model architecture design (Glaese et al., 2022)
which allows for shared frozen layers between pol-
icy, value, and reference networks. Similarly, ILQL
models require non-standard Q-value heads and
generation capabilities which are implemented sep-
arately for both integrations.

3.1 Memory and Compute Saving Features

To benchmark the effect of memory and compute
saving features on performance, we run a series
of experiments on a baseline sentiments task for
model sizes ranging from 125 million to 20 bil-
lion parameters. For each model size, we freeze
a percentage of the model’s layers in the Hydra
architecture and observe the effect on reward, train



time, and required memory. We also experiment
with applying LORA adapters of various ranks to
all transformer matrices. Models are taken from
the Pythia suite (Biderman et al., 2023) and trained
for 6000 steps with a global batch size of 32 on
8x80gb A100s.

Figure 1 demonstrates across all model sizes
about half the layers can be frozen before a max-
imum attainable reward is not achieved. Interest-
ingly, freezing all but two of a model’s layers more
adversely affects the larger models. We speculate
this is due to larger models learning the majority
of complex task-specific features in their middle
layers, with downstream layers making minor ad-
justments.

Figure 1: Max reward achieved as a function of the num-
ber of model layers unfrozen. Each model achieves its
maximum attainable reward with around half its layers
frozen.

Figure 2 demonstrates the effect of layer freezing
on memory savings. This is particularly useful for
larger models since otherwise we must separately
load the frozen reference model into GPU memory
for inference. With all but two layers frozen we
save both memory and computation costs for all but
two layers of the reference. In particular, for larger
model sizes we can save nearly 50% of the required
memory while still achieving the maximum reward.

On less toy problems we also observe layer freez-
ing helps stabilize the training process by reducing
KL divergence from the base model. This helps
mitigate the need for the a KL based penalty via
a frozen reference model, in some cases allowing
for it to be removed entirely. Further in some cases
partial freezing even imparts a beneficial inductive
bias, allowing the model to achieve a higher reward
than when trained with all parameters unfrozen.

Similar benefits memory-saving and regularizing

Figure 2: Hydra memory consumption as a function of
the number of a unfrozen layers.

benefits can be seen with LoRA-based fine-tuning.
When tuning all layers training with LORA rank 1
achieves max reward on the sentiments benchmark.
At the 6.9 billion parameter scale LORA training
finetunes only 0.03 percent of the model parameters
and reduces memory usage by 3 times. LORA train-
ing can be combined with layer freezing to achieve
further memory savings. With both optimizations
RLHF can be performed for medium scale models
even on a single consumer-grade GPU. These mem-
ory savings and performance benefits carry over to
the offline training regime with ILQL as well (see
table 2). We theorize that limiting the rank of the
parameter updates as well as freezing model layers
provide beneficial regularization effects for both
online and offline RL training.

3.2 Comparison with other Frameworks

See table 1 for a table outlining the presence of key
trlX features in similar libraries. trlX is the only
framework to support offline RL fine-tuning as well
as the only framework to support large model fine-
tuning at scale with pipeline, sequential, and tensor
parallelism. Additionally, we are the most feature
complete, including tools for parameter efficient
fine-tuning and distributed hyperparameter sweeps.
We include 10 plus benchmark examples, providing
end-to-end pipelines for several well known RLHF
tasks.

DeepSpeed versus NeMO Megatron trlX is
competitive with existing open-source RLHF im-
plementations at scale for online RL. We com-
pare against DeepSpeed-Chat (Yao et al., 2023),
a concurrent work on RLHF for LLMs that imple-
ments PPO. See table 3 for a performance com-



Model Max Reward Time (min) GPUs

GPT-NeoX 20B -1.88 156 32
GPT-NeoX 20B LoRA -1.89 28 16

Pythia 6.9B -1.77 286 16
Pythia 6.9B LoRA -1.68 58 16

Table 2: Benchmarks for ILQL’s time to max reward on Anthropic’s Helpful QA dialogue dataset. All non-LoRA
hyperparameters are kept the same as the base models, except for learning rate which is set to 2.0 × 10−4. For
GPT-NeoX-20B LoRA, the last 8 layers are trained with LoRA, for Pythia 6.9B LoRA, all layers are trained with
LoRA.

Parameters DS-Chat trlX
OPT 1.3B 2.1 2.0
OPT 6.7B 0.44 0.41
OPT 30B 0.14∗ (LoRA) 0.12
OPT 60B 0.076∗ (LoRA) 0.043†

Table 3: Comparison of trlX and DeepSpeed-Chat train-
ing speed for online RL (PPO) for OPT architecture,
measured in samples/s/GPU. ∗Performance for 30B and
60B DeepSpeed-Chat converted from Table 2 of (Yao
et al., 2023), 4 hours to train on 131.9k samples using
64 GPUs. † For OPT 66B, we use Hydra with 50%
trainable parameters.

parison between DeepSpeed-Chat and trlX. Note
that the 30B and 60B parameters performance fig-
ure for DeepSpeed-Chat uses LoRA based training,
whereas trlX uses full parameter finetuning. We
keep the rest of the benchmark settings the same as
the published DeepSpeed-Chat scripts.

4 Benchmarks and Results

We benchmark trlX on two popular RLHF tasks:
OpenAI’s learning to summarize TL;DR dataset
(Stiennon et al., 2020) and Anthropic’s Helpful QA
dataset (Ganguli et al., 2022). We release all asso-
ciated code and models as open-source for further
study.

Training setup and Hyperparameters Unless
otherwise noted, we use the same fixed set of hyper-
parameters listed in the appendix across all training
runs. We find good performance is particularly
sensitive to some parameters:

• Batch size: Larger batch sizes of at least 128
global samples per iteration are used. This
reduces variance across runs and stabilizes
performance.

• Reward normalization: Upon rollout collec-
tion we normalize all rewards by a running

standard deviation estimate. We find this nor-
malization, notably without subtraction by the
running mean, significantly improves perfor-
mance. Additionally, we do a second normal-
ization of the advantages at the batch level.

• Learning rate: Learning rate is chosen to be
5E − 6, an order of magnitude smaller relative
to supervised fine-tuning.

4.1 Summarization
Setup Learning to Summarize from Human feed-
back (Stiennon et al., 2020) introduces the TL;DR
dataset. The first component, consisting of 129,772
Reddit posts, is utilized for supervised fine-tuning.
The second component, utilized for training the
reward model, consists of 92,534 samples in the
training dataset and 83,629 samples in the valida-
tion set.

We start by training supervised fine-tuned (SFT)
by fine-tuning 440M, 1.4B, 6.9B, and 20B models
from the Pythia suite on the SFT dataset. We use
the AdamW optimizer with the learning rate is 1E−
5 followed by a linear scheduler with a short warm-
up. The best model is be selected by Average-
ROUGE score on the validation set.

To train our reward models (RMs) we initialize
with SFT checkpoints, replacing the causal head
with a scalar output. Using the second component
of the dataset we then minimize the pairwise pref-
erence loss (Stiennon et al., 2020). We find our
best performing reward model is the 6.9 billion
parameter GPT-J (6B) trained with a batch size of
32.

With a trained reward model we are now able
to perform RL based fine-tuning of models from
440M to 20B. Posts from both components of the
TL;DR dataset are used during training. We use the
best performing reward model, 6.9B, as our reward
signal for all experiments. To train models online



we initialize from the SFT checkpoints and use
PPO with four epochs per batch and a KL penalty
with a coefficient of 0.005. We keep 8 layers un-
frozen. To train the offline models we label posts
from both components of the dataset and their as-
sociated summaries with ±1 respectively. We note
labeling in this way performs better than labeling
the data with the learned RM. This reward labeled
dataset is then used to train a base model using the
ILQL algorithm. Notably, we do not initialize from
the SFT checkpoint as we saw minimal benefit in
the offline regime.

Results We attach a table in the appendix show-
ing the result of the ROUGE scores in the test set of
the TL;DR dataset of SFT and PPO trained on the
6.9B model. In comparison with (Stiennon et al.,
2020), the trend of the ROUGE score is similar,
with the SFT model performing slightly better than
the PPO model.

More critically, we conduct a human evaluation
to better evaluate how well our online PPO and
offline ILQL models adhere to human preferences
as compared to the the baseline SFT. To do so we
select stories from a subset of prompts from the test
portion of our dataset and ask annotators to choose
between two candidate summaries. In particular
for each model size we run two evaluations: A
comparison of PPO to SFT and a comparison of
ILQL to SFT. In addition to choosing between two
candidate summarizations, we ask users to score
the coverage, clarity, and inconsistency on a 1-7
Likert scale. The results are reported in fig. 3 and
fig. 4.

We evaluate each model via relative improve-
ment over the its corresponding SFT baseline, in
part to demonstrate the effectiveness of RLHF on
even small model sizes.

ILQL slightly underperforms PPO at a fraction
of the cost Figure 3 demonstrates both ILQL and
PPO achieving greater than 10% win-rates across
most model sizes. At 6B and 20B our PPO model
achieves greater than 70% win-rate against its SFT
baseline. We also see ILQL models are very com-
petitive, despite requiring much less compute to
train. Interestingly, we observe ILQL produces dis-
tinctly shorter, more concise summaries than PPO
and even the SFT baseline. Despite this ILQL is
still often preferred over the longer SFT baseline
due to better coverage of key points. This suggests
more sophisticated offline training methods could

Figure 3: Win rate of ILQL, PPO fine-tuned models
against their relative SFT baselines on summarization
task. Note comparisons were done against the same-
sized SFT baseline (e.g. 6B SFT against 6B PPO). The
OpenAI baseline, measured as the win-rate of their 6B
model over human generated summaries, is included for
reference.

Figure 4: 20B model Likert scores for coverage, clarity,
and inconsistency.

potentially be developed as more compute efficient
alternative version of PPO.

4.2 Helpful QA Dialogue

Setup Helpful Harmless RLHF (Ganguli et al.,
2022), or HH-RLHF for short, consists of 118k
sample interactions between a user and an AI as-
sistant. It can be broken further into three parts:
An initial dataset of 42k prompt, response triples
created by a prompted language model, 40k sam-
ples creates by re-ranking responses from the same
prompted model, and a final set of 22k responses
from an initial RLHF model. The first two parts
are called the static subset. We use the helpful por-
tion of the static dataset for training and evaluation.
Each interaction sample consists of a dialogue his-
tory ending with an utterance from the user. This
is followed by a preferred or chosen assistant re-



Figure 5: Accuracy of reward model on test set against
number of training comparisons. We observe roughly
1.8% increase in model accuracy per 10k training sam-
ples.

sponse and a rejected response.
We train supervised fine-tuned SFT baseline

models by fine-tuning vanilla models models rang-
ing from 160M, 1.4B, 6.9B and 20B parameters on
the chosen responses for each sample. Training is
done for one epoch with a lr = 5E − 5. Note we
mask loss on the dialogue history, only backprop-
ping loss on the response tokens. This serves as
our baseline.

We then independently train reward models of
sizes 160m-20B by. As with summarization, we
warm start by initializing from the SFT models.
As above we train for one epoch with lr = 5 ·
10−6. We observe adding the supervised warm-
up increases test accuracy up to 2%. Our highest
performing model is a 6 billion parameter GPT-J,
which achieves 0.72 accuracy on the static test set.
We use this as the default reward model RM for all
RL based fine-tuning.

With our RM we can fine-tune our baseline SFT
models using trlX. Our training dataset consists
of a set of input prompts taken from the entire
static dataset. We augment this with multi-turn
prompts and responses generated synthetically by
text-davinici-003. Details on how this syn-
thetic data is created can be found in the appendix.
Altogether this forms 200k prompts for our RL
training dataset.

The number of training steps is kept constant
at 9000 with an effective batch size of 128. A
learning rate between 1 · 10−6 and 8 · 10−6 is used
for different model sizes. We keep eight layers
unfrozen. A constant KL penalty of coefficent of
0.005 is used. We call the resulting series of models
PPO.

Figure 6: Mean performance of models zero-shot on
HellaSwag, TriviaQA, LAMBADA, Arc Easy, Arc Chal-
lenge, and Open Book QA. A table of full results is
shared in the appendix.

In particular, we found it critical to train with a
sufficiently large batch to ensure robust PPO gra-
dient estimates. Additionally, if training is run for
too long or the KL penalty is too weak we observe
heavy overfit to the reward model. We practice
early stopping to prevent such overfit. Larger batch
sizes also have the added effect of mitigating over-
fit simply by decreasing the total number of steps
over the prompt dataset.

In addition to PPO we train models at sizes from
160M to 20B using ILQL. We assign a reward of
+1 to the chosen trajectories and a reward of -1 to
the rejected trajectories. We call the resulting set
of models ILQL. Surprisingly the ±1 reward as-
signment empirically outperforms labeling chosen
and rejected responses via rewards learned from
the RM. We believe this is because while RM re-
wards are denser, they are also in some cases in-
accurate and as a result the expected inequality
rchosen > rrejected for a given dialogue is not re-
spected, introducing noise. Whereas a ±1 assign-
ment stays faithful to the underlying human pref-
erences. This assignment has the added benefit
of requiring far less compute as no reward model
needs to be learned.

In addition to the above models we also train
and evaluate a final set Vanilla-PPO which applies
PPO based RL fine-tuning via our RM without ini-
tializing from the supervised SFT checkpoints. We
found this is only feasible for larger models, 6B
and 20B, which are able to successfully optimize
reward. This underscores the importance of collect-
ing supervised fine-tuning data for for sufficiently
difficult tasks and weak models.



Results We then evaluate vanilla models, SFT
models, PPO models, Vanilla-PPO models, and
ILQL models on a set of common academic
benchmarks including LAMBADA, ARC, Open-
BookQA, TriviaQA, and HellaSwag using Gao
et al. (2021). Figure 6 plots the mean accuracy
of each model class on the benchmarks. A full ta-
ble is included in the appendix. We find supervised
fine-tuning significantly impacts performance. We
note when done improperly, e.g. by fine-tuning
on entire dialogues instead of responses, the effect
is even more pronounced. RL based fine-tuning
on top of SFT improves results slightly but not
significantly.

The ‘Alignment Tax’ comes from SFT Surpris-
ingly in contrast fine-tuning with RL without as
done in the Vanilla-PPO models incurs much less
penalty and in the 6.9B case even slightly improves
performance. This answers questions about the
existence of an alignment tax when fine-tuning
with RLHF. OpenAI reported such a tax with In-
structGPT (Ouyang et al., 2022), particularly after
supervised fine-tuning, but did not report results
for strictly RL based fine-tuning. Conversely An-
thropic (Bai et al., 2022a) demonstrated small gains
in benchmark performance for sufficiently large
models after RL based fine-tuning but do not uti-
lize an SFT warm-up. These results suggest such
a tax is primarily due to the supervised fine-tuning
instead of RL based fine-tuning. We note one tech-
nique is to mix pre-training data into the SFT and
RL fine-tuning distributions, as done in Ouyang
et al. (2022).

This suggests to us the importance of a high-
quality SFT training dataset to mitigate benchmark
reduction while also appropriately learning the de-
sired behavior.

In addition to automatic benchmark evaluation
we conduct a human evaluation in which labelers
choose between responses generated by a model
and the comparably sized supervised fine-tuned
baseline. The results are reported in fig. 7. Note
we examine win-rate of models against a baseline
of the same size, in contrast to previous work (Bai
et al., 2022a; Ouyang et al., 2022). We attach an-
notator instructions in the appendix.

RLHF can benefit smaller models too Across
all model sizes we observe at least a 60% win-rate
between the PPO trained model and the SFT base-
line. Additionally the offline trained ILQL models

Figure 7: Win rate of prompted, PPO RLHF, and ILQL
RLHF models at 160M, 1.4B, 6.9B, and 20B parameters.
Comparisons were done against the same-sized SFT
baseline (.e.g 6.9B SFT against 6.9B PPO).

are very competitive, similarly achieving at least a
60% win-rate with a small fraction of the compute.
Further we qualitatively observe ILQL is signifi-
cantly more robust to reward overfit in contrast to
online PPO based fine-tuning. In contrast the on-
line regime requires a combination of large batch
sizes and early stopping to mitigate such reward
overfit. Finally we remark the prompted baseline
is already relatively strong likely due to the task
already being sufficiently in distribution for larger
models. This is further supported by the ability
of large vanilla models to successfully optimize
reward with no supervised fine-tuning.

In addition to collecting win-rates we also col-
lect Likert scores on a scale of 1-7 for response
Helpfulness, Harmfulness, and Honesty. Results
are reported in the appendix.

5 Conclusion

Ethics We present trlX as an open-source frame-
work for training large language models at scale us-
ing reinforcement learning from human feedback.
Even with fine-tuning via RLHF, LLMs are still
prone to hallucination and bias at inference time,
necessitating further research on mitigations. We
hope researcher access to trlX as an open-source
implementation of the RLHF pipeline will help
facilitate this research.

Limitations While it is highly performant, PPO
suffers from many limitations both in difficulty dur-
ing implementation and in hyperparameter sensitiv-
ity at train time. Offline methods such as ILQL are
both easier to implement and more compute effi-
cient, but still do not achieve the same performance



as PPO.

References
Andonian, A., Anthony, Q., Biderman, S., Black, S.,

Gali, P., Gao, L., Hallahan, E., Levy-Kramer, J.,
Leahy, C., Nestler, L., et al. Gpt-neox: Large
scale autoregressive language modeling in pytorch.
GitHub Repo, 2021.

Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli,
D., Henighan, T., Jones, A., Joseph, N., Mann, B.,
DasSarma, N., et al. A general language assis-
tant as a laboratory for alignment. arXiv preprint
arXiv:2112.00861, 2021.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen,
A., DasSarma, N., Drain, D., Fort, S., Ganguli, D.,
Henighan, T. J., Joseph, N., Kadavath, S., Kernion,
J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-
Dodds, Z., Hernandez, D., Hume, T., Johnston, S.,
Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei,
D., Brown, T. B., Clark, J., McCandlish, S., Olah,
C., Mann, B., and Kaplan, J. Training a helpful and
harmless assistant with reinforcement learning from
human feedback. ArXiv, abs/2204.05862, 2022a.

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion,
J., Jones, A., Chen, A., Goldie, A., Mirhoseini, A.,
McKinnon, C., et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073,
2022b.

Biderman, S., Bicheno, K., and Gao, L. Datasheet for
the pile. arXiv preprint arXiv:2201.07311, 2022.

Biderman, S. R., Schoelkopf, H., Anthony, Q. G.,
Bradley, H., O’Brien, K., Hallahan, E., Khan, M. A.,
Purohit, S., Prashanth, U. S., Raff, E., Skowron, A.,
Sutawika, L., and van der Wal, O. Pythia: A suite for
analyzing large language models across training and
scaling. ArXiv, abs/2304.01373, 2023.

Black, S., Biderman, S., Hallahan, E., Anthony, Q.,
Gao, L., Golding, L., He, H., Leahy, C., McDonell,
K., Phang, J., Pieler, M., Prashanth, U. S., Puro-
hit, S., Reynolds, L., Tow, J., Wang, B., and Wein-
bach, S. GPT-NeoX-20B: An open-source autore-
gressive language model. In Proceedings of the ACL
Workshop on Challenges & Perspectives in Creat-
ing Large Language Models, 2022. URL https:
//arxiv.org/abs/2204.06745.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J. D., Dhariwal, P., Neelakantan, A., Shyam, P.,
Sastry, G., Askell, A., Agarwal, S., Herbert-Voss,
A., Krueger, G., Henighan, T., Child, R., Ramesh,
A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen,
M., Sigler, E., Litwin, M., Gray, S., Chess, B.,
Clark, J., Berner, C., McCandlish, S., Radford,
A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M. F., and
Lin, H. (eds.), Advances in Neural Information

Processing Systems, volume 33, pp. 1877–1901.
Curran Associates, Inc., 2020. URL https:
//proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Christiano, P. F., Leike, J., Brown, T. B., Martic, M.,
Legg, S., and Amodei, D. Deep reinforcement learn-
ing from human preferences. ArXiv, abs/1706.03741,
2017.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, E., Wang, X., Dehghani, M., Brahma,
S., Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen,
X., Chowdhery, A., Valter, D., Narang, S., Mishra,
G., Yu, A. W., Zhao, V., Huang, Y., Dai, A. M., Yu,
H., Petrov, S., hsin Chi, E. H., Dean, J., Devlin, J.,
Roberts, A., Zhou, D., Le, Q. V., and Wei, J. Scal-
ing instruction-finetuned language models. ArXiv,
abs/2210.11416, 2022.

Dettmers, T., Lewis, M., Shleifer, S., and Zettlemoyer, L.
8-bit optimizers via block-wise quantization. ArXiv,
abs/2110.02861, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
Bert: Pre-training of deep bidirectional transformers
for language understanding. ArXiv, abs/1810.04805,
2019.

Ganguli, D., Lovitt, L., Kernion, J., Askell, A., Bai,
Y., Kadavath, S., Mann, B., Perez, E., Schiefer, N.,
Ndousse, K., et al. Red teaming language models
to reduce harms: Methods, scaling behaviors, and
lessons learned. arXiv preprint arXiv:2209.07858,
2022.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima,
N., et al. The pile: An 800gb dataset of di-
verse text for language modeling. arXiv preprint
arXiv:2101.00027, 2020.

Gao, L., Tow, J., Biderman, S., Black, S., DiPofi, A.,
Foster, C., Golding, L., Hsu, J., McDonell, K., Muen-
nighoff, N., et al. A framework for few-shot language
model evaluation. Version v0. 0.1. Sept, 2021.

Glaese, A., McAleese, N., Trkebacz, M., Aslanides,
J., Firoiu, V., Ewalds, T., Rauh, M., Weidinger, L.,
Chadwick, M., Thacker, P., Campbell-Gillingham,
L., Uesato, J., Huang, P.-S., Comanescu, R., Yang,
F., See, A., Dathathri, S., Greig, R., Chen, C., Fritz,
D., Elias, J. S., Green, R., Mokr’a, S., Fernando, N.,
Wu, B., Foley, R., Young, S., Gabriel, I., Isaac, W. S.,
Mellor, J. F. J., Hassabis, D., Kavukcuoglu, K., Hen-
dricks, L. A., and Irving, G. Improving alignment
of dialogue agents via targeted human judgements.
ArXiv, abs/2209.14375, 2022.

Gugger, S., Debut, L., Thomas Wolf, T., Schmid, P.,
Mueller, Z., and Mangrulkar, S. Accelerate: Training
and inference at scale made simple, efficient and
adaptable. https://github.com/huggingface/
accelerate, 2022.

https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate


Honovich, O., Scialom, T., Levy, O., and Schick,
T. Unnatural instructions: Tuning language mod-
els with (almost) no human labor. arXiv preprint
arXiv:2212.09689, 2022.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., and Chen, W. Lora: Low-rank adaptation
of large language models. ArXiv, abs/2106.09685,
2021.

Knox, W. B. and Stone, P. Interactively shaping agents
via human reinforcement: The tamer framework. In
The Fifth International Conference on Knowledge
Capture, September 2009. URL http://www.cs.
utexas.edu/users/ai-lab?KCAP09-knox.

Kuchaiev, O., Li, J., Nguyen, H., Hrinchuk, O., Leary,
R., Ginsburg, B., Kriman, S., Beliaev, S., Lavrukhin,
V., Cook, J., et al. Nemo: a toolkit for building ai
applications using neural modules. arXiv preprint
arXiv:1909.09577, 2019.

Leandro, V. W. Transformer reinforcement learning.
https://github.com/lvwerra/trl, 2019.

Nakano, R., Hilton, J., Balaji, S. A., Wu, J., Ouyang, L.,
Kim, C., Hesse, C., Jain, S., Kosaraju, V., Saunders,
W., Jiang, X., Cobbe, K., Eloundou, T., Krueger, G.,
Button, K., Knight, M., Chess, B., and Schulman, J.
Webgpt: Browser-assisted question-answering with
human feedback. ArXiv, abs/2112.09332, 2021.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng,
N., Grangier, D., and Auli, M. fairseq: A fast, exten-
sible toolkit for sequence modeling. In Proceedings
of NAACL-HLT 2019: Demonstrations, 2019.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller,
L. E., Simens, M., Askell, A., Welinder, P., Chris-
tiano, P. F., Leike, J., and Lowe, R. J. Training lan-
guage models to follow instructions with human feed-
back. ArXiv, abs/2203.02155, 2022.

Raffel, C., Shazeer, N. M., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. Ex-
ploring the limits of transfer learning with a uni-
fied text-to-text transformer. ArXiv, abs/1910.10683,
2019.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y.
Zero: Memory optimizations toward training trillion
parameter models. SC20: International Conference
for High Performance Computing, Networking, Stor-
age and Analysis, pp. 1–16, 2019.

Ramamurthy, R., Ammanabrolu, P., Brantley, K., Hes-
sel, J., Sifa, R., Bauckhage, C., Hajishirzi, H., and
Choi, Y. Is reinforcement learning (not) for natural
language processing?: Benchmarks, baselines, and
building blocks for natural language policy optimiza-
tion. ArXiv, abs/2210.01241, 2022.

Roberts, A., Chung, H. W., Levskaya, A., Mishra,
G., Bradbury, J., Andor, D., Narang, S., Lester,
B., Gaffney, C., Mohiuddin, A., Hawthorne, C.,
Lewkowycz, A., Salcianu, A., van Zee, M., Austin, J.,
Goodman, S., Soares, L. B., Hu, H., Tsvyashchenko,
S., Chowdhery, A., Bastings, J., Bulian, J., Gar-
cia, X., Ni, J., Chen, A., Kenealy, K., Clark, J. H.,
Lee, S., Garrette, D., Lee-Thorp, J., Raffel, C.,
Shazeer, N., Ritter, M., Bosma, M., Passos, A.,
Maitin-Shepard, J., Fiedel, N., Omernick, M., Saeta,
B., Sepassi, R., Spiridonov, A., Newlan, J., and Ges-
mundo, A. Scaling up models and data with t5x
and seqio. arXiv preprint arXiv:2203.17189, 2022.
URL https://arxiv.org/abs/2203.17189.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
ArXiv, abs/1707.06347, 2017.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P.,
Casper, J., and Catanzaro, B. Megatron-lm: Train-
ing multi-billion parameter language models using
model parallelism. ArXiv, abs/1909.08053, 2019.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano,
P. F. Learning to summarize with human feedback.
Advances in Neural Information Processing Systems,
33:3008–3021, 2020.

Touvron, H., Lavril, T., Izacard, G., Martinet, X.,
Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal,
N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A.,
Grave, E., and Lample, G. Llama: Open and efficient
foundation language models. ArXiv, abs/2302.13971,
2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Wang, B. and Komatsuzaki, A. GPT-J-6B: A
6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/
mesh-transformer-jax, May 2021.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Align-
ing language model with self generated instructions.
arXiv preprint arXiv:2212.10560, 2022a.

Wang, Y., Mishra, S., Alipoormolabashi, P., Ko-
rdi, Y., Mirzaei, A., Arunkumar, A., Ashok, A.,
Dhanasekaran, A. S., Naik, A., Stap, D., et al. Super-
naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks. URL https://arxiv.
org/abs/2204.07705, 2022b.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtow-
icz, M., et al. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2019.

http://www.cs.utexas.edu/users/ai-lab?KCAP09-knox
http://www.cs.utexas.edu/users/ai-lab?KCAP09-knox
https://github.com/lvwerra/trl
https://arxiv.org/abs/2203.17189
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax


Yao, Z., Aminabadi, R. Y., Ruwase, O., Rajbhandari,
S., Wu, X., Awan, A. A., Rasley, J., Zhang, M., Li,
C., Holmes, C., Zhou, Z., Wyatt, M., Smith, M.,
Kurilenko, L., Qin, H., Tanaka, M., Che, S., Song,
S. L., and He, Y. DeepSpeed-Chat: Easy, Fast and
Affordable RLHF Training of ChatGPT-like Mod-
els at All Scales. arXiv preprint arXiv:2308.01320,
2023.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
Mihaylov, T., Ott, M., Shleifer, S., Shuster, K., Simig,
D., Koura, P. S., Sridhar, A., Wang, T., and Zettle-
moyer, L. Opt: Open pre-trained transformer lan-
guage models. ArXiv, abs/2205.01068, 2022.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B.,
Radford, A., Amodei, D., Christiano, P., and Irving,
G. Fine-tuning language models from human prefer-
ences. ArXiv, abs/1909.08593, 2019.



A Model Hyperparameters

See table 4 for a full list of hyperparameters across all types of model training. In particular, we find a
large batch size to be crucial for PPO. The KL coefficient can be relaxed for HH training but is important
for summarizations. Additionally, scaling the reward by a running standard deviation estimate provides a
small boost.

SFT RM PPO

lr 5E-5 5E-6 5E-6
bs 64 64 256
Layers frozen N/A 50% 8
reward normalization N/A N/A scaling
Target KL N/A N/A 6
λ (GAE) N/A N/A 0.95
γ (discount) N/A N/A 1
Mini-batch normalization N/A N/A True
PPO epochs N/A N/A 4
KL coefficient N/A N/A 0.01

Table 4: Training hparams.

B LM Eval Results

A full list of scores for all HH models on considered lm-eval benchmarks can be found in table 5. Note
how, similarly to findings by InstructGPT, SFT models perform poorly. In contrast, pure RL fine-tuning
negligibly impacts benchmark scores.

Model HellaSwag LAMBADA ARC Easy ARC Challenge OpenBookQA TriviaQA
Pythia 160M
Vanilla

0.294 0.248 0.451 0.203 0.172 0.011

Pythia 160M SFT 0.291 0.215 0.453 0.206 0.17 0.013
Pythia 160M PPO 0.292 0.218 0.454 0.209 0.162 0.013
Pythia 160M ILQL 0.292 0.217 0.455 0.205 0.167 0.015
Pythia 1.4B Vanilla 0.402 0.458 0.581 0.265 0.198 0.048
Pythia 1.4B SFT 0.374 0.344 0.547 0.255 0.192 0.016
Pythia 1.4B PPO 0.369 0.360 0.543 0.257 0.196 0.011
Pythia 1.4B ILQL 0.392 0.439 0.563 0.255 0.189 0.015
Pythia 6.9B Vanilla 0.488 0.564 0.667 0.319 0.252 0.151
Pythia 6.9B SFT 0.432 0.398 0.606 0.309 0.236 0.027
Pythia 6.9B PPO 0.421 0.409 0.619 0.291 0.25 0.030
Pythia 6.9B ILQL 0.469 0.557 0.654 0.301 0.250 0.149
Pythia 6.9B
Vanilla-PPO

0.495 0.605 0.670 0.312 0.28 0.149

GPT-NeoX 20B
Vanilla

0.535 0.72 0.723 0.38 0.29 0.259

GPT-NeoX 20B
SFT

0.462 0.505 0.664 0.343 0.252 0.041

GPT-NeoX 20B
PPO

0.463 0.529 0.666 0.347 0.256 0.037

GPT-NeoX 20B
ILQL

0.541 0.709 0.720 0.375 0.294 0.251

GPT-NeoX 20B
Vanilla-PPO

0.548 0.618 0.731 0.383 0.3 0.227

Table 5: Table of results from the lm-eval-harness

C Annotator Instructions

Link to annotator instructions here. They are also displayed in fig. 8 for convenience.

https://docs.google.com/document/d/1R8RTZPClxe_4MwXX4B_BgcFgnbv1ynjZatVr3c7YmUo/edit?usp=sharing


Annotation Guidelines:

Task: You will be shown a prompt to a language assistant and two possible responses
to the prompt: A and B. You will choose between response A and response B which is
overall the most helpful response to the prompt. Sometimes you will be asked to explain
your reasoning for this choice.

Helpfulness
A helpful response:
● Is easily understandable by the reader
● Stays on topic with the user’s intention
● Is straightforward and to the point
● Provides a satisfying response to the reader

You will also rate helpfulness on a scale of 1-5. Additionally for both responses you will
rate on a scale of 1-5 the correctness of the response and the potential harmfulness of
the response. Note: If the user’s intention is to request something harmful, then
harmfulness SHOULD NOT affect one’s choice between A and B for Helpfulness,
because that response is “helpful” to the user.

Drafts of definitions adapted from InstructGPT Doc:

Correctness
A correct response:
● Contains accurate facts
● Doesn’t contain any inaccurate facts
● Doesn’t mislead the user
● Doesn’t invent spurious details
● If the input prompt contains incorrect facts, the model refutes or corrects the
prompt facts and refuses to answer the question.

Harmful
A harmful response, in and of itself, or if taken into action, includes any of the following:
● Could cause cause physical, psychological, or social harm to people
● Could cause damage or loss of equipment or property
● Could harm the environment
● Could harm institutions or resources necessary to human wellbeing, such as
schools, governments, medicine, electricity, etc.

● Denigrates members of groups, or uses prejudicial terms against groups



Figure 8: Annotator instructions for Helpful and Harmless QA dialogue.



D Synthetic Reward Modeling

We conducted an additional series of experiments attempting to augment/supplant helpful reward modeling
using human preference data collected by Anthropic with synthetic data generated via LLMs. In particular,
we consider two ways of generating synthetic preference data:

1. Use a strong instruction tuned model (i.e. text-davinci-003) to choose between two candidate
responses generated by an LLM.

2. Assume that larger models supervised fine-tuned to be helpful give more preferable responses
compared to smaller models conditioned on the same prompt. This defines a partial ordering on
responses via model size.

To validate the efficacy of the first approach, we evaluate the accuracy of GPT-NeoX-20B (Black et al.,
2022), text-davinci-002 , and text-davinci-003 as classifiers on the helpful split of the HH test set.
The results are reported in table 6. We find even the best available RLHF model, text-davinici-003,
gets 0.64 accuracy. This is relatively poor compared to our best 0.71 accuracy GPT-J RM, but still
potentially good enough to do synthetic RLHF.

Constructing a synthetic dialogue dataset To construct our training set, we first few-shot prompt
text-davinci-003 with samples from the helpful HH train set to produce a set of over 150k synthetic
prompts a human may ask of an AI assistant. We sample at a high temperature (T=1.4) to maximize
diversity and filter out low quality responses by prompting GPT-NeoX-20B to judge whether or not
the generated request is plausible. We additionally filter out repetitive/semantically similar responses
by embedding each response with GPT-J. The result is a dataset of around 60k highly diverse prompts.
We then prompt text-davinci-003 to respond to these generated prompts and repeat the process to
synthetically generate two full turns of interactive dialogue giving around 120k samples total. See table 7
for a synthetic prompt and model responses across different size models.

Next, we supervise fine-tune models of sizes 125M-20B on a 20k size subset of our synthetic dialog
dataset. The same hyperparameters are used as elsewhere in teh paper. We then sample each model
for responses on the entire dataset, as well as text-davinci-002. We then use text-davinci-003 to
determine preference over responses from text-davinci-002 and text-davinci-003. To avoid any
ordering bias, we randomize the order of model responses when presented to text-davinci-003, as
done in (Bai et al., 2022b). Surprisingly, we find text-davinci-003 prefers itself only 58% of the time,
suggesting its impartiality as a judge. This defines our first synthetic preference dataset.

We can construct our second synthetic preference dataset using the second method described above:
by ordering model responses according to model size. Specifically, this gives us the preference ordering
125M < 1.4B < 6.9B < 20B < text-davinci-002 < text-davinci-003. We can then train reward
models of various sizes using this synthetic dataset. The overall accuracies of these models on a test split
as a function of the number of training samples is plotted in fig. 9. Additionally, we plot the accuracy
across RM model sizes at predicting preferences between each category of model size comparisons (e.g.
choosing the 6.9B response over the 125M response). These results are reported in Figure

Overall we find the best RM model, 6.9B, does a very good job at correctly picking the more preferable
response with over 90% accuracy. However, it’s unclear how well our size-ordered preference modeling
assumption translates to a useful RM. To test this, we evaluate the 6.9B RM on the helpful HH test split.
The result is a relatively poor score of 0.61. In contrast, we find the best GPT-J HH RM convincingly
generalizes to this synthetic dataset with a score of 0.78.



Figure 9: Accuracies of size ordered synthetic preference RMs as a function of training data size. We see the 20B is
most sample efficient until 120,000 samples, at which point the 6B model does slightly better.

Figure 10: Accuracies of size ordered synthetic preference RMs on fine-grained categories of model size com-
parisons (e.g. choosing a 6.9B vs. a 125M response). We see some comparisons are very easy, e.g. 125M vs.
text-davinci-003, whereas others are much harder.



Zero-shot accuracy One-shot accuracy

GPT-NeoX-20B 0.55 0.57
text-davinci-002 0.61 0.63
text-davinici-003 0.63 0.64
GPT-J RM 0.71 N/A

Table 6: Accuracies of LLMs as zero-shot and few-sho helpfulness classifiers on the helpful split of Anthropic’s HH
dataset.



Synthetic dialog

Human: What is the proper technique for playing the guitar.
Assistant: The proper technique for playing the guitar involves
mastering proper hand and body posture, learning to hold the
pick correctly, learning basic chords, scales, and music theory,
and getting in the habit of regularly practicing. Human:I’m
feeling a bit overwhelmed–could you break down the steps
more? Assistant:

text-davinci-003 response

Absolutely. The first step is mastering proper hand and body
posture for holding the guitar. It’s important to maintain a good
posture in order to prevent fatigue and make sure your hand
muscles remain nimble and rested. Then, you’ll need to work
on specific lead exercises, like frailing or ‘down-up‘ picking.
This will help your fingers stay strong, fast and dexterous for
chords and solos. Additionally, it’s essential to learn about basic
chords, chords progression, scales and music theory as that
knowledge underpins almost every piece of guitar music. Lastly,
consistently practicing will build your technique and, of course,
strengthen your skills, stay sharp, and improve your tone.

text-davinici-002 response
1. Master proper hand and body posture. 2. Learn to hold the
pick correctly. 3. Learn basic chords, scales, and music theory.
4. Practice regularly.

GPT-NeoX-20B response

Absolutely. First, it’s helpful to get comfortable with a pick
and know where it should be stored. Next, you should make
sure you use the right posture for playing the guitar. This
can be achieved through stretching before playing, or using an
instructional program after playing. After that’s done, you will
need to learn some basics of chords. And last but not the least,
find ways to regularly get in practice. Does have an easier time
understanding what you mean?

Pythia 6.9B response

Certainly, I can! Step 1: Familiarize yourself with the parts of
the guitar. Step 2: Set a realistic goal for the project and step 3:
Find the right materials. Step 4: Start building your first album.
Step 5: Don’t worry if you don’t have all the instruments and
need the help to get started.

Pythia 1.4B response

Absolutely! First, it’s important to have a good eye-in-air po-
sition during which the end of the pick stands at you, rather
than leaning at either shoulder and your back. Then begin by
learning a few chord progressions, such as major, minor, and
major and minor. In the process, use shifts and fingerings and
practice using scales and arpeggios to create a better melodic
or harmonic feel. Finally, use practice and repetition to solidify
your skills in general chords.

Pythia 125M response
Practicing is key, when you can make more on your practice
day as well as taking the proper stance. Is there anything I can
help you with?

Table 7: An example of a synthetically generated multi-turn dialog and responses from different model sizes.


