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Abstract

Large language model evaluation is compromised by data contamination, where
sophisticated memorization masquerades as reasoning. We propose a systemati-
cally perturbed benchmark dataset that transforms static legacy evaluations into
contamination-resistant resources. Four perturbation categories enable robust as-
sessment of authentic scientific reasoning versus pattern matching while testing
contamination resistance and problem solvability recognition.

1 Al Task Definition

This dataset addresses: How can we reliably distinguish genuine scientific reasoning from sophisti-
cated memorization in large language models?

The dataset enables three interconnected tasks. Robustness Assessment involves binary classification
predicting whether performance degradation indicates memorization versus authentic reasoning
limitations. Contamination Detection predicts data leakage likelihood by comparing performance
on original versus perturbed variants, enabling assessment of genuine Al capability as scientific
reasoner. Solvability Recognition generates and evaluates mathematically impossible problems
testing genuine reasoning versus hallucination tendencies.

2 Dataset Rationale

Static benchmarks enable memorization masquerading as reasoning. While models achieve near-
perfect performance on GSMSK [2], MATH [3]], GPQA [12]], and MMLU [4], recent studies reveal
fundamental limitations. GSM-Symbolic [9]] and GSM1K [[17] demonstrate dramatic failures when
simple numerical values change, while PertEval [8] exposes vulnerabilities to knowledge-invariant
modifications that should not affect genuine understanding.

Our dataset requires 100K+ perturbed variants sourced from established benchmarks including
GSMSK [2]], MATH [5]], GPQA [12], MMLU [4]], and MMMU [16]. Each variant includes com-
prehensive metadata covering perturbation type, solvability labels, and formal correctness proofs
verified through Lean4 [3]] theorem proving.

Knowledge-Invariant Perturbations apply surface modifications like variable renaming and con-
textual paraphrasing while preserving underlying solution pathways. Building on GSM1K [17]
and MATH-Perturb [6] methodologies, these perturbations test whether models understand fun-
damental logical relationships or merely memorize superficial patterns. A model demonstrating
genuine reasoning should maintain consistent performance across semantically equivalent problem
formulations.
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Knowledge-Variant Perturbations systematically scale problem complexity through constraint
additions and difficulty increases. Extending MATH-Perturb [6]] hard perturbations and MMLU-
Pro [13] enhancement approaches, these modifications assess whether models can adapt reasoning
strategies to increased complexity or rely on memorized solution templates that fail under scaling
pressure.

Solvability-Constrained Perturbations inject mathematical contradictions creating unsolvable
problems while maintaining surface plausibility. These perturbations provide the most direct test
of genuine scientific reasoning by distinguishing models that recognize logical impossibility from
those that generate plausible-sounding but fundamentally incorrect solutions through sophisticated
hallucination.

Adversarial Perturbations employ gradient-optimized semantic triggers extending GCG [20] and
CatAttack [[L1] approaches. These perturbations reveal systematic vulnerabilities in reasoning
processes while preserving problem semantic validity, uncovering failure modes that indicate reliance
on brittle pattern matching rather than robust logical understanding.

3 Acceleration Potential

Automated benchmark refreshing eliminates manual curation bottlenecks, accelerating development
cycles from annual to monthly updates while preventing contamination-based gaming of genuine
Al scientific reasoning capabilities. Real-time perturbation generation enables systematic detection
of memorization versus authentic reasoning, providing reliable assessment of models as scientific
reasoners rather than sophisticated pattern matchers.

Solvability-constrained perturbations offer unprecedented diagnostic capability by testing whether
models recognize mathematically impossible constraints versus hallucinating solutions. This capa-
bility directly assesses genuine scientific reasoning foundations essential for physics simulations,
diagnostic reasoning systems, educational assessment, and quantitative modeling under distribution
shifts.

4 Data-Creation Pathway

We leverage automated perturbation pipelines across existing benchmarks, building on contamination-
resistant methodologies from LiveBench [14], AntiLeak-Bench [15], and LiveCodeBench [7].
Symbolic manipulation engines extend GSM-Infinite [19] complexity scaling approaches while
fact-preserving transformations build on PertEval [8]] knowledge-invariant methods. Program-of-
Thought [[1, 18] integration enables computational verification while adversarial generation employs
semantic preservation constraints. Formal verification through Lean4 [3] and Isabelle [10] ensures
correctness and solvability labeling at unprecedented scale.

5 Cost & Scalability

We train specialized perturbator models for each category through targeted approaches. Knowledge-
invariant perturbators extend PertEval [8] methodologies using masked language modeling for
paraphrasing tasks while knowledge-variant perturbators build on MATH-Perturb [6] and GSM-
Infinite [[19]] using reinforcement learning for complexity-preserving modifications. Solvability-
constrained perturbators employ constraint-satisfaction models for systematic reasoning testing while
adversarial perturbators extend GCG [20] and CatAttack [[L1] optimization techniques.

Our perturbation-as-a-service platform integrates Lean4 [3] verification capabilities, democratizing
contamination-resistant evaluation for assessing genuine Al scientific reasoning capabilities across
the research community.
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