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ABSTRACT

Incremental learning aims to continuously acquire new knowledge while preserving
previously learned information. Existing literature primarily focuses on improving
model stability, often at the cost of plasticity, to prevent the forgetting of earlier
tasks. In this paper, we argue that inter-task differences are the primary driver of
catastrophic forgetting. To address this challenge, we propose a novel network
architecture compromising two distinct components: one dedicated to learning
invariant features shared across tasks and another for capturing task-specific details.
Specifically, we repurpose adapters, originally introduced for parameter-efficient
fine-tuning, as feature modifiers to capture task-specific details, while the backbone
network focuses on learning invariant features. Unlike prior approaches that keep
the backbone frozen and only fine-tune adapters, we co-train both the backbone
network and adapters, employing an additional regularization term that encourages
the backbone to learn shared features. Our approach integrates seamlessly with
established methods, such as Learning without Forgetting (LwF). Extensive experi-
ments on CIFAR-100 and ImageNet datasets demonstrate that our adapter-based
methods consistently outperform non-adapter counterparts across diverse learning
scenarios, including various task orders and data scales. Our approach improves
both plasticity and stability, effectively addressing the stability-plasticity dilemma.

1 INTRODUCTION

Real-world data often arrive in a sequential manner, in batches, or through periodic updates. These
data dynamics are further complicated by constraints such as limited storage capacity and privacy
considerations. In such contexts, employing concurrent or multitask learning, where models are
trained on a single, static, large dataset, can be costly or impractical. Incremental learning (IL), also
known as lifelong learning, is specifically designed to handle these dynamic environments. This
paradigm allows a model to continuously learn and update its knowledge from new data without
retraining from scratch. Unlike traditional methods that require access to the entire dataset for training,
incremental learning enables the model to adapt to new tasks over time using only the data provided
for each new task while retaining knowledge from previous tasks.

Feature extraction and fine-tuning are two common approaches for learning new tasks without
accessing previous training data. In feature extraction, the weights of a pre-trained model are kept
fixed, and the outputs of the top layer are used as features for the new task (Donahue et al., [2014;
Belouadah & Popescu,[2018). While this approach helps maintain existing knowledge, it may struggle
to effectively learn new tasks. Fine-tuning improves upon feature extraction by updating the model
weights for the new task. A low learning rate is typically used to ensure the model retains the
structure and knowledge from previous tasks (Girshick et al.| 2014). While this approach enables
better adaptation to new tasks, it carries the risk of catastrophic forgetting, where performance on
previously learned tasks deteriorates rapidly (Goodfellow et al., 2013; McCloskey & Cohenl [1989).
Forgetting occurs when the task-specific weights of the previous tasks are altered to accommodate
new tasks. These methods may not fully address the challenges of incremental learning, which
requires balancing the preservation of existing knowledge with the acquisition of new skills.

An ideal incremental learning algorithm should at least possess the following key properties: efficient
memory usage and stability-plasticity balance. First, the algorithm should optimize memory usage,
preserving no or only essential data points from previous tasks. This may reflect realistic scenarios
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where data might be transient or unavailable due to privacy or memory constraints. Second, it
should maintain a balance between stability (retaining past knowledge) and plasticity (learning
new information), avoiding catastrophic forgetting (losing old knowledge when learning new data).
Balancing stability and plasticity is a fundamental challenge in incremental learning, often referred to
as the stability-plasticity dilemma (Mermillod et al., [2013]).

Existing research in incremental learning primarily focuses on mitigating catastrophic forgetting by
improving stability at the expense of plasticity. One popular approach is to directly regularize weight
changes (Kirkpatrick et al., [2017; Zenke et al., 2017} |Aljundi et al., 2018) or to limit divergence in
output predictions, between the old and new models (Li & Hoiem, 2017; Dhar et al.,[2019)). This
strategy can be extended by incorporating data retained from previous tasks, which further prevents
forgetting by replaying some of the prior knowledge (Chaudhry et al., 2018; Rebuffi et al., 2017}
Zhang et al.,|2020b). However, enhancing stability often hurts plasticity. Few works simultaneously
improve stability and plasticity.

Contribution In this paper, we argue that the inter-task differences contribute to catastrophic
forgetting and propose to model these differences. Specifically, we propose a network design
consisting of two blocks: a backbone network for learning invariant features across all tasks and
many small networks for modeling task-specific knowledge. Specifically, we use adapters, originally
introduced for parameter-efficient fine-tuning of large language models (Houlsby et al.| 2019), as these
small networks to capture the task-specific information. Our approach differs from the conventional
use of adapters, which are typically added to a frozen network to attain comparable performance
to full fine-tuning. Instead, we re-purpose adapters as feature modifiers and train them together.
This strategy enables the adapters to encapsulate task-specific information in the layers closer to the
output, while squeezing task-invariant knowledge into layers nearer the input. Our approach can be
integrated with many existing methods such as EWC and LwF. Our empirical results demonstrate that
various adapter-assisted methods consistently outperform non-adapter counterparts along the learning
process, ranging from regularization-based to rehearsal-based approaches, across both CIFAR-100
and ImageNet datasets. The advantage remains robust among dataset choices, task scales, and task
orderings. Our approach improves both plasticity and stability, eliminating the stability-plasticity
dilemma.

2 RELATED WORK

This section reviews works that are closely related to ours.

Multi-task Learning Multi-task learning involves training on all tasks simultaneously, leveraging
shared network parameters to exploit inter-task commonalities, in contrast to incremental learning
(Caruanal |1997; Ruder], [2017). However, multi-task learning can be costly or impractical due to
the substantial computational burden of training on large datasets, alongside challenges such as
limited storage capacity and privacy concerns (Kendall et al., |2018). These limitations highlight the
importance of incremental learning as a critical area of research.

Incremental Learning Incremental learning involves learning tasks sequentially. However, this
approach is susceptible to catastrophic forgetting, where learning new tasks can overwrite previously
acquired knowledge (McCloskey & Cohen,|1989). To address this challenge, three primary strategies
are commonly employed: regularization-based, rehearsal-based, and parameter-isolation methods.
Regularization-based methods mitigate forgetting by regularizing differences in weights or output
predictions between the old and new models (Kirkpatrick et al.l2017; Zenke et al., 2017} |Aljundi
et al.| 2018} L1 & Hoiem), [2017; |[Dhar et al., 2019} Joseph et al.,|2022). Rehearsal-based methods
preserve prior knowledge by retaining instances from previous tasks and training on a combined
dataset that includes these instances alongside data from the new task. This retained data may consist
of exemplar images (Rebuffi et al.| |2017; (Chaudhry et al., 2018]), publicly available external datasets
(Lee et al.| 2019; [Zhang et al., 2020b), or synthetic data generated by generative models (Shin et al.,
2017; Kemker & Kanan, [2017} [He et al., 2018)). Parameter-isolation methods improve stability by
freezing parameters that are critical to previously learned tasks (Mallya & Lazebnikl 2018} [Serra
et al.,[2018)).
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Figure 1: The model’s accuracy using LwF for incremental learning is evaluated on three different
CIFAR-100 task orderings: the standard alphabetical category ordering, the coarse grained ordering,
and a random ordering with the fixed seed 1993 used by iCaRL (Rebuffi et al., 2017). The coarse
grained ordering has more inter-task diversity.

While each of the aforementioned strategies has its strengths, they also present notable limitations.
Regularization-based and parameter-isolation approaches improve model stability but often com-
promise plasticity, and rehearsal-based methods encounter practical challenges, including storage
constraints, privacy concerns, and scalability issues. Recent research has proposed adapter-based
methods to address catastrophic forgetting(Rajasegaran et al.| 2020; [Bhat et al.,2023; Pham et al.,
20215 [Wang et al., 2022} [Liang & Li,[2024;|Zhang et al.,[2020a). Some of these works incorporate
adapter-like subnets. However, they are limited in several ways: 1) freezing the backbone (Liang
& Lil 2024; [Zhang et al) 2020a) can negatively impact performance as the shared information
can not be learned effectively; 2) relying on custom, complex loss functions (Liang & Li, [2024;
Bhat et al.| 2023) reduces compatibility with new algorithms and limits broader applicability; and
3) none incorporates regularization- or prediction-based approaches. By focusing exclusively on
network architecture, these methods fail to leverage valuable insights from robust yet foundational
baselines such as Learning without Forgetting (L1 & Hoiem), 2017). To address these shortcomings,
we propose leveraging adapters to develop a lightweight and compatible solution that combines
strong performance with insights from both adapter design and algorithmic principles.

Fine-tuning with adapters Another line of research explores the potential of adapters for trans-
ferring knowledge to downstream tasks, particularly within large language models. Adapters are
compact modules inserted between the layers of a pre-trained large model (Houlsby et al., [2019).
These modules are typically fine-tuned while the original network remains frozen. Fine-tuning with
adapters achieves performance comparable to full fine-tuning across diverse tasks (L1 & Liang), [2021)).
Moreover, adapters facilitate rapid adaptation to new tasks without catastrophic forgetting (Pfeiffer
et al.| 2020a)), addressing challenges in multi-domain (Chronopoulou et al.,[2023; |Asai et al., 2022)
and multilingual settings (Pfeiffer et al., |2020b).

3 INCREMENTAL LEARNING WITH TASK-SPECIFIC ADAPTERS

This section highlights a key limitation of current knowledge distillation methods for incremental
learning and introduces adapters as feature modifiers to model inter-task differences.

3.1 WHAT IS MISSING IN REGULARIZATION-BASED METHODS?

A key limitation of regularization-based methods is their susceptibility to the stability-plasticity
dilemma. Specifically, anchoring the model to its performance on prior tasks limits its plasticity
in learning new tasks, while relaxing the regularization leads to catastrophic forgetting. This issue
becomes more pronounced with greater inter-task diversity in the incremental learning problem.
Variations in inter-task diversity can be introduced through different task orderings.

Figure[T]examines the impact of task orderings on the classification performance of the LwF algorithm
applied to CIFAR-100. In this scenario, the model is incrementally trained with 10 classes per task
over a total of 10 tasks. Three different task orderings are evaluated: an alphabetical class ordering, a
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Figure 2: Architecture of the adapter and a comparison highlighting the distinctions in its implementa-
tion between traditional fine-tuning and our method. Left: an adapter consists of the down-projection,
the nonlinear transformation, up-projection, and skip-connection. Right: The key difference between
traditional use of adapter and ours is that we allow adapters to be co-trained with the entire network
when learning a new task.

random ordering with a fixed seed commonly used by iCaRL and other methods (Rebuffi et al.|[2017}
Zhang et al., 2020b), and a coarse grained ordering that groups similar classes within each task based
on CIFAR-100’s 20 coarse categories.

The coarse grained ordering has greater inter-task diversity, providing a way to assess how increased
inter-task differences affect the incremental learning algorithm. Notably, when classes are learned in
a coarse-grained ordering, there is a significant increase in both forgetting and accuracy loss for each
task compared to other orderings. This increased forgetting and accuracy decline can be attributed
to the stability-plasticity dilemma of the LwF algorithm when confronted with greater inter-task
diversity.

Therefore, there is a need to develop new strategies that can eliminate the stability-plasticity dilemma
of regularization-based approaches, enabling them to learn new tasks without forgetting.

3.2 INTRODUCING ADAPTERS

In this section, we propose a network architecture comprising two distinct components: a backbone
network for learning invariant features shared across all tasks and multiple lightweight adapters for
capturing task-specific information. These adapters enhance the plasticity of the architecture, enabling
it to adapt to new tasks, while the backbone network maintains stability by focusing on shared and
invariant features. Unlike existing approaches that train adapters while keeping the backbone frozen,
we use adapters as task-specific feature modifiers and co-train them alongside the backbone network.
As the model trains on additional tasks and samples, the backbone network refines its ability to learn
invariant features, further enhancing stability. This architectural design improves both stability and
plasticity, effectively eliminating the stability-plasticity dilemma.

The adapters are positioned between the backbone feature extractor, denoted as ¢, and the label
predictor layer, serving as task-specific feature modifiers 3¢ for each task ¢. As illustrated in Figure
the adapters adopt a conventional bottleneck structure. Starting with an initial dimension d and a
bottleneck width b, we design the down-projection layer to reduce dimensionality from d to b using a
fully-connected neural network with a weight matrix W 4« and a non-linear activation function g,
expressed as

Downdﬁb(x) =g (dexb) .
Similarly, the up-projection layer is defined as
Uppa(X) = g (xWpxa) -

Our adapters consist of both a down-projection and an up-projection step and are connected to
the output via a skip-connection (He et al., [2021). This bottleneck design allows the adapter to
utilize both backbone features from ¢(z) and the modified features processed through the down- and
up-projection layers:

B'(¢()) = @(x) + Up},q (Downg .y, (#(x))) -
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Our adapter module incorporates three key features specifically designed for incremental learning: (i)
a compact design with a small number of parameters; (ii) compatibility with and enhancements over
existing methods; and (iii) the simultaneous updating of feature extractor layers and adapters. The
compact design addresses memory constraints, while the latter two features jointly improve stability
and plasticity.

For (i), our method leverages adapters to control the growth rate of the overall model size when ac-
commodating additional tasks. When applied to large backbone networks, the parameters introduced
by the adapters are negligible, making our approach well-suited for models with memory constraints.
This contrasts with strategies that rely on dynamically expanding networks (Yoon et al.,|2017} |Yan
et al.l [2021)).

For (ii) and (iii), we address the stability-plasticity dilemma through a novel two-block design and
their co-training. Specifically, adapters are trained to enhance plasticity, while the continuous training
of backbone networks focuses on improving invariant feature learning, thereby further enhancing
stability. Such a distinction is particularly challenging in traditional, non-adapter architectures, as
their holistic design inherently exacerbates the stability-plasticity dilemma.

Lastly, to enforce that the backbone network learns invariant features and thus the adapters learn
task-specific information, we develop method-specific regularization techniques. For the prediction-
regularized methods such as LwF, we impose a knowledge distillation loss on the backbone, encour-
aging the backbone is similar before and after learning each new task. For the weight-regularized
methods such as EWC, we free adapters from regularization. The approaches and designs are
discussed in the following section in detail.

3.2.1 ENFORCING INVARIANT FEATURE LEARNING IN THE BACKBONE

We perform necessary modifications to the incremental learning methods so that the adapters can fit
them and perform well. This section presents the adjustments for such integrations with different
regularization methods.

Prediction-regularized Methods The prediction-regularized methods attempt to address the
stability-plasticity dilemma through model distillation instead of weight control. Algorithms such as
LwF and Learning without Memorizing (LWM) (Dhar et al.,|2019) fall into this category. Additional
to the task loss, the model outputs at task ¢ are regularized with the model outputs at all tasks ¢’ where
1 <t < t,i.e. adistillation loss:

LY = 1"(0) + Adisin Rlisen

= 0"(0) + Adistin § M (‘pt,(x)’ wt(x)>

t'=1

where M is a metric that quantifies the similarities between the adapter outputs, such as the cosine
similarity or cross entrop , and Agigin 1S a hyperparameter

This regularization method loosens the stability restriction of the network by distilling instead of
direct controlling model parameters. It allows the model to search for an optimal solution in a larger
parameter space. However, while we anticipate the adapter and the backbone model to capture the
task-specific and task-invariant information respectively, this distillation constraint neither gives the
adapters absolute freedom to the parameter search space nor poses a strong restriction for backbone
task-invariance. The former cannot be done since adapters are involved in the forward pass and
the computation of the distillation loss, and is arguably not a big deal due to that the restriction
is already-loosen compared to the weight-regularized methods. Addressing the latter problem, we
introduce an additional backbone regularization:

t—1
R, = Z M (Lineardm(apt (x)),Linearch(wt(x))) ,
=1
where ¢ < d is a dimension we reduce to. In practical, we choose c to be the number of classes of
each task, as intuitively we make this regularization implicitly a direct distillation on backbones.

"Following previous works, we use the cross entropy loss as the metric.
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Hence, to learn a new task ¢, we define a loss function that includes the task loss, the distillation term,
and the backbone regularizer to align backbones across tasks to improve stability:

L = £:(0) + Adistin Riisan + Ao R, M

where ), is the hyperparameter for the backbone regularizer. The parameter Agigi; aims to balance
retaining prior knowledge with adapting to new tasks during the incremental learning process,
while A, controls the direction regularization to the backbone across tasks. We apply this adapter
regularization on LwF as it is a prediction-regularized method and, in our experience, it is among the
most effective methods for incremental learning tasks.

Weight-regularized Methods The weight-regularized methods control and regularize the weights
of each task. Taking Elastic Weight Consolidation (EWC) (Kirkpatrick et al.,|2017), a noteworthy
representative of such methods, as an example, £, the loss at task ¢ can be computed by the task loss
and an additional term for regularizing each parameter:

t—1
A .
Lh=00)+> > SFi0: — 52

t=1 i
where 6 is the model parameter and F; is the Fisher information matrix at each parameter 7.

The regularization itself enables the stability of the entire network. In order to improve the plasticity,
we attempt to control the backbone’s weight only so that the adapters remain unregularized and thus
are able to move freely for parameter exploration. Hence, the integration of adapters to such methods
is achieved by ruling out the adapter parameters from regularization, i.e. ¢ & 0,:

t—1
A .
Lr=00)+> > SFi6: — 52

t'=1ig0,

This modification is applicable to all the weight-regularized methods, as long as they involve
parameter-level consolidation. Methods such as Memory Aware Synapses (MAS) (Aljundi et al.|
2018)) and Path Integral (Path Integral) (Zenke et al.,[2017) fall into this category and thus apply the
above-mentioned adjustments to align with adapters.

4 EXPERIMENTS

In this section, we compare our framework on various methods to their counterparts that are not using
adapters. We investigate impact of adapters on different settings, including different method types,
task scales, task orderings and datasets.

4.1 EXPERIMENTAL SETUP

Datasets We compare the peformance of different methods on two datasets: CIFAR-100
(Krizhevsky et al., |2009) and ImageNet (Russakovsky et al., 2015). CIFAR-100 consists of im-
ages with small resolutions (input sizes of 32 x 32 x 3) and serves as our primary focus for studying
the impact of adapters across different settings. We also include ImageNet, which offers more
diverse training images at higher resolutions (224 x 224 x 3). To mitigate training time and resource
constraints, we limit our analysis to the first 100 classes from ImageNet. Dataset statistics are
summarized in Appendix

To ensure a fair comparison, we perform hyperparameter tuning and learning rate selection on a
validation set (Masana et al.,[2022). The validation set is a class-balanced split, compromising 10%
samples from the original training dataset, while the remaining 90% serves as our training dataset.
Details on the hyperparameter tuning and learning rate selection can be found in Appendix[A.2] and
the selection of adapter-specific hyperparameters is explained in Section [4.2]

Network architectures Following (De Lange et al., 2022; Hou et al [2019), we employ two
different models for the two datasets. For CIFAR-100, which contains small-resolution images, we
use ResNet-34. For ImageNet, with larger-resolution images, we use ResNet-18, as suggested in (He
et al.,[2016).
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Figure 3: The average accuracy for regularization-based methods with or without adapters on CIFAR-
100 (alphabetical ordering) in task-IL. The solid line represents the results with adapter, while the
dashed line represents the results without adapter. The left figure displays the performance with
weight regularization (EWC, MAS, and Path Integral), and the right figure displays the performance
with prediction regularization (LwF and LwM).

Evaluation metrics Two evaluation protocols are commonly used in incremental learning: task
incremental learning (task-IL) and class incremental learning (class-IL). Task-IL evaluates the network
in a multi-head setting, utilizing a task-ID oracle to determine the appropriate task-specific head at
the inference time. In task-IL, the model does not need to differentiate between classes from different
tasks. In contrast, class-IL presents a more practical yet challenging scenario where the model must
make predictions across all learned classes within a single-head configuration. This requires the
model to resolve confusion arising from different tasks. In this section, we focus on task-IL with
task-ID information at the inference time , while results for class-IL are included in Appendix B}

To compare the overall learning process across different methods, we use the average accuracy at
each task ¢, denoted by A; = % ZiT:1 a;, and ay i, is the accuracy evaluated on task £ after training

on task ¢. To ensure reliable and consistent results, we report the averaged results over 10 runs with
different random seeds for both CIFAR-100 and ImageNet.

4.2 EXPERIMENTAL RESULTS

On regularization-based methods In this section, we study the effect of adapters combined with
various weight-regularized methods in incremental learning, including Elastic Weight Consolidatio
EWC (Kirkpatrick et al.,[2017), Memory Aware Synapses (MAS) (Aljundi et al., 2018)), Path Integral
(Pathlnt) (Zenke et al.,[2017)), as well as prediction-regularized methods such as Learning without
Forgetting (LwF) (Li & Hoiem| 2017) and Learning without Memorizing (LwM) (Dhar et al., 2019).

Figure 3| compares different methods with and without adapters in task-IL. on CIFAR-100. From the
first task onward, weight-regularized methods with adapters exhibit an approximate 3% increase in
average accuracy compared to those without adapters. This improvement is consistently maintained
throughout the learning process across all methods. For prediction-regularized methods, the accuracy
advantage further escalates to as much as 5%. The observed increase in accuracy can be primarily
attributed to the model’s improved plasticity to learn new task-specific knowledge through the use of
adapters, while the backbone was continuously trained as well.

On task scale This paragraph examines the effect of the task scale. The benefits of utilizing adapters
diminish as the number of classes increases within each task. As illustrated in Figure ] when learning
either 5 or 10 classes simultaneously, our adapter-based approach continues to effectively capture
inter-task differences and significantly outperforms methods without adapters. However, while the
advantages are still present, they become less pronounced as the number of classes per task increases.
This reduction in the performance margin is understandable, as learning more classes per task not
only provides more data for the model to learn but also requires more memory and storage, with fewer
regime shifts. In the extreme case, when the number of classes per task reaches 100, incremental
learning reduces to a multi-task learning problem.

On task ordering As discussed in Section and by Masana et al.| (2020), the impact of task or-
derings on the performance of incremental learning models is often overlooked. While regularization-
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Figure 4: The average accuracy for EWC and LwF with learning 5, 10, and 20 classes at a time on
CIFAR-100 (alphabetical ordering) in task-IL.
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Figure 5: The average accuracy for regularization-based methods with or without adapters on different
orderings of CIFAR-100 in task-IL. The upper two figures present the experimental results on the
coarse ordering, and the lower two are on the iCaRL ordering. The solid line represents the results
with adapter, while the dashed line represents the results without adapter.

based methods suffer from the stability-plasticity dilemma, the introduction of adapters improves
both stability and plasticity. This resolution of the stability-plasticity dilemma is attributed to the fact
that task-specific knowledge is effectively captured by the adapters, while the backbone continuously
learns invariant knowledge. Since all prior experiments discussed in this section were conducted
using the CIFAR-100 alphabetical ordering, we have further evaluated all methods using additional
orderings, specifically the coarse-grained ordering and the iCaRL ordering.

As shown in Figure 5] methods with adapters are indeed influenced by the varying difficulties
associated with different orderings. Although the advantage persists, it diminishes to approximately
1% in some cases. Nonetheless, a general superiority remains evident, as most methods maintain
a 3% margin over their non-adapter counterparts across all orderings. In every ordering scenario,
adapters consistently exhibit the best overall performance in incremental learning.

On Imagenet This section evaluates our method’s performance across larger domain shifts by
assessing its performance on ImageNet-Subset, a significantly larger dataset compared to CIFAR-100.

Our method faces certain limitations when applied to ImageNet, as selecting adapter hyperparameters
becomes prohibitively expensive on such a large dataset with an average of 10 seeds, which led us
to apply the CIFAR-100 hyperparameter setting directly to ImageNet. Additionally, the use of task-
specific adapters slows down the generalization process compared to their non-adaptor counterparts.
This slowdown occurs because non-adapter methods do not distinguish between task-sharing and
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Method Task 2 Task3 Task4 TaskS Task6 Task7 Task8 Task9 Task 10

MAS 80.4 73.6 74.4 71.3 72.8 72.9 73.5 72.1 72.7
EWC 80.3 74.6 72.0 67.8 63.2 63.9 63.6 61.4 60.8
PathInt 53.9 38.5 33.7 30.4 28.7 29.0 28.9 28.2 27.1
LwF 82.6 1.7 76.8 75.2 73.9 73.7 72.3 70.0 68.2
LwM 81.8 76.3 74.3 70.9 68.4 66.2 64.0 60.3 58.0

MAS-A 80.0 73.6 74.0 72.2 73.3 74.6 75.0 74.2 74.2
EWC-A 76.0 67.7 68.0 67.3 67.2 68.3 67.3 65.7 65.3
PathInt-A  76.9 68.3 67.3 65.4 65.5 67.1 67.1 65.0 65.0
LwF-A 83.8 79.8 78.3 76.2 74.2 73.0 71.6 69.0 67.2
LwM-A 82.8 75.9 73.9 70.6 67.8 65.9 63.2 59.4 56.9

Table 1: The average accuracy for regularization-based methods with or without adapters on ImageNet
subset in task-IL. Methods without the ”-A” suffix represent the baseline, while those with the suffix
include adapters. Following experiments conducted on CIFAR-100 in Section[d.2] these adapters are
configured with bottleneck width 128.

task-specific patterns and thus are less impacted on ImageNet, which we only run for 50 epochs as
mentioned in Appendix[A.2]

While we recommend a more comprehensive study involving careful hyperparameter selection and
extended training epochs, our current experimental results, as shown in Table[I] indicate that methods
with adapters yield the best performance across all incremental tasks. Even with the hyperparameters
from Section which are tuned using CIFAR-100 and may not be optimal, methods with adapters
still demonstrate non-trivial performance imoprovement.

On modern IL methods There is a growing body of incremental learning methods that incorporate
task-specific components. We conducted experiments to address two key questions: 1) Can adapters
be integrated with these methods, and does such integration further improve performance? 2) Does
our adapter integration and training paradigm outperform existing adapter-based methods? For the
first question, we integrate adapters with DualPrompt (Wang et al.| 2022) and iTAML (Rajasegaran
et al., |2020). For the second, we directly compare our approach with TAMiL (Bhat et al., 2023)
by aligning our setup with theirs. The experiment details can be found in Appendix [A] The results,
shown in Table 2] indicate that integrating adapters boosts the original frameworks’ performance by
more than 1%, and our method outperforms TAMiL, a counterpart that uses attention modules.

4.3 ABLATION STUDIES

The bottleneck width choice The choice of adapter bottleneck width is crucial to the model
performance. We selected EWC (Kirkpatrick et al.,[2017) and LwF (Li & Hoiem, |2017) as baseline
methods, due to their strong performance among weight-regularized and prediction-regularized
methods, respectively. As illustrated in Figure[6] adapters with a bottleneck width of 256 consistently
ranked among the top configurations.

Training with backbone frozen Various works propose adapter-like network architectures where
the backbone is frozen (Liang & Lil 2024; Zhang et al., 2020a). While our framework adapts the
backbone to capture task-invariant information and the adapters to capture task-specific information,
we hypothesize that freezing the backbone does not support incremental learning. This is because
the backbone still requires updates with new, task-inspecific knowledge, which may conflict with
the prior knowledge acquired during pre-training. To investigate this, we conduct experiments using
the LwF method, where both models are trained with adapters, but one freezes the backbone. Our
results, shown in Table 2} demonstrate that the co-trained model, which does not freeze the backbone,
outperforms the counterpart. This supports our hypothesis regarding the impact of freezing the
backbone.
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EWC Performance on Different Bottleneck Widths LwF Performance on Different Bottleneck Widths
—— ewc16 | g —— Iwf16
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2

Accuracy (%)
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Figure 6: The performance of EWC and LwF methods with different adapter bottleneck width choice
on the CIFAR-100 dataset (alphabetical ordering) in task-IL. The suffix 16/32/64/128/256
indicates the method implemented with width 16, 32, 64, 128, and 256, respectively.

Methods | Acc. Methods | Acc. Methods Acc. Methods Acc.
DualNet 88.2 iTAML 79.0 TAMIL 71.4 LwF-A 74.0
DualNet-A | 89.3 || iTAML-A | 80.1 || Adapter+LwF | 74.7 || Lwf-A-FtrB | 72.9

Table 2: From left to right: DualNet vs. DualNet+adapter, iTAML vs. iTAML+adapter, TAMiL
vs. Adapter+LwF (The best method-adapter pair we yielded), and Lwf-A (co-trained) vs. LwF-A
(Frozen Backbone). Test conducted on CIFAR-100, task-IL, top-1 accuracy averaged with 10 tasks
is reported.

5 CONCLUSION

In this paper, we propose a network design consisting of two blocks: a backbone network for learning
invariant features across all tasks and multiple adapters for modeling task-specific knowledge. The
backbone and adapters are co-trained continuously in an incremental learning framework. Our
extensive experiments conducted on CIFAR-100 and ImageNet, across various orderings and task
scales, show that introducing task-specific adapters consistently improves the performance of all
considered methods, and exhibits extensive compatibility with all of them. Consequently, we offer
an effective solution to resolve the stability-plasticity dilemma for incremental learning, and we
envision that future IL algorithms can be benefited from our work, a simple but effective integration
of adatpers.
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A IMPLEMENTATION DETAILS

We follow the framework FACIL (Masana et al., 2022), and code is implemented using Pytorch. We
apply SGD with momentum set to 0.9 and weight decay set to 0.0002. Gradient clipping is set to 1.0.

A.1 DATASETS

Table [3| presents a summary of the datasets used in the experiments. We apply data augmentation
to both datasets, including padding, cropping, input normalization, and random horizontal flipping.
Specifically, for CIFAR-100, we apply a padding of 4 pixels to each side of the image, followed by
random cropping to 32 x 32 for training purposes and center cropping for testing. For the ImageNet-
Subset, we resize the images to 256 x 256, then perform random cropping to 224 x 224 for training
and center cropping for testing.

A.2 LEARNING RATE SEARCH AND HYPERPARAMETER TUNING

We apply the Continual hyperparameter Framework (De Lange & Tuytelaars, 2021), a common
framework to select learning rates (LRs) and tune hyperparameters for methods of incremental
learning. The framework incorporates two phase: the Maximal Plasticity Search phase to search
LR with fine-tuning on the new task, and the Stability Decay phase to search for the optimal
hyperparameters.

For the Maximal Plasticity Search phase, we fine-tune the model on the new task and select the
optimal LR to achieve high plasticity. Specifically, we train the model from scratch for the first task
and apply LR search on {5e-1, le-1, 5e-2}. Starting from the second task, the LR search space is
limited to le-1, 5e-2, le-2, 5e-3, 1e-3}. LR decay is applied, with a decay factor of 3 and patience of
10 epochs. The stopping criteria is either the LR below le-4 or 100 epochs have passed.

For the Stability Decay phase, we fix the LR and select the hyperparameter starting from a high
value, with a gradual decay to achieve the optimal stability-plasticity trade-off. We start from a high
value of hyperparameter because this is close to freezing the network such that old knowledge is
preserved, and through gradual decay the model becomes less intransigence and slowly converges
towards higher forgetting, which would ultimately corresponds to fine-tuning of the previous phase.
Specifically, we reduce the hyperparameter value in half if the method accuracy is below the 95% of
the fine-tuning accuracy in the previous LR search phase.

Next, we present the starting values for hyperparameters across methods. Most of the methods
discussed in our paper are regularization-based approach, which include a hyperparameter A for the
regularizer that controls the trade-off between stability and plasticity. The starting values for A are
summarized in Table[5] For other method-specific parameters, we generally follow the corresponding
original work. For instance, we fix the temperature parameter as 2 for LwF. For Pathlnt, the dampling
parameter is set to 0.1. For LwM, the attention distillation parameter is set to 1 based on an empirical
evaluation in (Masana et al., 2022).
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| Datasets | #Train | # Validation | #Test | Inputsize [ Batch size |
CIFAR-100 45,000 5,000 10,000 32x32x3 128
ImageNet-Subset | 117,000 13,000 5,000 | 224 x 224 x 3 4

Table 3: Summary of datasets used. Both datasets contain 100 classes each.

Table 4: The average accuracy for regularization-based methods with or without adapters on ImageNet
subset in class-IL. Methods without the ”-A” suffix represent the baseline, while those with the suffix
include adapters. These adapters are configured with the same bottleneck width and number of layers
as those used in the CIFAR-100 experiments.

Method Task 2 Task3 Task4 Task5 Task6 Task7 Task8 Task9 Task 10

MAS 68.5 52.7 479 40.4 39.2 35.7 34.4 31.3 30.0
EWC 68.2 535 45.0 36.0 29.1 26.4 242 21.6 19.7
PathInt 41.5 22.7 15.9 11.8 9.5 8.0 7.2 6.3 53
LwF 69.7 571 51.0 44.3 38.6 33.1 29.7 26.4 244
LwM 66.1 50.9 44.7 36.2 29.3 23.3 20.2 17.3 15.0

MAS-A 66.4 51.8 46.6 40.4 38.0 35.0 342 319 30.1
EWC-A 62.1 45.1 39.0 33.9 30.7 28.0 26.4 23.6 22.0
PathInt-A  63.0 44.5 36.1 31.1 28.7 26.4 25.1 22.7 20.7
LwF-A 71.5 59.7 53.4 45.2 38.4 32.1 28.5 24.6 22.0
LwM-A 68.6 50.7 43.0 342 26.9 22.1 19.3 16.3 13.9

hyperparameter | EWC | MAS | Pathint | LwWF | LwF-reg | LwM
A 10,000 | 400 10 10 5+0.5 2

Table 5: Summary of hyperparameter to control the stability and plasticity used across regularization-
based methods. For the LWF with adapter and regularizations (LwF-reg), the two A’s (Agssti1, Ap)
are set to 5 and 0.5 respectively.

Due to computational cost constraints, we have adjusted the stopping criteria for the ImageNet Subset
to 50 epochs, rather than the previously mentioned 100. Additionally, we do not conduct LR searches
or tune hyperparameters for this dataset, and fix the LR at 0.01.

A.3 1TAML, TAMIL, AND DUALPROMPT

We implementd iTAML, TAMiL and DualPrompt with their default set of hyperparameters. Specifi-
cally,

* For iTAML, we run a ResNet 18 by 70 epochs with memory size 3000, u = 1, 5 = 2, and
r = 5. Learning rate is set to 0.01.

* For DualPrompt, we run a ViT-base-patch16-224 with G-prompt and E-prompt enabled.
The model is optimized with an adam optimizer with [ = 0.03. 2 epochs are run for each
task.

* For TAMiL, We run a ResNet 18 by 50 epochs. The learning rate is set to 0.03, and exemplar
size is set to 200. The seed is set to 10.

B CLASS-IL RESULTS

Figure[7]illustrates the average accuracy of all methods in the setup described in Section ??, specifi-
cally for class incremental learning (Class-IL). Figure 8] demonstrates the results across various task
scales, while Figure [9] presents the results based on different orderings. Table 4] provides the results
for ImageNet.
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Figure 7: The average accuracy for regularization-based methods with or without adapters on CIFAR-
100 (alphabetical ordering) in class-IL. The solid line represents the results with adapter, while the
dashed line represents the results without adapter. The left figure displays the performance with
weight regularization, and the right figure displays the performance with prediction regularization.
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Figure 8: The average accuracy for EWC and LwF with learning 5, 10, and 20 classes at a time on
CIFAR-100 (alphabetical ordering) in class-IL.
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Figure 9: The average accuracy for regularization-based methods with or without adapters on CIFAR-
100 (coarse ordering and iCaRL ordering) in class-IL. The solid line represents the results with
adapter, while the dashed line represents the results without adapter.
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