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ABSTRACT

Various 3D modalities have been proposed for high-precision imitation learning
tasks to compensate for the short-comings of RGB-only policies. Modalities that
explicitly represent positions in Cartesian space have an inherent advantage over
purely image-based ones, since they allow policies to reason about geometry.
Point clouds are a common way to represent geometric information, and have sev-
eral benefits such as permutation invariance and flexible observation size. Despite
their effectiveness, a number of hybrid 2D/3D architectures have been proposed
in the literature, indicating that this performance can often be task-dependent. We
hypothesize that this may be due to the spectral bias of neural networks towards
learning low frequency functions, which especially affects models conditioned
on slow-moving Cartesian features. Building on prior work that uses a para-
metric projection from Cartesian space into high-dimensional Fourier space to
overcome the innate low-pass filtering characteristic of neural networks, we apply
Fourier features to several representative point cloud encoder architectures. We
validate this approach on challenging manipulation tasks from the RoboCasa and
ManiSkill3 benchmarks, and find that adding Fourier feature projections provides
benefits across diverse encoder architectures and tasks, with meaningful improve-
ments seen in the vast majority of tasks. We show that Fourier features are a
general-purpose tool for point cloud-based imitation learning, which consistently
improves performance by enabling policies to leverage geometric details more
effectively than models conditioned on Cartesian features.

1 INTRODUCTION

Diffusion-based imitation learning (IL) has emerged as a powerful framework for visuomotor control
(Chi et al., 2023; Reuss et al., 2023; Wu et al., 2025; Intelligence et al., 2025) in robotics. By treating
action generation as a denoising process (Ho et al., 2020), diffusion policies naturally capture multi-
modal action distributions, enabling robots to represent the diverse strategies often present in human
demonstrations. This capability has made diffusion policies the state-of-the-art on long-horizon and
multi-task manipulation benchmarks.

Diffusion models excel at capturing the multi-modality of expert demonstrations, but require the
input representations to preserve the fine-grained information that distinguishes successful strategies
from failed ones. In high-precision manipulation tasks, 3D information about the scene can help the
agent reason about geometry and occlusions and execute complex motions accurately. Policies that
cannot perceive fine geometric information encoded in observations are unable to imitate expert
demonstrations that depend on these details.

RGB images remain the most common observation space due to their semantic richness and the
widespread availability of pretrained vision encoders (Ke et al., 2025; Wilcox et al., 2025; Donat
et al., 2025). However, they lack explicit 3D geometry and require the policy backbone to implicitly
infer a 2D-to-3D mapping, while also being sensitive to viewpoint and lighting variations. In con-
trast, 3D modalities such as depth maps, point clouds, or point maps that explicitly encode shape,
distance, and spatial relationships, allow policies to learn behaviors in a common 3D space, en-
abling multi-view consistency. Yet despite the success of these 3D representations (Ze et al., 2024;
Zhu et al., 2024; Ze et al., 2025), a number of hybrid 2D/3D architectures have recently been sug-
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Unprojection

Increasing Frequency
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Figure 1: Overview of our method. Adding a Fourier feature mapping from Cartesian coordinates
into a higher-dimensional feature space improves performance for any point cloud encoder used for
diffusion imitation learning. For high-precision policies, the network must learn to condition on fine
details in the scene geometry to e.g. device whether to insert the leg into the slot or reposition it,
yet neural networks learn the high frequency components of the target function only slowly, if at all.
While neighbouring points in the scene have very similar Cartesian features, the high-dimensional
Fourier features allow them to easily be distinguished.

gested (Ke et al., 2025; Wilcox et al., 2025; Goyal et al., 2023), indicating that the performance of
3D representations may depend on specific tasks and dataset.

While neural networks are universal function approximators (Hornik et al., 1989), they have a spec-
tral bias toward learning low-frequency components first, while high-frequency components con-
verge slowly or may not be learned at all (Rahaman et al., 2019; Tancik et al., 2020). In the context
of precise robotic manipulation tasks, such as inserting a peg into a socket, these high frequency
components can make the difference between a successful trajectory and one where the peg and the
socket are slightly mis-aligned. Both observations are very similar in terms of absolute Euclidean
coordinates and distance, making it difficult to robustly learn to differentiate between them. In fields
such as novel view synthesis, this shortcoming is remedied using a Fourier feature mapping (Milden-
hall et al., 2021; Tancik et al., 2020). More recently Adapt3R (Wilcox et al., 2025) has shown that
incorporating Fourier features benefits their architecture, yet a systemic study of Fourier features for
other 3D representations in imitation learning is missing in the literature.

Inspired by these insights, we propose to encode the 3D representations for pointcloud-based ap-
proaches (Qi et al., 2017a; Gyenes et al., 2024) in Fourier space. By amplifying high-frequency
components of these representations, we counteract spectral bias and make subtle temporal and ge-
ometric differences accessible to diffusion backbones. This simple modification allows different
models acting on 3D representations to more easily understand small details in geometric observa-
tions, thus improving their performance for high-precision control tasks. Experimentally, we show
that using Fourier-encoded input representations leads to consistent improvements across different
point cloud architectures and benchmarks. In RoboCasa and ManiSkill3, we achieve an average
success rate improvement of up to 19% and 7%, respectively. Qualitatively, policies trained with
Fourier mappings exhibit smoother and more precise motions, particularly on robotic control tasks
where fine-grained manipulation matters (Nasiriany et al., 2024; Tao et al., 2025).

Our contributions are the following: 1) we introduce a framework for incorporating Fourier feature
mappings into various point cloud encoders; 2) we instantiate this framework with representative
point cloud architectures commonly used for imitation learning; and 3) through extensive experi-
ments on the RoboCasa and ManiSkill task suites, we demonstrate consistent improvements over
baselines without Fourier feature mappings.
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2 RELATED WORK

Imitation Learning in Robotics. Recent progress in IL has been driven by incorporating diffusion
(Chi et al., 2023; Reuss et al., 2023) or flow matching (Lipman et al., 2023), which enable policies
to learn multi-modal action distributions, and by training policies on large-scale datasets (Black
et al., 2024; Intelligence et al., 2025; Brohan et al., 2022; Zitkovich et al., 2023; Zhu et al., 2025)
to significantly increase generalization and performance. However, these approaches are primarily
conditioned on RGB images. This choice allow leveraging powerful pretrained visual encoders and
provides strong semantic features, but RGB inputs lack explicit 3D geometry and are sensitive to
viewpoint and lighting variations (Zhu et al., 2024; Ze et al., 2024; Wilcox et al., 2025). To address
these shortcomings, several works incorporate 3D information by either entirely using 3D inputs
or by combining them with RGB (Ze et al., 2024; Gervet et al., 2023; Wilcox et al., 2025; Goyal
et al., 2023). In our work, we focus specifically on using 3D inputs for high-precision manipulation
tasks and show that their performance is not only inherent to the modality itself, but is affect by the
spectral bias of neural networks, which can be mitigated through Fourier mappings.

3D Visual Representations for Imitation Learning. 3D inputs can be leveraged in different ways,
as stand-alone modalities (e.g., point clouds or point maps) or in combination with RGB. On a num-
ber of challenging tasks, imitation learning with lightweight point cloud-based policies consistently
outperforms RGB and RGB-D modalities while requiring significantly less data (Ze et al., 2024;
Zhu et al., 2024). Additionally, Zhu et al. (2024) observe that training on point maps yields no
advantage over training on point clouds. RVT (Goyal et al., 2023) re-renders virtual viewpoints as
seven-channel point maps containing RGB, depth, and global coordinate information to decouple the
current observation from the input used for downstream decision-making, using point clouds only
as a intermediate representation. A variety of hybrid 2D/3D approaches (Ke et al., 2025; Gervet
et al., 2023; Wilcox et al., 2025) lift 2D features from pre-trained image encoders into 3D space by
concatenating them with their 3D positions reconstructed from the original depth maps. This allows
models to combine the benefits of pre-trained visual encoders with the explicit 3D representation of
point clouds. While these works emphasize architectural design or multi-view fusion, our method
focuses on 3D representations, introducing non-parametric Fourier mappings that can be combined
with any 3D encoder to make fine geometric details more accessible.

Deep Learning with Fourier Features. Fourier features (Tancik et al., 2020; Mildenhall et al.,
2021) mitigate the spectral bias of neural networks (Rahaman et al., 2018; 2019), i.e. their ten-
dency to learn low-frequency components faster than high-frequency ones. This bias is amplified
by the data manifold geometry where variations that look high-frequency along it may correspond
to low-frequency modes in the ambient space (Rahaman et al., 2019), causing fine details to be
suppressed. These effects explain why many architectures struggle to condition on fine geometric
details, and motivate our use of Fourier feature mappings. Fourier mappings address this by lift-
ing low-dimensional inputs such as Cartesian coordinates into sinusoidal embeddings with multiple
frequencies, which can be fixed or learnable (Gao et al., 2023; Sun et al., 2024). Neural radiance
fields (Mildenhall et al., 2021; Barron et al., 2022) use this technique to be able to learn detailed 3D
scenes with high fidelity, and they are only able to learn burry, oversmoothed representations with-
out it Tancik et al. (2020). Adapt3R (Wilcox et al., 2025) propose a novel observation encoder that
outperforms other architectures on novel viewpoints unseen during training. While they show the
benefit of Fourier features for their architecture, they do not investigate their effect in other contexts.
In contrast, we apply Fourier mappings systematically across 3D modalities in diffusion-based IL,
providing a frequency-domain perspective that complements architectural approaches.

3 METHOD

3.1 PROBLEM FORMULATION

Imitation Learning aims to learn a policy from expert demonstrations. We are given
a dataset containing N expert trajectories D = {τi}Ni=1, where each trajectory
τi = (gi, (o1, a1), (o2, a2), . . . , (oK , aK)), where K is the trajectory length and gi is the lan-
guage description for the trajectory. The objective is to learn a policy π(ā|o,g) that maps
observations o and embedded goal g to a sequence of actions ā = (ak, ak+1, . . . , ak+H) for the
agent to execute in the environment. Predicting sequences of actions, i.e. action chunking, results
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Fourier Features

Tokenizer
Action
Decoder

Figure 2: Overview of our framework Given a pointcloud, we first map each point i and its neigh-
bourhood N (i) (indicated by the encircled patches) and map them to Fourier feature space. This
amplifies subtle geometric differences in each neighborhood. The tokenizer extracts and aggregates
features for each neighborhood to produce a set of tokens which are then forwarded to a goal-
conditioned diffusion policy Dθ to denoise the next chunk of actions.

in more temporally correlated trajectories compared to predicting individual actions (Zhao et al.,
2023). Each observation o contains depth images from M cameras. In combination with the camera
intrinsic and extrinsic parameters from calibration, we can construct any desired 3D observation
representation from these depth images. We use a frozen CLIP (Radford et al., 2021) encoder to
generate language embeddings from text descriptions of the goal.

3.2 SCORE-BASED DIFFUSION

To learn policies from expert demonstrations, we use the typical EDM framework (Karras et al.,
2022; Reuss et al., 2023) for score-based action diffusion conditioned on observations of the scene.
Diffusion models are generative models that learn to generate new samples through learning to
reverse a Gaussian perturbation process. The policy πθ(ā|o) is formulated as a score-based diffu-
sion model that can be used to successively denoise actions generated from Gaussian noise back to
the data manifold. This perturbation and its inverse process can be expressed with the following
Stochastic Differential Equation

dā =
(
βtσt − σ̇t

)
σt∇a log pt(ā|o,g)dt+

√
2βtσtdωt, (1)

where βt determines the noise injection rate at diffusion time step t, dωt represents infinitesimal
Gaussian noise, and pt(ā|o,g) denotes the score function of the diffusion process. During policy
sampling (i.e. the reverse process), action samples are guided towards high-density regions of the
data distribution. To learn this score, we train a neural network Dθ via score matching (Vincent,
2011):

LSM = Eσ,ā,ϵ
[
α(σt)|Dθ(ā+ ϵ, o,g, σt)− ā|22

]
, (2)

where Dθ(ā+ ϵ, o, σt) represents our trainable neural architecture.

After training, we can generate new action sequences beginning with Gaussian noise by iteratively
denoising the action sequence with a numerical ODE solver. Our approach utilizes the DDIM-solver,
a specialized numerical ODE-solver for diffusion models (Song et al., 2021) that enables efficient
action denoising in a minimal number of steps.

3.3 POINT CLOUDS

Given a set of depth images from M cameras D(0), . . . , D(M) ∈ RW×H as well as the intrinsic
matrices K(0)

int , . . . ,K
(M)
int ∈ R3×3, we first construct point clouds X(j) ∈ RWH×3 in each camera’s

local coordinate frame via unprojection:

X
(m)
iW+j = (K

(m)
int )−1

(
i ·D(m)

i,j , j ·D(m)
i,j , D

(m)
i,j

)T
(3)
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By multiplying each point cloud with its corresponding extrinsic matrix, we can transform it from the
camera coordinate frame to the world frame. The final point cloud X is obtained by concatenating
point clouds from all M views.

We treat point clouds as graphs, where the coordinates XYZ are the node features x0. This allows us
to formulate the point cloud encoder as a message-passing Graph Neural Network (GNN) (Scarselli
et al., 2009), a flexible framework that encompasses numerous well-known architectures. Each step
l computes new node features

xli = hlθ(x
l−1
i ,

⊕
j∈N (i)

hlϕ(x
l−1
i ,xl−1

j )), (4)

where N (i) is the neighborhood of point i, e.g., i’s k nearest neighbors or, in the case of a com-
plete graph, all other nodes. The permutation invariant aggregation

⊕
can be instantiated as a sum,

max, or mean, and hlθ and hlϕ denote learnable parametrized functions. After the final step, the
tokenized embedding of the observed point cloud {Ti} ∈ Rn×d is a subset of the node features
Ti = xLS , where S = fsampling(·) ⊆ [n] are indices selected by some sampling function. Each token
may optionally be augmented with a positional encoding Ti ← Ti + PEψ(x0

i ) based on the carte-
sian coordinates of the corresponding point, where PEψ represents some (potentially parametric)
function.

3.4 FOURIER FEATURE MAPPING

Despite the fact that neural networks are universal function approximators (Hornik et al., 1989),
they are biased toward learning low-frequency components first, while high-frequency components
converge slowly or may not be learned at all (Rahaman et al., 2019; Tancik et al., 2020). However,
an imitation learning policy parametrized by a neural network may need to learn a high frequency
function to represent a sharp decision boundary, such as whether to reposition a grasped object or
insert it. For a diffusion denoising model, this would allow the network to represent a score function
that is a high-frequency function of the scene geometry, though not necessarily of the actions. In
3D point clouds, a Fourier feature mapping allows the network to better distinguish nearby points,
which have extremely similar features in Cartesian space.

In contrast to previous work that adds Fourier features to specific, novel architectures (Wilcox et al.,
2025), we hypothesize that applying a Fourier feature mapping to Cartesian points feature bene-
fits essentially any point cloud-based policy. We adopt a NeRF-style, axis-aligned Fourier feature
mapping (Mildenhall et al., 2021). Let p ∈ R3 define a Cartesian point. The encoding function
γ : R→ R2L applied to the three coordinate values in p is defined as

γk(p) =
(
sin(λkπp), cos(λkπp)

)
, λk = λmin

(
λmax

λmin

) k−1
L−1

, k = 1, . . . , L. (5)

The point cloud must be bounded by the interval [−λmax/2, λmax/2], as the Fourier feature mapping
is periodic, and points outside this range no longer have unique features.

3.5 DATA AUGMENTATION

As shown in (Tancik et al., 2020), the choice of wavelengths is essential, as too short wavelengths
can cause the network to overfit on the data, while too long wavelengths do not resolve the spectral
bias. Instead of carefully tuning the wavelengths to each task, we choose a consistent set of wave-
lengths and use data augmentation to train the network to ignore frequencies that do not contain
useful information. To achieve this, we apply VariableJitter (Gyenes et al., 2025), which avoids
the difficulty of tuning the amplitude of typical Gaussian jitter. While Gaussian jitter applies noise
ϵ ∼ N (0, σmax) to each point drawn from the same distribution, VariableJitter samples a σmax for
each point cloud from a uniform distribution. This achieves a trade off between augmenting the data
to reduce overfitting and ensuring there is no gap between training and testing data.
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Figure 3: Overview of all evalution tasks from RoboCasa and ManiSkill3. For Robocasa, all
evaluation tasks are ordered in six groups, resulting in overall 16 unique tasks, shown on the left
column. For Maniskill, all evaluated tasks are shown on the right column.

4 EXPERIMENTS

4.1 BENCHMARKS AND DATASETS

We evaluate our approach on two widely used simulation benchmarks, RoboCasa (Nasiriany et al.,
2024) and ManiSkill3 (Tao et al., 2025). Figure 3 provides a visualization of our selection of tasks.
All models are trained in a multi-task setting, where semantically similar tasks are grouped together
in a category. The different task groups are shown in Tables 3 and 7 for RoboCasa and ManiSkill3
respectively.

RoboCasa (Nasiriany et al., 2024) includes high-precision manipulation tasks in visually rich, long-
horizon household settings (kitchen scenes). In our study, we focus on 16 tasks that stress fine
geometric alignment and contact, which is where spectral bias is most detrimental. For each task we
use 50 human-collected demonstrations provided by RoboCasa. Each scene contains two statically-
mounted cameras and a gripper camera, and some scenes features varying goal descriptions based
on the randomly sampled target object in the scene. More details on RoboCasa can be found in
Appendix A.1.

We further test on ManiSkill3 (Tao et al., 2025) to demonstrate our approach on object-centric
manipulation with diverse objects. We evaluate on four tasks covering grasping and tool usage under
varying viewpoints. Each task has one statically-mounted camera and a fixed goal description. Since
the majority of tasks use color information to indicate some aspect of the target, we map the target’s
Cartesian coordinates to Fourier features and pass this as an additional observation token. We train
on 500 (RL-generated) demonstrations from each task in one multi-task dataset. Full details on
ManiSkill3 are summarized in Appendix A.1.

Implementation details. We use a fixed log-spaced set of L = 8 Fourier bands with wavelengths
between λmax = 4.0 and λmin = 0.06, corresponding to coarse global variation down to fine
detail. This results in D = 3× (2L) = 48 Fourier features for each Cartesian point. Pointclouds in
ManiSkill are cropped to include only the relevant part of the scene, which removes the table surface
from the observation. We apply voxel downsampling with a voxel size of 0.006 for ManiSkill3 and
0.01 for RoboCasa. We sample a σmax for VariableJitter up to 0.002, which still allows crucial
geometric details to be preserved. Camera observations are resized to 128 × 128 for point cloud-
based policies and 224×224 for point map-based policies. In order to highlight the effect of Fourier
features on 3D representations, we do not include color features in observations.
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Figure 4: Mean success rate across all tasks of 3D encoders with and without Fourier features on
RoboCasa (left) and ManiSkill3 (right).

4.2 BASELINES

PointPatch We instantiate the point cloud encoder described in Equation 4 with two concrete archi-
tectures. The first is the common ”point patch” (PP) architecture (Pang et al., 2022; Yu et al., 2022;
Gyenes et al., 2024). From a pointcloud with N points, we wish to construct c = N ·r

k patches P

with k points each, where r is the oversampling ratio. We sample c centroids C ∈ Rc×3 from the
point cloud X using Farthest Point Sampling (FPS) (Qi et al., 2017b), which ensures broad coverage
and an even spatial distribution. For each centroid, we then identify its k nearest neighbors via a
kNN search, yielding point patches P ∈ Rc×k×3. Each patch is normalized by subtracting its cen-
troid coordinate. Finally, a lightweight PointNet (Qi et al., 2017b) encoder, composed of two MLP
layers and two max-pooling layers, transforms the patches into tokens T ∈ Rc×D of dimension D.

DP3 Encoder. Secondly, we evaluate the DP3 encoder proposed by Ze et al. (2024). Unlike patch-
based methods, DP3 creates a single token that embeds information from the entire point cloud.
Point features are passed through a multi-layer perceptron, followed by a max-pooling operation
to obtain order-invariant global feature. A final projection head maps the embedding to the token
dimension, resulting in T ∈ R1×D. Although this architecture is simple, it is quite data efficient due
to its small number of parameters.

Pointmap Encoder. To compare against other 3D representations, we also evaluate point maps,
which contain the same information as point clouds but are arranged in a 2D grid. Given depth
images from multiple cameras and their intrinsics and extrinsics parameters, we unproject each
pixel into 3D and transform it into the world frame, resulting in a dense point map X ∈ RH×W×3

for each camera. The resulting 3D representation can be processed directly with convolutional
backbones such as ConvNextV2 (Woo et al., 2023) or ResNet (He et al., 2015).

Experiment Setup. Each model is trained for 100 epochs with 3 random seeds, and test performance
after the 60th, 80th, and 100th epochs. We measure the average success rate across 20 rollouts and
select the best-performing checkpoint for each seed.

5 RESULTS

5.1 QUANTITATIVE RESULTS

The results are summarized in Figure 4, which shows the average success rate over all tasks in each
task suite. Tables 1 and 2 provide detailed results for RoboCasa and ManiSkill3, respectively.

Our experiments are designed to answer the following research questions:

Do Fourier feature mappings improve the overall performance for 3D inputs? Across both
RoboCasa (Table 1) and ManiSkill (Table 2) benchmarks, we observe that Fourier feature mappings
boost the success rate on a large majority of individual tasks. In RoboCasa, success rates on individ-
ual tasks jumped by as much as 35%. For example CloseDrawer improves from 33.3% to 70.0%,

7
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Table 1: Average success rates on different Robocasa tasks across task categories. Fourier features
generally lead to significant improvements for both PointPath and DP3 architectures. In contrast,
the image-based PointMap struggles on these tasks, likely due to task complexity and data sparsity.

Category Task PointPatch PointPatch + FF DP3 DP3 + FF PointMap

Insertion
CoffeeServeMug 0.0±0.0 5.0±8.7 3.3±2.9 3.3±2.9 0.0±0.0

CoffeeSetupMug 0.0±0.0 3.3±5.8 0.0±0.0 0.0±0.0 0.0±0.0

Pressing Buttons
CoffeePressButton 18.3±2.9 38.3±5.8 18.3±2.9 28.3±10.4 8.3±7.6

TurnOnMicrowave 10.0±5.0 43.3±23.6 26.7±12.6 43.3±12.6 0.0±0.0

TurnOffMicrowave 15.0±5.0 38.3±5.8 28.3±7.6 38.3±2.9 11.6±2.9

Turning Levers
TurnOnSinkFaucet 30.0±13.2 35.0±8.7 16.7±7.6 23.3±5.8 20.0±10.0

TurnOffSinkFaucet 41.7±5.8 66.7±2.9 43.3±5.8 61.7±12.6 13.3±10.4

TurnSinkSpout 41.7±5.8 73.3±5.7 46.7±2.9 41.7±2.9 31.7±11.5

Twisting Knobs
TurnOnStove 18.3±10.4 36.7±2.9 21.7±5.8 31.7±10.4 3.3±2.9

TurnOffStove 5.0±0.0 11.7±2.9 16.7±5.8 16.7±7.6 6.7±2.9

Open/Close Drawers
OpenDrawer 3.3±2.9 18.3±2.9 3.3±2.9 10.0±5.0 0.0±0.0

CloseDrawer 33.3±7.6 70.0±0.0 40.0±17.3 53.3±7.6 3.3±2.9

Open/Close Doors

OpenSingleDoor 25.0* 40.0±7.0 6.7±5.8 11.7±5.8 0.0±0.0

CloseSingleDoor 70.0* 65.0±7.0 23.3±2.9 41.7±7.6 0.0±0.0

OpenDoubleDoor 5.0* 30.0±14.1 0.0±0.0 1.6±2.9 0.0±0.0

CloseDoubleDoor 20.0* 65.0±7.1 10.0±5.0 15.0±0.0 0.0±0.0

Average Success Rate 21.0 40.0 19.1 26.3 6.1

* Method evaluated on 1 seed

and CloseDoubleDoor improves from 20.0% to 65.0%, while the overall average increases from
21.0% to 40.0%. The results confirm that Fourier mappings help preventing the spectral bias and
expose high-frequency geometric cues, making them a robust enhancement across tasks.

Does the effectiveness of Fourier features transfer across different encoders and benchmarks?
As shown in RoboCasa (Table 1) and ManiSkill (Table 2) the improvements are not tied to a specific
architecture. For PointPatch, Fourier features lead to substantial gains on nearly every task, and the
benefit is observed for tasks of any difficulty. For example, the challenging CoffeeServeMug task
improves from no success at all to 5.0%, a modest but noticeable gain. DP3 shows a similar trend,
although its architecture is substantially different from PointPatch. While it starts with a lower base
performance, Fourier features still result in significant improvements for 12 of 16 tasks in RoboCasa
and 3 of 4 tasks in ManiSkill.

In comparison, point maps do not perform competitively on RoboCasa, while they only slightly un-
derperform DP3 on the simpler ManiSkill tasks. This may indicate a lower data efficiency of the
point map representations trained with convolutional architectures, since we train on 500 demon-
strations for each ManiSkill task and only 50 for each RoboCasa task. This is backed up by prior
work (Zhu et al., 2024) which shows that simple point cloud encoders outperform point maps.

5.2 QUALITATIVE RESULTS

Qualitatively, we also notice that policies trained on Fourier feature mappings move faster and more
decisively, and more closely imitate the demonstration data. Policies trained without Fourier features
tend to hesitate before making contact with objects, or behave as if they cannot perceive the scene. In
Figure 5, we show representative rollouts from the TurnOnSinkFaucet task. The agent trained with
Fourier features makes contact with the faucet at the correct position, requiring accurate perception
of the scene, which the agent trained without Fourier features fails the task altogether.

6 CONCLUSION

In this work we apply the well-known Fourier feature mapping introduced in NeRF (Mildenhall
et al., 2021) to a variety of point cloud-based imitation learning methods and test them on high-
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Figure 5: Snapshots over time from policy rollouts on the TurnOnSinkFaucet task in RoboCasa.
Top: policy trained with Fourier features executes smooth and accurate rotations. Bottom: baseline
policy without Fourier features struggles to complete the motion.

Table 2: Average success rates on different Maniskill tasks for the high-precision Table-Top 2 Finger
Gripper category. Similar to the Robocasa results in 1, Fourier features improve the performance
of point-cloud based architectures, likely because they enable better differentiation of fine-grained
details. For Maniskill, PointMaps are competitive with approaches enhanced with Fourier features,
presumably due to larger training datasets.

Category Task PointPatch PointPatch + FF DP3 DP3 + FF PointMap

Table-Top 2 Finger Gripper

PullCube-v1 56.7±7.6 63.3±5.8 91.7±5.8 80.0±13.2 63.3±7.6

PushCube-v1 68.3±7.6 75.0±5.0 51.7±16.1 76.7±16.1 78.3±7.6

PokeCube-v1 56.7±12.6 68.3±5.8 61.7±2.9 63.3±2.9 71.7±10.4

RollBall-v1 21.7±7.6 23.3±7.6 30.0±13.2 36.7±2.9 30.0±5.0

Average Success Rate 50.8 57.5 58.8 64.2 60.8

precision manipulation tasks. Neural networks are biased towards learning low-frequency functions
of their inputs, while ignoring the high-frequency information that is essential for high-precision
manipulation, such as insertion tasks or grasping. We demonstrate that Fourier feature mappings
provide significant performance benefits for all encoders tested across the vast majority of tasks, for
both simpler and more challenging tasks.

Through experiments on RoboCasa and ManiSkill3, we demonstrate that Fourier features consis-
tently improve performance across different 3D input modalities and encoders. On ManiSkill3 tasks,
this modification brings point clouds on par with alternative 3D representations such as point maps,
while on RoboCasa, they far exceed them. For this reason, we argue that Fourier features should be
used almost any point cloud encoder architecture rather than Cartesian point features. Future work
may investigate gradient-based learning of the optimal wavelengths or additional regularization to
improve scalability.

9
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ETHICS STATEMENT

This work introduces Fourier feature projections to enhance 3D modalities for high-precision im-
itation learning. While our evaluation emphasizes robotic manipulation, the approach is broadly
relevant to other domains where spatial reasoning is required. As with many advances in robot
learning, the outcomes depend on the context of deployment: increased accuracy and robustness
can yield positive impacts in assistive and industrial settings, but also raise risks if applied irre-
sponsibly. We emphasize that the governance of powerful robotic technologies must extend beyond
the research community and individual organizations, requiring oversight by public institutions and
democratic processes.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide a detailed description of our implemen-
tation is given in Chapter 4.1, and include a list of hyperparameters in Appendix A.2. The used
RoboCasa and ManiSkill datasets are the public available versions which can be found on their cor-
responding websites. Further information on the datasets used in our experiments can be found in
Chapter 4 and in Appendix A.1. Our source code will be released with the final version of the paper.

ON LLM USAGE

Large language models were employed to refine individual phrases during the writing of the paper,
to assist with literature search and exploration, and to aid in code implementation. All outputs from
large language models were checked verified by the authors at every stage of the project, including
text, literature, and code. We also used them in limited ways for generating illustrative visualizations,
but used our own images and material as the basis for these visualizations.
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A APPENDIX

A.1 EXPERIMENT DETAILS

Figure 6: Overview of RoboCasa Simulation Environments. Example kitchen scenes and tasks
illustrating the diversity of household manipulation settings provided by RoboCasa.

RoboCasa benchmark. RoboCasa (Nasiriany et al., 2024) is a large-scale simulation benchmark
designed for training generalist robots in realistic household settings, with an emphasis on kitchen
environments. It provides 100 tasks in total: 25 atomic tasks with 50 human demonstrations each,
and 75 composite tasks with automatically generated demonstrations. The task set covers eight fun-
damental skills that are essential for home robotics: (1) pick-and-place, (2) door opening and clos-
ing, (3) drawer opening and closing, (4) knob turning, (5) lever manipulation, (6) button pressing, (7)
insertion, and (8) navigation. To evaluate our method, we selected 16 tasks from the atomic tasks
described in Table 3, each representing a different skill. The joint action space is 7-dimensional,
including end-effector translation, rotation, and gripper control.

Table 3: RoboCasa evaluation tasks.

Category Task Description

Insertion
CoffeeServeMug Remove the mug from the holder and place it on the counter.
CoffeeSetupMug Place the mug into the coffee machine’s mug holder.

Pressing Buttons
CoffeePressButton Press the button to pour coffee into the mug.
TurnOnMicrowave Start the microwave by pressing the start button.
TurnOffMicrowave Stop the microwave by pressing the stop button.

Turning Levers
TurnOnSinkFaucet Turn on the sink faucet to start water flow.
TurnOffSinkFaucet Turn off the sink faucet to stop water flow.
TurnSinkSpout Rotate the sink spout.

Twisting Knobs
TurnOnStove Turn on a specific stove burner by twisting its knob.
TurnOffStove Turn off a specific stove burner by twisting its knob.

Open/Close Drawers
OpenDrawer Open a drawer.
CloseDrawer Close a drawer.

Opening and Closing Doors

OpenSingleDoor Open a microwave door or a cabinet with a single door.
CloseSingleDoor Close a microwave door or a cabinet with a single door.
OpenDoubleDoor Open a cabinet with two opposite-facing doors.
CloseDoubleDoor Close a cabinet with two opposite-facing doors.

ManiSkill3 ManiSkill3 (Tao et al., 2025) is a large-scale GPU-parallelized simulation benchmark
designed for scalable training of embodied agents. It offers diverse object-centric manipulation
tasks such as grasping, assembling, and tool use, with support for both imitation and reinforcement
learning. Unlike RoboCasa, which emphasizes long-horizon household tasks in visually rich kitchen
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environments, ManiSkill3 provides highly parallelized simulation and rendering of physics-based
interactions, enabling efficient large-scale experimentation and evaluation of manipulation policies.

A summary of all ManiSkill3 tasks can be found in Table 4, each representing a distinct skill.

Figure 7: Overview of ManiSkill3 Simulation Environments. Example object-centric manipula-
tion tasks illustrating the diversity of interactions supported by ManiSkill3.

Table 4: ManiSkill3 evaluation tasks.

Category Task Description

Table-Top 2 Finger Gripper

PullCube-v1 A task where the objective is to pull a cube onto a target.
PushCube-v1 A task where the objective is to push and move a cube to a goal region in front of it.
PokeCube-v1 A task where the objective is to poke a red cube with a peg and push it to a target goal position.
RollBall-v1 A task where the objective is to push and roll a ball to a goal region at the other end of the table.

A.2 HYPERPARAMETERS

Table 5: Summary of the Hyperparameters for all of our experiments.

Hyperparameter ManiSkill RoboCasa
Number of Attention Blocks 4 4
Attention Heads 4 4
Action Chunk Size 10 20
History Length 1 1
Embedding Dimension 256 256
Goal Lang Encoder CLIP Resnet-50 CLIP Resnet-50
Attention Dropout 0.3 0.3
Residual Dropout 0.1 0.1
MLP Dropout 0.1 0.1
Optimizer AdamW AdamW
Betas [0.9, 0.9] [0.9, 0.9]
Learning Rate 1e-4 1e-4
Weight Decay 0.05 0.05
σmax 80 80
σmin 0.001 0.001
σt 0.5 0.5
EMA decay 0.995 0.995
Time steps Exponential Exponential
Sampler DDIM DDIM
Denoising Steps 10 10
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