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ABSTRACT

Reinforcement Learning algorithms that learn from human feedback (RLHF) need
to be efficient in terms of statistical complexity, computational complexity, and
query complexity. In this work, we consider the RLHF setting where the feedback
is given in the format of preferences over pairs of trajectories. In the linear MDP
model, using randomization in algorithm design, we present an algorithm that is
sample efficient (i.e., has near-optimal worst-case regret bounds) and has poly-
nomial running time (i.e., computational complexity is polynomial with respect
to relevant parameters). Our algorithm further minimizes the query complexity
through a novel randomized active learning procedure. In particular, our algo-
rithm demonstrates a near-optimal tradeoff between the regret bound and the query
complexity. To extend the results to more general nonlinear function approxi-
mation, we design a model-based randomized algorithm inspired by the idea of
Thompson sampling. Our algorithm minimizes Bayesian regret bound and query
complexity, again achieving a near-optimal tradeoff between these two quantities.
Computation-wise, similar to the prior Thompson sampling algorithms under the
regular RL setting, the main computation primitives of our algorithm are Bayesian
supervised learning oracles which have been heavily investigated on the empirical
side when applying Thompson sampling algorithms to RL benchmark problems.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) has been widely used across various do-
mains, including robotics (Jain et al., 2013; 2015) and natural language processing (Stiennon et al.,
2020; Ouyang et al., 2022). Unlike standard RL, RLHF requires the agent to learn from feedback in
the format of preferences between pairs of trajectories instead of per-step reward since assigning a
dense reward function for each state is challenging in many tasks. For instance, in natural language
generation, rating each generated token individually is challenging. Hence, it is more realistic to ask
humans to compare two pieces of text and indicate their preference. Recent works have shown that,
by integrating preference-based feedback into the training process, we can align models with human
intention and enable high-quality human-machine interaction.

Despite the existing empirical applications of RLHEF, its theoretical foundation remains far from
satisfactory. Empirically, researchers first learn reward models from preference-based feedback and
then optimize the reward models via policy gradient-based algorithms such as PPO (Schulman et al.,
2017). Questions such as whether or not the learned reward model is accurate, whether PPO is suf-
ficient for deep exploration, and how to strategically collect more feedback on the fly are often
ignored. Theoretically, prior works study the regret bound for RL with preference-based feedback
(Saha et al., 2023; Chen et al., 2022). Despite achieving sublinear worst-case regret, these algo-
rithms are computationally intractable even for simplified models such as tabular Markov Decision
Processes (MDPs). This means that we cannot easily leverage the algorithmic ideas in prior work to
guide or improve how we perform RLHF in practice.

In addition to maximizing reward, another important metric in RLHF is the query complexity since
human feedback is expensive to collect. To illustrate, we note that InstructGPT’s training data com-
prises a mere 30K instances of human feedback (Ouyang et al., 2022), which is significantly fewer
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than the internet-scale dataset for training the GPT-3 base model. This underscores the challenge
of scaling up the size of human feedback datasets. Ross et al. (2013); Laskey et al. (2016) also
pointed out that extensively querying for feedback puts too much burden on human experts. Empir-
ically, Lightman et al. (2023) observes that active learning reduces query complexity and improves
the learned reward model. In theory, query complexity is mostly studied in the settings of active
learning, online learning, and bandits (Cesa-Bianchi et al., 2005; Dekel et al., 2012; Agarwal, 2013;
Hanneke & Yang, 2021; Zhu & Nowak, 2022; Sekhari et al., 2023a;b), but overlooked in RL.

In this work, we aim to design new RL algorithms that can learn from preference-based feedback
and can be efficient in statistical complexity (i.e., regret), computational complexity, and query
complexity. In particular, we strike a near-optimal balance between regret minimization and query
complexity minimization. To achieve this goal, our key idea is to use randomization in algorithm
design. We summarize our new algorithmic ideas and key contributions as follows.

1. For MDPs with linear structure (i.e., linear MDP (Jin et al., 2020)), we propose the first RL
algorithm that achieves sublinear worst-case regret and computational efficiency simultaneously
with preference-based feedback. Even when reduced to tabular MDPs, it is still the first to
achieve a no-regret guarantee and computational efficiency. Moreover, it has an active learning
procedure and attains a near-optimal tradeoff between the regret and the query complexity. Our
algorithm adds random Gaussian noises to the learned state-action-wise reward model and the
least-squares value iteration (LSVI) procedure. Using random noise instead of the UCB-style
technique (Azar et al., 2017) preserves the Markovian property in the reward model and allows
one to use dynamic programming to achieve computation efficiency.

2. For function approximation beyond linear, we present a model-based Thompson-sampling (TS)
algorithm that forms posterior distributions over the transitions and reward models. Assuming
the transition and the reward model class both have small /1 -norm eluder dimension — a structural
condition introduced in Liu et al. (2022a) that is more general than the common ¢5-norm eluder
dimension (Russo & Van Roy, 2013), we show that our algorithm again achieves a near-optimal
tradeoff between the Bayesian regret and the Bayesian query complexity. Computation-wise,
similar to previous TS algorithms for regular RL (e.g., Osband et al. (2013)), the primary com-
putation primitives are Bayesian supervised learning oracles for transition and reward learning.

3. Our query conditions for both algorithms are based on variance-style uncertainty quantification
of the preference induced by the randomness of the reward model. We query for preference feed-
back only when the uncertainty of the preference on a pair of trajectories is large. Approximately
computing the uncertainty can be easily done using i.i.d. random reward models drawn from the
reward model distribution, which makes the active query procedure computationally tractable.

Overall, while our main contribution is on the theoretical side, our theoretical investigation provides
several new practical insights. For instance, for regret minimization, our algorithms propose to draw
a pair of trajectories with one from the latest policy and the other from an older policy instead of
drawing two trajectories from the same policy (e.g., Christiano et al. (2017)), avoiding the situation
of drawing two similar trajectories when the policy becomes more and more deterministic. Our
theory shows that drawing two trajectories from a combination of new and older policies balances
exploration and exploitation better. Another practical insight is the variance-style uncertainty
measure for designing the query condition. Compared to more standard active learning procedure
that relies on constructing version space and confidence intervals (Dekel et al., 2012; Puchkin &
Zhivotovskiy, 2021; Zhu & Nowak, 2022; Sekhari et al., 2023a;b), our new approach comes with
strong theoretical guarantees and is more computationally tractable. It is also amenable to existing
implementations of Thompson sampling RL algorithms (e.g., using bootstrapping to approximate
the posterior sampling (Osband et al., 2016a; 2023)).

2 COMPARISON TO PRIOR WORK

RL with preference-based feedback. Many recent works have obtained statistically efficient algo-
rithms but are computationally inefficient even for tabular MDPs due to intractable policy search and
version space construction (Chen et al., 2022; Zhan et al., 2023a;b; Saha et al., 2023). For example,
Zhan et al. (2023b); Saha et al. (2023) use the idea from optimal design and rely on the computation
oracle: argmax, .cr [|Es ann®(8;a) — Egann @(s,a)| 4 with some positive definite matrix A.



Published as a conference paper at ICLR 2024

Here ||z||% := 2T Az, and ¢ is some state-action feature.! It is unclear how to implement this ora-
cle since standard planning approaches based on dynamic programming cannot be applied here. In
addition, these methods also actively maintain a policy space by eliminating potentially sub-optimal
policies. The policy class can be exponentially large even in tabular settings, so how to maintain it
computationally efficiently is unclear. We provide a more detailed discussion on the challenges in
achieving computational efficiency in RLHF in Appendix A.

While the work mentioned above is intractable even for tabular MDPs, there are some other works
that could be computationally efficient but have weaker statistical results. For instance, very recently,
Wang et al. (2023) proposed a reduction framework that can be computationally efficient (depending
on the base algorithm used in the reduction). However, their algorithms have PAC bounds while we
focus on regret minimization. Moreover, we achieve a near-optimal balance between regret and
query complexity. Novoseller et al. (2020) proposed a posterior sampling algorithm for tabular
MDP but their analysis is asymptotic (i.e., they do not address exploration, exploitation, and query
complexity tradeoff). Xu et al. (2020) proposed efficient algorithms that do reward-free exploration.
However, it is limited to tabular MDPs and PAC bounds.

In contrast to the above works, our algorithms aim to achieve efficiency in statistical, computa-
tional, and query complexities simultaneously. Our algorithms leverage randomization to balance
exploration, exploitation, and feedback query. Randomization allows us to avoid non-standard
computational oracles and only use standard Dynamic Programming (DP) based oracles (e.g.,
value iteration), which makes our algorithm computationally more tractable. Prior works that
simultaneously achieve efficiency in all three aspects are often restricted in the bandit and imitation
learning settings where the exploration problem is much easier (Sekhari et al., 2023a).

RL via randomization. There are two lines of work that study RL via randomization. The first
injects random noise into the learning object to encourage exploration. A typical example is the
randomized least-squares value iteration (RLSVI) (Osband et al., 2016b), which adds Gaussian noise
into the least-squares estimation and achieves near-optimal worst-case regret (Zanette et al., 2020;
Agrawal et al., 2021) for linear MDPs. The other line of work is Bayesian RL and uses Thompson
sampling (TS) (Osband et al., 2013; Osband & Van Roy, 2014b;a; Gopalan & Mannor, 2015;
Agrawal & Jia, 2017; Efroni et al., 2021; Zhong et al., 2022; Agarwal & Zhang, 2022). They
achieve provable Bayesian regret upper bound by maintaining posterior distributions over models.

Active learning. Numerous studies have studied active learning across various settings (Cesa-
Bianchi et al., 2005; Dekel et al., 2012; Agarwal, 2013; Hanneke & Yang, 2015; 2021; Zhu &
Nowak, 2022; Sekhari et al., 2023b;a). However, most of them focus on the bandits and online
learning settings, and their active learning procedures are usually computationally intractable due to
computing version spaces or upper and lower confidence bounds. In contrast, we design a variance-
style uncertainty quantification for our query condition, which can be easily estimated by random
samples of reward model. This makes our active learning procedure more computationally tractable.

3 PRELIMINARY

Notations. For two real numbers a and b, we denote [a,b] := {z : a < & < b}. For an integer N,
we denote [N] := {1,2,..., N}. For aset S, we denote A(S) as the set of distributions over S. Let
drv (-, -) denote the total variation distance.

We consider a finite-horizon Markov decision process (MDP), which is a tuple M (S, A, r*, P*, H)
where S is the state space, A is the action space, P* : S x A — A(S) is the transition kernel,
r*: 8§ x A — [0,1] is the reward function, and H is the length of the episode. The interaction
proceeds for T rounds. At each round ¢ € [T, we need to select two policies 7 and 7} and execute
them separately, which generates two trajectories 7{ and 7 where 7/ = (s} 1,a} 1, ..., 8, ;1,0 )
for i € {0,1}. For the ease of notation, we assume a fixed initial state s;. Then, we need to decide
whether to make a query for the preference between 70 and 7). If making a query, we obtain a
preference feedback o; € {0, 1} that is sampled from the Bernoulli distribution:

Pr(o; = 1] Ttl, Tto, r*) = PI‘(Ttl is preferred to Tto |r*) = (I)(T*(Ttl) - r*(TtO))

!These works typically assume trajectory-wise feature ¢ () for a trajectory 7. However, even when speci-
fied to state-action-wise features, these algorithms are still computationally intractable, even in tabular MDPs.
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where 7* (1) = S20 7% (8} s ay ) fori € {0,1} is the trajectory reward, and ® : R — [0, 1] is a
monotonically increasing link function. We note that, by symmetry, we have ®(r* () — r*(7})) +
®(r*(1}) — r*(7)) = 1. If not making a query, we receive no feedback.

This feedback model is weaker than the standard RL where the per-step reward signal is revealed.
We impose the following assumption on the link function ®, which has appeared in many existing
works of RLHF (Saha et al., 2023; Zhu et al., 2023; Zhan et al., 2023a).

Assumption 3.1. We assume ® is differentiable and there exists constants k., & > 0 such that k= <
&' () <7 ! foranyx € [-H, H).

The constants x and K characterize the non-linearity of ® and determine the difficulty of estimating
the reward from preference feedback. It is noteworthy that, in the theoretical results of our algo-
rithms, the bounds depend polynomially on « but logarithmically on . Some typical examples of
the link functions are provided below.

Example 3.2 (Link functions). It is common to have ®(x) = 1/(1 + exp(—x)), which recovers the
Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952), and we have k = 2+exp(—H)+exp(H)
and R = 4. Additionally, if the trajectory-wise reward is scaled within the interval of [0, 1], then the
difference in reward will be within the range of [—1, 1]. In this case, another common choice of the
link function is ®(x) = (v + 1)/2, which results in Kk =R = 2.

The goal is to minimize the worst-case regret and the query complexity simultaneously:
T T

Regret, == Z (2V*(sl) - V”?(sl) — V”tl(sl)), Queries = Z Zy.
t=1

t=1
Here V7™ (s1) = Er [Zthl r*(sp,ap)] denotes the state-value function of policy 7, and we define
V*(s1) = V™ (s1) where 7* is the optimal policy that maximizes the state-value function. The
variable Z; € {0, 1} indicates whether a query is made at round ¢. Note that the regret looks at the
sum of the performance gaps between two pairs of policies: (7*,70) and (7*, 7} ). This is standard

in dueling bandits (Yue & Joachims, 2011; Yue et al., 2012; Dudik et al., 2015; Bengs et al., 2022;
Wu et al., 2023b) and RL with preference-based feedback (Saha et al., 2023; Chen et al., 2022).

Bayesian RL. We also consider Bayesian RL in this work when learning with general function
approximation. In the Bayesian setting, P* and r* are sampled from some known prior distributions
pp and p,. The goal is to minimize the Bayesian regret and the Bayesian query complexity:

T
>z
t=1

Here the expectation is taken with respect to the prior distribution over P* and r*. We will use
Bayesian supervised learning oracles to compute posteriors over the transition and reward model.

T
BayesRegret; = E lz (2V*(81) — V”g(sl) —VT (sﬂ)] , BayesQueriesy = E

t=1

4 A MODEL-FREE RANDOMIZED ALGORITHM FOR LINEAR MDPs

In this section, we present a model-free algorithm for linear MDPs which is defined as follows.

Assumption 4.1 (Linear MDP (Jin et al., 2020)). We assume a known feature map ¢ : S x A —
R, an unknown (signed) measure 1 : S — RY, and an unknown vector 0} such that for any
(s,a) € S x A, we have P*(s'|s,a) = ¢ (s,a) - u(s') and r*(s,a) = ¢ (s,a) - 0*. We assume
o(s,a)lla < 1forall (s,a) € SxA, [§]lu(s)]2 ds < Vd, and ||6||2 < B for some B > 0. Fora

trajectory T = (S1,a1,...,8H,amn), we define ¢(1) = Zthl @(sn,an) and assume ||¢p(7)||2 < 1.

Linear MDPs can capture tabular MDPs by setting d = |S||.A| and ¢(s, a) to be the one-hot encoding
of (s,a). In this case, we have ||¢(7)||2 < H. However, we can scale it down to get ||¢(7)]|2 < 1 at
the expense of scaling B up by H. We define O = {# € R¢ : ||f||2 < B}, which contains 6.

4.1 ALGORITHM

The algorithm, called PR-LSVI, is presented in Algorithm 1. At the beginning of episode £k, it first
computes the maximum likelihood estimate 6, ; (Line 3). Computation-wise, while the likelihood
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objective is not guaranteed to be concave due to the generality of ®, efficient algorithms exist in
certain common scenarios. For example, if ®(z) = 1/(1 + exp(—x)), it recovers the BTL model
(Example 3.2). In this case, the MLE objective is concave in 6 and thus can be solved in polynomial
running time. Moreover, we emphasize that the reward is learned under trajectory-wise features,
which is different from the standard RL setting where it is learned under state-action features.

Given the MLE 6, ,, it next samples 6, ; from a Gaussian distribution centered at 6, » (Line 4). Note
that the covariance matrix ¥; !, uses trajectory-wise features (Line 16) which allows the random-
ized Gaussian vector to capture trajectory-wise uncertainty of the learned reward. The noise aims
to encourage exploration. Then, it computes the least-squares estimate of the state-action Xalue
function 0p ; 5, for each h € [H] and samples 8p ; , from a Gaussian distribution centered at fp ; 5,
(Lines 7-8). Similar to the reward model, the noise is added to the state-value function to encourage
exploration. We then define the value function Q; ;, and V; j, as

Qui(s,) = 05,0) By +win(s,a), Vinls) = maxQ, u(s,0) (1)
and the function w : S x A — R is defined as
o(s,0) O o, if¢(s, )5, | < or
win(s,0) = < pls,a) (6(s,0) Bp.in ) + (1= p(s, ) (H = h) ifar, < [[6(s,a)lls, 1, < v
H—h if (s a)lls 1 > au

where p(s,a) = (ay — ||é(s, G)HE—Il . )/(au — ar,) interpolates between the two regimes to en-
.

sure continuity. This truncation trick is from Zanette et al. (2020) and is crucial. It controls the
abnormally high value estimates. Specifically, when ||¢(s, a)|| -1  is large, the uncertainty in the
t—1,h

direction of ¢(s, a) is large, which makes the estimate ¢(s, @) " 0p 1, abnormally large. In this case,
we have to truncate it to H — h. Moreover, we note that the usual “value clipping” trick (i.e., simply
constraining the value function within the range of [0, H — h + 1] by clipping) cannot easily work
here since it introduces bias to the random walk analysis, also pointed out by Zanette et al. (2020).

Then, the algorithm computes the greedy policy 70 with respect to Qt, »- The comparator policy 7} is
simply set to the greedy policy from the previous episode, 7_; . In other words, we are comparing
the two most recent greedy policies. This is different from previous work, which compares the
current greedy policy with a fixed comparator (Wang et al., 2023). Analytically, for our algorithm,
the cumulative regret incurred by 7 forall ¢ € [T'] is equivalent to that incurred by 7 forall ¢ € [T.
Hence, it suffices to compute the regret for one of them and multiply it by two to get the total regret.

Given the trajectories 7 and 7, generated by 7Y and 7}, we compute the expected absolute reward
difference between the trajectories under the same noisy distribution of the reward parameter:

E (16662 = 67N T (60 — 00)]. @

00,01 ~N (0y,,0257 )

This represents the uncertainty of the preference between the two trajectories, and we make a
query only when it is larger than a threshold € (Line 13). Intuitively, we only make a query on
two trajectories when we are uncertain about the preference (e.g., the expected disagreement
between two randomly sampled reward models is large). Computationally, we can estimate this

expectation by drawing polynomially many reward models from the distribution N (6; ¢, on[_ll)
and computing the empirical average. The deviation of the empirical average to the true mean
can be easily bounded by standard concentration inequalities. We simply use expectation here for
analytical simplicity. If the query condition is triggered, we make a query for feedback on 77, 7,
and update the trajectory-wise feature covariance matrix accordingly.

4.2 ANALYSIS

The theoretical results of Algorithm 1 are stated in Theorem 4.2. The detailed assignment of hyper-
parameters can be found in Table 1, and the proof is provided in Appendix B.

Theorem 4.2. Define v = Vi + 52’ which characterizes the difficulty of estimating the reward
model. Set o, = ©(vV/d), op = O(H?/2d?y), ay = (d°/?H3/?~4)~1, ar, = ay/2, and X = 1.
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Algorithm 1 Preference-based and Randomized Least-Squares Value Iteration (PR-LSVI)
Require: STD o,, op, threshold ¢, value cutoff parameters ar,, ay, and regularization parameter \.
1: Let 7] be an arbitrary policy, 3¢ < A, $o , < A (Vh € [H]).
2: fort=1,...,7T do

3 Ory ¢ argmaxgee, >oomy Zs I(0,((9(r3) = (72)) T0)+(1-0,)(((9) — (7)) T6))

4. grﬂf ~ N(é\r,t, U?Zt__ll)

5: 9P,t,H 0, gp_’t’H 0

6: forh=H-1,...,1do

7: Opth E;—ll,h(Z:;i ¢(5?,hv a?,h)vt,hﬂ(s?,hﬂ))
8: Op t.n ~ N(Op.tn, 03X )

9: Define @t’h and V' p, as in (1).

10:  end for

1 Setwr) < {m)), : 7y (s) = argmax, Q, ,(s,a), Vs € S, h € [H|} and 7} + 7]_4.
12:  Sample 70 ~ 7Y and 7} ~ 7} .
B Zye UEg gy, srnet 00 — 6(r1) (60 — 0] > ¢}

14: if Z; = 1 then

15: Query preference feedback o, on {77, 7!}

16: B ¢ Bim1 + (o) — o(i)(o(77) — (7)) "

17:  else

18: Et «— Zt—l

19:  endif

20: Nyp < Bi1n + O(sY s a?,h)W(S?,h, ap,) (Vh € [H]).
21: end for

Then, PR-LSVI (Algorithm 1) guarantees the following with probability at least 1 — §:
Regret; = 0 (6Td1/2 +VT- dPH %~ + d17/2H11/273) , Queriesp = 0] (d4v4/62) .

To further study the balance between the regret and the query complexity, we let € = 77 for some
B < 1/2. Then, the upper bounds in Theorem 4.2 can be rewritten as

Regret; = O(T' ),  Queries; = O(T27)

where we only focus on the dependence on 7' and omit any other factors for simplicity. We see
that there is a tradeoff in 7" between the regret and the query complexity — the smaller regret we

want, the more queries we need to make. For example, when S = 0, the regret is 5(T), and the
query complexity is O(1), meaning that we will incur linear regret if we don’t make any query. If

we increase 3 to 1/2, the regret decreases to 9] (v/T) while the query complexity increases to O(T),
meaning that the regret bound is optimal in 7" but we make queries every episode.

We emphasize that this tradeoff in 7" is optimal, as evidenced by a lower bound result established by
Sekhari et al. (2023a). Their lower bound was originally proposed for contextual dueling bandits,
which is a special case of our setting. Their results are stated below.

Theorem 4.3. (Sekhari et al., 2023a, Theorem 5) The following two claims hold: (1) For any algo-
rithm, there exists an instance that leads to Regret = Q(\/T) ; (2) For any algorithm achieving an
expected regret upper bound in the form of E[Regrety| = O(T =) for some 3 > 0, there exists an
instance that results in E[Queriesy| = Q(T?7).

However, the dependence on other parameters (e.g., d and H) can be loose, and further improvement
may be possible. We leave further investigation of these factors as future work.

Although injecting random noise is inspired by RLSVI (Zanette et al., 2020), we highlight five key
differences between ours and theirs: (1) Since the feedback is trajectory-wise, we need to design ran-
dom noise that preserves the state-action-wise format (so that it can be used in DP) but captures the
trajectory-wise uncertainty. We do this by maintaining 3;, which uses trajectory-wise feature differ-
ences; (2) Since the preference feedback is generated from some probabilistic model, we learn the
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reward model via MLE and use MLE generalization bound (Geer, 2000) to capture the uncertainty in
learning. This allows us to use a more general link function ®; (3) We design a new regret decompo-
sition technique to accommodate preference-based feedback. Particularly, we decompose regret to
characterizes the reward difference between 70 and 7} Regrety < 01 (V= Vi) — (V™ — V™)
where V; is an estimate of V™, and Vi = Ermnt [Zthl #(sn,an) "0y 4] is an estimate of VT
under the real transition and the learned reward model. This is different from standard RL (Zanette
et al., 2020), and is necessary since we cannot guarantee the learned reward model will be accurate
in a state-action-wise manner under the preference-based feedback. (4) Our algorithms have a new
randomized active learning procedure for reducing the number of queries, and our analysis achieves
a near-optimal tradeoff between regret and query complexity; (5) In every round ¢, we propose to
draw a pair of trajectories where one is from the current greedy policy 79 and the other is from
the greedy policy of the previous round, 7)_;. This ensures 7} is conditionally independent of the
Gaussian noises at round ¢, which is the key to optimism (with a constant probability).

Running time. To assess the time complexity of Algorithm 1, assuming finite number of actions?,
all steps can be computed in polynomial running time (i.e., polynomial in d, H, A) except the MLE
of the reward model (Line 3), which depends on the link function ®. For the popular BTL model
where ®(z) = 1/(1 + exp(—=x)), the MLE objective is concave with respect to 6 and 6 belongs
to a convex set Op. In this case, we can use any convex programming algorithms for the MLE
procedure (e.g., projected gradient ascent).

5 A MODEL-BASED THOMPSON SAMPLING ALGORITHM

In this section, we aim to extend to nonlinear function approximation. We do so in a model-based
framework with Thompson sampling (TS). The motivation is that TS is often considered a compu-
tationally more tractable alternative to UCB-style algorithms.

5.1 ALGORITHM

The algorithm, called PbTS, is presented in Algorithm 2. At the beginning of episode k, it computes
the reward model posterior p, ; and the transition model posterior pp ; (Line 3). Then, it samples P;
and r, from the posteriors and computes the optimal policy 70 assuming the true reward function
is r; and the true model is P; (Line 5). Here we denote Vr’fp as the state-value function of 7 under
reward function r and model P. Note that this oracle is a standard planning oracle. The comparator
policy 7} is simply set to be the policy from the previous episode, 70_;, as we did in Algorithm 1.
The two policies then generate respective trajectories 7{ and 7. To decide whether we should
make a query, we compute the uncertainty quantity under the posterior distribution of the reward:
Er i mpe [|7(7) — (1) — (' (7) — r'(7}'))]], which is analogous to (2) in Algorithm 1. We make
a query only when it is larger than a threshold €. Similar to Algorithm 1, we can approximate this
expectation by sampling polynomial many pairs of r and r” and then compute the empirical average.

5.2 ANALYSIS

The theoretical results of Algorithm 2 should rely on the complexity of the reward and the transition
model. In our analysis, we employ two complexity measures — eluder dimension and bracketing
number. We start by introducing a generic notion of £,,-eluder dimension (Russo & Van Roy, 2013).

Definition 5.1 (¢,-norm e-dependence). Let p > 0. Let X and Y be two sets and d(-,-) be a
distance function on ). Let F C X — Y be a function class. We say an element x € X is {,,-norm
e-dependent on {x1,xs,...,x,} C X with respect to F and d if any pair of functions f, ' € F
satisfying > v dP(f(x;), ['(x:)) < € also satisfies d(f(z), f'(x)) < e. Otherwise, we say x is
Lp-norm e-independent of {x1,x2,...,%n}.

Definition 5.2 (£,-norm eluder dimension). The {,-norm e-eluder dimension of function class F C
X — Y, denoted by dim,, (F, €, d), is the length of the longest sequence of elements in X satisfying
that there exists € > e such that every element in the sequence is {,-norm ¢ -independent of its
predecessors.

2This is to ensure that arg max, Q(s, a) can be computed efficiently.
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Algorithm 2 Preference-based Thompson Sampling (PbTS)

Require: priors pp and p,, threshold e.
1: Let 7] be an arbitrary policy.
2: fort=1,...,Tdo
3:  Compute posteriors:

t—1 H
ppt(P) o pp(P) [T T P(stnra | 500 aln),
i=1h=1
pear) o< ) [T (0@ () = () + (1 = 0@ (r(r0) — (7))

i=1

4:  Sample P, ~ pp; and ry ~ pr ;.

5:  Compute 7rt — arg max, VT p (s1) and w} < 7] ;.

6:  Sample 70 ~ 7Y and 7} ~ 7rtl

7o Zy = WErpimg, () — (7)) = (7'(7)) = ' (7}))]] > €}
8: if Z; = 1 then

9: Query preference feedback o, on {7, 7!}

10:  endif

11: end for

The eluder dimension is non-decreasing in p, i.e., dim,(F, €, d) < dimy(F, €, d) for any p < ¢. In
the analysis, we will focus on /1 - and ¢5-norm eluder dimension, which have been used in nonlinear
bandits and RL extensively (Wen & Van Roy, 2013; Osband & Van Roy, 2014a; Jain et al., 2015;
Wang et al., 2020; Ayoub et al., 2020; Foster et al., 2021; Ishfaq et al., 2021; Chen et al., 2022;
Liu et al., 2022a; Sekhari et al., 2023a;b). Examples where eluder dimension is small include linear
functions, generalized linear models, and functions in Reproducing Kernel Hilbert Space (RKHS).

The other complexity measure we use is the bracketing number (Van de Geer, 2000).

Definition 5.3 (Bracketing number). Consider a function class F C X — R. Given two functions
Liu: X — R, the bracket [l,u] is defined as the set of functions f € F with l(z) < f(x) < u(x)
forallx € X. Itis called an w-bracket if ||l — u|| < w. The bracketing number of F w.r.t. the metric
-1, 1(w, F, || - |]), is the minimum number of w-brackets needed to cover F.

The logarithm of the bracketing number is small in many common scenarios, which has been ex-
tensively examined by previous studies (e.g., Van de Geer (2000)) for deriving MLE generalization
bound (Agarwal et al., 2020; Uehara & Sun, 2021; Liu et al., 2022b; 2023). For example, when F
is finite, the bracketing number is bounded by its size. When F is a d-dimensional linear function
class, the logarithm of the bracketing number is upper bounded by d up to logarithmic factors.

It is worth noting that while we will employ both measures to the model class P, we can not similarly
apply them to the reward class R. Instead, we have to rely on the complexity of the following
function class, which comprises functions mapping pairs of trajectories to reward differences:

H
R = {? (0 ) = Zr(sg,ag) —r(s},ar), V7' = {s,ai }n,i € {0,1},r € R} 3)
h=1

We have to use R instead of R because we only receive preference feedback, and thus we cannot
guarantee that the learned reward model is accurate state-action-wise. Now we are ready to state our
main results. The proofs are provided in Appendix C.

Theorem 5.4. PbTS (Algorithm 2) guarantees that
BayesRegret, = 6(T€ + H? - dim; (P, 1/T) /T - 1p + k- dimy (7%7 1/T) /T - LR>,
N(min{w R ~dim2(7€,e/2)})
€

BayesQueries; = O
where we denote vp = log(Ny((HT|S|)™ 1, P, || - [loo)) and 1 = log(Ny, ®E2T)™L,R, || - [lso))-

. dimy, (7% 6/2), r
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Similar to the analysis of Algorithm 1, we study the balance between the Bayesian regret and the
query complexity by setting ¢ = T for some 3 < 1/2. Then, we can simplify the bounds into

BayesRegret; = O(T #) and
BayesQueries; = O ( min { TP+3 . dimy (ﬁ, 6/2), 727 . dimy (7%7 6/2) })

® (i)
where we have hidden factors except T' and the eluder dimension for brevity. We see that there is
again a tradeoff in 7" between the Bayesian regret and the query complexity, similar to the one in
Theorem 4.2. Term (ii) demonstrates that the tradeoff in 7' is again optimal, evidenced by the lower
bound (Theorem 4.3). Moreover, term (i) further improves the dependence on the eluder dimension
(recalling that ¢;-norm version is smaller than the /5-norm version). However, the T-dependence is
worse. It is desired to derive a query complexity upper bound that scales as O(7%? - dim; (R, ¢/2)),
attaining the favorable dependence on both 7" and the eluder dimension. We leave it as future work.

We emphasize that the Bayesian regret analysis in Theorem 5.4 is not a simple extension of pre-
vious TS works. We highlight four main differences: (1) The feedback is preference-based, which
necessitates a new Bayesian regret decomposition'

(J 1 0 1
BayesRegret; = ZE { tp, — V;:'P*} +ZE K b — V:fp*> — (VT’Z*;P* — V;'P*)} .
t=0

Tmodel Treward
Here Tyno0de1 and Treward are the respective regret incurred due to model and reward misspecification.
We highlight that Tycwarq characterizes the misspecification in terms of the reward difference be-
tween 70 and 7}, which is different from the standard Bayesian RL. (2) Unlike prior works (Russo
& Van Roy, 2014), we do not rely on upper confidence bounds (UCB) or optimism. Instead, we
construct version spaces by classic MLE generalization bound. Taking the reward learning as an
example, given the preference data {7 oi}f;%, we construct the version space at round ¢ as

’L7 ’L’

t—1
Vt:{TER ZdTV PI‘(‘ Ti 1,7 ) PI‘( |T7f’Tl’T)>SB}

i=1

where 7; := argmax, log >/~ i=1 L Pr(o; |7}, 70, 7) is the MLE from the preference data and 3 is
tuned appropriately to ensure r* € V; w1th h1gh probability. We then show the posterior probability
of r; and r* not belonging to V; is small. (3) Our analysis uses the tighter ¢;-norm eluder dimension,
which is strictly better than the /5-norm eluder dimension used in prior work. (4) We also equipped

it with a randomized active learning procedure for query complexity minimization.

Computation. The computational bottleneck of Algorithm 2 lies in the computation of the posterior
distribution (Line 3). Prior TS works have used Bootstrapping to approximate posterior sampling
(Osband et al., 2016a; 2023) and achieved competitive performance in common RL benchmarks.

Non-Markovian reward. Algorithm 2 can also be applied to non-Markovian reward (i.e., reward
model is trajectory-wise) without any change. Here we consider Markovian reward for the consis-
tency with Algorithm 1 and for the purpose of using a standard planning oracle for computing an
optimal policy from a reward and transition model. While non-Markovian reward is more general, it
is unclear how to solve the planning problem efficiently even in tabular MDPs. This computational
intractability makes non-Markovian rewards not easily applicable in practice.

Extension to SEC. In Appendix C.4, we extend the eluder dimension in Theorem 5.4 to the Se-
quential Extrapolation Coefficient (SEC) (Xie et al., 2022), which is more general.

6 CONCLUSION

We use randomization to design algorithms for RL with preference-based feedback. Randomization
allows us to minimize regret and query complexity while at the same time maintaining computation
efficiency. For linear models, our algorithms achieve a near-optimal balance between the worst-case
reward regret and query complexity with computational efficiency. For models beyond linear, using
eluder dimension, we present a TS-inspired algorithm that balances Bayesian regret and Bayesian
query complexity nearly optimally.



Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

Both RW and WS acknowledge support from NSF 1IS-2154711, NSF CAREER 2339395, and Cor-
nell Infosys Collaboration.

REFERENCES

Yasin Abbasi-Yadkori, David P4l, and Csaba Szepesvari. Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24, 2011.

Marc Abeille and Alessandro Lazaric. Linear thompson sampling revisited. In Artificial Intelligence
and Statistics, pp. 176-184. PMLR, 2017.

Alekh Agarwal. Selective sampling algorithms for cost-sensitive multiclass prediction. In Interna-
tional Conference on Machine Learning, pp. 1220-1228. PMLR, 2013.

Alekh Agarwal and Tong Zhang. Model-based rl with optimistic posterior sampling: Structural
conditions and sample complexity. Advances in Neural Information Processing Systems, 35:
35284-35297, 2022.

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural com-
plexity and representation learning of low rank mdps. Advances in neural information processing
systems, 33:20095-20107, 2020.

Priyank Agrawal, Jinglin Chen, and Nan Jiang. Improved worst-case regret bounds for randomized
least-squares value iteration. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 6566—6573, 2021.

Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-
case regret bounds. Advances in Neural Information Processing Systems, 30, 2017.

Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based reinforcement
learning with value-targeted regression. In International Conference on Machine Learning, pp.
463-474. PMLR, 2020.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In International Conference on Machine Learning, pp. 263-272. PMLR, 2017.

Viktor Bengs, Aadirupa Saha, and Eyke Hiillermeier. Stochastic contextual dueling bandits under
linear stochastic transitivity models. In International Conference on Machine Learning, pp. 1764—
1786. PMLR, 2022.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324-345, 1952.

Nicolo Cesa-Bianchi, Gdbor Lugosi, and Gilles Stoltz. Minimizing regret with label efficient pre-
diction. IEEE Transactions on Information Theory, 51(6):2152-2162, 2005.

Niladri Chatterji, Aldo Pacchiano, Peter Bartlett, and Michael Jordan. On the theory of reinforce-

ment learning with once-per-episode feedback. Advances in Neural Information Processing Sys-
tems, 34:3401-3412, 2021.

Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, and Liwei Wang. Human-in-the-loop:
Provably efficient preference-based reinforcement learning with general function approximation.
In International Conference on Machine Learning, pp. 3773-3793. PMLR, 2022.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Ofer Dekel, Claudio Gentile, and Karthik Sridharan. Selective sampling and active learning from
single and multiple experts. The Journal of Machine Learning Research, 13(1):2655-2697, 2012.

10



Published as a conference paper at ICLR 2024

Simon Du, Sham Kakade, Jason Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and Ruosong
Wang. Bilinear classes: A structural framework for provable generalization in rl. In International
Conference on Machine Learning, pp. 2826-2836. PMLR, 2021.

Miroslav Dudik, Katja Hofmann, Robert E Schapire, Aleksandrs Slivkins, and Masrour Zoghi. Con-
textual dueling bandits. In Conference on Learning Theory, pp. 563-587. PMLR, 2015.

Yonathan Efroni, Nadav Merlis, and Shie Mannor. Reinforcement learning with trajectory feedback.
In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 7288-7295, 2021.

Dylan Foster, Alexander Rakhlin, David Simchi-Levi, and Yunzong Xu. Instance-dependent com-
plexity of contextual bandits and reinforcement learning: A disagreement-based perspective. In
Conference on Learning Theory, pp. 2059-2059. PMLR, 2021.

Sara A Geer. Empirical Processes in M-estimation, volume 6. Cambridge university press, 2000.

Aditya Gopalan and Shie Mannor. Thompson sampling for learning parameterized markov decision
processes. In Conference on Learning Theory, pp. 861-898. PMLR, 2015.

Steve Hanneke and Liu Yang. Minimax analysis of active learning. J. Mach. Learn. Res., 16(1):
3487-3602, 2015.

Steve Hanneke and Liu Yang. Toward a general theory of online selective sampling: Trading off
mistakes and queries. In International Conference on Artificial Intelligence and Statistics, pp.
3997-4005. PMLR, 2021.

Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina Precup,
and Lin Yang. Randomized exploration in reinforcement learning with general value function
approximation. In International Conference on Machine Learning, pp. 4607-4616. PMLR, 2021.

Ashesh Jain, Brian Wojcik, Thorsten Joachims, and Ashutosh Saxena. Learning trajectory pref-
erences for manipulators via iterative improvement. Advances in neural information processing
systems, 26, 2013.

Ashesh Jain, Shikhar Sharma, Thorsten Joachims, and Ashutosh Saxena. Learning preferences
for manipulation tasks from online coactive feedback. The International Journal of Robotics
Research, 34(10):1296-1313, 2015.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pp. 2137-2143.
PMLR, 2020.

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of rl
problems, and sample-efficient algorithms. Advances in neural information processing systems,
34:13406-13418, 2021.

Michael Laskey, Sam Staszak, Wesley Yu-Shu Hsieh, Jeffrey Mahler, Florian T Pokorny, Anca D
Dragan, and Ken Goldberg. Shiv: Reducing supervisor burden in dagger using support vectors
for efficient learning from demonstrations in high dimensional state spaces. In 2016 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 462—469. IEEE, 2016.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Qinghua Liu, Alan Chung, Csaba Szepesvari, and Chi Jin. When is partially observable reinforce-
ment learning not scary? In Conference on Learning Theory, pp. 5175-5220. PMLR, 2022a.

Qinghua Liu, Csaba Szepesvari, and Chi Jin. Sample-efficient reinforcement learning of partially ob-
servable markov games. Advances in Neural Information Processing Systems, 35:18296—-18308,
2022b.

Qinghua Liu, Praneeth Netrapalli, Csaba Szepesvari, and Chi Jin. Optimistic mle: A generic model-
based algorithm for partially observable sequential decision making. In Proceedings of the 55th
Annual ACM Symposium on Theory of Computing, pp. 363-376, 2023.

11



Published as a conference paper at ICLR 2024

Ellen Novoseller, Yibing Wei, Yanan Sui, Yisong Yue, and Joel Burdick. Dueling posterior sam-
pling for preference-based reinforcement learning. In Conference on Uncertainty in Artificial
Intelligence, pp. 1029-1038. PMLR, 2020.

Ian Osband and Benjamin Van Roy. Model-based reinforcement learning and the eluder dimension.
Advances in Neural Information Processing Systems, 27, 2014a.

Ian Osband and Benjamin Van Roy. Near-optimal reinforcement learning in factored mdps. Ad-
vances in Neural Information Processing Systems, 27, 2014b.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
posterior sampling. Advances in Neural Information Processing Systems, 26, 2013.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016a.

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via random-
ized value functions. In International Conference on Machine Learning, pp. 2377-2386. PMLR,
2016b.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi,
Xiuyuan Lu, and Benjamin Van Roy. Approximate thompson sampling via epistemic neural
networks. arXiv preprint arXiv:2302.09205, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730-27744, 2022.

David Pollard. Empirical processes: theory and applications. Ims, 1990.

Nikita Puchkin and Nikita Zhivotovskiy. Exponential savings in agnostic active learning through
abstention. In Conference on Learning Theory, pp. 3806-3832. PMLR, 2021.

Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas Wendel, Debadeepta
Dey, J Andrew Bagnell, and Martial Hebert. Learning monocular reactive uav control in cluttered

natural environments. In 2013 IEEE international conference on robotics and automation, pp.
1765-1772. IEEE, 2013.

Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
exploration. Advances in Neural Information Processing Systems, 26, 2013.

Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. Mathematics of
Operations Research, 39(4):1221-1243, 2014.

Aadirupa Saha, Aldo Pacchiano, and Jonathan Lee. Dueling rl: Reinforcement learning with trajec-
tory preferences. In International Conference on Artificial Intelligence and Statistics, pp. 6263—
6289. PMLR, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ayush Sekhari, Karthik Sridharan, Wen Sun, and Runzhe Wu. Contextual bandits and imitation
learning via preference-based active queries. arXiv preprint arXiv:2307.12926, 2023a.

Ayush Sekhari, Karthik Sridharan, Wen Sun, and Runzhe Wu. Selective sampling and imitation
learning via online regression. arXiv preprint arXiv:2307.04998, 2023b.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008-3021, 2020.

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under
partial coverage. In International Conference on Learning Representations, 2021.

12



Published as a conference paper at ICLR 2024

Sara Van de Geer. Empirical Processes in M-estimation, volume 6. Cambridge university press,
2000.

Ruosong Wang, Russ R Salakhutdinov, and Lin Yang. Reinforcement learning with general value
function approximation: Provably efficient approach via bounded eluder dimension. Advances in
Neural Information Processing Systems, 33:6123-6135, 2020.

Yuanhao Wang, Qinghua Liu, and Chi Jin. Is rlhf more difficult than standard rl? arXiv preprint
arXiv:2306.14111, 2023.

Zheng Wen and Benjamin Van Roy. Efficient exploration and value function generalization in de-
terministic systems. Advances in Neural Information Processing Systems, 26, 2013.

Runzhe Wu, Masatoshi Uehara, and Wen Sun. Distributional offline policy evaluation with pre-
dictive error guarantees. In International Conference on Machine Learning, pp. 37685-37712.
PMLR, 2023a.

Yue Wu, Tao Jin, Hao Lou, Farzad Farnoud, and Quanquan Gu. Borda regret minimization for
generalized linear dueling bandits. arXiv preprint arXiv:2303.08816, 2023b.

Tengyang Xie, Dylan J Foster, Yu Bai, Nan Jiang, and Sham M Kakade. The role of coverage in
online reinforcement learning. arXiv preprint arXiv:2210.04157, 2022.

Yichong Xu, Ruosong Wang, Lin Yang, Aarti Singh, and Artur Dubrawski. Preference-based re-
inforcement learning with finite-time guarantees. Advances in Neural Information Processing
Systems, 33:18784-18794, 2020.

Yisong Yue and Thorsten Joachims. Beat the mean bandit. In Proceedings of the 28th international
conference on machine learning (ICML-11), pp. 241-248. Citeseer, 2011.

Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling bandits
problem. Journal of Computer and System Sciences, 78(5):1538—-1556, 2012.

Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo Pirotta, and Alessandro Lazaric.
Frequentist regret bounds for randomized least-squares value iteration. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 1954-1964. PMLR, 2020.

Wenhao Zhan, Masatoshi Uehara, Nathan Kallus, Jason D Lee, and Wen Sun. Provable offline
reinforcement learning with human feedback. arXiv preprint arXiv:2305.14816, 2023a.

Wenhao Zhan, Masatoshi Uehara, Wen Sun, and Jason D Lee. How to query human feedback
efficiently in r1? arXiv preprint arXiv:2305.18505, 2023b.

Han Zhong, Wei Xiong, Sirui Zheng, Liwei Wang, Zhaoran Wang, Zhuoran Yang, and Tong Zhang.
Gec: A unified framework for interactive decision making in mdp, pomdp, and beyond. CoRR,
2022.

Banghua Zhu, Jiantao Jiao, and Michael I Jordan. Principled reinforcement learning with human
feedback from pairwise or k-wise comparisons. arXiv preprint arXiv:2301.11270, 2023.

Yinglun Zhu and Robert Nowak. Efficient active learning with abstention. Advances in Neural
Information Processing Systems, 35:35379-35391, 2022.

13



