
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CAN LLMS ENHANCE PERFORMANCE PREDICTION
FOR DEEP LEARNING MODELS?

Anonymous authors
Paper under double-blind review

ABSTRACT

Accurate performance prediction of Deep Learning (DL) models is essential for
efficient resource allocation and optimizations in various stages of the DL system
stack. While existing approaches can achieve high prediction accuracy, they lack
ability to quickly adapt to new hardware environments or emerging workloads.
This paper leverages both Graph Neural Networks (GNNs) and Large Language
Models (LLMs) to enhance the accuracy and adaptability of DL performance pre-
diction. Our intuition is that GNNs are adept at capturing the structural infor-
mation of DL models, naturally represented as graphs, while LLMs provide gen-
eralization and the ability to quickly adapt to various tasks thanks to extensive
pre-training data. We empirically demonstrate that using GNN-derived graph em-
beddings as inputs to an LLM outperforms traditional representations, including
high-level text summary and lossless semi-structured text (e.g., JSON), for this
task. Furthermore, we propose a structured pre-training strategy to enable model
adaptation to new hardware environments, significantly reducing the need for ex-
tensive retraining. Our experiments validate the effectiveness of this approach,
showing an 8.8 percentage-point improvement in accuracy over a state-of-the-art
GNN baseline. Notably, when adapted to new hardware with few samples, our
method achieves a remarkable 30–70 percentage-point increase in accuracy com-
pared to the GNN baseline.

Tokenizer

La
ng

ua
ge

 M
od

el
 <graph>

</graph>

q1

qn

Predict the inference
time for given DL graph on

{hardware details}

D
L

G
ra

ph CONV

RELU CONV

GEMM

Estim
ated inference tim

e is 10 m
s

G
N

N
 E

nc
od

er

Po
ol

in
g

Pr
oj

ec
tio

n

Pr
om

pt

Continuous values
GraphToken

Figure 1: Our approach integrates GNNs and LLMs for DL model performance prediction. The
methodology utilizes soft prompting to fine-tune pre-trained GNN weights and projection layer
weights, while updating pre-trained LLMs with the LoRA technique. During fine-tuning, gradi-
ents flow from the LLM to the GNN, allowing the system to process graphs and prompts effectively
and generate accurate performance metrics predictions.

1 INTRODUCTION

Performance prediction for Deep Learning (DL) models is essential for all sorts of optimization
methods in the DL system stack: from Neural Architecture Search, to model partitioning and shard-
ing, to low-level compiler optimizations. Performance prediction involves estimating various op-
erational metrics — such as inference time, memory usage, and power consumption — that are

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

crucial for efficient hardware utilization and scheduling. Since DL models are computation graphs,
researchers have employed Graph Neural Networks (GNNs) to extract information from the DL
model for various optimization decisions given hardware components Phothilimthana et al. (2023);
Panner Selvam & Brorsson; 2023); Liu et al. (2022).

Unfortunately, aforementioned GNN-based approaches require comprehensive retraining to accom-
modate new hardware environments or DL architectures, often requiring large labeled datasets.
These requirements can hinder a rapid adaptation and optimization, limiting the flexibility of these
models when new architectures or configurations emerge. Fortunately, the recent successes of Large
Language Models (LLMs) in various domains have underscored their capability to understand and
generate complex systems Team et al. (2024); Singhal et al. (2023); Wayne et al. (2023); Wu et al.
(2023); Li et al. (2023). This includes not only natural language but also structured data such as
code, configuration settings, and textual descriptions of hardware configurations and DL architec-
tures. Given their extensive pre-training on diverse datasets, LLMs can generalize effectively when
fine-tuned on specific tasks. Their generalization capability makes them good candidates for en-
hancing DL performance prediction.

However, employing LLMs in the performance prediction domain poses challenges, primarily due
to the need for representing DL models in a format that LLMs can efficiently process. Prior works
have considered using high-level descriptions to represent programs and graphs as text inputs for
compiler optimizations and performance predictions Cummins et al. (2023); Jawahar et al. (2023).
Nonetheless, these representations often fail to maintain the full structural intricacies of DL models,
losing crucial connectivity and hierarchical information. An alternative representation is to use
structured text format (e.g. JSON, XML, Protobuf, etc.), which maintains detailed information of
node features and their connections. However, DL models can contain tens-of-thousands of nodes
Phothilimthana et al. (2023), which can hinder the processing efficiency and scalability when used
with LLMs.

Recent research has explored the use of GNNs as encoders to convert graph data into embeddings
as inputs to LLMs, thereby effectively bridging the gap between graph data and the textual input
preferred by LLMs. However, these studies primarily focus on graph-based question answering,
rather than directly on performance prediction Perozzi et al. (2024); Liu et al. (2024).

In line with Perozzi et al. (2024) findings, We hypothesize that graph embeddings, derived from
GNNs, represent DL models more effectively for performance prediction than conventional text rep-
resentations because the graph embeddings could better capture structures and connectivity. Based
on this hypothesis, we propose the GNN-LLM model for DL performance prediction, as illustrated
in Figure 1. Our experiment has confirmed that using graph embeddings significantly outperforms
using a semi-structured text format (JSON) and a high-level text format in both accuracy and com-
putational efficiency. Specifically, our approach surpasses a JSON format by approximately 6% in
accuracy and is 21 times faster in terms of training time. Likewise, our approach surpasses high-level
text by 134% in accuracy and is 2 times faster in terms of training time, demonstrating a substantial
improvement over text-based representation.

To enhance the adaptability and accuracy of the model, we further develop a structured pre-training
strategy that obviates the need for extensive retraining from scratch. The approach begins by training
a GNN using a mask autoencoding technique on unlabeled DL models, inspired by Hou et al. (2022)
research. In this initial phase, the GNN learns to capture DL graph structures and node information.
Subsequently, we refine the integration between the DL graph data and the LLM by fine-tuning
the projection layer and the LLM through a graph-to-text task. This graph-to-text translation will
enable the LLM to comprehend DL graph structures and improve the model’s ability to adapt to new
hardware with minimal training samples for downstream performance prediction tasks. Finally, all
components are fine-tuned for the final performance prediction task.

In the evaluation, our method achieves a 8.8 percentage-point increase in accuracy over the state-of-
the-art GNN baseline on the NNLQP multi-platform dataset, and a remarkable 30–70 percentage-
point increase in accuracy when adapted to new hardware with few samples. The results confirms
our method’s efficacy in enhancing both the accuracy and adaptability of performance predictions
across varied computational environments.

1. We empirically evaluate different DL model representations for LLMs on performance
prediction tasks, showing that a graph embedding-based input is most effective.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2. We introduce a method integrating GNNs and LLMs for the DL performance prediction
domain, combining GNNs’ structural insights and LLMs’ generalization capabilities.

3. We propose a structured pre-training strategy to enhance model performance in a new hard-
ware environment with limited training samples.

4. We contribute a specialized graph-to-text dataset designed to further research into the in-
tegration of GNN and LLMs. This dataset is particularly valuable for benchmarking and
advancing the application of GNN-LLM combinations in graph learning tasks.

5. Our research offers a promising direction for improving DL performance prediction accu-
racy and adaptability across diverse hardware environments.

2 BACKGROUND

2.1 DL MODELS AS COMPUTATIONAL GRAPHS & GRAPH NEURAL NETWORKS (GNNS)

DL models can be represented as directed acyclic computational graphs, where nodes correspond to
mathematical operations and edges represent data flow between these operations. The input features
of every node include the op code (e.g., einsum, relu, etc), the output data type (e.g., float32, uint8,
etc) and the shape of the output tensor – See Phothilimthana et al. (2023) for comprehensive list of
node-wise features.

GNNs are designed to operate on graph-structured data. Let graph of n nodes be represented with
a node feature matrix X ∈ RN×. and an adjacency matrix A ∈ {0, 1}N×N . GNNs use an iterative
message passing process to generate embeddings for nodes. During message passing, each node
updates its embedding by aggregating information from its neighbors. GNN layer can be written as:

H(l) = TRANSFORM
(
H

(l−1)
i ,A

)
(1)

where H(l) is the node embedding matrix at the l-th layer and H(l) = X. Through multiple message-
passing layers, each node aggregates information from a wider neighborhood, capturing both imme-
diate and distant neighbor information. GNNs have excelled in tasks such as node classification,
link prediction, and graph-level classification. There are many possible choices for TRANSFORM
function Kipf & Welling (2017); Veličković et al. (2018); Hamilton et al. (2017); Xu et al. (2019).
In our work, we use a variant of the GIN model Xu et al. (2019):

H
(l)
GIN = MLP

(
(A+ Iϵ)H(l−1)

)
, (2)

where MLP stands for multi-layer perceptron, I is n× n identity matrix, and ϵ is small constant.

2.2 LARGE LANGUAGE MODELS

2.2.1 PRE-TRAINED LARGE LANGAUGE MODELS

Pre-trained LLMs are advanced neural networks for natural language processing tasks. They lever-
age the Transformer architecture Vaswani et al. (2017), which uses self-attention mechanisms to
manage long-range dependencies in text. LLMs are pre-trained on extensive corpora to predict sub-
sequent tokens, enabling them to capture intricate linguistic patterns. This pre-training is followed
by finetuning task-specific datasets to adapt to various applications like text classification and trans-
lation.

2.2.2 PARAMETER-EFFICIENT FINE-TUNING

With the rapid increase in the size of state-of-the-art LLMs, traditional fine-tuning has become
resource intensive. Parameter-Efficient Fine-Tuning (PEFT) aims to adapt models to new tasks by
updating only a small subset of parameters Xu et al. (2023).

Low-Rank Adaptation (LoRA): LoRA introduces low-rank matrices into model layers, repre-
sented as ∆W = BA, where B and A are trainable low-rank matrices. This approach reduces
the computational burden by updating fewer parameters while keeping the main model’s parameters
frozen, thus preserving the pre-trained knowledge Hu et al. (2021).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Soft Prompting: Soft prompts are learnable vectors integrated into the model’s input to guide its
behavior toward specific tasks. This method updates only a small number of parameters, making it
computationally efficient and preserving the broad knowledge of the model Bulat & Tzimiropoulos
(2023).

3 METHODOLOGY

Figure 1 displays our proposed model architecture. Our approach takes a DL model graph and a
textual prompt as inputs. The DL graph is initially processed by a GNN encoder and then projected
as an embedding to an LLM, along with the token embeddings of the textual prompt.

3.1 DL REPRESENTATION

We consider the following methods to represent DL models for processing by LLMs.

Graph Representation. This method first encodes a DL model in the Open Neural Network Ex-
change (ONNX) format, represented as a graph with node feature matrix X formulated as:

Xv = X(op)
v ⊕X(attr)

v ⊕X(shape)
v ∀v ≤ N (3)

where X(op)
v is the one-hot encoded vector indicating the type of the node operation. X(attr)

v includes
the node’s attribute vector, containing parameters such as kernel size and stride, and X

(shape)
v encodes

the output shape. The operation ⊕ represents a vector concatenation. This method is adapted from
the framework established in Liu et al. (2022). Subsequently, we feed the node feature matrix X and
the adjacency matrix A into the GNN. The GNN then produces a graph embedding for input into
the LLM, along with prompt’s token embeddings, to predict the model’s performance.

High-level Text Representation. We use a predefined template that captures essential computa-
tional and structural properties of a DL model. This includes overall model statistics — such as
FLOPs, parameter count, and batch size — offering insights into the model’s complexity and ca-
pacity. We also include layer-specific statistics, detailing each layer’s FLOPs and parameter counts.
These elements together offer a holistic view of a DL model’s architecture and its computational
behavior. To predict its performance, we simply tokenize and apply a conventional word encoder on
the textual prompt for LLM processing.

Semi-Structured Text Representation. We adopt a semi-structured JSON format to comprehen-
sively encapsulate a DL architecture. This format itemizes each node’s characteristics, including the
operator type, input and output shapes, computation complexities, and node attributes. Addition-
ally, it capture node connectivity. For LLM processing, we tokenize and apply a conventional word
encoder on the semi-structured description.

3.2 GRAPH ENCODING

Our GNN encoder is based on the Graph Isomorphism Network (GIN) Xu et al. (2019), defined as:

H(l)
ours = (A+ Iϵ)MLP(H(l−1))

with MLP(Z) = ReLU(BN(ZW1 + b1))W2 + b2

(4)

We inspired this architecture by Hou et al. (2022). This setup ensures each node feature undergoes
transformation, normalization, and activation, promoting the learning of non-linear dependencies.
After processing through L layers, we aggregate node features to form a graph-level representation:

g =
1

N

N∑
i=1

H
(L)
i . (5)

Next, the projection layer transforms the GNN output g into an embedding vector of size dembedding
for the LLM processing.:

GraphToken = MLPproj(g), (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

G
N

N
 E

nc
od

er

G
N

N
 D

ec
od

er

SCE Loss

Stage 1: GNN Pretraining

Summaries
the graph

Stage 2: Graph-Text Adaptation Stage 3: Performance Prediction Finetuning

Tokenizer

La
ng

ua
ge

 M
od

el
 <graph>

</graph>

q1

qn

G
N

N
 E

nc
od

er

Po
ol

in
g

Pr
oj

ec
tio

n

Prompt
Predict the

inference time
{hardware details}

Tokenizer La
ng

ua
ge

 M
od

el
 <graph>

</graph>

q1

qn

G
N

N
 E

nc
od

er

Po
ol

in
g

Pr
oj

ec
tio

n

Prompt

GraphToken
GraphToken

Figure 2: The three stages of our approach: (1) GNN Pre-training: Using Scaled Cosine Error
(SCE) loss with masked node features (XMASK) approach to pre-train the GNN. (2) Graph-Text
Adaptation: Fine-tuning the pre-trained GNN encoder (frozen) and updating LLM weights and
projection weights using soft prompting and LoRA techniques. (3) Performance Prediction Fine-
tuning: Updating all GNN projection and LLM parameters through soft prompting and LoRA tech-
niques to predict performance metrics for deep learning graphs on various hardware.

where MLPproj encapsulates a series of linear transformations and non-linear activations. It ensures
the alignment of dimensionalities and contextual relevance. Note that the output dimension size of
the projection is larger than the input dimension size: |GraphToken| > |g|.
The LLM input is then constructed by integrating graph embeddings GraphToken with token em-
beddings Q. A textual prompt describing the task like “Predict the inference time of
DL model” is tokenized as q = [q1, q2, . . . , qn]. The tokens are then converted into word em-
beddings: Q = E[q], where E represents the embedding matrix. The complete LLM input is the
concatenation of the projected graph embedding and the token embeddings:

InputLLM = [<graph>,GraphToken,</graph>,Q]. (7)

In this sequence, <graph> and </graph> are text tokens directly generated by the tokenizer, marking
the beginning and end of the graph embedding. A single graph embedding vector GraphToken
efficiently encapsulates the entire graph’s structure, compactly representing complex information in
a form that complements textual embeddings in LLMs.

3.3 TRAINING STRATEGY: 3-STAGE TRAINING

We hypothesize that directly fine-tuning both LLMs and GNNs for performance prediction tasks,
starting from scratch, may not yield optimal adaptability for new tasks. The challenge lies in the
initial lack of domain-specific knowledge, which is crucial for the model to effectively process and
predict the DL performance metrics. To address this, we propose a novel structured pre-training
methodology, designed to enhance the model’s intrinsic understanding of DL graph structures be-
fore fine-tuning for performance prediction. The pre-training strategy comprises the three stages as
shown in Figure 2.

Stage 1. GNN Pre-training. We employ the Graph Maked Auto Encoder technique (GraphMAE)
for GNN pre-training Hou et al. (2022). We use GIN as both encoder and decoder. Given a DL
graph with X and A, we mask a portion of X using a learnable mask vector to produce X̃. The
GIN encoder processes (X̃, A) to generate latent embeddings Z, effectively capturing the obscured
structural details. The GIN decoder reconstructs the node features from Z to X̂, aimed at closely
approximating the original X. Reconstruction accuracy is quantified using Scaled Cosine Error
(SCE), which evaluates alignment in both direction and magnitude of the feature vectors. Using
GIN for both encoding and decoding optimizes the preservation and reconstruction of local graph
structures, essential for understanding DL graphs. The SCE, by assessing both vector orientation
and length, enhances model sensitivity to structural and feature variations, preparing it for robust
performance on subsequent tasks.

Stage 2. Graph-Text Adaptation. For this stage we update only projection layer and LLM
weights. The projection layer Wp adapts the graph embeddings GraphToken for integration with

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the LLM. During training, we update the projection layer weights using soft prompting techniques.

∂L
∂Wp

=
∂L

∂Output
· ∂Output
∂GraphToken

· GraphTokenT

Here, ∂L
∂Output represents the gradient of the loss with respect to the LLM’s output, and ∂Output

∂GraphToken
captures how changes in GraphToken affect the output. We used cross-entropy loss for the next word
prediction. We utilize the LoRA technique to efficiently update the LLM weights. The updates for
the low-rank matrices B and C are given by:

∂L
∂B

=
∂L

∂∆W
·CT ,

∂L
∂C

= BT · ∂L
∂∆W

where ∆W = BC represents the low-rank update to the LLM weights. The GNN encoder weights
remain frozen during this stage to preserve the integrity of the initial graph embeddings learned dur-
ing pre-training. This selective updating strategy helps maintain foundational graph understanding
and ensures consistent model performance across various adaptation scenarios.

Stage 3. Performance Prediction Fine-Tuning. In this final stage, we load the pre-trained GIN
encoder weights from Stage 1 and the projection Wp and LoRA weights from Stage 2. We fine-tune
the entire GNN to LLM model for performance prediction.

Note that naively feeding the GNN embedding outputs as multiple concrete text tokens to the LLM
does not work because the gradient does not flow from the LLM to the GNN. This is why we adopt
the proposed approach.

Training Datasets. We utilize three distinct datasets for the different stages of our model’s training
process.

For GNN pre-training, we use a dataset containing 20,000 unlabeled DL graphs, Liu et al. (2022),
including of ten DL model families (ResNets, EfficientNets, MobileNetV2s, MobileNetV3s, Mnas-
Nets, SqueezeNets, VGGs, Alexnets, NasBench201s and GoogleNets). These ONNX models are
transformed into node feature matrices and adjacency matrices, then converted these into the Py-
Torch Geometric data format (PyG), as detailed in Section 3.1, for GNN pre-training (Section 3.3).
This extensive set of graphs allows our GNN to capture a wide range of node and edge features,
providing robust initial embeddings.

For graph-to-text adaptation, we introduce a novel dataset based on Liu et al. (2022) dataset. We
structured the dataset into {(G,Q,A)} format: G represents the DL model’s graph structure in PyG
format, Q is a textual prompt (Summarise the graph), and A is the summary of DL architecture,
which is the response from the LLM (as referenced in the sample prompt in Appendix A.3). The
summary provides comprehensive details, including the total number of nodes, edges, model com-
plexity, and statistics for each layer. The dataset comprises 20,000 prompts.

For performance prediction fine-tuning, we use the NNLQP Multi-platform dataset, which includes
ten DL model families across nine computational architectures (cpu-openppl-fp32, hi3559A-nnie11-
int8, gpu-T4-trt7.1-fp32, gpu-T4-trt7.1-int8, gpu-P4-trt7.1-fp32, gpu-P4-trt7.1-int8, hi3519A-
nnie12-int8, atlas300-acl-fp16, mul270-neuware-int8). This dataset contains DL graphs, platform
IDs, and inference latency metrics. It consists of 7,396 graphs for training and 3,201 for testing.
During the forward pass, queries Q are provided to the LLM, combined with G, to predict inference
times. The predicted inference latency A is directly derived from the LLM’s output.

4 EXPERIMENTS

This section presents a series of experiments designed to validate the efficacy of our integrated
model for DL performance prediction. We utilized our performance prediction datasets described
in section 3.3 to challenge our model under different conditions and compared it with the GNN
baseline to underscore its advantages and unique capabilities. The computing details are explained
in appendix A.1. To assess the accuracy of our performance prediction models, we used Mean
Absolute Percentage Error (MAPE) and Accuracy within a delta threshold (ACC(δ)) metrics as
detailed in Appendix A.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison of different representations of DL models for performance pre-
diction tasks. Our proposed method (DL graph as embedding) demonstrates superior accuracy and
efficiency, outperforming both JSON and high-level text representations.

Method MAPE ↓ Acc(10%) ↑ TTT(hr) ↓ Max Token Length ↓

Text 41.42 22.50 0.46 512
JSON 13.55 49.80 5.02 2048
Ours-Llama3-8B 12.61 52.83 0.23 512

4.1 EXPERIMENT: DL REPRESENTATION

This experiment explores the efficacy of different representations of DL models for performance
prediction tasks using LLMs. The DL representations are mentioned in Section 3.1. We investigated
three primary formats: our proposed method (DL graph as embedding), semi-structured format
(JSON), and high-level text. Each format presents unique challenges in how effectively it can be
processed by LLMs.

Table 2: Impact of LoRA rank (α) on our model
performance and trainable parameters (θ) in mil-
lions using Llama3-8B as base LLM. The rank
8 achieves the best balance of accuracy and effi-
ciency.

α MAPE (%) ↓ Acc (%) ↑ θ (M)
8 12.61 52.83 24

16 12.74 51.50 26
32 12.63 54.50 33
64 13.43 49.50 47

128 13.86 44.50 74

Setting: For this experiment, we utilized the
Llama3-8B1 pre-trained model as the base
LLM. The Adam optimizer was used with a
learning rate of 1× 10−5, and LoRA with rank
8 was employed for efficient parameter updat-
ing. The GIN encoder used a learning rate of
1 × 10−3. Each model was trained over 10
epochs, repeated 3 times to ensure stability and
convergence of results.

In experiments with the performance predic-
tion dataset, the entire ONNX models was con-
verted to JSON format and tokenized using the
Llama3-8B model tokenizer to assess context
length. The JSON format reached a maximum
context length of 18,000 tokens. Therefore, we
selected the AlexNet family in the dataset due
to its shorter context length compared to other families. A 90:10 train-test split was used for this
experiment, consistent with previous work Liu et al. (2022).

Result: Our proposed approach outperforms both JSON and high-level text representations signif-
icantly in terms of MAPE and ACC(10%), as shown in Table 1. Our method also demonstrated
substantial efficiencies in training time, with the Total Training Time (TTT) notably lower than that
required for JSON, which had the highest tokenization length and training duration. These results
highlight the critical impact of DL model representation on the performance prediction capabilities
of LLMs. High-level text, while simple, fails to capture the necessary connectivity information,
leading to poor prediction accuracy. The semi-structured JSON format offers some improvement
by providing hierarchical data, but its verbosity and resulting long token sequences increase com-
putational costs. Our proposed method, which embeds the DL graph structure into a compact rep-
resentation, strikes an optimal balance by preserving essential connectivity information within a
manageable token length. This approach not only enhances prediction accuracy but also ensures
computational efficiency. The graph embeddings naturally align with the inherent structure of DL
models, enabling the LLM to process and predict performance metrics more effectively.

In our architecture, we update the LLM through the LoRA component. Therefore, we conducted an
additional experiment on varying the rank size in LoRA updates. As detailed in Table 2, a rank of 8
offers the optimal trade-off between model performance and computational efficiency. While higher
rank (32) can improve accuracy, they do so at the cost of a substantial increase in θ of 33M. The
rank 8 configuration achieves the lowest MAPE while maintaining accuracy, all with the θ of 24M.
This configuration proves to be the most efficient choice for our proposed architecture.

1https://llama.meta.com/llama3/

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.2 EXPERIMENT: COMPARISON WITH STATE-OF-THE-ART GNN

Table 3: Performance comparison of the GNN
baselines against our models with different base
LLMs (Llama3-8B and Mistral-7B) using a multi-
platform performance prediction dataset. Both
our models utilize GNN pre-training and graph-
text adaptation. The test results demonstrate
that our approach outperforms the all baselines,
highlighting the effectiveness of the integrated
method.

Models MAPE ↓ Acc (10%) ↑
GNN-Baseline 12.96 51.72
GNN-NF 12.75 53.93
GNN-DistilRoberta 16.02 40.97
GNN-MiniLM 18.38 34.90
GNN-mpnet 16.12 40.37
Ours-Llama3-8B 12.50 57.10
Ours-Mistral7B 11.89 60.49

To rigorously evaluate our proposed archi-
tecture, we conducted a comparative analysis
against the established GNN baseline Liu et al.
(2022) model across the multi-platform perfor-
mance prediction dataset, which contains ten
different DL model familes and nine different
hardware platforms, as mentioned in Section
3.3. This comparison is crucial to validate the
enhancements offered by our approach, partic-
ularly in terms of accuracy. In this experiment,
we used two variants of our model: one with
Llama3-8B and one with Mistral-7B Jiang et al.
(2023) as the base LLM, both utilizing GNN
pre-training and graph-text adaptation.

Settings: The baseline GNN model was uti-
lized with no architectural modifications as de-
scribed in its original implementation. For both
of our models, we used the Adam optimizer
with a learning rate of 0.0001 for the LLM and
0.001 for the GNN. We trained all models for
10 epochs conducted three times.

Results: According to the results shown in Table 3, both variants of our model with the pre-training
strategy outperformed the GNN baseline. Notably, our model with the Mistral-7B base LLM outper-
forms the baseline by approximately 8.26% reduction in MAPE and 16.96% (8.8 percentage-point)
increase in Acc (10%). To further improve the baseline, we incorporated additional node features
such as FLOPS, MACs, and the number of parameters to enhance the representation of the DL mod-
els in the graph. This enhanced GNN baseline (referred to as GNN-NF) was designed to provide
more comprehensive information for each node, ensuring that the model had a richer set of features
to inform its performance predictions. However, our proposed architecture still outperforms the en-
hanced GNN model, confirming that the performance improvements are indeed attributable to the
LLM integration, rather than merely to a more comprehensive feature representation. These results
highlight the critical impact of the effective model representation and the pre-training strategy on
the performance prediction capabilities of LLMs.

Justification for the Proposed Architecture: Initially, we experimented with simpler models,
which yielded suboptimal results, as summarized in Table 3. These models involved modifying the
NNLQP GNN architecture by adding text-based descriptions of static features and hardware configu-
rations, represented using embeddings generated by three variants of the pre-trained sentence-BERT
language model (MiniLM-L6-v2, mpnet-base-v2, distilroberta-v1) Reimers & Gurevych (2019).
These embeddings were then concatenated with GNN embeddings to predict performance. How-
ever, these models consistently underperformed when compared to the GNN baseline, highlighting
the need for a more advanced architecture. In contrast, our proposed method, which integrates large
pre-trained LLMs like Mistral-7B, demonstrated superior performance across all metrics. Notably,
despite utilizing large LLMs, our model maintains a compact size of 24M trainable parameters
through the efficient use of LoRA for weight updates.

Additionally, the results show that the choice of LLM significantly affects performance prediction
accuracy. For instance, our model with the Mistral-7B base LLM consistently outperforms across
various platforms, as shown in Appendix A.7, demonstrating the importance of model selection in
achieving higher accuracy.

4.3 EXPERIMENT: EFFECT OF PRE-TRAINING STRATEGY

This study assesses the impacts of the GNN pre-training and the graph-to-text adaptation. The hy-
pothesis driving this experiment is that pre-training can provide foundational knowledge that aids
in subsequent performance prediction tasks. In this study, we leverage the performance prediction
fine-tuning dataset as mentioned in Section 3.3. We used the Llama3-8B as the base LLM, optimiz-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

32 100 200 300 721
Number of Training Samples

0

10

20

30

40

50

60

70

80

Ac
c(

10
%

)

Acc(10%)

Baseline GNN
Baseline GNN-NF
Ours
Ours (PRE)

32 100 200 300 721
Number of Training Samples

0
10
20
30
40
50
60
70
80
90

M
AP

E
(%

)

MAPE (%)
Baseline GNN
Baseline GNN-NF
Ours
Ours (PRE)

(a) hi3519A-nnie12-int8

32 100 200 300 681
Number of Training Samples

0

10

20

30

40

50

60

70

80

Ac
c(

10
%

)

Acc(10%)
Baseline GNN
Baseline GNN-NF
Ours
Ours (PRE)

32 100 200 300 681
Number of Training Samples

0

10

20

30

40

50

60

70

80

90

M
AP

E
(%

)

MAPE (%)
Baseline GNN
Baseline GNN-NF
Ours
Ours (PRE)

(b) atlas300-acl-fp16

Figure 3: Adaptability experiment demonstrating model transfer ability across different hardware
platforms. We compared four models: a GNN baseline, enhanced GNN baseline with additional
node features (GNN-NF) and two variants of our model-Llama3-8B (with and without the structured
pre-training). Each model was trained on eight hardware configurations, followed by a transfer of
learned weights to fine-tune on a new unseen hardware platform (hi3519A-nnie12-int8 or atlas300-
acl-fp16) with a varying number of training samples. Our model with the structured pre-training
outperformed both the GNN baselines and our model variant without the structured pre-training.

ing with a learning rate of 0.0001 for the LLM and 0.001 for the GNN. The training was conducted
over 10 epochs for 3 times.

Table 4: Performance comparison of LLM models
with and without graph-text adaptation combined
with GNNs having either random or pre-trained
weights. Results indicate that graph-text adapta-
tion significantly improves LLM performance.

Models MAPE ↓ Acc (10%) ↑

LLM + GNN 14.71 49.27
LLM + GNNPRE 20.02 36.58
LLMPRE + GNN 13.57 55.12
LLMPRE + GNNPRE 12.50 57.10

Result: The configuration with graph-text
adaptation (LLMPRE) and pre-trained GNN ini-
tialization (GNNPRE) significantly outperforms
other setups as shown in Table 4. This vali-
dates our hypothesis that initial knowledge ac-
quisition through auxiliary tasks can substan-
tially enhance the model’s ability to predict
performance metrics accurately. Interestingly,
GNN pre-trained alone performs worse than
randomly initialized GNN. We believe that ran-
domly initialized GNN weights prevent over-
fitting to pre-existing biases, encouraging the
LLM to learn more generalized and robust fea-
tures during training.

4.4 EXPERIMENT: ADAPTATION

New Hardware Configurations This experiment assesses the real-world adaptability of our model
to new hardware environments, particularly under conditions of limited training data. Our com-
parative analysis involved four models: a GNN baseline, enhanced GNN baseline with additional
node features (GNN-NF) as detailed in Section 4.2 and two variants of our model, one with and
one without both GNN pre-training and graph-text adaptation. Both variants of our model employ
Llama3-8B as the base LLM, consistent with the settings described in section 4.2. Each model was
trained across eight distinct hardware platforms for ten epochs, after which the learned weights were
transferred to additional, new hardware platforms for further training for three epochs.

The results, illustrated in Figure 3, demonstrate the superior adaptability and performance of our
enhanced model on new hardware with sparse training samples. On the hi3519A-nnie12-int8 and
atlas300-acl-fp16 platform, our model equipped with the structured pre-training achieves 70% and
29% Acc(10%) respectively, while GNN and GNN-NF achieves 0%, when training on just 32 sam-
ples. The results also highlight the importance of our structured pre-training strategy, increasing
the accuracy of the LLM-GNN model by up to 50 percentage-point. These results underscore the
critical roles of both LLMs and our structured-pre-training strategy in enhancing model adaptabil-
ity, proving essential for the deployment of learned performance modeling in dynamic real-world
applications.

New Deep Learning Architecture: This experiment evaluates our model’s ability to quickly adapt
to new DL architectures with sparse training samples. We compared four models: a baseline GNN,
GNN-NF, and two variants of our model, utilizing either Llama3-8B or Mistral7B as the base LLM.
Each model was trained on ten different DL model families and then evaluated on an new architec-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ture, Vision Transformer (ViT), using only 32 training samples. As shown in Table 5, our approach
significantly outperforms the GNN baselines, demonstrating rapid adaptation and superior perfor-
mance when predicting the behavior of a new DL architecture.

5 RELATED WORK

The field of performance prediction for DL models has witnessed growing interest in recent years.
Early work by Qi et al. (2017) proposed an analytical model to estimate DL model training time.
Subsequent studies like that of Gao et al. (2020) extended these methods to predict memory con-
sumption, utilizing analytical models to estimate resource utilization during training. To improve
prediction accuracy, researchers have explored machine learning approaches. Bouhali et al. (2021)
used an MLP-based regressor with features like trainable parameter counts, but it was constrained by
a shallow understanding of DL layers’ dynamics. Others, such as Justus et al. (2018), Gianniti et al.
(2018), Zhang et al. (2021), Lee et al. (2021) and adopted a layer-by-layer technique, they predicted
performance for each layer instead of the whole model, incorporating parameters like FLOPs and
layer features to predict execution times and power consumption.

Table 5: Comparison of GNN baselines against
our proposed architecture for performance predic-
tion of new DL architectures (ViT) with sparse
training samples.

Models MAPE ↓ Acc (10%) ↑

GNN-Baseline 26.86 0
GNN-NF 20.32 1
Ours-Llama3-8B 3.36 95.17
Ours-Mistral7B 1.69 99.05

However, this layerwise strategy failed to cap-
ture the network structure of DL models Liu
et al. (2022) To address this limitation, many
methods Kaufman et al. (2021); Dudziak et al.
(2020); Liu et al. (2022); Bai et al. (2022); Yi
et al. (2023); Zhou et al. (2020); Phothilimthana
et al. (2023); Panner Selvam & Brorsson
(2023); Panner Selvam & Brorsson utilized
graph learning techniques to generate embed-
dings that encapsulate the DL model network
topology, as well as the features of the com-
putation graph. These embeddings are trained
to predict performance characteristics. Yi et al.
(2023) improved the work of Liu et al. (2022) by introducing graph attention based transformer
block to predict the latency of the given DL model. However, their architecture doesn’t support
multi-platform performance prediction.

Despite these advancements, prior approaches lack online adaptability. Current methods require
retraining for new DL architectures or hardware configurations. On the other hand, our proposed
approach aims to overcome this challenge by integrating GNNs with LLMs to create a predictive
system that is more adaptable and flexible in real-world scenarios.

6 DISCUSSION AND CONCLUSION

This paper has investigated the integration of GNNs and LLMs to enhance the accuracy and adapt-
ability of DL performance prediction. Our empirical evaluations have demonstrated that graph
embeddings, derived from GNNs, are more effective inputs for LLMs than traditional text-based
representations, leading to significant improvements in both accuracy and computational efficiency.
Additionally, we have proposed a structured pre-training strategy that enables model adaptation to
new hardware environments with minimal retraining, further enhancing the practicality and efficacy
of our approach. We believe that our research offers a promising direction for advancing the field of
DL performance prediction and its applications in various stages of the DL system stack.

REFERENCES

Lu Bai, Weixing Ji, Qinyuan Li, Xilai Yao, Wei Xin, and Wanyi Zhu. Dnnabacus: Toward accurate
computational cost prediction for deep neural networks, 2022.

Noureddine Bouhali, Hamza Ouarnoughi, Smail Niar, and Abdessamad Ait El Cadi. Execution time
modeling for cnn inference on embedded gpus. In Proceedings of the 2021 Drone Systems En-
gineering and Rapid Simulation and Performance Evaluation: Methods and Tools Proceedings,

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

DroneSE and RAPIDO ’21, pp. 59–65, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450389525.

Adrian Bulat and Georgios Tzimiropoulos. Lasp: Text-to-text optimization for language-aware soft
prompting of vision language models, 2023.

Chris Cummins, Volker Seeker, Dejan Grubisic, Mostafa Elhoushi, Youwei Liang, Baptiste Roziere,
Jonas Gehring, Fabian Gloeckle, Kim Hazelwood, Gabriel Synnaeve, and Hugh Leather. Large
language models for compiler optimization, 2023.

Łukasz Dudziak, Thomas Chau, Mohamed S. Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas D.
Lane. Brp-nas: Prediction-based nas using gcns. In Proceedings of the 34th International Con-
ference on Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran
Associates Inc. ISBN 9781713829546.

Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin, and Mao Yang.
Estimating gpu memory consumption of deep learning models. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2020, pp. 1342–1352, New York, NY, USA, 2020. Associ-
ation for Computing Machinery. ISBN 9781450370431. doi: 10.1145/3368089.3417050. URL
https://doi-org.proxy.bnl.lu/10.1145/3368089.3417050.

Eugenio Gianniti, Li Zhang, and Danilo Ardagna. Performance prediction of gpu-based deep learn-
ing applications. In 2018 30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), pp. 167–170, 2018. doi: 10.1109/CAHPC.2018.8645908.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pp. 1025–1035, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 594–604, 2022.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

Ganesh Jawahar, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan, and Dujian Ding. Llm per-
formance predictors are good initializers for architecture search, 2023.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen McGough. Predicting the com-
putational cost of deep learning models. In 2018 IEEE International Conference on Big Data
(Big Data), pp. 3873–3882, 2018.

Sam Kaufman, Phitchaya Phothilimthana, Yanqi Zhou, Charith Mendis, Sudip Roy, Amit Sabne,
and Mike Burrows. A learned performance model for tensor processing units. In A. Smola,
A. Dimakis, and I. Stoica (eds.), Proceedings of Machine Learning and Systems, volume 3, pp.
387–400, 2021.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Hayeon Lee, Sewoong Lee, Song Chong, and Sung Ju Hwang. Help: Hardware-adaptive efficient
latency prediction for nas via meta-learning. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2021.

11

https://doi-org.proxy.bnl.lu/10.1145/3368089.3417050
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luc-
cioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor,
Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex
Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source
be with you!, 2023.

Liang Liu, Mingzhu Shen, Ruihao Gong, Fengwei Yu, and Hailong Yang. Nnlqp: A multi-platform
neural network latency query and prediction system with an evolving database. In 51 International
Conference on Parallel Processing - ICPP, ICPP ’22. Association for Computing Machinery,
2022.

Zheyuan Liu, Xiaoxin He, Yijun Tian, and Nitesh V. Chawla. Can we soft prompt llms for graph
learning tasks? In Companion Proceedings of the ACM on Web Conference 2024, WWW ’24.
ACM, May 2024. doi: 10.1145/3589335.3651476. URL http://dx.doi.org/10.1145/
3589335.3651476.

Karthick Panner Selvam and Mats Brorsson. Can semi-supervised learning improve prediction of
deep learning model resource consumption? In Machine Learning for Systems Workshop at 37th
NeurIPS Conference, 2023, New Orleans, LA, USA. URL https://openreview.net/
forum?id=C4nDgK47OJ.

Karthick Panner Selvam and Mats Brorsson. Dippm: A deep learning inference performance pre-
dictive model using graph neural networks. In Euro-Par 2023: Parallel Processing, pp. 3–16.
Springer Nature Switzerland, 2023. ISBN 978-3-031-39698-4.

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and
Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms, 2024.

Phitchaya Mangpo Phothilimthana, Sami Abu-El-Haija, Kaidi Cao, Bahare Fatemi, Mike Burrows,
Charith Mendis, and Bryan Perozzi. Tpugraphs: A performance prediction dataset on large tensor
computational graphs, 2023.

Hang Qi, Evan R. Sparks, and Ameet Talwalkar. Paleo: A performance model for deep neural
networks. In International Conference on Learning Representations, 2017.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL https://arxiv.
org/abs/1908.10084.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, Perry Payne, Martin Seneviratne, Paul
Gamble, Chris Kelly, Abubakr Babiker, Nathanael Schärli, Aakanksha Chowdhery, Philip Mans-
field, Dina Demner-Fushman, Blaise Agüera Y Arcas, Dale Webster, Greg S. Corrado, Yossi
Matias, Katherine Chou, Juraj Gottweis, Nenad Tomasev, Yun Liu, Alvin Rajkomar, Joelle Bar-
ral, Christopher Semturs, Alan Karthikesalingam, and Vivek Natarajan. Large language models
encode clinical knowledge. Nature, 620(7972):172–180, August 2023. ISSN 0028-0836, 1476-
4687. doi: 10.1038/s41586-023-06291-2. URL https://www.nature.com/articles/
s41586-023-06291-2.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard
Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex

12

http://dx.doi.org/10.1145/3589335.3651476
http://dx.doi.org/10.1145/3589335.3651476
https://openreview.net/forum?id=C4nDgK47OJ
https://openreview.net/forum?id=C4nDgK47OJ
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://www.nature.com/articles/s41586-023-06291-2
https://www.nature.com/articles/s41586-023-06291-2

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Botev, Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, An-
tonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo,
Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric
Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Hen-
ryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu,
Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee,
Lucas Dixon, Machel Reid, Maciej Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev,
Nithum Thain, Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko
Yotov, Rahma Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo
Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree
Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh
Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin
Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah
Fiedel, Evan Senter, Alek Andreev, and Kathleen Kenealy. Gemma: Open models based on
gemini research and technology, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. 2017. URL https://arxiv.
org/pdf/1706.03762.pdf.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Xin Wayne, Zhou Kun, and Li Junyi. A survey of large language models, 2023.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks?, 2019.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient
fine-tuning methods for pretrained language models: A critical review and assessment, 2023.

Yun Yi, Haokui Zhang, Rong Xiao, Nannan Wang, and Xiaoyu Wang. Nar-former v2: Rethinking
transformer for universal neural network representation learning, 2023.

Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, Yuqing Yang, and Yunxin
Liu. nn-meter: towards accurate latency prediction of deep-learning model inference on diverse
edge devices. MobiSys ’21, pp. 81–93, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450384438. doi: 10.1145/3458864.3467882. URL https://doi.
org/10.1145/3458864.3467882.

Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter Ma, Qiumin Xu, Hanxiao
Liu, Mangpo Phitchaya Phothilimtha, Shen Wang, Anna Goldie, Azalia Mirhoseini, and James
Laudon. Transferable graph optimizers for ml compilers. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020.
Curran Associates Inc. ISBN 9781713829546.

A APPENDIX

A.1 ENVIRONMENT SETUP

All experiments were conducted on hardware featuring AMD EPYC 7402 processors with two sock-
ets (24 cores per socket), 512 GB DDR4-3200 RAM, and a 4 x NVIDIA A100 GPU with 40 GB
HBM. Our software environment included Python libraries such as PyTorch 2.2.1, torch-geometric
2.5.3, transformers 4.41.0, and peft 0.10.1, running on CUDA version 12.1.

13

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://doi.org/10.1145/3458864.3467882
https://doi.org/10.1145/3458864.3467882

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.2 EVALUATION METRICS

To assess the accuracy of our performance prediction models, we use the following two primary
metrics:
Mean Absolute Percentage Error (MAPE): This metric quantifies the average of the absolute
percentage differences between each predicted value and its corresponding actual value. It is defined
mathematically as:

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − y′i
yi

∣∣∣∣× 100%

Here, yi represents the actual value and y′i represents the predicted value. MAPE is a non-negative
number, where a smaller value indicates a more accurate model.

Accuracy within a delta threshold (Acc(δ)): This metric measures the percentage of predicted
values that are within a specified percentage (δ) of the actual values. It is defined as:

Acc(δ) =
1

n

n∑
i=1

pos
(
δ −

∣∣∣∣yi − y′i
yi

∣∣∣∣)× 100%

where pos(z) is a function that returns 1 if z ≤ 0 and 0 otherwise. A higher ACC(δ) value reflects
better predictive performance of the model.

These metrics are widely used in previous worksPanner Selvam & Brorsson; Yi et al. (2023); Liu
et al. (2022), providing a reliable means to compare the effectiveness of different models in terms of
both overall error magnitude and the proportion of predictions within acceptable error thresholds.

A.3 GRAPH TO TEXT DATASET

Graph to Text: Sample Prompt

Q: Summarise the graph

A: The graph contains 42 nodes and 40 edges. The batch size is 8. The graph has 12.1
GFLOPs, 0.33 billion parameters, and 0.4 billion MACs.
Layer Stats Summary:
Layer: convolution, Implemented: 20 times, FLOPs: 12.5 billion, MACs: 32.3 million, Pa-
rameters: 35.8 million
Layer: relu, Implemented: 17 times, FLOPs: 0, MACs: 0, Parameters: 3.3 million
Layer: max pooling, Implemented: 1 times, FLOPs: 0, MACs: 0, Parameters: 335.6 thou-
sand Layer: addition, Implemented: 1 times, FLOPs: 0, MACs: 0, Parameters: 865

A.4 LIMITATIONS AND FUTURE WORK

While our model effectively leverages static prompting to enhance performance prediction, explor-
ing diverse prompting strategies could further optimize its adaptability and effectiveness across var-
ious scenarios.

Future research will explore several avenues to enhance the current model’s robustness and appli-
cability. We plan to extend our methodology to additional DL performance datasets such as TPU
Graphs Phothilimthana et al. (2023), allowing us to validate and refine our approach across a wider
range of DL architectures and hardware configurations.

A.5 ADDITIONAL EXPERIMENT: GRAPH EMBEDDING PROJECTION

This experiment investigates the effectiveness of different graph embedding projection techniques,
essential for communicating the graph structural information from the GNN encoder to the LLM.
It allow gradient flow from the LLM back to the GNN encoder, thereby enhancing the learning
feedback loop.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: Performance comparison for Single vs. Multi Embedding -Projection methods

Type MAPE ↓ ACC(10%) ↑ TTT ↓ Max Token Length
Single Proj. 12.61 52.83 0.23 512
Multi Proj. 13.66 48.50 2.32 2048

Setting: For this experiment, we utilized the same dataset and the same Llama3-8B and GIN encoder
as DL representation experiment explained in Section 4.1. Each model was trained over 10 epochs
3 times to ensure stability and convergence of results.

Results: As result shown in Table 6, our proposed architecture, the single projection technique
where the DL graph is projected as a single input embedding to LLM (g1) demonstrated superior
performance compared to the multi-projection method, which attempts to capture the graph struc-
ture as multiple embeddings from g1 to gHGNN

. This finding suggests that maintaining a focused,
singular projection of graph features into the LLM not only preserves essential structural details but
also enhances computational efficiency. This single embedding approach resulted in MAPE, higher
ACC(10%), and reduced TTT. These results validate the importance of optimizing graph projection
methods to enhance the interplay between GNN encodings and LLM capabilities for performance
prediction tasks.

A.6 GNN PRE-TRAINING HYPER-PARAMETERS

Table 7: Hyper-parameters used for GNN pre-training.

Hyperparameter Value
Number of Hidden Units 1024
Number of Features 44
Number of Layers 5
Learning Rate (lr) 0.0005
Weight Decay 0.00
Mask Rate 0.5
Drop Edge Rate 0.0
Maximum Epochs 500
Encoder Type GIN
Decoder Type GIN
Activation Function PReLU
Loss Function SCE
Use of Scheduler No
Batch Size 128
Alpha_l 2
Replace Rate 0.1
Normalization Type BatchNorm
Optimizer Adam
Input Dropout 0.2
Attention Dropout 0.1

A.7 PERFORMANCE COMPARISON OF THE GNN BASELINE AGAINST OUR MODELS

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 8: Performance comparison of the GNN baseline against our models with different base LLMs
(Llama3-8B and Mistral-7B) using a multi-platform performance prediction dataset. Both our mod-
els utilize GNN pre-training and graph-text adaptation. The results demonstrate that our approach
outperforms the baseline, highlighting the effectiveness of the integrated method.

MAPE ↓ Acc (10%) ↑

Platforms GNN Llama3-8B Mistral-7B GNN Llama3-8B Mistral-7B

cpu-openppl-fp32 10.48 12.57 12.22 58.94 54.91 56.26
hi3559A-nnie11-int8 7.55 6.24 5.38 73.19 80.72 88.15
gpu-T4-trt7.1-fp32 9.32 10.00 9.69 60.87 56.52 58.74
gpu-T4-trt7.1-int8 18.10 15.17 14.05 27.90 47.85 46.78
gpu-P4-trt7.1-fp32 9.75 10.81 9.91 60.97 53.58 58.89
gpu-P4-trt7.1-int8 13.75 12.55 12.05 36.68 48.93 48.83
hi3519A-nnie12-int8 7.13 6.94 5.96 77.53 81.01 85.02
atlas300-acl-fp16 14.41 11.38 9.47 47.76 59.62 68.05
mul270-neuware-int8 26.18 26.88 28.31 21.61 30.77 33.70

Average 12.96 12.50 11.89 51.72 57.10 60.49

16

	Introduction
	Background
	DL Models as Computational Graphs & Graph Neural Networks (GNNs)
	Large Language Models
	Pre-trained Large Langauge Models
	Parameter-Efficient Fine-Tuning

	Methodology
	DL Representation
	Graph Encoding
	Training Strategy: 3-stage training

	Experiments
	Experiment: DL Representation
	Experiment: Comparison with State-of-the-Art GNN
	Experiment: Effect of Pre-training Strategy
	Experiment: Adaptation

	Related Work
	Discussion and Conclusion
	Appendix
	Environment setup
	Evaluation Metrics
	Graph to Text Dataset
	Limitations and Future Work
	Additional Experiment: Graph Embedding Projection
	GNN Pre-training Hyper-parameters
	Performance comparison of the GNN baseline against our models

