
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEQ-MPC: DEEP EQUILIBRIUM MODEL PREDICTIVE
CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Incorporating task-specific priors within a policy or network architecture is crucial
for enhancing safety and improving representation and generalization in robotic
control problems. Differentiable Model Predictive Control (MPC) layers have
proven effective for embedding these priors, such as constraints and cost func-
tions, directly within the architecture, enabling end-to-end training. However,
current methods often treat the solver and the neural network as separate, indepen-
dent entities, leading to suboptimal integration. In this work, we propose a novel
approach that co-develops the solver and architecture unifying the optimization
solver and network inference problems. Specifically, we formulate this as a joint
fixed-point problem over the coupled network outputs and necessary conditions of
the optimization problem. We solve this problem in an iterative manner where we
alternate between network forward passes and optimization iterations. Through
extensive ablations in various robotic control tasks, we demonstrate that our ap-
proach results in richer representations and more stable training, while naturally
accommodating warm starting, a key requirement for MPC.

1 INTRODUCTION

Incorporating task-specific priors within the policy training pipeline is often beneficial when solving
robotic control problems. These priors, which often take the form of auxiliary constraints or cost
functions, give the system designer an additional degree of control and flexibility while designing
the system and play a vital role in enhancing safety, improving representation, and boosting general-
ization. Previous approaches to policy learning have explored various methods to embed such priors,
including reward/loss shaping (Gupta et al., 2022), incorporating constrained optimization layers
within the policy inference pipeline (Amos et al., 2018; Agrawal et al., 2020), adding parallel/post-
hoc safety checks/controllers (Ames et al., 2019), adversarial training (Schott et al., 2024), and
domain randomization (Chen et al., 2021).

Differentiable Model Predictive Control (MPC) layers (Amos et al., 2018) have emerged as a
promising approach (Shrestha et al., 2023; Xiao et al., 2022; Diehl et al., 2023b). This method
integrates MPC as a differentiable layer within neural network architectures, allowing for the em-
bedding of constraints and cost functions directly into the network architecture, while enabling true
end-to-end training of control policies. Importantly, they allow us to preserve the interpretability and
safety guarantees associated with traditional MPC while providing a general framework applicable
to a diverse range of robotic control problems. Furthermore, it allows for test-time modifications of
the MPC problem and facilitates online adaptation, offering increased flexibility and generalizability
– a critical feature in dynamic environments.

While offering several advantages, standard differentiable MPC layers often treat the optimization
solver as a black-box differentiable layer within the neural network (NN) architecture. This simpli-
fication, while convenient, overlooks the unique characteristics of MPC solvers that set them apart
from typical NN layers. MPC solvers are implicit layers and hence inherently iterative as opposed to
typical explicit layers. They often suffer from ill-conditioning, non-convexities and discontinuities,
potentially leading to unstable training dynamics. Additionally, MPC solvers frequently possess
specialized structures that enable efficient warm-starting – a valuable property in recurrent control
scenarios that is not fully leveraged in differentiable MPC frameworks.

To address these limitations, we propose Deep Equilibrium Model Predictive Control (DEQ-MPC),
a novel approach that unifies the optimization solver and the neural network architecture. Instead

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: We propose DEQ-MPC layers (right) as a direct improvement over differentiable MPC
layers (left). These layers offer increased representational power, smoother gradients, and are more
amenable to warm-starting. DEQ-MPC layers formulate MPC parameter estimation (θ) and trajec-
tory optimization (τ ) as a joint fixed-point problem, solving them in an alternating iterative manner,
instead of the single-shot sequential inference used in differentiable MPC setups. This approach
allows the network to adapt the optimization parameter estimates, θi, based on the current optimizer
state, τi, enabling a richer feedback process. The specific example in the figure shows a trajectory
tracking example, where the robot observations (quadrotor) are fed to the system. The network pre-
dicts the waypoints θi (optimization parameters). The solver solves the tracking problem to spit out
solved trajectories τi to track the waypoints θi.

of treating the optimization layer as just another layer within the network, we formulate a joint in-
ference and optimization problem as shown in figure 1, where we treat the network inference and
the optimization problem as a unified system and jointly compute a fixed point over them. Thus,
the network outputs can now depend on the solver iterates and vice-versa, thereby, allowing a tight
coupling between the two. The fixed point is computed by alternating between the network forward
pass (conditioned on the most recent optimizer iterate) and the optimization solver iterations (condi-
tioned on the most recent network outputs) until the joint system reaches an equilibrium (hence the
name DEQ-MPC, i.e, Deep Equilibrium Model Predictive Control).

This joint inference/optimization framework also allows us to explore several interesting aspects
of the solver and architecture design. Specifically, for the optimization solver, we implement an
augmented Lagrangian (AL) solver which works well with warm-starting and is robust at handling
arbitrary non-linear constraints. This is important for the joint fixed point process as it allows us
to change the optimization parameters (i.e, network outputs, θi) between successive optimization
iterates. For the architecture, we experiment with parameterizing the network architecture itself as a
Deep Equilibrium model (DEQ), a type of implicit neural network that computes the outputs/latents
as a fixed point of a non-linear transformation. It can be seen as an infinite depth network which
applies the same layer an infinite number of times eventually reaching a fixed point in the out-
puts/latents. This iterative fixed point finding procedure blends nicely with the equilibrium/fixed
point finding nature of the overall system. We observe nicer stability properties when using a DEQ
as the network architecture when going to more complicated settings.

This unified approach results in several key benefits: First, it enables richer representations by al-
lowing the network to adapt its features/outputs depending on the solver state. Second, it allows
us to naturally compute smoother gradients during training, facilitating more stable and efficient
learning. Third, it inherently accommodates warm-starting, leveraging the recurrent nature of MPC
to improve computational efficiency and solution quality. DEQ-MPC thus offers a more robust and
flexible framework for integrating optimization-based control with deep learning.

The primary contributions of this work are as follows: (1) We introduce DEQ-MPC, a novel frame-
work that seamlessly integrates MPC layers into deep networks. (2) Through extensive ablation stud-
ies, we show that this unified approach results in richer representations, improved gradient flow, and
enhanced suitability for warm-starting, compared to standard differentiable MPC methods. (3) We
propose a training setup specifically for streaming MPC applications that leverages warm-starting
across time steps. (4) We provide empirical evidence demonstrating the advantages of DEQ-MPC
on trajectory prediction and tracking problems across various continuous control tasks that require
strict constraint satisfaction. While this paper focuses on MPC to ground our methods in a concrete
context, we believe that the insights and techniques developed here have broader implications for
integrating constrained optimization layers into deep networks in a wide range of applications.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Differentiable optimization layers were introduced as a means to embed convex optimization prob-
lems (Amos & Kolter, 2017; Agrawal et al., 2019) as differentiable units within deep networks.
Recent works have extended the range of optimization and fixed-point problems that can be made
differentiable (Gould et al., 2021; Landry et al., 2019; Jin et al., 2020; Pineda et al., 2022). Since
their introduction, they have been applied to a variety of robotics problems, such as state estima-
tion (Yi et al., 2021), SLAM (Teed et al., 2023; Lipson et al., 2022), motion planning (Bhardwaj
et al., 2020; Landry et al., 2019) and control (Amos et al., 2018; Agrawal et al., 2020) for appli-
cations such as autonomous driving (Shrestha et al., 2023; Diehl et al., 2023a), navigation (Xiao
et al., 2022; Diehl et al., 2023b), and manipulation (Landry et al., 2019). We specifically look at
differentiable Model Predictive Control problems building off of work such as (Amos et al., 2018;
Agrawal et al., 2020), which show how to differentiate through simple trajectory optimization prob-
lems and use them as layers within broader differentiable pipelines for tasks such as behavior cloning
and system identification. Various follow-up works have demonstrated that policies with differen-
tiable optimization layers can be applied more broadly within model-free (Romero et al., 2023) and
model-based RL (Wan et al., 2024) pipelines as well. A separate line of work has also explored ex-
tending to more complicated trajectory optimization problems differentiable such as problems with
cone constraints (Howell et al., 2022), general non-linear programs (Landry et al., 2019).

However, incorporating MPC layers (and optimization layers) within deep networks as just another
black box differentiable layer can often come with its own set of challenges. The bi-level prob-
lem can often be very non-convex resulting in the local gradient direction being mis-aligned with
the desired global update direction (Landry et al., 2019; Amos et al., 2018). Likewise, the gradi-
ent landscape often has discontinuities resulting in undesirable gradient artifacts (Suh et al., 2022;
Antonova et al., 2023). Furthermore, the problem structure can also often result in very high vari-
ance in gradients (Gurumurthy et al., 2024). It’s often challenging to incorporate warm-starting
techniques as the problem parameters change with each problem instance (Sambharya et al., 2024)
resulting in long inference and solve times. The network predicted constraint parameters can of-
ten be infeasible (Donti et al., 2021), resulting in undefined problem solutions or gradients. Some
modelling assumptions in the optimization layer are often not faithful to the real data causing model
mismatch problems (Gurumurthy et al., 2023a). Tackling these challenges is critical to making the
use of optimization layers in modern deep learning pipelines more practical.

Our proposed method to formulate the network inference and the optimization problem as a joint
equilibrium finding problem seeks to address some of these issues such as representation ability,
gradient discontinuities and suitability for warm-starting. Previous works have also used similar mo-
tivations to pose the inference and the optimization problem as a joint equilibrium finding problem
albeit for problems without any constraints. Gurumurthy et al. (2021) pose the task of latent vari-
able optimization to solve inverse problems as a joint inference and optimization problem over the
network outputs and the latent variables. But they primarily look at simple least squares problems.
Likewise, Teed & Deng (2021); Teed et al. (2023); Lipson et al. (2022) use a similar framework
in the context of SLAM/visual odometry/object pose estimation problems where they specifically
look at non-linear least squares, bundle adjustment problems. Our paper generalizes these methods
to general constrained optimization problems and grounds it in MPC problems. Furthermore, unlike
previous work, we directly compare with the vanilla differentiable optimization alternative and tease
apart the specific advantages offered by the joint optimization approach.

3 BACKGROUND

3.1 DIFFERENTIABLE MODEL PREDICTIVE CONTROL

Model Predictive Control (MPC) solves a finite-horizon optimal control problem at each time step.
The general form of an MPC problem can be expressed as:

τ∗0:T = argmin
τ0:T

∑
t

Cθ,t(τt)

subject to x0 = xinit, xt+1 = fθ, hθ(τt) ≤ 0, t = 0, . . . , T,

(1)

where τt = (xt, ut) represents the state-action pair, Cθ,t is the cost function, fθ is the dynamics
function and hθ are some inequality constraints on the trajectory (e.g. safety constraints, joint lim-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

its, etc.). This non-linear optimization problem is typically solved using non-linear programming
techniques.

The key innovation in differentiable MPC is the computation of gradients with respect to the problem
parameters. At the solution, gradients are computed using the implicit function theorem. Specif-
ically, let z∗ = (τ∗, λ∗, ν∗) be the primal-dual solution to the KKT conditions F (z, θ) = 0 of
equation 1. The gradient of the solution with respect to the parameters θ can be computed as:

∂z∗

∂θ
= −

(
∂F

∂z

)−1

· ∂F
∂θ

, (2)

where ∂F
∂z is the KKT matrix at the solution. This approach allows the MPC solver to be integrated

into end-to-end learning pipelines, enabling the incorporation of domain knowledge and constraints
directly into learned control policies.

3.2 DEEP EQUILIBRIUM MODELS

Deep Equilibrium Models (Bai et al., 2019) are a class of implicit deep learning models that compute
the output as a solution to a fixed point problem. Specifically, given an input x ∈ X , computing the
forward pass in a DEQ model involves finding a fixed point z ∈ Z , such that

z⋆ = dϕ(z
⋆, x), (3)

where, dϕ : Z × X → Z is some parameterized layer conditioned on input x, Z denotes the
hidden state or outputs of the network which we are computing the fixed point on, X denotes the
input space, and ϕ denotes the parameters of the layer. Computing this fixed point (under proper
stability conditions) corresponds to the “infinite depth” limit of repeatedly applying the function
z+ := dϕ(z, x) starting at some arbitrary initial value of z (typically 0).

4 METHOD

In this section, we introduce DEQ-MPC and detail key design decisions in network architecture,
solver, and gradient computations, along with their benefits.

4.1 PROBLEM GROUNDING THROUGH TRAJECTORY PREDICTION AND TRACKING

We begin by grounding our discussion in a simple trajectory prediction and tracking example. This
example helps make the following discussion more intuitive and motivates our design decisions.
Additionally, it will serve as the default configuration for all our subsequent experiments.

Consider a system with dynamics f . Given a dataset of optimal trajectories across different initial
and environmental conditions, we seek to learn a policy that solves the imitation learning problem
while respecting several constraints. We model this policy as consisting of two components. The
first is a neural network NNϕ that predicts the waypoints θ0:T to be tracked for the next T time steps
given the current state xinit and some observations o:

θ0:T = NNϕ(xinit, o). (4)

The second is an MPC solver that solves the trajectory tracking problem to compute dynamically
feasible trajectories τ0:T that track the waypoints while satisfying the required constraints:

τ∗0:T = argmin
τ0:T

∑
t

∥xt − θt∥2Q + ∥ut∥2R

subject to x0 = xinit, xt+1 = fθ(τt), hθ(τt) ≤ 0, t = 0, . . . , T.

(5)

In a standard differentiable-MPC setup these two components are executed sequentially, one after
the other as shown in figure 1. The outputs of the system, τ∗0:T are used to compute a loss, ℓ(τ∗0:T ),
such as a supervised L1 loss with some expert trajectory demonstrations τ exp

0:T . The loss is then
optimized using a stochastic gradient optimizer to learn the network parameters.

4.2 DEQ-MPC

4.2.1 THE INFERENCE PROBLEM, ARCHITECTURE AND SOLVER

MPC solvers are implicit layers and hence inherently iterative. Using a single parameter estimate
throughout the solver iterations is inefficient and potentially ineffective, especially for non-linear

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

optimization problems. To address this, DEQ-MPC modifies the single-shot inference problem
described in equations 4 and 5 into a joint inference/optimization problem over the network outputs
and the optimizer iterates. This approach, illustrated in Figure 1, allows us to condition the network
outputs (optimization parameters, θ) on the optimizer state τ and vice versa. This can be expressed
as a single constrained optimization problem:

τ∗0:T , θ
∗ = argmin

τ0:T ,θ

∑
t

Cθ,t(τt) (6)

subject to x0 = xinit, xt+1 = fθ, hθ(τt) ≤ 0, (7)
θ = NNϕ(xinit, o, τ0:T ), t = 0, . . . , T, (8)

where the last constraint expresses the neural network inference as an equality constraint. This
simply represents a large non-linear optimization problem which can be potentially be solved in
several ways. However, typical non-linear optimization solvers struggle with having neural network
layers as constraints due to the nastiness of the resulting constraint Jacobians. We propose to solve
this problem using the alternating direction method of multipliers (ADMM) algorithm (Boyd et al.,
2011), alternating between (1) solving the MPC optimization problem (with fixed θ), equations 6 and
7 using the augmented Lagrangian (AL) method and (2) the constraint projection step, equation 8
(i.e, the standard neural net inference to compute θ with fixed τ ). Specifically, we alternate between
the following two operations for N iterations or until convergence,

θi = NNϕ(xinit, o, τ
i−1), (9)

τ i = MPC-mθi(xinit, τ
i−1), (10)

where MPC-m performs m solver iterations using the AL algorithm, with the most recent parameter
estimate θi from the network and warm-started using τ i−1 from the last MPC-m solve. The initial
value τ0 are initialized at xinit and zero controls across time steps. We refer to each alternating step
as a DEQ-MPC-iteration, with the super-script, i, denoting the iteration count. This is illustrated
in figure 1. This iterative inference/optimization approach enables the network to provide an initial
coarse parameter estimate and iteratively refine it based on the solver’s progress.

Choice of N, m: Empirically, we find that updating the MPC parameters θ every two AL iterations
(m = 2) is sufficient to obtain most of the gains. Furthermore, DEQ-MPC typically converges within
N = 6 DEQ-MPC-iterations with m = 2 and thus we use these values for all our experiments. We
discuss the considerations around the convergence of this alternating problem in section A.5.

Network architecture. We explore two architectural choices for NNϕ with distinct trade-offs:

(1) DEQ-MPC-NN: We implement NNϕ as a standard feedforward network. While this proves to
be a simple and effective choice for most scenarios, it has limitations. The iterative nature of the
DEQ-MPC framework can lead to instabilities when using a generic feedforward architecture, par-
ticularly in complex settings. Moreover, this architecture is somewhat computationally inefficient,
as it doesn’t leverage the similarity of computations across successive iterations – each iteration
starts anew without reusing previous computational results.

(2) DEQ-MPC-DEQ: To address these limitations, we also implement NNϕ architecture itself as
a DEQ network (Bai et al., 2019). Specifically, the network inference step in equation 9 is itself
expressed as a fixed point finding problem:

z⋆i = dϕ(z
⋆
i , xinit, o, τi−1). (11)

This computation yields the pre-final layer network latent state, as described in section 3.2. The
updated MPC parameters are then obtained through θi = gϕ(z

⋆
i ). Note that this fixed point solve is

distinct from the equilibrium computations in the DEQ-MPC-iterations discussed earlier. The fixed
point iteration discussed here is simply computing the network inference (i.e constraint projections)
from equation 9 when using a DEQ network. Furthermore, given that we expect these fixed points
across successive DEQ-MPC-iterations to be similar, we can also warm-start these fixed point itera-
tions, i.e, zi can be conveniently initialized with zi−1 while computing the fixed points. This allows
us to re-use the network computation from earlier iterations. We use a standard fixed point solver
(Walker & Ni, 2011) to compute this fixed point.

MPC-m solver. We use the AL algorithm (Nocedal & Wright, 2006; Toussaint, 2014) for the
MPC solver. This is motivated by its ability to accommodate arbitrary non-linear constraints as

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

penalties and its suitability for warm-starting. The penalty-based approach also allows us to use the
unconverged iterations as smoothed/relaxed versions of the problem to handle discontinuities (more
discussion in section 4.2.2). Our solver implementation is friendly with both CPU and GPU.

Specifically, for the general MPC problem in equation 1, we form the following Lagrangian

L(τ, λ, η, µ) =
∑
t

Cθ,t(τt)+λThθ(τ)+ηT kθ(τt, xt+1)+
µ

2
∥hθ(τt)

+∥22+
µ

2
∥kθ(τt, xt+1)∥22, (12)

where hθ(τt) ≤ 0 are the inequality constraints and kθ(τt, xt+1) = 0 are all the equality constraints
(including the dynamics and initial state constraints), λ and η are the corresponding Lagrange mul-
tipliers and µ > 0 is the penalty parameter. hθ(τt)

+ represents an element-wise clipping at zero
max(0, hθ(τt)). The AL method alternates between the updates of the primal variables, dual vari-
ables and penalty parameters until convergence as described in algorithm 1 in the appendix.

However, with MPC-m, we only perform m AL iterations. Furthermore, we implement warm-
starting across DEQ-MPC iterations: all the variables (τ i, λi, ηi, µi) at the i-th DEQ-MPC-iteration
are initialized with the corresponding values computed at the end of the (i − 1)-th DEQ-MPC-
iteration, (τ i−1, λi−1, ηi−1, µi−1).

4.2.2 LOSS AND GRADIENTS

In this section, we address the challenges of gradient computation when differentiating through
an augmented Lagrangian solver by modifying the gradient and loss computation. We discuss the
details of gradient computation for the DEQ network in the appendix A.2.

Augmented Lagrangian gradients. Previous work (Suh et al., 2022; Antonova et al., 2023) has
shown that computing gradients through optimization problems can be problematic due to inherent
discontinuities in the landscape and have proposed various relaxations to tackle this problems. We
take inspiration from these approaches and propose a relaxation for use with our solver.

We compute the gradient through the AL solver using the implicit function theorem equation 2 where
the function F (·) now represents the Lagrangian’s gradient ∇τLθ(τ, λ, µ). Thus the IFT gradient is

∇θτ = −(∇2
τL)−1∇θτL (13)

= −(Q+ µATA+ µGTG)−1∇θτL. (14)

where, A and G are the constraint Jacobians of the equality and inequality constraints respectively.
At convergence, the value of µ is very high. This results in the components of the gradient in the
column space of the linearized active constraints getting squished to zero. Thus, when the constraints
are non-linear/discontinuous, and the optimizer converges to some arbitrary active sets, the gradients
computed using equation 13 are also arbitrary/meaningless.

We instead propose to compute losses on multiple unconverged intermediate iterates along the op-
timizer iterations and minimize all of them during training. Thus, the gradients at the initial opti-
mization iterates are computed with smaller values of the penalty parameter µ while the latter ones
are computed with larger values of µ. As a result, the earlier optimization iterates obtain relaxed
gradients even when the optimizer converges to arbitrary active sets, while the latter iterates obtain
“accurate” gradients as long as the optimizer converges to the “right” active sets. This provides a
natural curriculum, where the initial iterates converge to smoothed/relaxed solutions and the latter
iterates are then incentiviced to nail down the details.

Losses. We primarily look at the imitation learning problem and thus use a simple supervised
learning objective. We use an L1 loss over the output states against the corresponding ground truths
for supervision. As discussed before, we compute losses on multiple intermediate iterates and back-
propagate gradients through all of them. The resulting objective for a single instance is

ℓ(xexp
0:T , x

1:I
0:T ) =

∑
t=0:T

∑
j=1:I

∥xexp
t − xi

t∥1, (15)

where xexp
0:T are expert demonstrations and x1:I

0:T are the states output by the model across I iterations.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.2.3 WARM-STARTING AND STREAMING

Warm-starting. MPC problems, like various other optimization problems, benefit from warm-
starting (Howell et al., 2019; Le Cleac’h et al., 2024). The resulting speedups from warm-starting are
often critical for real-world deployment (Nguyen et al., 2024). In the context of MPC, this involves
reusing the converged MPC iterate from the previous time step as initialization for the current solve,
so as to minimize the number of optimizer iterations needed at each time-step. Specifically, the
MPC problem solving for τt:T+t at time, t, is warm started with the final solution computed at
the previous time-step τ̂t−1:T+t−1. The initialization for τt:T+t is thus computed by concatenating
τt:T+t = [τ̂t:T+t−1, τ̂T+t−1], where τ̂T+t−1 is assumed to be a reasonable estimate for τT+t.

The augmented Lagrangian algorithm provides a very convenient way for incorporating the warm-
started initialization. We simply initialize τ with the warm-starting estimate, reset the dual variables
λ and η to zeros and set the initial value of ρ = ρmax/10

N∗m−i where (N ∗ m − i) is the total
number of AL iterations we expect to perform after warm-starting. In standard differentiable-MPC
setups, the network infers the MPC parameters afresh at each successive time step. These parameter
estimates can often be arbitrarily far from the previous estimates, thus requiring a significant number
of AL iterations post warm-start. On the other hand, in DEQ-MPC, the network is conditioned on
the previous optimizer iterate. This allows us to train the network to predict consistent parameter
estimates across time-steps by training it specifically for the streaming setting as described below.

Streaming training. We customize the training procedure to suit the warm-started streaming
setup. Given a sampled ground truth trajectory τ exp

0:T+L, we break the inference problem into a
two step process. First, we solve for τ0:T given xexp

0 as usual without any warm-starting. Then, we
successively solve L problems for τt:T+t for t = 1 . . . N with the iterates warm-started with solu-
tion from the previous solve, τt−1:T+t−1. Then we simply compute losses on all the intermediate
optimization iterates (from both steps) and supervise them using the corresponding ground truths as
described in section 4.2.2. For all of our experiments we use L = 2.

5 EXPERIMENTS

We demonstrate the effectiveness of our proposed modifications across a variety of systems. Addi-
tionally, we present ablation studies to highlight the specific advantages of DEQ-MPC.

Setup. We use the trajectory prediction and tracking problem, discussed in section 4.2.1, as our
default experimental setting. For each task, we generate ground truth trajectories using ’expert’ poli-
cies trained with a state-of-the-art on-policy reinforcement learning algorithm (Gurumurthy et al.,
2023b). We partition the generated data into training (90%) and validation (10%) sets. Models are
trained via supervised learning to predict the next T steps in a trajectory, given the current state as
input, as outlined in section 4.2.1. By default, T = 5 for all environments unless otherwise specified.

We evaluate the models in two ways. First, when evaluating their effectiveness as a generic op-
timization layer within differentiable pipelines, we compare the models based on their validation
errors. Second, to evaluate their suitability for the MPC setting, we implement them as feedback
policies in the original environment using a receding horizon approach and compute the average
returns over 200 rollouts.

Variants/Baselines. Throughout the experiments and ablations, we compare our methods (DEQ-
MPC-*) against their corresponding differentiable MPC counterparts (Diff-MPC-*):

DEQ-MPC-DEQ: Our method where the network architecture uses a DEQ model.
DEQ-MPC-NN: Our method where the network architecture uses a standard feed forward network.
Diff-MPC-NN: A standard differentiable-MPC setup where a standard feedforward network pre-
dicts the MPC problem parameters (waypoints) in one shot, which are then used to solve the MPC
problem. The loss is computed at the converged iterate and backpropagated using IFT.
Diff-MPC-DEQ: This uses the same setup as Diff-MPC-NN except that the network architecture is
replaced with a DEQ.

Network architecture. The trajectory prediction and tracking problem is inherently sequential,
as the network takes the current system state as input and predicts the future T states to be tracked.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Given this sequential nature, we employ a temporal convolution-based architecture for both the DEQ
and the feedforward network used in our experiments. Additional details regarding the architecture
of both the NN and DEQ are provided in appendix A.4.

5.1 COMPARISON RESULTS

We evaluate the methods on a series of underactuated continuous control tasks with constraints:

Pendulum: We consider a standard pendulum swing-up task with imposed control limits of ±5 units,
which are modeled as inequality constraints in the MPC problem. The system has a state dimension
of 2 and a control dimension of 1. The dataset consists of 300 trajectories.

Cartpole: We consider a standard cartpole swing-up task with imposed control limits of ±100 units,
which are modeled as inequality constraints in the MPC problem. The system has a state dimension
of 4 and a control dimension of 1. The dataset consists of 300 trajectories.

Quadrotor: We use the Quadrotor model from (Jackson et al., 2022) where the objective is to guide
the quadrotor from a randomly initialized position to the origin. In this task, we impose control
limits on all motors, constrained to the range [11.5, 18.3] units, which are formulated as inequality
constraints in the MPC problem. The system has a state dimension of 12 and a control dimension of
4. The dataset consists of 2000 trajectories.

QPole: We attach a free-rotating pole to the center of mass (COM) of the Quadrotor while main-
taining the same control authority. The task is to guide the quadrotor to the origin while ensuring
the pole is swung up, which is very dynamic and challenging. The system has a state dimension of
14 and a control dimension of 4. The dataset consists of 2000 trajectories.

QPoleObs: To increase complexity of the QPole task, we introduces 40 obstacles. The quadrotor
aims to reach the origin with the pole swung up, while maintaining a minimum distance r from the
obstacles at all points. By default, r = 0.5 units unless specified otherwise. The collision avoidance
constraints are modeled in the MPC layer as (∥xd − x0∥22 ≥ r2), where xd represents the COM
position of the drone and x0 is the center of the obstacle. The dataset consists of 2000 trajectories.

Across these experiments we use a prediction/planning horizon of T = 5 for the MPC. We run the
policy for 200 time steps in a receding horizon fashion for evaluation and average the returns across
200 different runs. The policies are trained and executed in the streaming setting (section 4.2.3)
with a single DEQ-MPC-iteration (DEQ-MPC variants)/two AL iterations (Diff-MPC variants) with
warm-starting across environments, except in the QPoleObs env, where all methods needed two
DEQ-MPC-iterations (DEQ-MPC)/four AL iterations (Diff-MPC). (Note that each DEQ-MPC it-
eration itself also does exactly two AL iterations with m = 2). Table 1 shows the normalized
returns obtained by each policy for each task averaged across policies trained with three random
seeds/dataset splits. The returns presented in the table are normalized such that the returns of the
expert policy are 1.00. We observe that the DEQ-MPC variants consistently perform better than
the Diff-MPC counterparts across most environments. While DEQ-MPC-DEQ performs consis-
tently well across all environments, we observed that DEQ-MPC-NN occasionally got unstable (e.g.
resulting in its sub-par performance in the Cartpole balancing task).

Table 1: Performance comparison across various environments, with values normalized against the
expert return for each environment. A higher score indicates better performance.

Environment Pendulum Cartpole Quadrotor QPole QPoleObs
Diff-MPC-NN 0.77 (±0.04) 0.93 (±0.05) 0.96 (±0.02) 0.76 (±0.05) 0.83 (±0.02)
Diff-MPC-DEQ 0.78 (±0.04) 0.97 (±0.06) 0.88 (±0.01) 0.72 (±0.03) 0.71 (±0.05)
DEQ-MPC-NN 0.94 (±0.02) 1.00 (±0.09) 1.00 (±0.01) 0.87 (±0.02) 0.94 (±0.03)
DEQ-MPC-DEQ 0.94 (±0.04) 1.13 (±0.01) 0.98 (±0.01) 0.85 (±0.03) 0.90 (±0.03)

5.2 ABLATIONS

We explore three aspects of the model: representation, training stability and warm-startability. We
perform all the experiments with the QPole environment unless otherwise specified.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.2.1 REPRESENTATION ABLATIONS

We present three ablations to demonstrate the representation capabilities of DEQ-MPC. First, we
demonstrate that DEQ-MPC variants scale more effectively with both model capacity and dataset
size. Second, we show that DEQ-MPC variants experience less performance degradation than Diff-
MPC variants as constraint complexity increases. Additional ablation experiments in appendix A.1
investigate (1) the impact of varying the horizon length of the problem and (2) the impact of the
optimization parameter updates in DEQ-MPC vs Diff-MPC.

Figure 2: Generalization ablations

Generalization. Figure 2 shows the validation error as
we vary the training set size from 0.2 to 1.0× of the full
training set. We observe that the representational benefits
of the DEQ-MPC models are evident even with smaller
datasets. Additionally, we observe clear signs of satu-
ration in the performance of the Diff-MPC variants as
the dataset size increases, whereas, the performance of
the DEQ-MPC variants continue to improve with increas-
ing dataset size, suggesting that the higher representa-
tion power translates into an increased ability to ingest
larger datasets. We also plot the validation scores when
training the networks (DEQ and NN) directly with su-
pervised learning, i.e, without any MPC layers and ob-
serve that the models themselves also tend to saturate
with increasing capacity indicating that the benefits in-
deed arise from interleaving the network and the solver.

Figure 3: Network capacity ablations

Network capacity. Figure 3 shows the validation error
as we vary the network hidden state size from 128 to 1024
for all the models. We observe that the DEQ-MPC vari-
ants benefit more from the higher network capacity than
the Diff-MPC variants. Infact, the DiffMPC variants sat-
urate beyond hidden size of 512 whereas the DEQ-MPC
variants continue to improve. This shows that the DEQ-
MPC variants also have a better ability to utilize addi-
tional model capacity if available and thus are also more
amenable to scaling.

Figure 4: Constraints hardness

Constraint hardness. We add 40 obstacles to the en-
vironment along with additional collision avoidance con-
straints represented as (∥xd − x0∥22 ≥ r2) to the MPC
layer, where xd is the COM position of the drone and x0

is the center of the obstacle. Figure 4 shows the returns
obtained by different models on the task as we change
the obstacle radius r from 0.20 to 0.50. We observe that
not only are the performance improvements of the DEQ-
MPC variants preserved as we add additional constraints
(as obstacles), but in fact the difference increases as the
task gets harder and the obstacle sizes increase. Note that
these are not warm started runs, i.e, we run the optimizer
from scratch in order to decouple the effects of warm-
starting from the representational effects.

5.2.2 TRAINING STABILITY

Figure 5: Gradient instability ablations

Gradient niceness. In this ablation study, we aim to
illustrate the impact of naively applying IFT gradients
computed for the AL solver during training. Figure 5
presents the validation errors during training for DEQ-
MPC-DEQ (where we compute losses across multiple
intermediate AL iterates and backpropagate) and Diff-
MPC-DEQ (where gradients are computed only through

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the final AL iterate). We observe significant instability in the training process for the lat-
ter model when tight control limits are enforced as inequality constraints (denoted with post-
fix 1). This leads to overall training instabilities. In contrast, training remains stable and
smooth for both models when the inequality constraints are removed (denoted with postfix 0).

Figure 6: Cost parameter ablations

MPC parameter sensitivity. Figure 6 shows the vali-
dation errors of the models as we vary the velocity co-
efficients in the MPC cost matrix Q (lower values lead
to higher problem sensitivity). We observe that as Q
gets increasingly ill-conditioned, the sensitivity of the
system increases. This results in the models becoming
increasingly more unstable during training. The valida-
tion errors plotted represent the ’best’ performance of
the model throughout training (typically just before the
training became unstable). We observe that DEQ-MPC-
DEQ remains stable for the largest range of values. Even
DEQ-MPC-NN, although best performing with well con-
ditioned Q values, quickly gets very unstable as the con-
ditioning worsens.

5.2.3 WARM-STARTING ABLATIONS

Figure 7: Warm-starting ablations

Figure 7 shows the returns obtained by models trained
and evaluated with different number of DEQ-MPC/AL it-
erations in the streaming setup (with warm-starting) dis-
cussed in section 4.2.3. Note that, each DEQ-MPC itera-
tion does exactly two AL iterations (m = 2). We set the
number of streaming training steps, L = 2 for all experi-
ments. We observe that the difference between the perfor-
mance of the DEQ-MPC models and the corresponding
differentiable MPC variants increase significantly as we
reduce the number of warm-started AL iterations/DEQ-
MPC iterations. DEQ-MPC models due to their iterative
setup naturally adapt to the warm-started streaming setup,
given that the warm-starting required at each new time-
step is very similar to the warm-starting done in DEQ-
MPC across DEQ-MPC iterations.

6 DISCUSSION AND FUTURE WORK

Discussion. Our experimental results highlight several key advantages of DEQ-MPC over differ-
entiable MPC layers. The performance gap between DEQ-MPC variants and Diff-MPC becomes
increasingly apparent as task complexity increases, whether through harder constraints, longer plan-
ning horizons, or increased problem sensitivity. A particularly promising aspect of DEQ-MPC is
its favorable scaling behavior. Unlike Diff-MPC variants which show signs of performance satu-
ration, DEQ-MPC models continue to improve with increasing dataset size and network capacity.
This suggests potential for exploiting scaling laws in robotics applications. Furthermore, DEQ-
MPC’s effectiveness in warm-starting scenarios, requiring fewer augmented Lagrangian iterations
while maintaining performance, offers significant practical advantages for real-world deployment.
Interestingly, there exist trade-offs even between the DEQ-MPC variants. While DEQ-MPC-NN
performs slightly better on average, DEQ-MPC-DEQ remains stable across a wider range of condi-
tions compared to DEQ-MPC-NN, suggesting a trade-off between performance and stability.

Limitations and future work. Several important directions remain for future work. While our
method is designed to be general, our current evaluation focuses primarily on trajectory tracking
problems. Exploring the applicability of DEQ-MPC to a broader class of MPC and constrained
optimization problems, both within and beyond robotics, would be valuable. Additionally, inves-
tigating whether the representational richness of DEQ-MPC can be leveraged effectively beyond
the imitation learning setup such as in reinforcement learning settings to directly learn constrained
optimal policies could be a promising line of future work. Finally, given the strong performance in
constraint handling, exploring DEQ-MPC in safety-critical scenarios such as human-robot interac-
tion settings with dynamic obstacles would be an interesting direction for future research.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

We provide the code to reproduce the experiments in the supplementary material with all the details
provided in the corresponding README.md file to train and evaluate the models. We also plan on
releasing the code upon paper acceptance.

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. Advances in neural information processing systems,
32, 2019.

Akshay Agrawal, Shane Barratt, Stephen Boyd, and Bartolomeo Stellato. Learning convex opti-
mization control policies. In Learning for Dynamics and Control, pp. 361–373. PMLR, 2020.

Aaron D. Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and
Paulo Tabuada. Control barrier functions: Theory and applications. In 2019 18th European
Control Conference (ECC), pp. 3420–3431, 2019. doi: 10.23919/ECC.2019.8796030.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136–145. PMLR, 2017.

Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and J Zico Kolter. Differentiable mpc for
end-to-end planning and control. Advances in neural information processing systems, 31, 2018.

Donald G Anderson. Iterative procedures for nonlinear integral equations. Journal of the ACM
(JACM), 12(4):547–560, 1965.

Rika Antonova, Jingyun Yang, Krishna Murthy Jatavallabhula, and Jeannette Bohg. Rethinking
optimization with differentiable simulation from a global perspective. In Conference on Robot
Learning, pp. 276–286. PMLR, 2023.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in neural
information processing systems, 32, 2019.

Shaojie Bai, Vladlen Koltun, and Zico Kolter. Stabilizing equilibrium models by jacobian regu-
larization. In Proceedings of the International Conference on Machine Learning, pp. 554–565,
2021.

Mohak Bhardwaj, Byron Boots, and Mustafa Mukadam. Differentiable gaussian process motion
planning. In 2020 IEEE international conference on robotics and automation (ICRA), pp. 10598–
10604. IEEE, 2020.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed Opti-
mization and Statistical Learning via the Alternating Direction Method of Multipliers. Foun-
dations and Trends® in Machine Learning, 3(1):1–122, July 2011. ISSN 1935-8237, 1935-
8245. doi: 10.1561/2200000016. URL https://www.nowpublishers.com/article/
Details/MAL-016. Publisher: Now Publishers, Inc.

Xiaoyu Chen, Jiachen Hu, Chi Jin, Lihong Li, and Liwei Wang. Understanding domain randomiza-
tion for sim-to-real transfer. arXiv preprint arXiv:2110.03239, 2021.

Christopher Diehl, Tobias Klosek, Martin Krueger, Nils Murzyn, Timo Osterburg, and Torsten
Bertram. Energy-based potential games for joint motion forecasting and control. In Conference
on Robot Learning, pp. 3112–3141. PMLR, 2023a.

Christopher Diehl, Tobias Klosek, Martin Krüger, Nils Murzyn, and Torsten Bertram. On a con-
nection between differential games, optimal control, and energy-based models for multi-agent
interactions. arXiv preprint arXiv:2308.16539, 2023b.

Priya L. Donti, David Rolnick, and J Zico Kolter. DC3: A learning method for optimization with
hard constraints. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=V1ZHVxJ6dSS.

11

https://www.nowpublishers.com/article/Details/MAL-016
https://www.nowpublishers.com/article/Details/MAL-016
https://openreview.net/forum?id=V1ZHVxJ6dSS
https://openreview.net/forum?id=V1ZHVxJ6dSS


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel Mckenzie, Stanley J. Osher, and Wotao Yin.
Jfb: Jacobian-free backpropagation for implicit networks. In AAAI Conference on Artificial Intel-
ligence, 2021. URL https://api.semanticscholar.org/CorpusID:238198721.

Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training implicit
models. Advances in Neural Information Processing Systems, 34:24247–24260, 2021.

Stephen Gould, Richard Hartley, and Dylan Campbell. Deep declarative networks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 44(8):3988–4004, 2021.

Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, Sham Kakade, and Sergey Levine. Unpacking re-
ward shaping: Understanding the benefits of reward engineering on sample complexity. Advances
in Neural Information Processing Systems, 35:15281–15295, 2022.

Swaminathan Gurumurthy, Shaojie Bai, Zachary Manchester, and J Zico Kolter. Joint inference and
input optimization in equilibrium networks. Advances in Neural Information Processing Systems,
34:16818–16832, 2021.

Swaminathan Gurumurthy, J Zico Kolter, and Zachary Manchester. Deep off-policy iterative learn-
ing control. In Learning for Dynamics and Control Conference, pp. 639–652. PMLR, 2023a.

Swaminathan Gurumurthy, Zachary Manchester, and J Zico Kolter. Practical critic gradient based
actor critic for on-policy reinforcement learning. In 5th Annual Learning for Dynamics & Control
Conference, 2023b. URL https://openreview.net/forum?id=ddl_4qQKFmY.

Swaminathan Gurumurthy, Karnik Ram, Bingqing Chen, Zachary Manchester, and Zico Kolter.
From variance to veracity: Unbundling and mitigating gradient variance in differentiable bundle
adjustment layers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 27507–27516, 2024.

Taylor A Howell, Brian E Jackson, and Zachary Manchester. Altro: A fast solver for constrained
trajectory optimization. In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 7674–7679. IEEE, 2019.

Taylor A Howell, Kevin Tracy, Simon Le Cleac’h, and Zachary Manchester. Calipso: A differ-
entiable solver for trajectory optimization with conic and complementarity constraints. In The
International Symposium of Robotics Research, pp. 504–521. Springer, 2022.

Brian Edward Jackson, Jeong Hun Lee, Kevin Tracy, and Zachary Manchester. Data-efficient
model learning for control with jacobian-regularized dynamic-mode decomposition. In 6th An-
nual Conference on Robot Learning, 2022. URL https://openreview.net/forum?id=
ED0G14V3WeH.

Wanxin Jin, Zhaoran Wang, Zhuoran Yang, and Shaoshuai Mou. Pontryagin differentiable pro-
gramming: An end-to-end learning and control framework. Advances in Neural Information
Processing Systems, 33:7979–7992, 2020.

Benoit Landry, Zachary Manchester, and Marco Pavone. A differentiable augmented lagrangian
method for bilevel nonlinear optimization. arXiv preprint arXiv:1902.03319, 2019.

Simon Le Cleac’h, Taylor A Howell, Shuo Yang, Chi-Yen Lee, John Zhang, Arun Bishop, Mac
Schwager, and Zachary Manchester. Fast contact-implicit model predictive control. IEEE Trans-
actions on Robotics, 2024.

Lahav Lipson, Zachary Teed, Ankit Goyal, and Jia Deng. Coupled iterative refinement for 6d multi-
object pose estimation. 2022.

Khai Nguyen, Sam Schoedel, Anoushka Alavilli, Brian Plancher, and Zachary Manchester.
Tinympc: Model-predictive control on resource-constrained microcontrollers. In 2024 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 1–7. IEEE, 2024.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, NY, USA, 2e
edition, 2006.

12

https://api.semanticscholar.org/CorpusID:238198721
https://openreview.net/forum?id=ddl_4qQKFmY
https://openreview.net/forum?id=ED0G14V3WeH
https://openreview.net/forum?id=ED0G14V3WeH


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Luis Pineda, Taosha Fan, Maurizio Monge, Shobha Venkataraman, Paloma Sodhi, Ricky TQ Chen,
Joseph Ortiz, Daniel DeTone, Austin Wang, Stuart Anderson, et al. Theseus: A library for differ-
entiable nonlinear optimization. Advances in Neural Information Processing Systems, 35:3801–
3818, 2022.

Angel Romero, Yunlong Song, and Davide Scaramuzza. Actor-critic model predictive control. arXiv
preprint arXiv:2306.09852, 2023.

Ernest K Ryu and Stephen Boyd. Primer on monotone operator methods. Appl. Comput. Math, 15
(1):3–43, 2016.

Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. Learning to warm-start
fixed-point optimization algorithms. Journal of Machine Learning Research, 25(166):1–46, 2024.

Lucas Schott, Josephine Delas, Hatem Hajri, Elies Gherbi, Reda Yaich, Nora Boulahia-Cuppens,
Frederic Cuppens, and Sylvain Lamprier. Robust deep reinforcement learning through adversarial
attacks and training: A survey. arXiv preprint arXiv:2403.00420, 2024.

Jatan Shrestha, Simon Idoko, Basant Sharma, and Arun Kumar Singh. End-to-end learning of
behavioural inputs for autonomous driving in dense traffic. In 2023 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 10020–10027. IEEE, 2023.

Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do differentiable simulators
give better policy gradients? In International Conference on Machine Learning, pp. 20668–
20696. PMLR, 2022.

Zachary Teed and Jia Deng. DROID-SLAM: Deep visual SLAM for monocular, stereo, and RGB-d
cameras. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?
id=ZBfUo_dr4H.

Zachary Teed, Lahav Lipson, and Jia Deng. Deep patch visual odometry. Advances in Neural
Information Processing Systems, 2023.

Marc Toussaint. A novel augmented lagrangian approach for inequalities and convergent any-time
non-central updates. arXiv preprint arXiv:1412.4329, 2014.

Homer F Walker and Peng Ni. Anderson acceleration for fixed-point iterations. SIAM Journal on
Numerical Analysis, 49(4):1715–1735, 2011.

Weikang Wan, Yufei Wang, Zackory M. Erickson, and David Held. Difftop: Differentiable trajectory
optimization for deep reinforcement and imitation learning. ArXiv, abs/2402.05421, 2024. URL
https://api.semanticscholar.org/CorpusID:267548058.

Ezra Winston and J Zico Kolter. Monotone operator equilibrium networks. Advances in neural
information processing systems, 33:10718–10728, 2020.

Xuesu Xiao, Tingnan Zhang, Krzysztof Choromanski, Edward Lee, Anthony Francis, Jake Varley,
Stephen Tu, Sumeet Singh, Peng Xu, Fei Xia, et al. Learning model predictive controllers with
real-time attention for real-world navigation. arXiv preprint arXiv:2209.10780, 2022.

Brent Yi, Michelle A Lee, Alina Kloss, Roberto Martı́n-Martı́n, and Jeannette Bohg. Differentiable
factor graph optimization for learning smoothers. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1339–1345. IEEE, 2021.

13

https://openreview.net/forum?id=ZBfUo_dr4H
https://openreview.net/forum?id=ZBfUo_dr4H
https://api.semanticscholar.org/CorpusID:267548058


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ADDITIONAL ABLATIONS

We provide more ablation experiments to demonstrate the representational benefits of DEQ-MPC.

Figure 8: Time horizon ablations

Representational hardness. We look at the effect of
increasing horizon length as it serves as a good proxy for
various metrics such as problem conditioning, dimension-
ality, practical utility etc. Specifically, figure 8 shows the
validation errors obtained by each model after training as
we vary the horizon length from T = 3 to T = 12. We
observe that the gap between the validation errors of the
iterative models and the non-iterative ones is preserved
even as we increase the size of the problem. Further, we
observe that the representational benefits of the DEQ net-
work in DEQ-MPC-DEQ starts becoming more obvious
in the longer horizon problems as the difference in valida-
tion error between DEQ-MPC-DEQ and DEQ-MPC-NN
increases. This illustrates the effectiveness of the infinite
depth in DEQs helping with capturing the longer context.

Figure 9: AL iteration ablations

Validation error with iteration count. Figure 9 shows
the validation error across the Augmented Lagrangian it-
erations. As discussed earlier, the Diff-MPC variants here
use the same predicted parameters throughout iterations
while the DEQ-MPC variants use ADMM and thus up-
date the optimization parameters using the network infer-
ence every two AL iterations. Interestingly, the gap in
validation error starts accruing from the early AL itera-
tions itself. But gap gets pronounced after the fourth AL
iteration as the Diff-MPC variants saturate while DEQ-
MPC continues to improve thanks to the repeated updates
to the problem parameters.

A.2 DEQ NETWORK GRADIENTS

Computing gradients through the fixed point iteration in a DEQ model typically requires using the
implicit function theorem equation 2, which involves computing a linear system solve. However,
recent work (Geng et al., 2021; Fung et al., 2021) has shown that the approximations of the gradient
by simply assuming an identity Jacobian or differentiating through the last few iterations of the fixed
point iteration using vanilla backpropagation is equally/more effective while being computationally
cheaper. We adopt this approach. Specifically, we run the function a couple more times after com-
puting the fixed point, and simply backpropagate through those last couple of iterations to compute
the parameter gradients.

A.3 AUGMENTED LAGRANGIAN ALGORITHM

Specifically, given the general MPC problem in equation 1, we form the following Lagrangian

L(τ, λ, η, µ) =
∑
t

Cθ,t(τt)+λThθ(τ)+ηT kθ(τt, xt+1)+
µ

2
∥hθ(τt)

+∥22+
µ

2
∥kθ(τt, xt+1)∥22, (16)

where hθ(τt) ≤ 0 are the inequality constraints and kθ(τt, xt+1) = 0 are all the equality constraints
(including the dynamics and initial state constraints), λ and η are the corresponding Lagrange mul-
tipliers and µ > 0 is the penalty parameter. hθ(τt)

+ represents an element-wise clipping at zero
max(0, hθ(τt)). The augmented Lagrangian method then proceeds by alternating between updating
the primal variables (τ), dual variables (λ, η) and the penalty parameter (µ) as shown in algorithm 1.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 1 Augmented Lagrangian Solver for MPC-m
Require: Initialize τ0, λ0, η0, µ0 (warm-started using previous DEQ-MPC-iteration, parameters),

γ > 1
1: Set j = 0
2: repeat
3: Primal update: Solve the unconstrained minimization problem using the Gauss-Newton

method
τ j+1 = argmin

τ
L(τ, λj , ηj , µj)

4: Dual update: Update the Lagrange multipliers

λj+1 = max(λj + µjhθ(τ
j+1), 0)

ηj+1 = ηj + µjkθ(τ
j+1)

5: Penalty update: Update the penalty parameter

µj+1 = γµj

6: j = j + 1
7: until Stopping criterion is met (or j = m iterations)
8: return Final solution τm, λm, ηm, µm

A.4 NETWORK ARCHITECTURE DETAILS

We provide the details on the network architecture of the DEQ model and the feedforward network.

Inputs. For the DEQ-MPC variants, we have 2 inputs: (x0, the initial state and xi
1:T , the current

state estimates from the optimizer). For the Diff-MPC variants, we only get x0 as input. But we
repeat it T times and concatenate it ([x0]∗T to obtain a temporal input that can be fed to the temporal
convolutional network described below.

Feedforward network. We use a Temporal Convolution Network architecture. We first compute
input embeddings for the trajectory by computing a node embedding at each time-step with a node
encoder (Linear-LayerNorm-ReLU). We then concatenate the node embedding of x0 to all time-
steps and a corresponding time embedding to indicate their respective time-steps. These are then
passed through a series of four temporal convolution residual blocks (Conv1D-GroupNorm-ReLU)
before computing the output with a final temporal Conv1D layer. The output at each time step
represents the δxt = xt−x0. More details are available in the code attached with the supplementary.

DEQ network. We again use a Temporal Convolution Network architecture. We have three sepa-
rate blocks here, namely, input injection layer I , fixed point layer d and output layer g. We compute
the forward pass by first computing the fixed point on the latents:

z∗ = dϕ(z
∗, Iϕ(x0, x̂1:T )) (17)

and then compute the outputs using gϕ(z
∗). The input injection layer is similar to the feedforward

network. We compute a node embedding at each time-step with a node encoder (Linear-LayerNorm-
ReLU) and then concatenate the node embedding of x0 and a corresponding time embedding to
all time-step node embeddings. This sequence of concatenated node embeddings are then passed
through a TCN block (Conv1D-GroupNorm-ReLU) to get the final input embeddings that are fed to
the fixed point layer.

The fixed point layer : The input embeddings are passed through a TCN block (Conv1D-
GroupNorm-ReLU) and added to a temporally arranged latent variable z. The resulting embeddings
are passed through another TCN block (Conv1D-GroupNorm-ReLU) with a residual connection,
to obtain the output z. These operations combined represent dϕ. We compute the fixed point of
this layer using a standard Anderson acceleration fixed point solver (Anderson, 1965; Walker & Ni,
2011) to get the resulting z∗.

The output layer gϕ(z∗) is again a TCN block (Conv1D-GroupNorm-ReLU-Conv1D) that computes
the computes the output δxt = xt − x0.

More details are available in the code attached with the supplementary.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Default hyperparameters We use a hidden size of 256 for the Pendulum, 512 for Cartpole, 512
for Quadrotor, 1024 for QPole and QPoleObs unless otherwise specified. During training, we use a
batch size of 200 for all environments.

A.5 NOTE ON CONVERGENCE

Our treatment of the joint system as a DEQ allows us to borrow results from Winston & Kolter
(2020)Bai et al. (2021) to ensure convergence of the fixed point iteration. Specifically, if we as-
sume the joint Jacobian of the ADMM fixed point iteration is strongly monotone with smoothness
parameter m and Lipschitz constant L, then by standard arguments (see e.g., Section 5.1 of (Ryu
& Boyd, 2016)), the fixed point iteration with step size α < m/L2 will converge. However, going
from the strong monotonicity assumption on the joint fixed point iterations to specific assumptions
on the network or the optimization problem is less straightforward. But, in practice a wide suite of
techniques have been used to ensure that such fixed points exist and can be found using relatively
few fixed point iterations. In fact, for all of our experiments, we converge within 6 ADMM iterations
once trained.

16


	Introduction
	Related Work
	Background
	Differentiable Model Predictive Control
	Deep Equilibrium Models

	Method
	Problem grounding through trajectory prediction and tracking
	DEQ-MPC
	The inference problem, Architecture and Solver
	Loss and Gradients
	Warm-starting and streaming


	Experiments
	Comparison results
	Ablations
	Representation ablations
	Training stability
	Warm-starting ablations


	Discussion and future work
	Reproducibility Statement
	Appendix
	Additional ablations
	DEQ network gradients
	Augmented Lagrangian algorithm
	Network architecture details
	Note on convergence


