
Revive Legacy Scientific Reasoning Benchmarks by
Growing Perturbation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large language model evaluation is compromised by data contamination, where1

sophisticated memorization masquerades as reasoning. We propose a systemati-2

cally perturbed benchmark dataset that transforms static legacy evaluations into3

contamination-resistant resources. Four perturbation categories enable robust as-4

sessment of authentic scientific reasoning versus pattern matching while testing5

contamination resistance and problem solvability recognition.6

1 AI Task Definition7

This dataset addresses: How can we reliably distinguish genuine scientific reasoning from sophisti-8

cated memorization in large language models?9

The dataset enables three interconnected tasks. Robustness Assessment involves binary classification10

predicting whether performance degradation indicates memorization versus authentic reasoning11

limitations. Contamination Detection predicts data leakage likelihood by comparing performance12

on original versus perturbed variants, enabling assessment of genuine AI capability as scientific13

reasoner. Solvability Recognition generates and evaluates mathematically impossible problems14

testing genuine reasoning versus hallucination tendencies.15

2 Dataset Rationale16

Static benchmarks enable memorization masquerading as reasoning. While models achieve near-17

perfect performance on GSM8K [2], MATH [5], GPQA [12], and MMLU [4], recent studies reveal18

fundamental limitations. GSM-Symbolic [9] and GSM1K [17] demonstrate dramatic failures when19

simple numerical values change, while PertEval [8] exposes vulnerabilities to knowledge-invariant20

modifications that should not affect genuine understanding.21

Our dataset requires 100K+ perturbed variants sourced from established benchmarks including22

GSM8K [2], MATH [5], GPQA [12], MMLU [4], and MMMU [16]. Each variant includes com-23

prehensive metadata covering perturbation type, solvability labels, and formal correctness proofs24

verified through Lean4 [3] theorem proving.25

Knowledge-Invariant Perturbations apply surface modifications like variable renaming and con-26

textual paraphrasing while preserving underlying solution pathways. Building on GSM1K [17]27

and MATH-Perturb [6] methodologies, these perturbations test whether models understand fun-28

damental logical relationships or merely memorize superficial patterns. A model demonstrating29

genuine reasoning should maintain consistent performance across semantically equivalent problem30

formulations.31

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



Knowledge-Variant Perturbations systematically scale problem complexity through constraint32

additions and difficulty increases. Extending MATH-Perturb [6] hard perturbations and MMLU-33

Pro [13] enhancement approaches, these modifications assess whether models can adapt reasoning34

strategies to increased complexity or rely on memorized solution templates that fail under scaling35

pressure.36

Solvability-Constrained Perturbations inject mathematical contradictions creating unsolvable37

problems while maintaining surface plausibility. These perturbations provide the most direct test38

of genuine scientific reasoning by distinguishing models that recognize logical impossibility from39

those that generate plausible-sounding but fundamentally incorrect solutions through sophisticated40

hallucination.41

Adversarial Perturbations employ gradient-optimized semantic triggers extending GCG [20] and42

CatAttack [11] approaches. These perturbations reveal systematic vulnerabilities in reasoning43

processes while preserving problem semantic validity, uncovering failure modes that indicate reliance44

on brittle pattern matching rather than robust logical understanding.45

3 Acceleration Potential46

Automated benchmark refreshing eliminates manual curation bottlenecks, accelerating development47

cycles from annual to monthly updates while preventing contamination-based gaming of genuine48

AI scientific reasoning capabilities. Real-time perturbation generation enables systematic detection49

of memorization versus authentic reasoning, providing reliable assessment of models as scientific50

reasoners rather than sophisticated pattern matchers.51

Solvability-constrained perturbations offer unprecedented diagnostic capability by testing whether52

models recognize mathematically impossible constraints versus hallucinating solutions. This capa-53

bility directly assesses genuine scientific reasoning foundations essential for physics simulations,54

diagnostic reasoning systems, educational assessment, and quantitative modeling under distribution55

shifts.56

4 Data-Creation Pathway57

We leverage automated perturbation pipelines across existing benchmarks, building on contamination-58

resistant methodologies from LiveBench [14], AntiLeak-Bench [15], and LiveCodeBench [7].59

Symbolic manipulation engines extend GSM-Infinite [19] complexity scaling approaches while60

fact-preserving transformations build on PertEval [8] knowledge-invariant methods. Program-of-61

Thought [1, 18] integration enables computational verification while adversarial generation employs62

semantic preservation constraints. Formal verification through Lean4 [3] and Isabelle [10] ensures63

correctness and solvability labeling at unprecedented scale.64

5 Cost & Scalability65

We train specialized perturbator models for each category through targeted approaches. Knowledge-66

invariant perturbators extend PertEval [8] methodologies using masked language modeling for67

paraphrasing tasks while knowledge-variant perturbators build on MATH-Perturb [6] and GSM-68

Infinite [19] using reinforcement learning for complexity-preserving modifications. Solvability-69

constrained perturbators employ constraint-satisfaction models for systematic reasoning testing while70

adversarial perturbators extend GCG [20] and CatAttack [11] optimization techniques.71

Our perturbation-as-a-service platform integrates Lean4 [3] verification capabilities, democratizing72

contamination-resistant evaluation for assessing genuine AI scientific reasoning capabilities across73

the research community.74
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