
Revive Legacy Scientific Reasoning Benchmarks by Growing Perturbation

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Large language model evaluation is compromised by data contamination, where
2 sophisticated memorization masquerades as reasoning. We propose a systemati-
3 cally perturbed benchmark dataset that transforms static legacy evaluations into
4 contamination-resistant resources. Four perturbation categories enable robust as-
5 sessment of authentic scientific reasoning versus pattern matching while testing
6 contamination resistance and problem solvability recognition.

7 1 AI Task Definition

8 This dataset addresses: *How can we reliably distinguish genuine scientific reasoning from sophisti-*
9 *cated memorization in large language models?*
10 The dataset enables three interconnected tasks. **Robustness Assessment** involves binary classification
11 predicting whether performance degradation indicates memorization versus authentic reasoning
12 limitations. **Contamination Detection** predicts data leakage likelihood by comparing performance
13 on original versus perturbed variants, enabling assessment of genuine AI capability as scientific
14 reasoner. **Solvability Recognition** generates and evaluates mathematically impossible problems
15 testing genuine reasoning versus hallucination tendencies.

16 2 Dataset Rationale

17 Static benchmarks enable memorization masquerading as reasoning. While models achieve near-
18 perfect performance on GSM8K [2], MATH [5], GPQA [12], and MMLU [4], recent studies reveal
19 fundamental limitations. GSM-Symbolic [9] and GSM1K [17] demonstrate dramatic failures when
20 simple numerical values change, while PertEval [8] exposes vulnerabilities to knowledge-invariant
21 modifications that should not affect genuine understanding.

22 Our dataset requires 100K+ perturbed variants sourced from established benchmarks including
23 GSM8K [2], MATH [5], GPQA [12], MMLU [4], and MMMU [16]. Each variant includes com-
24 prehensive metadata covering perturbation type, solvability labels, and formal correctness proofs
25 verified through Lean4 [3] theorem proving.

26 **Knowledge-Invariant Perturbations** apply surface modifications like variable renaming and con-
27 textual paraphrasing while preserving underlying solution pathways. Building on GSM1K [17]
28 and MATH-Perturb [6] methodologies, these perturbations test whether models understand fun-
29 damental logical relationships or merely memorize superficial patterns. A model demonstrating
30 genuine reasoning should maintain consistent performance across semantically equivalent problem
31 formulations.

32 **Knowledge-Variant Perturbations** systematically scale problem complexity through constraint
33 additions and difficulty increases. Extending MATH-Perturb [6] hard perturbations and MMLU-
34 Pro [13] enhancement approaches, these modifications assess whether models can adapt reasoning
35 strategies to increased complexity or rely on memorized solution templates that fail under scaling
36 pressure.

37 **Solvability-Constrained Perturbations** inject mathematical contradictions creating unsolvable
38 problems while maintaining surface plausibility. These perturbations provide the most direct test
39 of genuine scientific reasoning by distinguishing models that recognize logical impossibility from
40 those that generate plausible-sounding but fundamentally incorrect solutions through sophisticated
41 hallucination.

42 **Adversarial Perturbations** employ gradient-optimized semantic triggers extending GCG [20] and
43 CatAttack [11] approaches. These perturbations reveal systematic vulnerabilities in reasoning
44 processes while preserving problem semantic validity, uncovering failure modes that indicate reliance
45 on brittle pattern matching rather than robust logical understanding.

46 3 Acceleration Potential

47 Automated benchmark refreshing eliminates manual curation bottlenecks, accelerating development
48 cycles from annual to monthly updates while preventing contamination-based gaming of genuine
49 AI scientific reasoning capabilities. Real-time perturbation generation enables systematic detection
50 of memorization versus authentic reasoning, providing reliable assessment of models as scientific
51 reasoners rather than sophisticated pattern matchers.

52 Solvability-constrained perturbations offer unprecedented diagnostic capability by testing whether
53 models recognize mathematically impossible constraints versus hallucinating solutions. This capa-
54 bility directly assesses genuine scientific reasoning foundations essential for physics simulations,
55 diagnostic reasoning systems, educational assessment, and quantitative modeling under distribution
56 shifts.

57 4 Data-Creation Pathway

58 We leverage automated perturbation pipelines across existing benchmarks, building on contamination-
59 resistant methodologies from LiveBench [14], AntiLeak-Bench [15], and LiveCodeBench [7].
60 Symbolic manipulation engines extend GSM-Infinite [19] complexity scaling approaches while
61 fact-preserving transformations build on PertEval [8] knowledge-invariant methods. Program-of-
62 Thought [1, 18] integration enables computational verification while adversarial generation employs
63 semantic preservation constraints. Formal verification through Lean4 [3] and Isabelle [10] ensures
64 correctness and solvability labeling at unprecedented scale.

65 5 Cost & Scalability

66 We train specialized perturbator models for each category through targeted approaches. Knowledge-
67 invariant perturbators extend PertEval [8] methodologies using masked language modeling for
68 paraphrasing tasks while knowledge-variant perturbators build on MATH-Perturb [6] and GSM-
69 Infinite [19] using reinforcement learning for complexity-preserving modifications. Solvability-
70 constrained perturbators employ constraint-satisfaction models for systematic reasoning testing while
71 adversarial perturbators extend GCG [20] and CatAttack [11] optimization techniques.

72 Our perturbation-as-a-service platform integrates Lean4 [3] verification capabilities, democratizing
73 contamination-resistant evaluation for assessing genuine AI scientific reasoning capabilities across
74 the research community.

75 References

76 [1] Zhen Bi, Ningyu Zhang, Yinuo Jiang, Shumin Deng, Guozhou Zheng, and Huajun Chen. When
77 do program-of-thought works for reasoning? In Michael J. Wooldridge, Jennifer G. Dy, and
78 Sriraam Natarajan, editors, *Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI*

79 2024, *Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024,*
 80 *Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, February*
 81 *20-27, 2024, Vancouver, Canada*, pages 17691–17699. AAAI Press, 2024.

82 [2] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 83 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 84 Schulman. Training verifiers to solve math word problems. *CoRR*, abs/2110.14168, 2021.

85 [3] Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming
 86 language. In André Platzer and Geoff Sutcliffe, editors, *Automated Deduction - CADE 28*
 87 - 28th International Conference on Automated Deduction, Virtual Event, July 12-15, 2021,
 88 Proceedings, volume 12699 of *Lecture Notes in Computer Science*, pages 625–635. Springer,
 89 2021.

90 [4] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 91 Jacob Steinhardt. Measuring massive multitask language understanding. In *9th International*
 92 *Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*.
 93 OpenReview.net, 2021.

94 [5] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
 95 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset,
 96 2021.

97 [6] Kaixuan Huang, Jiacheng Guo, Zihao Li, Xiang Ji, Jiawei Ge, Wenzhe Li, Yingqing Guo, Tianle
 98 Cai, Hui Yuan, Runzhe Wang, Yue Wu, Ming Yin, Shange Tang, Yangsibo Huang, Chi Jin,
 99 Xinyun Chen, Chiyuan Zhang, and Mengdi Wang. MATH-Perturb: Benchmarking LLMs' math
 100 reasoning abilities against hard perturbations. *arXiv preprint arXiv:2502.06453*, 2025.

101 [7] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
 102 mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
 103 free evaluation of large language models for code. *ArXiv*, abs/2403.07974, 2024.

104 [8] Jiatong Li, Renjun Hu, Kunzhe Huang, Yan Zhuang, Qi Liu, Mengxiao Zhu, Xing Shi, and Wei
 105 Lin. Perteval: Unveiling real knowledge capacity of llms with knowledge-invariant perturbations.
 106 In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M.
 107 Tomczak, and Cheng Zhang, editors, *Advances in Neural Information Processing Systems 38: Annual*
 108 *Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024.

110 [9] Seyed-Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
 111 Mehrdad Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in
 112 large language models. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025.

114 [10] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. *Isabelle/HOL - A Proof Assistant for Higher-Order Logic*, volume 2283 of *Lecture Notes in Computer Science*. Springer, 2002.

116 [11] Meghana Rajeev, Rajkumar Ramamurthy, Prapti Trivedi, Vikas Yadav, Oluwanifemi Bamgbose,
 117 Sathwik Tejaswi Madhusudan, James Zou, and Nazneen Rajani. Cats confuse reasoning llm:
 118 Query agnostic adversarial triggers for reasoning models, 2025.

119 [12] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 120 Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
 121 benchmark. *CoRR*, abs/2311.12022, 2023.

122 [13] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
 123 Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex
 124 Zhuang, Rongqi Fan, Xiang Yue, and Wenhui Chen. Mmlu-pro: A more robust and challenging
 125 multi-task language understanding benchmark. In Amir Globersons, Lester Mackey, Danielle
 126 Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, *Advances*
 127 *in Neural Information Processing Systems 38: Annual Conference on Neural Information*
 128 *Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*,
 129 2024.

130 [14] Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Siddhartha Jain,
131 Ravid Schwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal, Sandeep Singh
132 Sandha, Siddhartha V. Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie Neiswanger,
133 and Micah Goldblum. Livebench: A challenging, contamination-limited LLM benchmark. In
134 *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,*
135 April 24-28, 2025. OpenReview.net, 2025.

136 [15] Xiaobao Wu, Liangming Pan, Yuxi Xie, Ruiwen Zhou, Shuai Zhao, Yubo Ma, Mingzhe Du, Rui
137 Mao, A. Luu, and William Yang Wang. Antileak-bench: Preventing data contamination by auto-
138 matically constructing benchmarks with updated real-world knowledge. *ArXiv*, abs/2412.13670,
139 2024.

140 [16] Xiang Yue, Yuansheng Ni, Tianyu Zheng, Kai Zhang, Ruoqi Liu, Ge Zhang, Samuel Stevens,
141 Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
142 Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
143 Wenhui Chen. MMMU: A massive multi-discipline multimodal understanding and reason-
144 ing benchmark for expert AGI. In *IEEE/CVF Conference on Computer Vision and Pattern*
145 *Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pages 9556–9567. IEEE, 2024.

146 [17] Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson, Catherine Wu, William Song, Tiffany Zhao,
147 Pranav Raja, Charlotte Zhuang, Dylan Slack, Qin Lyu, Sean Hendryx, Russell Kaplan, Michele
148 Lunati, and Summer Yue. A careful examination of large language model performance on
149 grade school arithmetic. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan,
150 Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, *Advances in Neural Information*
151 *Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,*
152 *NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024.

153 [18] Yu Zhang, Shujun Peng, Nengwu Wu, Xinhua Lin, Yang Hu, and Jie Tang. Rm-pot: Reformu-
154 lating mathematical problems and solving via program of thoughts. *CoRR*, abs/2502.12589,
155 2025.

156 [19] Yang Zhou, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. Gsm-infinite: How
157 do your llms behave over infinitely increasing context length and reasoning complexity? *CoRR*,
158 abs/2502.05252, 2025.

159 [20] Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter, and Matt Fredrikson.
160 Universal and transferable adversarial attacks on aligned language models, 2023.