
‘Why Not This MAPF Plan Instead?’
Contrastive Map-based Explanations for Optimal MAPF

Martim Brandão, Yonathan Setiawan
King’s College London, UK

Abstract

Multi-Agent Path Finding (MAPF) plans can be very com-
plex to analyze and understand. Recent user studies have
shown that explanations would be a welcome tool for MAPF
practitioners and developers to better understand plans, as
well as to tune map layouts and cost functions. In this pa-
per we formulate two variants of an explanation problem
in MAPF that we call contrastive “map-based explanation”.
The problem consists of answering the question “why don’t
agents A follow paths P’ instead?”—by finding regions of
the map that would have to be an obstacle in order for the ex-
pected plan to be optimal. We propose three different methods
to compute these explanations, and evaluate them quantita-
tively on a set of benchmark problems that we make publicly
available. Motivations for generating this type of explanation
are discussed in the paper and include both user understand-
ing of MAPF problems, and designer-aids to guide the im-
provement of map layouts.

Introduction
Multi-Agent Path Finding (MAPF) plans are able to coor-
dinate multiple agents to arrive at their destinations without
colliding with obstacles or each other (Stern et al. 2019).
These plans are complex to understand, analyze and tune
(Brandao et al. 2022). For example, when used in ware-
house automation or computer games, they typically involve
hundreds of agents, as well as complex cost functions en-
coding multiple preferences. A recent user study (Brandao
et al. 2022) has showed that MAPF experts and practition-
ers would be interested in having explainable planners in
order to, for example, tune environment layouts and cost
functions, and understand planner behavior. While current
explanation-generation work in MAPF has focused on visu-
alizing feasibility of plans (Almagor and Lahijanian 2020;
Kottinger, Almagor, and Lahijanian 2021), practitioners are
often more interested in asking contrastive questions about
agent behavior, such as “why does agent A not take path X
instead?” (Brandao et al. 2022).

In this paper we look at the problem of answering ques-
tions of the type “why don’t agents A′ take paths π′ in the
optimal plan?” whereA′ could be both the set of all agents or
a subset. We focus on map-based explanations for this type

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of questions, as these have been reported to be useful to both
warehouse layout designers (Brandao et al. 2022) and algo-
rithm developers (Brandao et al. 2021a). The paper provides
a formalization of the problem, three methods to solve it, and
an open set of problems for benchmarking. Our approaches
to solve the problem are inspired by a general search-based
XAIP approach (Chakraborti et al. 2017), and multi-agent
extensions of inverse shortest-paths (Ahuja and Orlin 2001;
Brandao, Coles, and Magazzeni 2021). The main idea is to
compute the smallest set of cells in the map that would have
to be obstacles in order for the expected paths to become op-
timal. To the question “why don’t agents A’ take paths π′ in
the optimal plan?”, we therefore compute an explanation of
the type “Because the cells/vertices X are free. These cells
would have to be obstacles in order for π′ to be optimal”.
This paper is therefore an extension of recent work in map-
based explanations for single-agent path finding (Brandao,
Coles, and Magazzeni 2021).

Our contributions are the following:
1. We formulate two new explanation problems, called

“full” and “partial” map-based MAPF explanations;
2. We develop and openly provide a new benchmark of

problems for these types of explanations;
3. We propose and evaluate three methods for solving these

problems: a search-based method which is optimal in
both settings, a fast optimization-based method which is
optimal in the “full” setting, and an incomplete agent-
conflict-free method.

The paper is organized in the same order: it starts by in-
troducing the problem, then the methods, and then results.
These are followed by sections on related work and conclu-
sions.

MAPF Map-based Explanation Problems
Consider a MAPF problem on a graph G = (V,E), with
M agents A = {a1, ..., aM} whose starting vertices are
given by s : A 7→ V and goal vertices g : A 7→ V .
At each timestep an agent can move to an adjacent ver-
tex connected by an edge, or wait at the same vertex. Let
pi(t) be the vertex where agent ai is located at time t.
A path pi = [pi(0), ..., pi(Ti)] for agent ai must satisfy
pi(0) = s(ai), pi(Ti) = g(ai), and be free of collisions. A
collision is defined as either a vertex collision pi(t) = pj(t)

or an edge collision pi(t) = pj(t + 1) ∧ pi(t + 1) = pj(t),
where i 6= j. Let P be the space of paths. A plan π : A 7→ P
assigns paths to all agents. An optimal plan is one that min-
imizes a function cost(π) =

∑M
i=0 Ti. Finally, let “mapf ”

be an algorithm which returns an optimal plan for a problem,
i.e. π = mapf (G,A, s, g).

We introduce the concept of “obstacle switch”, which cor-
responds to turning a (traversable) vertex into an obstacle.
Let o : V 7→ {0, 1} be a map from vertex to an indicator
variable specifying whether that vertex is turned into an ob-
stacle (1 for obstacle, 0 for traversable space).

In this paper we introduce problems of contrastive “map-
based explanation”: where the goal is to identify vertices that
would have to become obstacles {vi ∈ V : oi = 1} in or-
der for a desired path to become optimal. In other words,
our goal is to identify the vertices responsible for a desired
path to not be optimal, thus leading to explanations of the
type “path π′ is not optimal because vertices V o ⊂ V are
free. If vertices V o were obstacles then π′ would be opti-
mal”. This is an instance of inverse-MAPF similar to inverse
single-agent shortest-paths (Ahuja and Orlin 2001; Brandao,
Coles, and Magazzeni 2021). We assume the desired plan π′
is collision-free, as explaining why an infeasible plan is not
optimal would be straightforward (i.e. we would only need
to indicate where/when collisions happen in π′).

Let G′ = (V ′, E′) be the graph obtained by applying
obstacle switches o, i.e. V ′ = {vi ∈ V : oi = 0}, and
E′ ⊆ E are the edges connecting remaining vertices V ′.
Furthermore let f be the function that applies this transfor-
mation, i.e. G′ = f(G, o).

Full Map-based Explanation Problem Given graph G
and a desired or expected plan π′, find obstacle switches o
such that cost(π′) = cost(mapf (G′, A, s, g)) and

∑|V |
i=0 oi

is minimized—in other words, find the minimal amount
of obstacle switches o such that π′ is an optimal plan for
G′ = f(G, o).

Partial Map-based Explanation Problem Let
π′ : A′ 7→ P be a partial MAPF plan, which assigns
paths to a subset A′ ⊂ A of the agents. Given graph G
and a desired or expected partial plan π′, find obstacle
switches o such that cost(constr mapf (G′, A, s, g, π′)) =
cost(mapf (G′, A, s, g)) (i.e. such that π′ is op-
timal in G′) and

∑|V |
i=0 oi is minimized. Here

constr mapf (G′, A, s, g, π′) is an algorithm that finds
an optimal MAPF solution to agents A \A′ while constrain-
ing agents A′ to take paths π′.

Methods
Search-Based Method
One method applicable to solving both full and partial
map-based explanation problems in MAPF is search-based
“model-search”, as used in XAIP Model Reconciliation
work (Chakraborti et al. 2017). Here we propose an adap-
tation of model-search to these explanation problems.

Algorithm 1 shows pseudo-code for the method. The al-
gorithm searches for a value of o, i.e. a set of vertices to

be made into obstacles, in breadth-first order of the num-
ber of obstacles added. Each neighbor on of state o adds
a single obstacle to the map, in vertex vj (line 17). Only
vertices that are traversed by π∗ = mapf (f(G, o), A, s, g)
are considered (line 16)—since those are the only ones
that can change the optimal solution. In addition to that,
without loss of completeness or optimality, we trim the
search space of the problem by excluding a set of “force-
fully free” vertices (line 3). For full explanation problems
ForcefullyFreeVertices(π′, s, g) is equal to all vertices in π′,
since π′ would become infeasible in case an obstacle was
added to its vertices. For partial problems this is equal to the
vertices of the subset of agents A′ in π′, as well as the start
and goal vertices {s, g} of all agents A—since adding ob-
stacles here would make the explanation problem infeasible.

The search stops once π′ becomes an optimal plan
for G′ (line 13), or if the explanation problem is in-
feasible (i.e. the queue is exhausted). The “π′ feasi-
ble in G′” condition checks whether the vertices tra-
versed by π′ are free. The “π′ optimal in G′” condi-
tion then depends on whether π′ induces a full or par-
tial problem, and it is implemented as in the respective
definitions, i.e. cost(π′) = cost(mapf (G′, A, s, g)) for
full problems and cost(constr mapf (G′, A, s, g, π′)) =
cost(mapf (G′, A, s, g)) for partial problems. Simply put, if
π′ is feasible and its cost is the same as the cost of the opti-
mal plan, then π′ is an optimal plan. The condition is writ-
ten in this form to account for the fact that in MAPF multi-
ple optimal plans may exist with the same cost. The method
is complete since all combinations of obstacle switches are
considered, and it is optimal since the queue is sorted by
number of obstacles added.

Algorithm 1: Search-Based InvMAPF

1: In: graph G, agents A, start s, goal g, desired plan π′
2: Out: obstacle switches o that make π′ optimal
3: F ← ForcefullyFreeVertices(π′, s, g)
4: o← 0|V |
5: Q← PriorityQueue()
6: Q.add(0, o)
7: while |Q| > 0 do
8: Nchanges, o← Q.pop()
9: G′ ← f(G, o)

10: π∗ ← mapf (G′, A, s, g)
11: if π∗ = ∅ then
12: continue
13: if π′ feasible in G′ and π′ optimal in G′ then
14: return o
15: for j in {1, ..., |V |} do
16: if vj /∈ F and vj ∈ AllVertices(π∗) then
17: on ← o ; onj ← 1 ; Nn

changes ← Nchanges +1
18: if on not in Q then
19: Q.add(Nn

changes, o
n)

20: return failure

Incremental Optimization-Based Method
In this section we propose a fast incremental method to solve
the full map-based explanation problem. It is based on the
single-agent inverse shortest-paths method NISP# (Bran-
dao, Coles, and Magazzeni 2021). Our method works by in-
crementally obtaining a set of “bad” plans B = [π1, π2, ...]
which should be made infeasible so that a desired or ex-
pected plan π′ becomes optimal. First, the method obtains
the minimal obstacle switches o that makes all plans inB in-
feasible but keeps π′ feasible. Then, it obtains a new optimal
plan π∗ for G′ = f(G, o). If cost(π′) = cost(π∗) then our
desired path is now optimal and the algorithm can stop. Oth-
erwise, it adds π∗ to the set of pathsB. The method proceeds
this way until the desired plan becomes optimal (because a
large amount of alternative plans was made infeasible) or
until the method can no longer make progress (because it is
just not possible to make π′ optimal). Pseudocode for the
incremental method is shown in Algorithm 2.

Algorithm 2: Incremental Optimization-Based InvMAPF

1: In: graph G, agents A, start s, goal g, desired plan π′
2: Out: obstacle switches o that make π′ optimal
3: B ← {}
4: for iter in 1, ..., MAX ITER do
5: success, o← StepInvMAPF(A,B, π′)
6: if not success then
7: return failure
8: G′ ← f(G, o)
9: π∗ ← mapf (G′, A, s, g)

10: if π∗ = ∅ then
11: return failure
12: if π′ feasible in G′ and π′ optimal in G′ then
13: return o
14: B ← B ∪ {π∗}
15: return failure

The key step in the algorithm is function “StepInvMAPF”
in line 5. This function is responsible for obtaining minimal
obstacle switches o that lead plans B to become infeasible.
The function also needs to maintain the feasibility of π′ in
order to make π′ optimal for large enough |B|. We imple-
ment this by the following optimization problem:

StepInvMAPF(A,B, π′):

minimize
o

||o||1 (1a)

s.t. o ∈ {0, 1}|V | (1b)

oj = 0 ∀j : vj ∈ π′(a), a ∈ A (1c)∑
a∈A

∑
j:vj∈πb(a)

oj ≥ 1 ∀πb ∈ B. (1d)

The solution to this problem will have a minimal amount of
obstacles added to the graph (1a) while making each “bad”
plan πb ∈ B infeasible (1d)—by placing at least one ob-
stacle along each πb. The problem also makes sure that no
obstacles are placed along the desired plan π′ (1c), so that it
is not invalidated.

For full explanation problems and a large enough
MAX ITER, the incremental method is complete because,
as in the single-agent case (Brandao, Coles, and Magazzeni
2021), if a solution to the inverse problem exists then it is
possible to obtain a large enough set of alternative paths B
that need to be made infeasible before π′ becomes optimal.
At each iteration the method computes an optimal plan that
is different from all πb ∈ B, and adds that plan to B if it is
not the same cost as π′. Eventually, enough different (previ-
ously optimal) plans will be added to B so that π′ becomes
the next optimal plan. For full explanation problems this
method is also optimal in ||o||1 because “StepInvMAPF” is
optimal. If the method did not return the first solution found
(line 13), then the amount of alternative plans B would only
increase—which could only keep or increase the value of
||o||1 with respect to the first solution found.

This method can also be applied to partial explanation
problems, although it is not complete nor optimal in this
case. To apply it here we simply need to use the appropriate
optimality check in line 12, as in the search-based method,
as well as constraining only the subset of agents A′ of the
partial problem in (1c). In this case the method is not com-
plete since it attempts to make a full MAPF-plan have lower
cost than the alternatives B. This target plan is a single opti-
mal plan that respects π′, even though many same-cost plans
may potentially exist. In order for the method to be com-
plete, it would therefore have to go through all optimal plans
that respect π′—which is impractical in MAPF. Even so,
this method may still be useful for its speed in applications
where it is not essential to have optimal explanations, as we
will see in the Results section. Since its computation time
is negligible compared to search-based methods, it could be
used to quickly obtain an explanation, before resorting to
search in case it fails.

Joint ISP Method

We finally include a third (baseline) approach to solve the
map-based explanation problems. The idea of this method
is to compute obstacles that simultaneously lead each of the
single-agent paths pi in π′ to become optimal while ignoring
other agents. We will use this method to evaluate the degree
to which the single-agent inverse problem is useful in the
multi-agent domain.

Let a single-agent shortest path be modeled as an LP
(Ahuja, Orlin, and Magnanti 1993):

min
x∈R|V |0+

wTx, s.t. Cx = b, (2)

where w is a vector of weights wj ∈ W which model the
relative cost of movement in each edge, xj is equal to 1 if
ej ∈ E belongs to the shortest path, and 0 otherwise. C
is a matrix where Cij is equal to 1 if ej leaves vi, -1 if it
arrives at vi, and 0 if it does neither. Finally, bi is equal to 1
if vi = vstart, -1 if vi = vgoal, and 0 otherwise.

Basically, the inverse shortest-path (ISP) problem for a
single agent corresponds to finding a new weight vector that
leads the shortest path being the desired one x′. As demon-

strated by (Ahuja and Orlin 2001), can be solved as:

min
w′,ψ,λ

||w′ − w||1 (3a)

s.t.
∑
i Cijψi = w′j ∀j:x′j=1 (3b)∑
i Cijψi + λj = w′j ∀j:x′j=0 (3c)

ψ ∈ R|V |, λ ∈ R|E| (3d)
λj ≥ 0 ∀j:x′j=0 (3e)

w′ ∈ R|E|+ , (3f)

where ψ and λ are the dual variables of the constraints
Cx = b and x ≥ 0, respectively, and (3b-3e) enforce the
complementary slackness conditions required for x′ to be-
come an optimal solution to (2). The straight-forward adap-
tation to our setting where obstacles can be added to the
map, is to model obstacles as large costs (e.g. wj = 1000
for movement over an obstacle,wj = 1 for free space). Then
the extension to the multi-agent setting is to simultaneously
compute the ISP for each of the agents a ∈ A, while mini-
mizing the number of obstacles added:

min
o,

ψ1,...,ψM ,

λ1,...,λM

||o||1 (4a)

s.t. o ∈ {0, 1}|V | (4b)

ψi ∈ R|V |, λi ∈ R|E| ∀i∈1,...,M (4c)∑
i Cijψ

1
i = c.or(j) ∀j:x1∗

j =1 (4d)∑
i Cijψ

1
i + λ1j = c.or(j) ∀j:x1∗

j =0 (4e)

λ1j ≥ 0 ∀j:x1∗
j =0 (4f)

... (4g)∑
i Cijψ

M
i = c.or(j) ∀j:xM∗

j =1 (4h)∑
i Cijψ

M
i + λMj = c.or(j) ∀j:xM∗

j =0 (4i)

λMj ≥ 0 ∀j:xM∗
j =0 (4j)

where c is the penalty constant (1000 in our experiments),
and r(j) is a map from edge index to the corresponding tar-
get vertex index. The problem is similar to (3) but has one
ψ, λ and x′ for each agent i = 1, ...,M (i.e. per-agent ISP),
and replaces the weight vector by o.

This approach is not complete because it does not take in-
teractions between agents into account. Therefore, it cannot
account for situations such as when the only way to make a
certain path p′i for agent ai optimal is to force another agent
aj to take a path that collides with pi.

The method can be used in the partial explanation set-
ting by solving (4) over only those ψi, λi, xi with i ∈
{1, ...,M} : ai ∈ A′.

Experiments
Setup
For all experiments in this paper we used Wolfgang Hönig’s1

implementation of CBS (Sharon et al. 2015) as the MAPF
1https://github.com/whoenig/libMultiRobotPlanning

solver, and Gurobi2 as the Mixed-Integer Linear Pro-
gramming solver. Computation times were measured on a
1.90GHz x 8 Intel i7 CPU.

Generating Benchmark Problems
We used the 8x8-grid MAPF problems from the Hönig1 to
generate a set of map-based explanation problems.

Full Explanation Problems For each MAPF problem we
obtained an optimal plan π∗ using CBS, and then we at-
tempted to generate a random “question” of the type “why
is the optimal plan not π′?” where π′ is equal to π∗ except
for two agents ai and aj , i 6= j. The procedure we used to
obtain π′ was as follows:
1. Pick two random agents ai, aj , i 6= j

2. Pick two random vertices vi, vj in the map which are not
in s, g, nor π∗

3. Set π′ ← π∗ and then set π′(ai) equal to the shortest path
through vi for agent ai (similarly for agent aj)

4. If π′ is valid (no agent collisions), then attempt to solve
the inverse-MAPF problem on (G,A, s, g, π′) with one
of the methods (i.e. search, ISP, incremental)

5. If successful store (G,A, s, g, π′) as a full explanation
problem, otherwise go to 1.

We repeated the above procedure for a maximum of 100 tries
in each MAPF problem, and thus obtained three sets of prob-
lems (each set 100% solvable by one of the methods). A
search/ISP/incremental method was deemed successful if it
obtained a solution within a time budget of 5 minutes. This
lead to the generation of a total of 100 benchmark problems.

Partial Explanation Problems We used the same
methodology as before to generate partial-explanation prob-
lems, but where the desired plan is partial π′ : {ai, aj} 7→
P , i.e. step 3 initializes π′ = ∅ before setting the paths for
ai, aj . This means that all other agents are free to behave
differently than they did in π∗, and it corresponds to asking
a question of the type “why do agents ai, aj not take paths
π′(ai), π′(aj) in the optimal solution?”. The process lead to
a total of 140 benchmark problems.

Problem and Method Availability All explanation prob-
lems and methods are publicly available3.

Evaluation in Full Explanation Problems
Table 1 shows success rates and computation times of the
three methods on the three sets of explanation problems. As
expected due to completeness in the full-explanation setting,
both the search and incremental methods are able to solve
all problems. Joint single-agent ISP, however, is only able to
solve 24 out of 36 problems generated for the incremental
method, and 24 out of 39 generated for search. This shows
that the single-agent inverse problem can actually be used
in some MAPF problems—i.e. it is often possible to iden-
tify map changes that lead to an expected plan and avoid
agent conflicts. Joint ISP is not optimal, and therefore it

2https://www.gurobi.com/
3https://github.com/martimbrandao/mapf-map-explanations

Problems solved Avg. computation time (s)
Problems Search ISP Incr Search ISP Incr

rnd incr 36/36 24/36 36/36 0.61 2.11 0.55
rnd isp 25/25 25/25 25/25 0.76 1.96 0.52
rnd search 39/39 24/39 39/39 1.0 2.13 0.67

all 100/100 73/100 100/100 0.8 2.07 0.59

Table 1: Success rate and computation time of the three methods in three families of full explanation problems.

Figure 1: Explanation length of the search vs joint-ISP
method, in all full explanation problems.

solved part of these problems with longer explanations than
search/incremental. In Figure 1 we show a comparison of
the explanation lengths (i.e. |o|1) obtained by the joint-ISP
method vs the search method—which as we have just de-
scribed is often higher in ISP.

Our incremental method was slightly faster than search,
as seen by the average computation times in Table 1, as well
as Figure 2. The figure shows each problem as a point and
compares the computation times of search vs the incremen-
tal method—showing the times are similar but often faster
in the incremental method.

Figure 3 shows two examples of explanations obtained
by the incremental method. First, it shows two MAPF prob-
lems with respective optimal plans (left). Then, a question
of the type “why do these two agents not take the paths in
purple instead (and other agents’ paths stay as they are)?”
(middle). For instance, the first example is basically asking
why agents 2 and 3 do not avoid being close to each other
and other agents’ paths in the center (by going around some
of the obstacles the other way). Figure 3 (right) then shows
the explanations: which consist of identifying free cells that
would have to be occupied in order for the desired plan to be
optimal. In text, they would read “Because the cells marked
in purple are free. Your desired plan would be optimal if
there were obstacles on the marked cells.”

Figure 2: Computation time (s) of the search vs incremen-
tal method, in all full explanation problems. Each point is a
problem. Dashed line indicates where times would be equal.

Evaluation in Partial Explanation Problems

Table 2 and Figure 4 show results on the partial ex-
planation problems. Results for the incremental method
were obtained by assuming a desired plan π =
constr mapf (G,A, s, g, π′). These problems are much
more challenging than full-explanation problems, as can be
seen by computation times and success rates. No method
was able to solve all problems. While the search method
is complete and optimal, it ran on a 5 minute time budget,
therefore solving only 35/41 problems generated for the in-
cremental method and 25/46 generated for joint-ISP. As seen
in Figure 4, the incremental method solved problems within
3 seconds, while the search method took up to 246 seconds
(and would take longer for the problems marked as unsolved
due to the time budget). We also show results obtained with
a 30 minute time budget on Table 3—where search raises the
success rate to 38/41 on rnd incr and 38/46 on rnd isp. Both
tables show a column named “Collection”. This consists of
the sub-optimal strategy of attempting to solve an explana-
tion problem first with the incremental method, then ISP if
it fails, and only then by search. The strategy can obviously
solve all problems, since each method can fully solve one
of the problem sets, but at a much faster speed than if only
search was used.

Example 1

Example 2

Figure 3: Two examples of map-based MAPF explanations. Left: a MAPF problem and plan (circles are agent start positions,
squares are goals, lines are paths). Middle: the user asks “why do these two agents not take the paths in purple instead (and
other agents’ paths stay as they are)?”. Right: the explanation “Because the cells marked in purple are free. Your desired plan
would be optimal if there were obstacles on the marked cells.”

Related Work
This paper is aligned with much recent work on the topic
of eXplainable AI Planning (XAIP) (Fox, Long, and Maga-
zzeni 2017; Chakraborti et al. 2017; Sreedharan, Srivastava,
and Kambhampati 2018) and explainable motion planning
(Brandao et al. 2021b), in that it proposes ways to gener-
ate explanations for plans that improve users’ understanding
of a problem, or a method. Similarly to recent work in task
planning (Sreedharan, Srivastava, and Kambhampati 2018),
we compute explanations in the form of knowledge that
might be missing from a user’s mental model (knowledge of
free space in our case), based on the user’s expected plans.
Since we focus on map-based explanations, our work is also
inherently linked to the field of design optimization (Martins
and Lambe 2013). The explanations developed by our meth-
ods could, for example, be used to guide warehouse lay-
out designers or game map designers in improving the envi-
ronments such as to obtain desired (e.g. human-predictable)
paths. This is an application that has been raised as useful
by industry practitioners in warehouse automation and com-

puter games (Brandao et al. 2022). In this paper we focus
specifically on answering questions contrasting an optimal
plan to one that was desired or expected—since explanations
have been shown to be contrastive (Miller 2019; Lewis 1986;
Lipton 1990) and recent user studies have shown MAPF
experts and practitioners find these useful (Brandao et al.
2022).

Our incremental and ISP-based methods basically ex-
tend recent work on single-agent path planning explana-
tions (Brandao, Coles, and Magazzeni 2021) to the multi-
agent domain. To the best of our knowledge these are the
first methods to solve map-based MAPF explanations. Few
other methods have been proposed for explainable MAPF.
A notable exception is the work of (Almagor and Lahijanian
2020), that proposes a method to intuitively visualize why a
MAPF plan is free of collisions. A similar method has since
been proposed for the continuous-motion MAPF setting as
well (Kottinger, Almagor, and Lahijanian 2021).

Our incremental method is related to top-k planning (Al-
jazzar and Leue 2011; Katz et al. 2018), which consists of

Problems solved Avg. computation time (s)
Problems Search ISP Incr Collection Search ISP Incr Collection

rnd incr 25/41 27/41 41/41 41/41 35.2 1.92 0.88 0.88
rnd isp 26/46 46/46 32/46 46/46 54.93 2.0 0.88 1.48
rnd search 53/53 24/53 27/53 53/53 62.35 1.87 0.84 36.02

all 104/140 97/140 100/140 140/140 53.97 1.95 0.87 14.38

Table 2: Success rate and computation time of the three methods in three families of partial problems, with a 5 min time budget.

Problems solved Avg. computation time (s)
Problems Search ISP Incr Collection Search ISP Incr Collection

rnd incr 38/41 27/41 41/41 41/41 309.18 1.89 0.82 0.82
rnd isp 38/46 46/46 32/46 46/46 343.96 1.92 0.77 1.38
rnd search 53/53 24/53 27/53 53/53 61.64 1.88 0.75 35.47
all 129/140 97/140 100/140 140/140 217.72 1.9 0.78 14.12

Table 3: Success rate and computation time of the three methods in three families of partial problems, with 30 min time budget.

Figure 4: Computation time (s) of the search vs incremental
method, in all partial explanation problems. Each point is a
problem. Dashed line indicates where times would be equal.

computing the k plans with lowest cost, since we compute a
set of plans with lower cost than the desired plan. However,
we do not compute all plans that are lower-cost than the de-
sired plan, but only a subset of those over which a minimum
number of obstacles can be placed to obtain optimal π′.

Conclusion
In this paper we introduced a map-based explanation prob-
lem for optimal MAPF. We formulated two variants of the
problem, we proposed three methods to solve them, and we
evaluated them on a benchmark that we make public for fu-
ture work in the problem. The two variants correspond to an-
swering two similar questions about a MAPF plan: 1) “why
isn’t this the MAPF plan?” (full-plan explanation setting),
and 2) “why don’t these agents take these paths instead?”
(partial-plan explanation). The search-based method is op-

timal in both the partial and full explanation settings. Our
incremental method is very fast by focusing on incremen-
tally identifying paths that need to be made infeasible in or-
der for the desired path to become optimal. Even though it is
incomplete in the partial setting, it is able to solve problems
much faster than search, thus potentially being useful in ap-
plications where optimal explanation-length is not crucial.
We also showed that many problems can be solved quickly
by ignoring agent conflicts in a joint single-agent ISP.

Future research directions include extensions to the con-
tinuous version of these problems (Multi-Agent/Robot Mo-
tion Planning), graphs with edge costs, or fast algorithms for
computing the feasibility of the explanation problems. An-
other interesting direction is that of conducting user studies
to understand whether agent-conflict-free explanations com-
puted by joint ISP are more intuitive, or more quickly under-
stood than optimal explanations. User studies with profes-
sional warehouse layout designers and computer game map
designers would also help validate the methods—and they
could provide useful information on the usefulness of this
type of explanation and how to further improve it. Finally,
research is needed in order to develop faster and more effec-
tive algorithms for the partial-plan explanation case—both
in the optimal and sub-optimal MAPF setting. These algo-
rithms could leverage, for example, symmetry-reasoning (Li
et al. 2021), branch-and-cut-and-price (Lam et al. 2019), or
incremental optimization strategies.

References
Ahuja, R. K.; and Orlin, J. B. 2001. Inverse Optimization.
Operations Research, 49(5): 771–783.
Ahuja, R. K.; Orlin, J. B.; and Magnanti, T. L. 1993. Net-
work flows: theory, algorithms, and applications. Prentice-
Hall.
Aljazzar, H.; and Leue, S. 2011. K*: A heuristic search algo-
rithm for finding the k shortest paths. Artificial Intelligence,
175(18): 2129–2154.

Almagor, S.; and Lahijanian, M. 2020. Explainable Multi
Agent Path Finding. In International Conference on Au-
tonomous Agents and Multi-agent Systems (AAMAS), 34–
42.

Brandao, M.; Canal, G.; Krivic, S.; Luff, P.; and Coles, A.
2021a. How experts explain motion planner output: a pre-
liminary user-study to inform the design of explainable plan-
ners. In IEEE International Conference on Robot and Hu-
man Interactive Communication (RO-MAN), 299–306.

Brandao, M.; Canal, G.; Krivic, S.; and Magazzeni, D.
2021b. Towards providing explanations for robot motion
planning. In IEEE International Conference on Robotics
and Automation (ICRA), 3927–3933.

Brandao, M.; Coles, A.; and Magazzeni, D. 2021. Ex-
plaining Path Plan Optimality: Fast Explanation Methods for
Navigation Meshes Using Full and Incremental Inverse Op-
timization. In International Conference on Automated Plan-
ning and Scheduling (ICAPS), 56–64.

Brandao, M.; Mansouri, M.; Mohammed, A.; Luff, P.; and
Coles, A. 2022. Explainability in Multi-Agent Path/Mo-
tion Planning: User-study-driven Taxonomy and Require-
ments. In International Conference on Autonomous Agents
and Multiagent Systems (AAMAS).

Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In International
Joint Conference on Artificial Intelligence (IJCAI), 156–
163.

Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
planning. arXiv preprint arXiv:1709.10256.

Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018.
A novel iterative approach to top-k planning. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).

Kottinger, J.; Almagor, S.; and Lahijanian, M. 2021. MAPS-
X: Explainable Multi-Robot Motion Planning via Segmen-
tation. In IEEE International Conference on Robotics and
Automation (ICRA). IEEE.

Lam, E.; Le Bodic, P.; Harabor, D. D.; and Stuckey, P. J.
2019. Branch-and-Cut-and-Price for Multi-Agent Pathfind-
ing. In IJCAI, 1289–1296.

Lewis, D. 1986. Causal Explanation. Philosophical Papers,
214–240.

Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; Gange, G.;
and Koenig, S. 2021. Pairwise symmetry reasoning for
multi-agent path finding search. Artificial Intelligence, 301:
103574.

Lipton, P. 1990. Contrastive explanation. Royal Institute of
Philosophy Supplements, 27: 247–266.

Martins, J. R.; and Lambe, A. B. 2013. Multidisciplinary de-
sign optimization: a survey of architectures. AIAA journal,
51(9): 2049–2075.

Miller, T. 2019. Explanation in artificial intelligence: In-
sights from the social sciences. Artificial Intelligence, 267.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.
Sreedharan, S.; Srivastava, S.; and Kambhampati, S. 2018.
Hierarchical Expertise Level Modeling for User Specific
Contrastive Explanations. In International Joint Conference
on Artificial Intelligence (IJCAI), 4829–4836.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. S.;
et al. 2019. Multi-agent pathfinding: Definitions, variants,
and benchmarks. In Twelfth Annual Symposium on Combi-
natorial Search.

