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ABSTRACT

Accurate performance prediction of Deep Learning (DL) models is essential for
efficient resource allocation and optimizations in various stages of the DL system
stack. While existing approaches can achieve high prediction accuracy, they lack
ability to quickly adapt to new hardware environments or emerging workloads.
This paper leverages both Graph Neural Networks (GNNs) and Large Language
Models (LLMs) to enhance the accuracy and adaptability of DL performance pre-
diction. Our intuition is that GNNs are adept at capturing the structural infor-
mation of DL models, naturally represented as graphs, while LLMs provide gen-
eralization and the ability to quickly adapt to various tasks thanks to extensive
pre-training data. We empirically demonstrate that using GNN-derived graph em-
beddings as inputs to an LLM outperforms traditional representations, including
high-level text summary and lossless semi-structured text (e.g., JSON), for this
task. Furthermore, we propose a structured pre-training strategy to enable model
adaptation to new hardware environments, significantly reducing the need for ex-
tensive retraining. Our experiments validate the effectiveness of this approach,
showing an 8.8 percentage-point improvement in accuracy over a state-of-the-art
GNN baseline. Notably, when adapted to new hardware with few samples, our
method achieves a remarkable 30–70 percentage-point increase in accuracy com-
pared to the GNN baseline.
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Figure 1: Our approach integrates GNNs and LLMs for DL model performance prediction. The
methodology utilizes soft prompting to fine-tune pre-trained GNN weights and projection layer
weights, while updating pre-trained LLMs with the LoRA technique. During fine-tuning, gradi-
ents flow from the LLM to the GNN, allowing the system to process graphs and prompts effectively
and generate accurate performance metrics predictions.

1 INTRODUCTION

Performance prediction for Deep Learning (DL) models is essential for all sorts of optimization
methods in the DL system stack: from Neural Architecture Search, to model partitioning and shard-
ing, to low-level compiler optimizations. Performance prediction involves estimating various op-
erational metrics — such as inference time, memory usage, and power consumption — that are
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crucial for efficient hardware utilization and scheduling. Since DL models are computation graphs,
researchers have employed Graph Neural Networks (GNNs) to extract information from the DL
model for various optimization decisions given hardware components Phothilimthana et al. (2023);
Panner Selvam & Brorsson; 2023); Liu et al. (2022).

Unfortunately, aforementioned GNN-based approaches require comprehensive retraining to accom-
modate new hardware environments or DL architectures, often requiring large labeled datasets.
These requirements can hinder a rapid adaptation and optimization, limiting the flexibility of these
models when new architectures or configurations emerge. Fortunately, the recent successes of Large
Language Models (LLMs) in various domains have underscored their capability to understand and
generate complex systems Team et al. (2024); Singhal et al. (2023); Wayne et al. (2023); Wu et al.
(2023); Li et al. (2023). This includes not only natural language but also structured data such as
code, configuration settings, and textual descriptions of hardware configurations and DL architec-
tures. Given their extensive pre-training on diverse datasets, LLMs can generalize effectively when
fine-tuned on specific tasks. Their generalization capability makes them good candidates for en-
hancing DL performance prediction.

However, employing LLMs in the performance prediction domain poses challenges, primarily due
to the need for representing DL models in a format that LLMs can efficiently process. Prior works
have considered using high-level descriptions to represent programs and graphs as text inputs for
compiler optimizations and performance predictions Cummins et al. (2023); Jawahar et al. (2023).
Nonetheless, these representations often fail to maintain the full structural intricacies of DL models,
losing crucial connectivity and hierarchical information. An alternative representation is to use
structured text format (e.g. JSON, XML, Protobuf, etc.), which maintains detailed information of
node features and their connections. However, DL models can contain tens-of-thousands of nodes
Phothilimthana et al. (2023), which can hinder the processing efficiency and scalability when used
with LLMs.

Recent research has explored the use of GNNs as encoders to convert graph data into embeddings
as inputs to LLMs, thereby effectively bridging the gap between graph data and the textual input
preferred by LLMs. However, these studies primarily focus on graph-based question answering,
rather than directly on performance prediction Perozzi et al. (2024); Liu et al. (2024).

In line with Perozzi et al. (2024) findings, We hypothesize that graph embeddings, derived from
GNNs, represent DL models more effectively for performance prediction than conventional text rep-
resentations because the graph embeddings could better capture structures and connectivity. Based
on this hypothesis, we propose the GNN-LLM model for DL performance prediction, as illustrated
in Figure 1. Our experiment has confirmed that using graph embeddings significantly outperforms
using a semi-structured text format (JSON) and a high-level text format in both accuracy and com-
putational efficiency. Specifically, our approach surpasses a JSON format by approximately 6% in
accuracy and is 21 times faster in terms of training time. Likewise, our approach surpasses high-level
text by 134% in accuracy and is 2 times faster in terms of training time, demonstrating a substantial
improvement over text-based representation.

To enhance the adaptability and accuracy of the model, we further develop a structured pre-training
strategy that obviates the need for extensive retraining from scratch. The approach begins by training
a GNN using a mask autoencoding technique on unlabeled DL models, inspired by Hou et al. (2022)
research. In this initial phase, the GNN learns to capture DL graph structures and node information.
Subsequently, we refine the integration between the DL graph data and the LLM by fine-tuning
the projection layer and the LLM through a graph-to-text task. This graph-to-text translation will
enable the LLM to comprehend DL graph structures and improve the model’s ability to adapt to new
hardware with minimal training samples for downstream performance prediction tasks. Finally, all
components are fine-tuned for the final performance prediction task.

In the evaluation, our method achieves a 8.8 percentage-point increase in accuracy over the state-of-
the-art GNN baseline on the NNLQP multi-platform dataset, and a remarkable 30–70 percentage-
point increase in accuracy when adapted to new hardware with few samples. The results confirms
our method’s efficacy in enhancing both the accuracy and adaptability of performance predictions
across varied computational environments.

1. We empirically evaluate different DL model representations for LLMs on performance
prediction tasks, showing that a graph embedding-based input is most effective.
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2. We introduce a method integrating GNNs and LLMs for the DL performance prediction
domain, combining GNNs’ structural insights and LLMs’ generalization capabilities.

3. We propose a structured pre-training strategy to enhance model performance in a new hard-
ware environment with limited training samples.

4. We contribute a specialized graph-to-text dataset designed to further research into the in-
tegration of GNN and LLMs. This dataset is particularly valuable for benchmarking and
advancing the application of GNN-LLM combinations in graph learning tasks.

5. Our research offers a promising direction for improving DL performance prediction accu-
racy and adaptability across diverse hardware environments.

2 BACKGROUND

2.1 DL MODELS AS COMPUTATIONAL GRAPHS & GRAPH NEURAL NETWORKS (GNNS)

DL models can be represented as directed acyclic computational graphs, where nodes correspond to
mathematical operations and edges represent data flow between these operations. The input features
of every node include the op code (e.g., einsum, relu, etc), the output data type (e.g., float32, uint8,
etc) and the shape of the output tensor – See Phothilimthana et al. (2023) for comprehensive list of
node-wise features.

GNNs are designed to operate on graph-structured data. Let graph of n nodes be represented with
a node feature matrix X ∈ RN×. and an adjacency matrix A ∈ {0, 1}N×N . GNNs use an iterative
message passing process to generate embeddings for nodes. During message passing, each node
updates its embedding by aggregating information from its neighbors. GNN layer can be written as:

H(l) = TRANSFORM
(
H

(l−1)
i ,A

)
(1)

where H(l) is the node embedding matrix at the l-th layer and H(l) = X. Through multiple message-
passing layers, each node aggregates information from a wider neighborhood, capturing both imme-
diate and distant neighbor information. GNNs have excelled in tasks such as node classification,
link prediction, and graph-level classification. There are many possible choices for TRANSFORM
function Kipf & Welling (2017); Veličković et al. (2018); Hamilton et al. (2017); Xu et al. (2019).
In our work, we use a variant of the GIN model Xu et al. (2019):

H
(l)
GIN = MLP

(
(A+ Iϵ)H(l−1)

)
, (2)

where MLP stands for multi-layer perceptron, I is n× n identity matrix, and ϵ is small constant.

2.2 LARGE LANGUAGE MODELS

2.2.1 PRE-TRAINED LARGE LANGAUGE MODELS

Pre-trained LLMs are advanced neural networks for natural language processing tasks. They lever-
age the Transformer architecture Vaswani et al. (2017), which uses self-attention mechanisms to
manage long-range dependencies in text. LLMs are pre-trained on extensive corpora to predict sub-
sequent tokens, enabling them to capture intricate linguistic patterns. This pre-training is followed
by finetuning task-specific datasets to adapt to various applications like text classification and trans-
lation.

2.2.2 PARAMETER-EFFICIENT FINE-TUNING

With the rapid increase in the size of state-of-the-art LLMs, traditional fine-tuning has become
resource intensive. Parameter-Efficient Fine-Tuning (PEFT) aims to adapt models to new tasks by
updating only a small subset of parameters Xu et al. (2023).

Low-Rank Adaptation (LoRA): LoRA introduces low-rank matrices into model layers, repre-
sented as ∆W = BA, where B and A are trainable low-rank matrices. This approach reduces
the computational burden by updating fewer parameters while keeping the main model’s parameters
frozen, thus preserving the pre-trained knowledge Hu et al. (2021).
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Soft Prompting: Soft prompts are learnable vectors integrated into the model’s input to guide its
behavior toward specific tasks. This method updates only a small number of parameters, making it
computationally efficient and preserving the broad knowledge of the model Bulat & Tzimiropoulos
(2023).

3 METHODOLOGY

Figure 1 displays our proposed model architecture. Our approach takes a DL model graph and a
textual prompt as inputs. The DL graph is initially processed by a GNN encoder and then projected
as an embedding to an LLM, along with the token embeddings of the textual prompt.

3.1 DL REPRESENTATION

We consider the following methods to represent DL models for processing by LLMs.

Graph Representation. This method first encodes a DL model in the Open Neural Network Ex-
change (ONNX) format, represented as a graph with node feature matrix X formulated as:

Xv = X(op)
v ⊕X(attr)

v ⊕X(shape)
v ∀v ≤ N (3)

where X(op)
v is the one-hot encoded vector indicating the type of the node operation. X(attr)

v includes
the node’s attribute vector, containing parameters such as kernel size and stride, and X

(shape)
v encodes

the output shape. The operation ⊕ represents a vector concatenation. This method is adapted from
the framework established in Liu et al. (2022). Subsequently, we feed the node feature matrix X and
the adjacency matrix A into the GNN. The GNN then produces a graph embedding for input into
the LLM, along with prompt’s token embeddings, to predict the model’s performance.

High-level Text Representation. We use a predefined template that captures essential computa-
tional and structural properties of a DL model. This includes overall model statistics — such as
FLOPs, parameter count, and batch size — offering insights into the model’s complexity and ca-
pacity. We also include layer-specific statistics, detailing each layer’s FLOPs and parameter counts.
These elements together offer a holistic view of a DL model’s architecture and its computational
behavior. To predict its performance, we simply tokenize and apply a conventional word encoder on
the textual prompt for LLM processing.

Semi-Structured Text Representation. We adopt a semi-structured JSON format to comprehen-
sively encapsulate a DL architecture. This format itemizes each node’s characteristics, including the
operator type, input and output shapes, computation complexities, and node attributes. Addition-
ally, it capture node connectivity. For LLM processing, we tokenize and apply a conventional word
encoder on the semi-structured description.

3.2 GRAPH ENCODING

Our GNN encoder is based on the Graph Isomorphism Network (GIN) Xu et al. (2019), defined as:

H(l)
ours = (A+ Iϵ)MLP(H(l−1))

with MLP(Z) = ReLU(BN(ZW1 + b1))W2 + b2

(4)

We inspired this architecture by Hou et al. (2022). This setup ensures each node feature undergoes
transformation, normalization, and activation, promoting the learning of non-linear dependencies.
After processing through L layers, we aggregate node features to form a graph-level representation:

g =
1

N

N∑
i=1

H
(L)
i . (5)

Next, the projection layer transforms the GNN output g into an embedding vector of size dembedding
for the LLM processing.:

GraphToken = MLPproj(g), (6)
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Figure 2: The three stages of our approach: (1) GNN Pre-training: Using Scaled Cosine Error
(SCE) loss with masked node features (XMASK) approach to pre-train the GNN. (2) Graph-Text
Adaptation: Fine-tuning the pre-trained GNN encoder (frozen) and updating LLM weights and
projection weights using soft prompting and LoRA techniques. (3) Performance Prediction Fine-
tuning: Updating all GNN projection and LLM parameters through soft prompting and LoRA tech-
niques to predict performance metrics for deep learning graphs on various hardware.

where MLPproj encapsulates a series of linear transformations and non-linear activations. It ensures
the alignment of dimensionalities and contextual relevance. Note that the output dimension size of
the projection is larger than the input dimension size: |GraphToken| > |g|.
The LLM input is then constructed by integrating graph embeddings GraphToken with token em-
beddings Q. A textual prompt describing the task like “Predict the inference time of
DL model” is tokenized as q = [q1, q2, . . . , qn]. The tokens are then converted into word em-
beddings: Q = E[q], where E represents the embedding matrix. The complete LLM input is the
concatenation of the projected graph embedding and the token embeddings:

InputLLM = [<graph>,GraphToken,</graph>,Q]. (7)

In this sequence, <graph> and </graph> are text tokens directly generated by the tokenizer, marking
the beginning and end of the graph embedding. A single graph embedding vector GraphToken
efficiently encapsulates the entire graph’s structure, compactly representing complex information in
a form that complements textual embeddings in LLMs.

3.3 TRAINING STRATEGY: 3-STAGE TRAINING

We hypothesize that directly fine-tuning both LLMs and GNNs for performance prediction tasks,
starting from scratch, may not yield optimal adaptability for new tasks. The challenge lies in the
initial lack of domain-specific knowledge, which is crucial for the model to effectively process and
predict the DL performance metrics. To address this, we propose a novel structured pre-training
methodology, designed to enhance the model’s intrinsic understanding of DL graph structures be-
fore fine-tuning for performance prediction. The pre-training strategy comprises the three stages as
shown in Figure 2.

Stage 1. GNN Pre-training. We employ the Graph Maked Auto Encoder technique (GraphMAE)
for GNN pre-training Hou et al. (2022). We use GIN as both encoder and decoder. Given a DL
graph with X and A, we mask a portion of X using a learnable mask vector to produce X̃. The
GIN encoder processes (X̃, A) to generate latent embeddings Z, effectively capturing the obscured
structural details. The GIN decoder reconstructs the node features from Z to X̂, aimed at closely
approximating the original X. Reconstruction accuracy is quantified using Scaled Cosine Error
(SCE), which evaluates alignment in both direction and magnitude of the feature vectors. Using
GIN for both encoding and decoding optimizes the preservation and reconstruction of local graph
structures, essential for understanding DL graphs. The SCE, by assessing both vector orientation
and length, enhances model sensitivity to structural and feature variations, preparing it for robust
performance on subsequent tasks.

Stage 2. Graph-Text Adaptation. For this stage we update only projection layer and LLM
weights. The projection layer Wp adapts the graph embeddings GraphToken for integration with
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the LLM. During training, we update the projection layer weights using soft prompting techniques.

∂L
∂Wp

=
∂L

∂Output
· ∂Output
∂GraphToken

· GraphTokenT

Here, ∂L
∂Output represents the gradient of the loss with respect to the LLM’s output, and ∂Output

∂GraphToken
captures how changes in GraphToken affect the output. We used cross-entropy loss for the next word
prediction. We utilize the LoRA technique to efficiently update the LLM weights. The updates for
the low-rank matrices B and C are given by:

∂L
∂B

=
∂L

∂∆W
·CT ,

∂L
∂C

= BT · ∂L
∂∆W

where ∆W = BC represents the low-rank update to the LLM weights. The GNN encoder weights
remain frozen during this stage to preserve the integrity of the initial graph embeddings learned dur-
ing pre-training. This selective updating strategy helps maintain foundational graph understanding
and ensures consistent model performance across various adaptation scenarios.

Stage 3. Performance Prediction Fine-Tuning. In this final stage, we load the pre-trained GIN
encoder weights from Stage 1 and the projection Wp and LoRA weights from Stage 2. We fine-tune
the entire GNN to LLM model for performance prediction.

Note that naively feeding the GNN embedding outputs as multiple concrete text tokens to the LLM
does not work because the gradient does not flow from the LLM to the GNN. This is why we adopt
the proposed approach.

Training Datasets. We utilize three distinct datasets for the different stages of our model’s training
process.

For GNN pre-training, we use a dataset containing 20,000 unlabeled DL graphs, Liu et al. (2022),
including of ten DL model families (ResNets, EfficientNets, MobileNetV2s, MobileNetV3s, Mnas-
Nets, SqueezeNets, VGGs, Alexnets, NasBench201s and GoogleNets). These ONNX models are
transformed into node feature matrices and adjacency matrices, then converted these into the Py-
Torch Geometric data format (PyG), as detailed in Section 3.1, for GNN pre-training (Section 3.3).
This extensive set of graphs allows our GNN to capture a wide range of node and edge features,
providing robust initial embeddings.

For graph-to-text adaptation, we introduce a novel dataset based on Liu et al. (2022) dataset. We
structured the dataset into {(G,Q,A)} format: G represents the DL model’s graph structure in PyG
format, Q is a textual prompt (Summarise the graph), and A is the summary of DL architecture,
which is the response from the LLM (as referenced in the sample prompt in Appendix A.3). The
summary provides comprehensive details, including the total number of nodes, edges, model com-
plexity, and statistics for each layer. The dataset comprises 20,000 prompts.

For performance prediction fine-tuning, we use the NNLQP Multi-platform dataset, which includes
ten DL model families across nine computational architectures (cpu-openppl-fp32, hi3559A-nnie11-
int8, gpu-T4-trt7.1-fp32, gpu-T4-trt7.1-int8, gpu-P4-trt7.1-fp32, gpu-P4-trt7.1-int8, hi3519A-
nnie12-int8, atlas300-acl-fp16, mul270-neuware-int8). This dataset contains DL graphs, platform
IDs, and inference latency metrics. It consists of 7,396 graphs for training and 3,201 for testing.
During the forward pass, queries Q are provided to the LLM, combined with G, to predict inference
times. The predicted inference latency A is directly derived from the LLM’s output.

4 EXPERIMENTS

This section presents a series of experiments designed to validate the efficacy of our integrated
model for DL performance prediction. We utilized our performance prediction datasets described
in section 3.3 to challenge our model under different conditions and compared it with the GNN
baseline to underscore its advantages and unique capabilities. The computing details are explained
in appendix A.1. To assess the accuracy of our performance prediction models, we used Mean
Absolute Percentage Error (MAPE) and Accuracy within a delta threshold (ACC(δ)) metrics as
detailed in Appendix A.2.
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Table 1: Performance comparison of different representations of DL models for performance pre-
diction tasks. Our proposed method (DL graph as embedding) demonstrates superior accuracy and
efficiency, outperforming both JSON and high-level text representations.

Method MAPE ↓ Acc(10%) ↑ TTT(hr) ↓ Max Token Length ↓

Text 41.42 22.50 0.46 512
JSON 13.55 49.80 5.02 2048
Ours-Llama3-8B 12.61 52.83 0.23 512

4.1 EXPERIMENT: DL REPRESENTATION

This experiment explores the efficacy of different representations of DL models for performance
prediction tasks using LLMs. The DL representations are mentioned in Section 3.1. We investigated
three primary formats: our proposed method (DL graph as embedding), semi-structured format
(JSON), and high-level text. Each format presents unique challenges in how effectively it can be
processed by LLMs.

Table 2: Impact of LoRA rank (α) on our model
performance and trainable parameters (θ) in mil-
lions using Llama3-8B as base LLM. The rank
8 achieves the best balance of accuracy and effi-
ciency.

α MAPE (%) ↓ Acc (%) ↑ θ (M)
8 12.61 52.83 24

16 12.74 51.50 26
32 12.63 54.50 33
64 13.43 49.50 47

128 13.86 44.50 74

Setting: For this experiment, we utilized the
Llama3-8B1 pre-trained model as the base
LLM. The Adam optimizer was used with a
learning rate of 1× 10−5, and LoRA with rank
8 was employed for efficient parameter updat-
ing. The GIN encoder used a learning rate of
1 × 10−3. Each model was trained over 10
epochs, repeated 3 times to ensure stability and
convergence of results.

In experiments with the performance predic-
tion dataset, the entire ONNX models was con-
verted to JSON format and tokenized using the
Llama3-8B model tokenizer to assess context
length. The JSON format reached a maximum
context length of 18,000 tokens. Therefore, we
selected the AlexNet family in the dataset due
to its shorter context length compared to other families. A 90:10 train-test split was used for this
experiment, consistent with previous work Liu et al. (2022).

Result: Our proposed approach outperforms both JSON and high-level text representations signif-
icantly in terms of MAPE and ACC(10%), as shown in Table 1. Our method also demonstrated
substantial efficiencies in training time, with the Total Training Time (TTT) notably lower than that
required for JSON, which had the highest tokenization length and training duration. These results
highlight the critical impact of DL model representation on the performance prediction capabilities
of LLMs. High-level text, while simple, fails to capture the necessary connectivity information,
leading to poor prediction accuracy. The semi-structured JSON format offers some improvement
by providing hierarchical data, but its verbosity and resulting long token sequences increase com-
putational costs. Our proposed method, which embeds the DL graph structure into a compact rep-
resentation, strikes an optimal balance by preserving essential connectivity information within a
manageable token length. This approach not only enhances prediction accuracy but also ensures
computational efficiency. The graph embeddings naturally align with the inherent structure of DL
models, enabling the LLM to process and predict performance metrics more effectively.

In our architecture, we update the LLM through the LoRA component. Therefore, we conducted an
additional experiment on varying the rank size in LoRA updates. As detailed in Table 2, a rank of 8
offers the optimal trade-off between model performance and computational efficiency. While higher
rank (32) can improve accuracy, they do so at the cost of a substantial increase in θ of 33M. The
rank 8 configuration achieves the lowest MAPE while maintaining accuracy, all with the θ of 24M.
This configuration proves to be the most efficient choice for our proposed architecture.

1https://llama.meta.com/llama3/
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4.2 EXPERIMENT: COMPARISON WITH STATE-OF-THE-ART GNN

Table 3: Performance comparison of the GNN
baselines against our models with different base
LLMs (Llama3-8B and Mistral-7B) using a multi-
platform performance prediction dataset. Both
our models utilize GNN pre-training and graph-
text adaptation. The test results demonstrate
that our approach outperforms the all baselines,
highlighting the effectiveness of the integrated
method.

Models MAPE ↓ Acc (10%) ↑
GNN-Baseline 12.96 51.72
GNN-NF 12.75 53.93
GNN-DistilRoberta 16.02 40.97
GNN-MiniLM 18.38 34.90
GNN-mpnet 16.12 40.37
Ours-Llama3-8B 12.50 57.10
Ours-Mistral7B 11.89 60.49

To rigorously evaluate our proposed archi-
tecture, we conducted a comparative analysis
against the established GNN baseline Liu et al.
(2022) model across the multi-platform perfor-
mance prediction dataset, which contains ten
different DL model familes and nine different
hardware platforms, as mentioned in Section
3.3. This comparison is crucial to validate the
enhancements offered by our approach, partic-
ularly in terms of accuracy. In this experiment,
we used two variants of our model: one with
Llama3-8B and one with Mistral-7B Jiang et al.
(2023) as the base LLM, both utilizing GNN
pre-training and graph-text adaptation.

Settings: The baseline GNN model was uti-
lized with no architectural modifications as de-
scribed in its original implementation. For both
of our models, we used the Adam optimizer
with a learning rate of 0.0001 for the LLM and
0.001 for the GNN. We trained all models for
10 epochs conducted three times.

Results: According to the results shown in Table 3, both variants of our model with the pre-training
strategy outperformed the GNN baseline. Notably, our model with the Mistral-7B base LLM outper-
forms the baseline by approximately 8.26% reduction in MAPE and 16.96% (8.8 percentage-point)
increase in Acc (10%). To further improve the baseline, we incorporated additional node features
such as FLOPS, MACs, and the number of parameters to enhance the representation of the DL mod-
els in the graph. This enhanced GNN baseline (referred to as GNN-NF) was designed to provide
more comprehensive information for each node, ensuring that the model had a richer set of features
to inform its performance predictions. However, our proposed architecture still outperforms the en-
hanced GNN model, confirming that the performance improvements are indeed attributable to the
LLM integration, rather than merely to a more comprehensive feature representation. These results
highlight the critical impact of the effective model representation and the pre-training strategy on
the performance prediction capabilities of LLMs.

Justification for the Proposed Architecture: Initially, we experimented with simpler models,
which yielded suboptimal results, as summarized in Table 3. These models involved modifying the
NNLQP GNN architecture by adding text-based descriptions of static features and hardware configu-
rations, represented using embeddings generated by three variants of the pre-trained sentence-BERT
language model (MiniLM-L6-v2, mpnet-base-v2, distilroberta-v1) Reimers & Gurevych (2019).
These embeddings were then concatenated with GNN embeddings to predict performance. How-
ever, these models consistently underperformed when compared to the GNN baseline, highlighting
the need for a more advanced architecture. In contrast, our proposed method, which integrates large
pre-trained LLMs like Mistral-7B, demonstrated superior performance across all metrics. Notably,
despite utilizing large LLMs, our model maintains a compact size of 24M trainable parameters
through the efficient use of LoRA for weight updates.

Additionally, the results show that the choice of LLM significantly affects performance prediction
accuracy. For instance, our model with the Mistral-7B base LLM consistently outperforms across
various platforms, as shown in Appendix A.7, demonstrating the importance of model selection in
achieving higher accuracy.

4.3 EXPERIMENT: EFFECT OF PRE-TRAINING STRATEGY

This study assesses the impacts of the GNN pre-training and the graph-to-text adaptation. The hy-
pothesis driving this experiment is that pre-training can provide foundational knowledge that aids
in subsequent performance prediction tasks. In this study, we leverage the performance prediction
fine-tuning dataset as mentioned in Section 3.3. We used the Llama3-8B as the base LLM, optimiz-
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Figure 3: Adaptability experiment demonstrating model transfer ability across different hardware
platforms. We compared four models: a GNN baseline, enhanced GNN baseline with additional
node features (GNN-NF) and two variants of our model-Llama3-8B (with and without the structured
pre-training). Each model was trained on eight hardware configurations, followed by a transfer of
learned weights to fine-tune on a new unseen hardware platform (hi3519A-nnie12-int8 or atlas300-
acl-fp16) with a varying number of training samples. Our model with the structured pre-training
outperformed both the GNN baselines and our model variant without the structured pre-training.

ing with a learning rate of 0.0001 for the LLM and 0.001 for the GNN. The training was conducted
over 10 epochs for 3 times.

Table 4: Performance comparison of LLM models
with and without graph-text adaptation combined
with GNNs having either random or pre-trained
weights. Results indicate that graph-text adapta-
tion significantly improves LLM performance.

Models MAPE ↓ Acc (10%) ↑

LLM + GNN 14.71 49.27
LLM + GNNPRE 20.02 36.58
LLMPRE + GNN 13.57 55.12
LLMPRE + GNNPRE 12.50 57.10

Result: The configuration with graph-text
adaptation (LLMPRE) and pre-trained GNN ini-
tialization (GNNPRE) significantly outperforms
other setups as shown in Table 4. This vali-
dates our hypothesis that initial knowledge ac-
quisition through auxiliary tasks can substan-
tially enhance the model’s ability to predict
performance metrics accurately. Interestingly,
GNN pre-trained alone performs worse than
randomly initialized GNN. We believe that ran-
domly initialized GNN weights prevent over-
fitting to pre-existing biases, encouraging the
LLM to learn more generalized and robust fea-
tures during training.

4.4 EXPERIMENT: ADAPTATION

New Hardware Configurations This experiment assesses the real-world adaptability of our model
to new hardware environments, particularly under conditions of limited training data. Our com-
parative analysis involved four models: a GNN baseline, enhanced GNN baseline with additional
node features (GNN-NF) as detailed in Section 4.2 and two variants of our model, one with and
one without both GNN pre-training and graph-text adaptation. Both variants of our model employ
Llama3-8B as the base LLM, consistent with the settings described in section 4.2. Each model was
trained across eight distinct hardware platforms for ten epochs, after which the learned weights were
transferred to additional, new hardware platforms for further training for three epochs.

The results, illustrated in Figure 3, demonstrate the superior adaptability and performance of our
enhanced model on new hardware with sparse training samples. On the hi3519A-nnie12-int8 and
atlas300-acl-fp16 platform, our model equipped with the structured pre-training achieves 70% and
29% Acc(10%) respectively, while GNN and GNN-NF achieves 0%, when training on just 32 sam-
ples. The results also highlight the importance of our structured pre-training strategy, increasing
the accuracy of the LLM-GNN model by up to 50 percentage-point. These results underscore the
critical roles of both LLMs and our structured-pre-training strategy in enhancing model adaptabil-
ity, proving essential for the deployment of learned performance modeling in dynamic real-world
applications.

New Deep Learning Architecture: This experiment evaluates our model’s ability to quickly adapt
to new DL architectures with sparse training samples. We compared four models: a baseline GNN,
GNN-NF, and two variants of our model, utilizing either Llama3-8B or Mistral7B as the base LLM.
Each model was trained on ten different DL model families and then evaluated on an new architec-
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ture, Vision Transformer (ViT), using only 32 training samples. As shown in Table 5, our approach
significantly outperforms the GNN baselines, demonstrating rapid adaptation and superior perfor-
mance when predicting the behavior of a new DL architecture.

5 RELATED WORK

The field of performance prediction for DL models has witnessed growing interest in recent years.
Early work by Qi et al. (2017) proposed an analytical model to estimate DL model training time.
Subsequent studies like that of Gao et al. (2020) extended these methods to predict memory con-
sumption, utilizing analytical models to estimate resource utilization during training. To improve
prediction accuracy, researchers have explored machine learning approaches. Bouhali et al. (2021)
used an MLP-based regressor with features like trainable parameter counts, but it was constrained by
a shallow understanding of DL layers’ dynamics. Others, such as Justus et al. (2018), Gianniti et al.
(2018), Zhang et al. (2021), Lee et al. (2021) and adopted a layer-by-layer technique, they predicted
performance for each layer instead of the whole model, incorporating parameters like FLOPs and
layer features to predict execution times and power consumption.

Table 5: Comparison of GNN baselines against
our proposed architecture for performance predic-
tion of new DL architectures (ViT) with sparse
training samples.

Models MAPE ↓ Acc (10%) ↑

GNN-Baseline 26.86 0
GNN-NF 20.32 1
Ours-Llama3-8B 3.36 95.17
Ours-Mistral7B 1.69 99.05

However, this layerwise strategy failed to cap-
ture the network structure of DL models Liu
et al. (2022) To address this limitation, many
methods Kaufman et al. (2021); Dudziak et al.
(2020); Liu et al. (2022); Bai et al. (2022); Yi
et al. (2023); Zhou et al. (2020); Phothilimthana
et al. (2023); Panner Selvam & Brorsson
(2023); Panner Selvam & Brorsson utilized
graph learning techniques to generate embed-
dings that encapsulate the DL model network
topology, as well as the features of the com-
putation graph. These embeddings are trained
to predict performance characteristics. Yi et al.
(2023) improved the work of Liu et al. (2022) by introducing graph attention based transformer
block to predict the latency of the given DL model. However, their architecture doesn’t support
multi-platform performance prediction.

Despite these advancements, prior approaches lack online adaptability. Current methods require
retraining for new DL architectures or hardware configurations. On the other hand, our proposed
approach aims to overcome this challenge by integrating GNNs with LLMs to create a predictive
system that is more adaptable and flexible in real-world scenarios.

6 DISCUSSION AND CONCLUSION

This paper has investigated the integration of GNNs and LLMs to enhance the accuracy and adapt-
ability of DL performance prediction. Our empirical evaluations have demonstrated that graph
embeddings, derived from GNNs, are more effective inputs for LLMs than traditional text-based
representations, leading to significant improvements in both accuracy and computational efficiency.
Additionally, we have proposed a structured pre-training strategy that enables model adaptation to
new hardware environments with minimal retraining, further enhancing the practicality and efficacy
of our approach. We believe that our research offers a promising direction for advancing the field of
DL performance prediction and its applications in various stages of the DL system stack.
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A APPENDIX

A.1 ENVIRONMENT SETUP

All experiments were conducted on hardware featuring AMD EPYC 7402 processors with two sock-
ets (24 cores per socket), 512 GB DDR4-3200 RAM, and a 4 x NVIDIA A100 GPU with 40 GB
HBM. Our software environment included Python libraries such as PyTorch 2.2.1, torch-geometric
2.5.3, transformers 4.41.0, and peft 0.10.1, running on CUDA version 12.1.
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A.2 EVALUATION METRICS

To assess the accuracy of our performance prediction models, we use the following two primary
metrics:
Mean Absolute Percentage Error (MAPE): This metric quantifies the average of the absolute
percentage differences between each predicted value and its corresponding actual value. It is defined
mathematically as:

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − y′i
yi

∣∣∣∣× 100%

Here, yi represents the actual value and y′i represents the predicted value. MAPE is a non-negative
number, where a smaller value indicates a more accurate model.

Accuracy within a delta threshold (Acc(δ)): This metric measures the percentage of predicted
values that are within a specified percentage (δ) of the actual values. It is defined as:

Acc(δ) =
1

n

n∑
i=1

pos
(
δ −

∣∣∣∣yi − y′i
yi

∣∣∣∣)× 100%

where pos(z) is a function that returns 1 if z ≤ 0 and 0 otherwise. A higher ACC(δ) value reflects
better predictive performance of the model.

These metrics are widely used in previous worksPanner Selvam & Brorsson; Yi et al. (2023); Liu
et al. (2022), providing a reliable means to compare the effectiveness of different models in terms of
both overall error magnitude and the proportion of predictions within acceptable error thresholds.

A.3 GRAPH TO TEXT DATASET

Graph to Text: Sample Prompt

Q: Summarise the graph

A: The graph contains 42 nodes and 40 edges. The batch size is 8. The graph has 12.1
GFLOPs, 0.33 billion parameters, and 0.4 billion MACs.
Layer Stats Summary:
Layer: convolution, Implemented: 20 times, FLOPs: 12.5 billion, MACs: 32.3 million, Pa-
rameters: 35.8 million
Layer: relu, Implemented: 17 times, FLOPs: 0, MACs: 0, Parameters: 3.3 million
Layer: max pooling, Implemented: 1 times, FLOPs: 0, MACs: 0, Parameters: 335.6 thou-
sand Layer: addition, Implemented: 1 times, FLOPs: 0, MACs: 0, Parameters: 865

A.4 LIMITATIONS AND FUTURE WORK

While our model effectively leverages static prompting to enhance performance prediction, explor-
ing diverse prompting strategies could further optimize its adaptability and effectiveness across var-
ious scenarios.

Future research will explore several avenues to enhance the current model’s robustness and appli-
cability. We plan to extend our methodology to additional DL performance datasets such as TPU
Graphs Phothilimthana et al. (2023), allowing us to validate and refine our approach across a wider
range of DL architectures and hardware configurations.

A.5 ADDITIONAL EXPERIMENT: GRAPH EMBEDDING PROJECTION

This experiment investigates the effectiveness of different graph embedding projection techniques,
essential for communicating the graph structural information from the GNN encoder to the LLM.
It allow gradient flow from the LLM back to the GNN encoder, thereby enhancing the learning
feedback loop.
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Table 6: Performance comparison for Single vs. Multi Embedding -Projection methods

Type MAPE ↓ ACC(10%) ↑ TTT ↓ Max Token Length
Single Proj. 12.61 52.83 0.23 512
Multi Proj. 13.66 48.50 2.32 2048

Setting: For this experiment, we utilized the same dataset and the same Llama3-8B and GIN encoder
as DL representation experiment explained in Section 4.1. Each model was trained over 10 epochs
3 times to ensure stability and convergence of results.

Results: As result shown in Table 6, our proposed architecture, the single projection technique
where the DL graph is projected as a single input embedding to LLM (g1) demonstrated superior
performance compared to the multi-projection method, which attempts to capture the graph struc-
ture as multiple embeddings from g1 to gHGNN

. This finding suggests that maintaining a focused,
singular projection of graph features into the LLM not only preserves essential structural details but
also enhances computational efficiency. This single embedding approach resulted in MAPE, higher
ACC(10%), and reduced TTT. These results validate the importance of optimizing graph projection
methods to enhance the interplay between GNN encodings and LLM capabilities for performance
prediction tasks.

A.6 GNN PRE-TRAINING HYPER-PARAMETERS

Table 7: Hyper-parameters used for GNN pre-training.

Hyperparameter Value
Number of Hidden Units 1024
Number of Features 44
Number of Layers 5
Learning Rate (lr) 0.0005
Weight Decay 0.00
Mask Rate 0.5
Drop Edge Rate 0.0
Maximum Epochs 500
Encoder Type GIN
Decoder Type GIN
Activation Function PReLU
Loss Function SCE
Use of Scheduler No
Batch Size 128
Alpha_l 2
Replace Rate 0.1
Normalization Type BatchNorm
Optimizer Adam
Input Dropout 0.2
Attention Dropout 0.1

A.7 PERFORMANCE COMPARISON OF THE GNN BASELINE AGAINST OUR MODELS
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Table 8: Performance comparison of the GNN baseline against our models with different base LLMs
(Llama3-8B and Mistral-7B) using a multi-platform performance prediction dataset. Both our mod-
els utilize GNN pre-training and graph-text adaptation. The results demonstrate that our approach
outperforms the baseline, highlighting the effectiveness of the integrated method.

MAPE ↓ Acc (10%) ↑

Platforms GNN Llama3-8B Mistral-7B GNN Llama3-8B Mistral-7B

cpu-openppl-fp32 10.48 12.57 12.22 58.94 54.91 56.26
hi3559A-nnie11-int8 7.55 6.24 5.38 73.19 80.72 88.15
gpu-T4-trt7.1-fp32 9.32 10.00 9.69 60.87 56.52 58.74
gpu-T4-trt7.1-int8 18.10 15.17 14.05 27.90 47.85 46.78
gpu-P4-trt7.1-fp32 9.75 10.81 9.91 60.97 53.58 58.89
gpu-P4-trt7.1-int8 13.75 12.55 12.05 36.68 48.93 48.83
hi3519A-nnie12-int8 7.13 6.94 5.96 77.53 81.01 85.02
atlas300-acl-fp16 14.41 11.38 9.47 47.76 59.62 68.05
mul270-neuware-int8 26.18 26.88 28.31 21.61 30.77 33.70

Average 12.96 12.50 11.89 51.72 57.10 60.49
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