INCREMENTAL LEARNING WITH TASK-SPECIFIC ADAPTERS

Anonymous authors

003 004

010 011

012

013

014

015

016

017

018

019

021

025

026

027 028 029 Paper under double-blind review

ABSTRACT

Incremental learning aims to continuously acquire new knowledge while preserving previously learned information. Existing literature primarily focuses on improving model stability, often at the cost of plasticity, to prevent the forgetting of earlier tasks. In this paper, we argue that inter-task differences are the primary driver of catastrophic forgetting. To address this challenge, we propose a novel network architecture compromising two distinct components: one dedicated to learning invariant features shared across tasks and another for capturing task-specific details. Specifically, we repurpose adapters, originally introduced for parameter-efficient fine-tuning, as feature modifiers to capture task-specific details, while the backbone network focuses on learning invariant features. Unlike prior approaches that keep the backbone frozen and only fine-tune adapters, we co-train both the backbone network and adapters, employing an additional regularization term that encourages the backbone to learn shared features. Our approach integrates seamlessly with established methods, such as Learning without Forgetting (LwF). Extensive experiments on CIFAR-100 and ImageNet datasets demonstrate that our adapter-based methods consistently outperform non-adapter counterparts across diverse learning scenarios, including various task orders and data scales. Our approach improves both plasticity and stability, effectively addressing the stability-plasticity dilemma.

1 INTRODUCTION

Real-world data often arrive in a sequential manner, in batches, or through periodic updates. These
 data dynamics are further complicated by constraints such as limited storage capacity and privacy
 considerations. In such contexts, employing concurrent or multitask learning, where models are
 trained on a single, static, large dataset, can be costly or impractical. Incremental learning (IL), also
 known as lifelong learning, is specifically designed to handle these dynamic environments. This
 paradigm allows a model to continuously learn and update its knowledge from new data without
 retraining from scratch. Unlike traditional methods that require access to the entire dataset for training,
 incremental learning enables the model to adapt to new tasks over time using only the data provided
 for each new task while retaining knowledge from previous tasks.

040 Feature extraction and fine-tuning are two common approaches for learning new tasks without 041 accessing previous training data. In feature extraction, the weights of a pre-trained model are kept 042 fixed, and the outputs of the top layer are used as features for the new task (Donahue et al., 2014; 043 Belouadah & Popescu, 2018). While this approach helps maintain existing knowledge, it may struggle 044 to effectively learn new tasks. Fine-tuning improves upon feature extraction by updating the model weights for the new task. A low learning rate is typically used to ensure the model retains the structure and knowledge from previous tasks (Girshick et al., 2014). While this approach enables 046 better adaptation to new tasks, it carries the risk of *catastrophic forgetting*, where performance on 047 previously learned tasks deteriorates rapidly (Goodfellow et al., 2013; McCloskey & Cohen, 1989). 048 Forgetting occurs when the task-specific weights of the previous tasks are altered to accommodate new tasks. These methods may not fully address the challenges of incremental learning, which requires balancing the preservation of existing knowledge with the acquisition of new skills. 051

An ideal incremental learning algorithm should at least possess the following key properties: efficient
 memory usage and stability-plasticity balance. First, the algorithm should optimize memory usage,
 preserving no or only essential data points from previous tasks. This may reflect realistic scenarios

where data might be transient or unavailable due to privacy or memory constraints. Second, it
should maintain a balance between stability (retaining past knowledge) and plasticity (learning
new information), avoiding catastrophic forgetting (losing old knowledge when learning new data).
Balancing stability and plasticity is a fundamental challenge in incremental learning, often referred to
as the stability-plasticity dilemma (Mermillod et al., 2013).

Existing research in incremental learning primarily focuses on mitigating catastrophic forgetting by improving stability at the expense of plasticity. One popular approach is to directly regularize weight changes (Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi et al., 2018) or to limit divergence in output predictions, between the old and new models (Li & Hoiem, 2017; Dhar et al., 2019). This strategy can be extended by incorporating data retained from previous tasks, which further prevents forgetting by replaying some of the prior knowledge (Chaudhry et al., 2018; Rebuffi et al., 2017; Zhang et al., 2020b). However, enhancing stability often hurts plasticity. Few works simultaneously improve stability and plasticity.

067

068 **Contribution** In this paper, we argue that the inter-task differences contribute to catastrophic 069 forgetting and propose to model these differences. Specifically, we propose a network design consisting of two blocks: a backbone network for learning invariant features across all tasks and 070 many small networks for modeling task-specific knowledge. Specifically, we use adapters, originally 071 introduced for parameter-efficient fine-tuning of large language models (Houlsby et al., 2019), as these 072 small networks to capture the task-specific information. Our approach differs from the conventional 073 use of adapters, which are typically added to a frozen network to attain comparable performance 074 to full fine-tuning. Instead, we re-purpose adapters as feature modifiers and train them together. 075 This strategy enables the adapters to encapsulate task-specific information in the layers closer to the 076 output, while squeezing task-invariant knowledge into layers nearer the input. Our approach can be 077 integrated with many existing methods such as EWC and LwF. Our empirical results demonstrate that various adapter-assisted methods consistently outperform non-adapter counterparts along the learning 079 process, ranging from regularization-based to rehearsal-based approaches, across both CIFAR-100 080 and ImageNet datasets. The advantage remains robust among dataset choices, task scales, and task orderings. Our approach improves both plasticity and stability, eliminating the stability-plasticity 081 dilemma.

083 084

085

088

2 RELATED WORK

087 This section reviews works that are closely related to ours.

Multi-task Learning Multi-task learning involves training on all tasks simultaneously, leveraging shared network parameters to exploit inter-task commonalities, in contrast to incremental learning (Caruana, 1997; Ruder, 2017). However, multi-task learning can be costly or impractical due to the substantial computational burden of training on large datasets, alongside challenges such as limited storage capacity and privacy concerns (Kendall et al., 2018). These limitations highlight the importance of incremental learning as a critical area of research.

094 095

Incremental Learning Incremental learning involves learning tasks sequentially. However, this 096 approach is susceptible to catastrophic forgetting, where learning new tasks can overwrite previously 097 acquired knowledge (McCloskey & Cohen, 1989). To address this challenge, three primary strategies 098 are commonly employed: regularization-based, rehearsal-based, and parameter-isolation methods. Regularization-based methods mitigate forgetting by regularizing differences in weights or output 100 predictions between the old and new models (Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi 101 et al., 2018; Li & Hoiem, 2017; Dhar et al., 2019; Joseph et al., 2022). Rehearsal-based methods 102 preserve prior knowledge by retaining instances from previous tasks and training on a combined 103 dataset that includes these instances alongside data from the new task. This retained data may consist 104 of exemplar images (Rebuffi et al., 2017; Chaudhry et al., 2018), publicly available external datasets 105 (Lee et al., 2019; Zhang et al., 2020b), or synthetic data generated by generative models (Shin et al., 2017; Kemker & Kanan, 2017; He et al., 2018). Parameter-isolation methods improve stability by 106 freezing parameters that are critical to previously learned tasks (Mallya & Lazebnik, 2018; Serra 107 et al., 2018).

Figure 1: The model's accuracy using LwF for incremental learning is evaluated on three different
CIFAR-100 task orderings: the standard alphabetical category ordering, the coarse grained ordering,
and a random ordering with the fixed seed 1993 used by iCaRL (Rebuffi et al., 2017). The coarse
grained ordering has more inter-task diversity.

124 While each of the aforementioned strategies has its strengths, they also present notable limitations. 125 Regularization-based and parameter-isolation approaches improve model stability but often com-126 promise plasticity, and rehearsal-based methods encounter practical challenges, including storage 127 constraints, privacy concerns, and scalability issues. Recent research has proposed adapter-based 128 methods to address catastrophic forgetting(Rajasegaran et al., 2020; Bhat et al., 2023; Pham et al., 129 2021; Wang et al., 2022; Liang & Li, 2024; Zhang et al., 2020a). Some of these works incorporate 130 adapter-like subnets. However, they are limited in several ways: 1) freezing the backbone (Liang 131 & Li, 2024; Zhang et al., 2020a) can negatively impact performance as the shared information can not be learned effectively; 2) relying on custom, complex loss functions (Liang & Li, 2024; 132 Bhat et al., 2023) reduces compatibility with new algorithms and limits broader applicability; and 133 3) none incorporates regularization- or prediction-based approaches. By focusing exclusively on 134 network architecture, these methods fail to leverage valuable insights from robust yet foundational 135 baselines such as Learning without Forgetting (Li & Hoiem, 2017). To address these shortcomings, 136 we propose leveraging adapters to develop a lightweight and compatible solution that combines 137 strong performance with insights from both adapter design and algorithmic principles. 138

139 **Fine-tuning with adapters** Another line of research explores the potential of adapters for trans-140 ferring knowledge to downstream tasks, particularly within large language models. Adapters are 141 compact modules inserted between the layers of a pre-trained large model (Houlsby et al., 2019). 142 These modules are typically fine-tuned while the original network remains frozen. Fine-tuning with 143 adapters achieves performance comparable to full fine-tuning across diverse tasks (Li & Liang, 2021). Moreover, adapters facilitate rapid adaptation to new tasks without catastrophic forgetting (Pfeiffer 144 et al., 2020a), addressing challenges in multi-domain (Chronopoulou et al., 2023; Asai et al., 2022) 145 and multilingual settings (Pfeiffer et al., 2020b). 146

147 148

149

123

3 INCREMENTAL LEARNING WITH TASK-SPECIFIC ADAPTERS

This section highlights a key limitation of current knowledge distillation methods for incremental
 learning and introduces adapters as feature modifiers to model inter-task differences.

152 153 154

3.1 WHAT IS MISSING IN REGULARIZATION-BASED METHODS?

A key limitation of regularization-based methods is their susceptibility to the stability-plasticity dilemma. Specifically, anchoring the model to its performance on prior tasks limits its plasticity in learning new tasks, while relaxing the regularization leads to catastrophic forgetting. This issue becomes more pronounced with greater inter-task diversity in the incremental learning problem. Variations in inter-task diversity can be introduced through different task orderings.

Figure 1 examines the impact of task orderings on the classification performance of the LwF algorithm
 applied to CIFAR-100. In this scenario, the model is incrementally trained with 10 classes per task
 over a total of 10 tasks. Three different task orderings are evaluated: an alphabetical class ordering, a

178

208

Figure 2: Architecture of the adapter and a comparison highlighting the distinctions in its implementation between traditional fine-tuning and our method. Left: an adapter consists of the down-projection,
the nonlinear transformation, up-projection, and skip-connection. Right: The key difference between
traditional use of adapter and ours is that we allow adapters to be co-trained with the entire network
when learning a new task.

random ordering with a fixed seed commonly used by iCaRL and other methods (Rebuffi et al., 2017;
Zhang et al., 2020b), and a coarse grained ordering that groups similar classes within each task based on CIFAR-100's 20 coarse categories.

The coarse grained ordering has greater inter-task diversity, providing a way to assess how increased inter-task differences affect the incremental learning algorithm. Notably, when classes are learned in a coarse-grained ordering, there is a significant increase in both forgetting and accuracy loss for each task compared to other orderings. This increased forgetting and accuracy decline can be attributed to the stability-plasticity dilemma of the LwF algorithm when confronted with greater inter-task diversity.

Therefore, there is a need to develop new strategies that can eliminate the stability-plasticity dilemma of regularization-based approaches, enabling them to learn new tasks without forgetting.

191 192 3.2 INTRODUCING ADAPTERS

193 In this section, we propose a network architecture comprising two distinct components: a backbone 194 network for learning invariant features shared across all tasks and multiple lightweight adapters for 195 capturing task-specific information. These adapters enhance the plasticity of the architecture, enabling 196 it to adapt to new tasks, while the backbone network maintains stability by focusing on shared and 197 invariant features. Unlike existing approaches that train adapters while keeping the backbone frozen, we use adapters as task-specific feature modifiers and co-train them alongside the backbone network. As the model trains on additional tasks and samples, the backbone network refines its ability to learn 199 invariant features, further enhancing stability. This architectural design improves both stability and 200 plasticity, effectively eliminating the stability-plasticity dilemma. 201

The adapters are positioned between the backbone feature extractor, denoted as φ , and the label predictor layer, serving as task-specific feature modifiers β^t for each task t. As illustrated in Figure 204 2, the adapters adopt a conventional bottleneck structure. Starting with an initial dimension d and a 205 bottleneck width b, we design the down-projection layer to reduce dimensionality from d to b using a 206 fully-connected neural network with a weight matrix $\mathbf{W}_{d \times b}$ and a non-linear activation function g, 207 expressed as

 $\operatorname{Down}_{d\to b}(\mathbf{x}) = g\left(\mathbf{x}\mathbf{W}_{d\times b}\right).$

209 Similarly, the up-projection layer is defined as

$$Up_{b \to d}(\mathbf{x}) = g(\mathbf{x}\mathbf{W}_{b \times d})$$

²¹¹Our adapters consist of both a down-projection and an up-projection step and are connected to the output via a skip-connection (He et al., 2021). This bottleneck design allows the adapter to utilize both backbone features from $\varphi(x)$ and the modified features processed through the down- and up-projection layers:

$$\beta^t(\varphi(x)) = \varphi(x) + \operatorname{Up}_{b \to d}^t \left(\operatorname{Down}_{d \to b}^t\left(\varphi(x)\right)\right).$$

Our adapter module incorporates three key features specifically designed for incremental learning: (i) a compact design with a small number of parameters; (ii) compatibility with and enhancements over existing methods; and (iii) the simultaneous updating of feature extractor layers and adapters. The compact design addresses memory constraints, while the latter two features jointly improve stability and plasticity.

For (i), our method leverages adapters to control the growth rate of the overall model size when accommodating additional tasks. When applied to large backbone networks, the parameters introduced by the adapters are negligible, making our approach well-suited for models with memory constraints. This contrasts with strategies that rely on dynamically expanding networks (Yoon et al., 2017; Yan et al., 2021).

For (ii) and (iii), we address the stability-plasticity dilemma through a novel two-block design and their co-training. Specifically, adapters are trained to enhance plasticity, while the continuous training of backbone networks focuses on improving invariant feature learning, thereby further enhancing stability. Such a distinction is particularly challenging in traditional, non-adapter architectures, as their holistic design inherently exacerbates the stability-plasticity dilemma.

Lastly, to enforce that the backbone network learns invariant features and thus the adapters learn task-specific information, we develop method-specific regularization techniques. For the predictionregularized methods such as LwF, we impose a knowledge distillation loss on the backbone, encouraging the backbone is similar before and after learning each new task. For the weight-regularized methods such as EWC, we free adapters from regularization. The approaches and designs are discussed in the following section in detail.

237 238

3.2.1 ENFORCING INVARIANT FEATURE LEARNING IN THE BACKBONE

We perform necessary modifications to the incremental learning methods so that the adapters can fit
 them and perform well. This section presents the adjustments for such integrations with different
 regularization methods.

Prediction-regularized Methods The prediction-regularized methods attempt to address the stability-plasticity dilemma through model distillation instead of weight control. Algorithms such as LwF and Learning without Memorizing (LWM) (Dhar et al., 2019) fall into this category. Additional to the task loss, the model outputs at task t are regularized with the model outputs at all tasks t' where $1 \le t' < t$, i.e. a distillation loss:

$$\mathcal{L}^{t} = \ell^{t}(\theta) + \lambda_{\text{distill}} R^{t}_{\text{distill}}$$
$$= \ell^{t}(\theta) + \lambda_{\text{distill}} \sum_{t'=1}^{t-1} M\left(\varphi^{t'}(x), \varphi^{t}(x)\right)$$

250 251

252

268

269

249

where M is a metric that quantifies the similarities between the adapter outputs, such as the cosine similarity or cross entropy¹, and λ_{distill} is a hyperparameter

255 This regularization method loosens the stability restriction of the network by distilling instead of 256 direct controlling model parameters. It allows the model to search for an optimal solution in a larger 257 parameter space. However, while we anticipate the adapter and the backbone model to capture the 258 task-specific and task-invariant information respectively, this distillation constraint neither gives the 259 adapters absolute freedom to the parameter search space nor poses a strong restriction for backbone 260 task-invariance. The former cannot be done since adapters are involved in the forward pass and 261 the computation of the distillation loss, and is arguably not a big deal due to that the restriction 262 is already-loosen compared to the weight-regularized methods. Addressing the latter problem, we introduce an additional backbone regularization: 263

$$R_{\varphi}^{t} = \sum_{t'=1}^{t-1} M\left(\operatorname{Linear}_{d \times c}(\varphi^{t'}(x)), \operatorname{Linear}_{d \times c}(\varphi^{t}(x))\right),$$

where $c \le d$ is a dimension we reduce to. In practical, we choose c to be the number of classes of each task, as intuitively we make this regularization implicitly a direct distillation on backbones.

¹Following previous works, we use the cross entropy loss as the metric.

Hence, to learn a new task t, we define a loss function that includes the task loss, the distillation term, and the backbone regularizer to align backbones across tasks to improve stability:

$$\mathcal{L}_t = \ell_t(\theta) + \lambda_{\text{distill}} R^t_{\text{distill}} + \lambda_{\varphi} R^t_{\varphi}, \tag{1}$$

where λ_{φ} is the hyperparameter for the backbone regularizer. The parameter λ_{distill} aims to balance retaining prior knowledge with adapting to new tasks during the incremental learning process, while λ_{φ} controls the direction regularization to the backbone across tasks. We apply this adapter regularization on LwF as it is a prediction-regularized method and, in our experience, it is among the most effective methods for incremental learning tasks.

Weight-regularized Methods The weight-regularized methods control and regularize the weights of each task. Taking Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017), a noteworthy representative of such methods, as an example, \mathcal{L}^t , the loss at task *t* can be computed by the task loss and an additional term for regularizing each parameter:

$$\mathcal{L}^t = \ell^t(\theta) + \sum_{t'=1}^{t-1} \sum_i \frac{\lambda}{2} F_i(\theta_i - \theta^*_{t',i})^2,$$

where θ is the model parameter and F_i is the Fisher information matrix at each parameter *i*.

The regularization itself enables the stability of the entire network. In order to improve the plasticity, we attempt to control the backbone's weight only so that the adapters remain unregularized and thus are able to move freely for parameter exploration. Hence, the integration of adapters to such methods is achieved by ruling out the adapter parameters from regularization, i.e. $i \notin \theta_a$:

$$\mathcal{L}^t = \ell^t(\theta) + \sum_{t'=1}^{t-1} \sum_{i \notin \theta_a} \frac{\lambda}{2} F_i(\theta_i - \theta^*_{t',i})^2.$$

This modification is applicable to all the weight-regularized methods, as long as they involve parameter-level consolidation. Methods such as Memory Aware Synapses (MAS) (Aljundi et al., 2018) and Path Integral (Path Integral) (Zenke et al., 2017) fall into this category and thus apply the above-mentioned adjustments to align with adapters.

4 EXPERIMENTS

301 302 303

304

305 306

307

273

279

280

281

282

288

289

290

291

296

297

298

299 300

In this section, we compare our framework on various methods to their counterparts that are not using adapters. We investigate impact of adapters on different settings, including different method types, task scales, task orderings and datasets.

4.1 EXPERIMENTAL SETUP

Datasets We compare the peformance of different methods on two datasets: CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Russakovsky et al., 2015). CIFAR-100 consists of images with small resolutions (input sizes of $32 \times 32 \times 3$) and serves as our primary focus for studying the impact of adapters across different settings. We also include ImageNet, which offers more diverse training images at higher resolutions ($224 \times 224 \times 3$). To mitigate training time and resource constraints, we limit our analysis to the first 100 classes from ImageNet. Dataset statistics are summarized in Appendix A.1.

To ensure a fair comparison, we perform hyperparameter tuning and learning rate selection on a validation set (Masana et al., 2022). The validation set is a class-balanced split, compromising 10% samples from the original training dataset, while the remaining 90% serves as our training dataset. Details on the hyperparameter tuning and learning rate selection can be found in Appendix A.2, and the selection of adapter-specific hyperparameters is explained in Section 4.2.

320

Network architectures Following (De Lange et al., 2022; Hou et al., 2019), we employ two
 different models for the two datasets. For CIFAR-100, which contains small-resolution images, we
 use ResNet-34. For ImageNet, with larger-resolution images, we use ResNet-18, as suggested in (He et al., 2016).

Figure 3: The average accuracy for regularization-based methods with or without adapters on CIFAR-(100 (alphabetical ordering) in task-IL. The solid line represents the results with adapter, while the dashed line represents the results without adapter. The left figure displays the performance with weight regularization (EWC, MAS, and Path Integral), and the right figure displays the performance with prediction regularization (LwF and LwM).

340 **Evaluation metrics** Two evaluation protocols are commonly used in incremental learning: task 341 incremental learning (task-IL) and class incremental learning (class-IL). Task-IL evaluates the network 342 in a multi-head setting, utilizing a task-ID oracle to determine the appropriate task-specific head at 343 the inference time. In task-IL, the model does not need to differentiate between classes from different 344 tasks. In contrast, class-IL presents a more practical yet challenging scenario where the model must 345 make predictions across all learned classes within a single-head configuration. This requires the model to resolve confusion arising from different tasks. In this section, we focus on task-IL with 346 task-ID information at the inference time, while results for class-IL are included in Appendix B. 347

To compare the overall learning process across different methods, we use the average accuracy at each task t, denoted by $A_t = \frac{1}{t} \sum_{i=1}^{T} a_{t,i}$, and $a_{t,k}$ is the accuracy evaluated on task k after training on task t. To ensure reliable and consistent results, we report the averaged results over 10 runs with different random seeds for both CIFAR-100 and ImageNet.

352 353

354

4.2 EXPERIMENTAL RESULTS

On regularization-based methods In this section, we study the effect of adapters combined with
various weight-regularized methods in incremental learning, including Elastic Weight Consolidatio
EWC (Kirkpatrick et al., 2017), Memory Aware Synapses (MAS) (Aljundi et al., 2018), Path Integral
(PathInt) (Zenke et al., 2017), as well as prediction-regularized methods such as Learning without
Forgetting (LwF) (Li & Hoiem, 2017) and Learning without Memorizing (LwM) (Dhar et al., 2019).

Figure 3 compares different methods with and without adapters in task-IL on CIFAR-100. From the first task onward, weight-regularized methods with adapters exhibit an approximate 3% increase in average accuracy compared to those without adapters. This improvement is consistently maintained throughout the learning process across all methods. For prediction-regularized methods, the accuracy advantage further escalates to as much as 5%. The observed increase in accuracy can be primarily attributed to the model's improved plasticity to learn new task-specific knowledge through the use of adapters, while the backbone was continuously trained as well.

367

On task scale This paragraph examines the effect of the task scale. The benefits of utilizing adapters 368 diminish as the number of classes increases within each task. As illustrated in Figure 4, when learning 369 either 5 or 10 classes simultaneously, our adapter-based approach continues to effectively capture 370 inter-task differences and significantly outperforms methods without adapters. However, while the 371 advantages are still present, they become less pronounced as the number of classes per task increases. 372 This reduction in the performance margin is understandable, as learning more classes per task not 373 only provides more data for the model to learn but also requires more memory and storage, with fewer 374 regime shifts. In the extreme case, when the number of classes per task reaches 100, incremental learning reduces to a multi-task learning problem. 375

- 376
- **On task ordering** As discussed in Section 3.1 and by Masana et al. (2020), the impact of task orderings on the performance of incremental learning models is often overlooked. While regularization-

Figure 4: The average accuracy for EWC and LwF with learning 5, 10, and 20 classes at a time on CIFAR-100 (alphabetical ordering) in task-IL.

Figure 5: The average accuracy for regularization-based methods with or without adapters on different
orderings of CIFAR-100 in task-IL. The upper two figures present the experimental results on the
coarse ordering, and the lower two are on the iCaRL ordering. The solid line represents the results
with adapter, while the dashed line represents the results without adapter.

based methods suffer from the stability-plasticity dilemma, the introduction of adapters improves
both stability and plasticity. This resolution of the stability-plasticity dilemma is attributed to the fact
that task-specific knowledge is effectively captured by the adapters, while the backbone continuously
learns invariant knowledge. Since all prior experiments discussed in this section were conducted
using the CIFAR-100 alphabetical ordering, we have further evaluated all methods using additional
orderings, specifically the coarse-grained ordering and the iCaRL ordering.

As shown in Figure 5, methods with adapters are indeed influenced by the varying difficulties associated with different orderings. Although the advantage persists, it diminishes to approximately 1% in some cases. Nonetheless, a general superiority remains evident, as most methods maintain a 3% margin over their non-adapter counterparts across all orderings. In every ordering scenario, adapters consistently exhibit the best overall performance in incremental learning.

- 425
 426
 427 On Imagenet This section evaluates our method's performance across larger domain shifts by assessing its performance on ImageNet-Subset, a significantly larger dataset compared to CIFAR-100.
- Our method faces certain limitations when applied to ImageNet, as selecting adapter hyperparameters
 becomes prohibitively expensive on such a large dataset with an average of 10 seeds, which led us
 to apply the CIFAR-100 hyperparameter setting directly to ImageNet. Additionally, the use of task specific adapters slows down the generalization process compared to their non-adaptor counterparts.
 This slowdown occurs because non-adapter methods do not distinguish between task-sharing and

432	Method	Task 2	Task 3	Task 4	Task 5	Task 6	Task 7	Task 8	Task 9	Task 10
433	MAS	80.4	73.6	74.4	71.3	72.8	72.9	73.5	72.1	72.7
434	EWC	80.3	74.6	72.0	67.8	63.2	63.9	63.6	61.4	60.8
435	PathInt	53.9	38.5	33.7	30.4	28.7	29.0	28.9	28.2	27.1
436	LwF	82.6	77.7	76.8	75.2	73.9	73.7	72.3	70.0	68.2
437	LwM	81.8	76.3	74.3	70.9	68.4	66.2	64.0	60.3	58.0
438	MAS-A	80.0	73.6	74.0	72.2	73.3	74.6	75.0	74.2	74.2
439	EWC-A	76.0	67.7	68.0	67.3	67.2	68.3	67.3	65.7	65.3
1/10	PathInt-A	76.9	68.3	67.3	65.4	65.5	67.1	67.1	65.0	65.0
444	LwF-A	83.8	79.8	78.3	76.2	74.2	73.0	71.6	69.0	67.2
441	LwM-A	82.8	75.9	73.9	70.6	67.8	65.9	63.2	59.4	56.9

Table 1: The average accuracy for regularization-based methods with or without adapters on ImageNet subset in task-IL. Methods without the "-A" suffix represent the baseline, while those with the suffix include adapters. Following experiments conducted on CIFAR-100 in Section 4.2, these adapters are configured with bottleneck width 128.

449 task-specific patterns and thus are less impacted on ImageNet, which we only run for 50 epochs as mentioned in Appendix A.2.

While we recommend a more comprehensive study involving careful hyperparameter selection and 452 extended training epochs, our current experimental results, as shown in Table 1, indicate that methods 453 with adapters yield the best performance across all incremental tasks. Even with the hyperparameters 454 from Section 4.2, which are tuned using CIFAR-100 and may not be optimal, methods with adapters 455 still demonstrate non-trivial performance imoprovement. 456

457 458

459

460

461

462

463

464

465

443

444

445

446

447 448

450

451

On modern IL methods There is a growing body of incremental learning methods that incorporate task-specific components. We conducted experiments to address two key questions: 1) Can adapters be integrated with these methods, and does such integration further improve performance? 2) Does our adapter integration and training paradigm outperform existing adapter-based methods? For the first question, we integrate adapters with DualPrompt (Wang et al., 2022) and iTAML (Rajasegaran et al., 2020). For the second, we directly compare our approach with TAMiL (Bhat et al., 2023) by aligning our setup with theirs. The experiment details can be found in Appendix A. The results, shown in Table 2, indicate that integrating adapters boosts the original frameworks' performance by more than 1%, and our method outperforms TAMiL, a counterpart that uses attention modules.

466 467 468

469 470

4.3 ABLATION STUDIES

The bottleneck width choice The choice of adapter bottleneck width is crucial to the model 471 performance. We selected EWC (Kirkpatrick et al., 2017) and LwF (Li & Hoiem, 2017) as baseline 472 methods, due to their strong performance among weight-regularized and prediction-regularized 473 methods, respectively. As illustrated in Figure 6, adapters with a bottleneck width of 256 consistently 474 ranked among the top configurations. 475

476

477 **Training with backbone frozen** Various works propose adapter-like network architectures where 478 the backbone is frozen (Liang & Li, 2024; Zhang et al., 2020a). While our framework adapts the 479 backbone to capture task-invariant information and the adapters to capture task-specific information, 480 we hypothesize that freezing the backbone does not support incremental learning. This is because 481 the backbone still requires updates with new, task-inspecific knowledge, which may conflict with 482 the prior knowledge acquired during pre-training. To investigate this, we conduct experiments using 483 the LwF method, where both models are trained with adapters, but one freezes the backbone. Our results, shown in Table 2, demonstrate that the co-trained model, which does not freeze the backbone, 484 outperforms the counterpart. This supports our hypothesis regarding the impact of freezing the 485 backbone.

Figure 6: The performance of EWC and LwF methods with different adapter bottleneck width choice on the CIFAR-100 dataset (alphabetical ordering) in task-IL. The suffix 16/32/64/128/256 indicates the method implemented with width 16, 32, 64, 128, and 256, respectively.

Methods	Acc.	Methods	Acc.	Methods	Acc.	Methods	Acc.
DualNet	88.2	iTAML	79.0	TAMiL	71.4	LwF-A	74.0
DualNet-A	89.3	iTAML-A	80.1	Adapter+LwF	74.7	Lwf-A-FrB	72.9

Table 2: From left to right: DualNet vs. DualNet+adapter, iTAML vs. iTAML+adapter, TAMiL vs. Adapter+LwF (The best method-adapter pair we yielded), and Lwf-A (co-trained) vs. LwF-A (Frozen Backbone). Test conducted on CIFAR-100, task-IL, top-1 accuracy averaged with 10 tasks is reported.

5 CONCLUSION

511 In this paper, we propose a network design consisting of two blocks: a backbone network for learning 512 invariant features across all tasks and multiple adapters for modeling task-specific knowledge. The 513 backbone and adapters are co-trained continuously in an incremental learning framework. Our extensive experiments conducted on CIFAR-100 and ImageNet, across various orderings and task 514 515 scales, show that introducing task-specific adapters consistently improves the performance of all considered methods, and exhibits extensive compatibility with all of them. Consequently, we offer 516 an effective solution to resolve the stability-plasticity dilemma for incremental learning, and we 517 envision that future IL algorithms can be benefited from our work, a simple but effective integration 518 of adatpers. 519

520 521

522

523

524

525 526

527

528

529

532

534

535

537

496

497

498

504

505

506

507 508 509

510

REFERENCES

- Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars. Memory aware synapses: Learning what (not) to forget. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 139-154, 2018.
 - Akari Asai, Mohammadreza Salehi, Matthew E Peters, and Hannaneh Hajishirzi. Attempt: Parameterefficient multi-task tuning via attentional mixtures of soft prompts. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 6655–6672, 2022.
- Eden Belouadah and Adrian Popescu. Deesil: Deep-shallow incremental learning. In Proceedings of 530 the European Conference on Computer Vision (ECCV) Workshops, pp. 0–0, 2018. 531
- Prashant Bhat, Bahram Zonooz, and Elahe Arani. Task-aware information routing from common 533 representation space in lifelong learning, 2023. URL https://arxiv.org/abs/2302. 11346.
- 536 Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997.
- Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian 538 walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 532–547, 2018.

540	Alexandra Chronopoulou, Matthew E Peters, Alexander Fraser, and Jesse Dodge. Adaptersoup:
541	Weight averaging to improve generalization of pretrained language models. arXiv preprint
542	arXiv:2302.07027, 2023.
543	Metthics De Lange and Time Typiclose Continuel protecture evolution. Learning online from non
544	stationary data streams. In Proceedings of the IEEE/CVE international conference on computer
545	vision np 8250–8259 2021
546	vision, pp. 0200 0209, 2021.
547	Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
548	Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
549	tasks. <i>IEEE transactions on pattern analysis and machine intelligence</i> , 44(7):3366–3385, 2022.
550	Prithvirai Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa. Learning
551	without memorizing. In Proceedings of the IEEE/CVF conference on computer vision and pattern
00Z	recognition, pp. 5138–5146, 2019.
333 554	
334 555	Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
555	International conference on machine learning pp. 647–655 PMLP 2014
557	mernational conference on machine learning, pp. 047–055. FMLR, 2014.
558	Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
550	object detection and semantic segmentation. In Proceedings of the IEEE conference on computer
559	vision and pattern recognition, pp. 580–587, 2014.
561	Ian I Coodfallow Mahdi Mirza Da Viao, Aaron Courvilla, and Vashua Pangio. An ampirical investi
562	gation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211
562	2013
564	
565	Chen He, Ruiping Wang, Shiguang Shan, and Xilin Chen. Exemplar-supported generative reproduc-
566	tion for class incremental learning. In <i>BMVC</i> , pp. 98, 2018.
567	Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirknatrick, and Graham Neubig. Towards a
568	unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.
569	
570	Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
571	recognition. In <i>Proceedings of the IEEE conference on computer vision and pattern recognition</i> ,
572	pp. 770–778, 2016.
573	Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
574	incrementally via rebalancing. In Proceedings of the IEEE/CVF conference on Computer Vision
575	and Pattern Recognition, pp. 831–839, 2019.
576	Noil Houldhy, Andrei Ciurciu, Stanislaw, Jastrzahaki, Druna Marrana, Quantin Da Laroussilha
577	Andrea Gesmundo, Mong Attorivan, and Sylvain Celly. Parameter afficient transfer learning for
578	nln In International Conference on Machine Learning nn 2790–2799 PMLR 2019
579	
580	KJ Joseph, Salman Khan, Fahad Shahbaz Khan, Rao Muhammad Anwer, and Vineeth N Balasubra-
581	manian. Energy-based latent aligner for incremental learning. In Proceedings of the IEEE/CVF
582	Conference on Computer Vision and Pattern Recognition, pp. 7452–7461, 2022.
583	Ronald Kemker and Christopher Kanan. Fearnet: Brain-inspired model for incremental learning.
584	arXiv preprint arXiv:1711.10563, 2017.
585	
586	Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
587	for scene geometry and semantics. In <i>Proceedings of the IEEE conference on computer vision and</i>
588	pattern recognition, pp. 1482–1491, 2018.
589	James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
590	Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
591	catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 114
592	(13):3521–3526, 2017.
593	

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

594 595 596	Kibok Lee, Kimin Lee, Jinwoo Shin, and Honglak Lee. Overcoming catastrophic forgetting with unlabeled data in the wild. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i> , pp. 312–321, 2019.
598 599	Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. <i>arXiv</i> preprint arXiv:2101.00190, 2021.
600 601 602	Zhizhong Li and Derek Hoiem. Learning without forgetting. <i>IEEE transactions on pattern analysis and machine intelligence</i> , 40(12):2935–2947, 2017.
603 604	Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learning, 2024. URL https://arxiv.org/abs/2404.00228.
605 606 607 608	Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative pruning. In <i>Proceedings of the IEEE conference on Computer Vision and Pattern Recognition</i> , pp. 7765–7773, 2018.
609 610	Marc Masana, Bartłomiej Twardowski, and Joost van de Weijer. On class orderings for incremental learning, 2020. URL https://arxiv.org/abs/2007.02145.
612 613 614	Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost van de Weijer. Class-incremental learning: survey and performance evaluation on image classification. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2022.
615 616 617	Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential learning problem. In <i>Psychology of learning and motivation</i> , volume 24, pp. 109–165. Elsevier, 1989.
619 620	Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma: Investi- gating the continuum from catastrophic forgetting to age-limited learning effects, 2013.
621 622 623	Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter- fusion: Non-destructive task composition for transfer learning. <i>arXiv preprint arXiv:2005.00247</i> , 2020a.
625 626	Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. Unks everywhere: Adapting multilingual language models to new scripts. <i>arXiv preprint arXiv:2012.15562</i> , 2020b.
627 628 629	Quang Pham, Chenghao Liu, and Steven Hoi. Dualnet: Continual learning, fast and slow, 2021. URL https://arxiv.org/abs/2110.00175.
630 631 632	Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Mubarak Shah. itaml: An incremental task-agnostic meta-learning approach, 2020. URL https://arxiv. org/abs/2003.11652.
633 634 635 636	Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental classifier and representation learning. In <i>Proceedings of the IEEE conference on</i> <i>Computer Vision and Pattern Recognition</i> , pp. 2001–2010, 2017.
637 638	Sebastian Ruder. An overview of multi-task learning in deep neural networks. <i>arXiv preprint arXiv:1706.05098</i> , 2017.
640 641 642	Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. <i>International journal of computer vision</i> , 115:211–252, 2015.
643 644 645	Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic forgetting with hard attention to the task. In <i>International Conference on Machine Learning</i> , pp. 4548–4557. PMLR, 2018.
647	Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative replay. <i>Advances in neural information processing systems</i> , 30, 2017.

648 649 650	Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning, 2022. URL https://arxiv.org/abs/2112.08654.
652 653 654	Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class incremental learning. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 3014–3023, 2021.
655 656	Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically expandable networks. <i>arXiv preprint arXiv:1708.01547</i> , 2017.
657 658 659 660	Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In <i>Proceedings of the International Conference on Machine Learning (ICML)</i> , pp. 3987–3995, 2017.
661 662 663	Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas Guibas, and Jitendra Malik. Side-tuning: A baseline for network adaptation via additive side networks, 2020a. URL https://arxiv. org/abs/1912.13503.
664 665 666 667	Junting Zhang, Jie Zhang, Shalini Ghosh, Dawei Li, Serafettin Tasci, Larry Heck, Heming Zhang, and C-C Jay Kuo. Class-incremental learning via deep model consolidation. In <i>Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision</i> , pp. 1131–1140, 2020b.
669 670	
671 672	
673 674	
675 676 677	
678 679	
680 681	
682 683	
684 685	
686 687	
689 690	
691 692	
693 694	
695 696	
697 698	
699 700 701	

Appendix

Table of Contents

A	Implementation details	14
	A.1 Datasets	14
	A.2 Learning rate search and hyperparameter tuning	14
	A.3 iTAML, TAMiL, and DualPrompt	15
B	Class-IL results	15

A IMPLEMENTATION DETAILS

We follow the framework FACIL (Masana et al., 2022), and code is implemented using Pytorch. We apply SGD with momentum set to 0.9 and weight decay set to 0.0002. Gradient clipping is set to 1.0.

A.1 DATASETS

Table 3 presents a summary of the datasets used in the experiments. We apply data augmentation to both datasets, including padding, cropping, input normalization, and random horizontal flipping. Specifically, for CIFAR-100, we apply a padding of 4 pixels to each side of the image, followed by random cropping to 32 × 32 for training purposes and center cropping for testing. For the ImageNet-Subset, we resize the images to 256 × 256, then perform random cropping to 224 × 224 for training and center cropping for testing.

730 731

732

702 703 704

705 706

718 719

720

721 722

723

A.2 LEARNING RATE SEARCH AND HYPERPARAMETER TUNING

We apply the Continual hyperparameter Framework (De Lange & Tuytelaars, 2021), a common
framework to select learning rates (LRs) and tune hyperparameters for methods of incremental
learning. The framework incorporates two phase: the Maximal Plasticity Search phase to search
LR with fine-tuning on the new task, and the Stability Decay phase to search for the optimal
hyperparameters.

For the Maximal Plasticity Search phase, we fine-tune the model on the new task and select the
optimal LR to achieve high plasticity. Specifically, we train the model from scratch for the first task
and apply LR search on {5e-1, 1e-1, 5e-2}. Starting from the second task, the LR search space is
limited to 1e-1, 5e-2, 1e-2, 5e-3, 1e-3}. LR decay is applied, with a decay factor of 3 and patience of
10 epochs. The stopping criteria is either the LR below 1e-4 or 100 epochs have passed.

For the Stability Decay phase, we fix the LR and select the hyperparameter starting from a high
value, with a gradual decay to achieve the optimal stability-plasticity trade-off. We start from a high
value of hyperparameter because this is close to freezing the network such that old knowledge is
preserved, and through gradual decay the model becomes less intransigence and slowly converges
towards higher forgetting, which would ultimately corresponds to fine-tuning of the previous phase.
Specifically, we reduce the hyperparameter value in half if the method accuracy is below the 95% of
the fine-tuning accuracy in the previous LR search phase.

⁷⁵⁰ Next, we present the starting values for hyperparameters across methods. Most of the methods ⁷⁵¹ discussed in our paper are regularization-based approach, which include a hyperparameter λ for the ⁷⁵² regularizer that controls the trade-off between stability and plasticity. The starting values for λ are ⁷⁵³ summarized in Table 5. For other method-specific parameters, we generally follow the corresponding ⁷⁵⁴ original work. For instance, we fix the temperature parameter as 2 for LwF. For PathInt, the dampling ⁷⁵⁵ parameter is set to 0.1. For LwM, the attention distillation parameter is set to 1 based on an empirical ⁷⁵⁶ evaluation in (Masana et al., 2022).

Datasets	# Train	# Validation	# Test	Input size	Batch size
CIFAR-100	45,000	5,000	10,000	$32 \times 32 \times 3$	128
ImageNet-Subset	117,000	13,000	5,000	$224\times224\times3$	4

Table 3: Summary of datasets used. Both datasets contain 100 classes each.

Table 4: The average accuracy for regularization-based methods with or without adapters on ImageNet subset in class-IL. Methods without the "-A" suffix represent the baseline, while those with the suffix include adapters. These adapters are configured with the same bottleneck width and number of layers as those used in the CIFAR-100 experiments.

Method	Task 2	Task 3	Task 4	Task 5	Task 6	Task 7	Task 8	Task 9	Task 10
MAS	68.5	52.7	47.9	40.4	39.2	35.7	34.4	31.3	30.0
EWC	68.2	53.5	45.0	36.0	29.1	26.4	24.2	21.6	19.7
PathInt	41.5	22.7	15.9	11.8	9.5	8.0	7.2	6.3	5.3
LwF	69.7	57.1	51.0	44.3	38.6	33.1	29.7	26.4	24.4
LwM	66.1	50.9	44.7	36.2	29.3	23.3	20.2	17.3	15.0
MAS-A	66.4	51.8	46.6	40.4	38.0	35.0	34.2	31.9	30.1
EWC-A	62.1	45.1	39.0	33.9	30.7	28.0	26.4	23.6	22.0
PathInt-A	63.0	44.5	36.1	31.1	28.7	26.4	25.1	22.7	20.7
LwF-A	71.5	59.7	53.4	45.2	38.4	32.1	28.5	24.6	22.0
LwM-A	68.6	50.7	43.0	34.2	26.9	22.1	19.3	16.3	13.9

hyperparameter	EWC	MAS	PathInt	LwF	LwF-reg	LwM
λ	10,000	400	10	10	5+0.5	2

Table 5: Summary of hyperparameter to control the stability and plasticity used across regularizationbased methods. For the LwF with adapter and regularizations (LwF-reg), the two λ 's ($\lambda_{distill}, \lambda_{\varphi}$) are set to 5 and 0.5 respectively.

Due to computational cost constraints, we have adjusted the stopping criteria for the ImageNet Subset to 50 epochs, rather than the previously mentioned 100. Additionally, we do not conduct LR searches or tune hyperparameters for this dataset, and fix the LR at 0.01.

A.3 ITAML, TAMIL, AND DUALPROMPT

We implementd iTAML, TAMiL and DualPrompt with their default set of hyperparameters. Specifically,

- For iTAML, we run a ResNet 18 by 70 epochs with memory size 3000, $\mu = 1, \beta = 2$, and r = 5. Learning rate is set to 0.01.
- For DualPrompt, we run a ViT-base-patch16-224 with G-prompt and E-prompt enabled. The model is optimized with an adam optimizer with lr = 0.03. 2 epochs are run for each task.
- For TAMiL, We run a ResNet 18 by 50 epochs. The learning rate is set to 0.03, and exemplar size is set to 200. The seed is set to 10.

B CLASS-IL RESULTS

Figure 7 illustrates the average accuracy of all methods in the setup described in Section ??, specifically for class incremental learning (Class-IL). Figure 8 demonstrates the results across various task scales, while Figure 9 presents the results based on different orderings. Table 4 provides the results for ImageNet.

Figure 7: The average accuracy for regularization-based methods with or without adapters on CIFAR-100 (alphabetical ordering) in class-IL. The solid line represents the results with adapter, while the dashed line represents the results without adapter. The left figure displays the performance with weight regularization, and the right figure displays the performance with prediction regularization.

Figure 8: The average accuracy for EWC and LwF with learning 5, 10, and 20 classes at a time on CIFAR-100 (alphabetical ordering) in class-IL.

Figure 9: The average accuracy for regularization-based methods with or without adapters on CIFAR 100 (coarse ordering and iCaRL ordering) in class-IL. The solid line represents the results with adapter, while the dashed line represents the results without adapter.