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Abstract

Human Activity Recognition (HAR) with wearable sensors is challenged by lim-
ited interpretability, which significantly impacts cross-dataset generalization. To
address this challenge, we propose Motion-Primitive Transformer (MoPFormer),
a novel self-supervised framework that enhances interpretability by tokenizing
inertial measurement unit signals into semantically meaningful motion primitives
and leverages a Transformer architecture to learn rich temporal representations.
MoPFormer comprises two stages. The first stage is to partition multi-channel sen-
sor streams into short segments and quantize them into discrete “motion primitive”
codewords, while the second stage enriches those tokenized sequences through
a context-aware embedding module and then processes them with a Transformer
encoder. The proposed MoPFormer can be pre-trained using a masked motion-
modeling objective that reconstructs missing primitives, enabling it to develop
robust representations across diverse sensor configurations. Experiments on six
HAR benchmarks demonstrate that MoPFormer not only outperforms state-of-
the-art methods but also successfully generalizes across multiple datasets. More
importantly, the learned motion primitives significantly enhance both interpretabil-
ity and cross-dataset performance by capturing fundamental movement patterns
that remain consistent across similar activities, regardless of dataset origin.

1 Introduction

Human Activity Recognition (HAR) has a wide range of applications and can be achieved through
various methods [42, 4]. While vision-based and environmental sensor-based methods have been
extensively explored [23]|18]], systems leveraging Inertial Measurement Units (IMUs) offer distinct
advantages, including compact size, low power consumption, and minimal computational overhead
for data acquisition and preprocessing. IMUs also inherently preserve privacy compared to visual
alternatives [|10,31]] and are robust to environmental factors like lighting variations and occlusions [25].
Such characteristics make IMUs a highly suitable sensing modality for capturing human motion
across diverse real-world scenarios.

Despite these strengths, IMU-based HAR confronts a significant hurdle: interpretability. IMU data,
comprising multi-channel time series of linear acceleration and angular velocity, is inherently less
intuitive for human to interpret than video data, making it hard to understand what the model has
learned [|19]]. Moreover, many human activities exhibit hierarchical structures, composed of more
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Figure 1: Architecture of the proposed MoPFormer model, showcasing the flow from raw data
windows through tokenization, embedding, Transformer encoding, to task-specific heads.

fundamental activities or movements. However, there is a common absence of fine-grained labels for
the sub-activities that constitute these complex, hierarchical activities. For example, an activity like
“washing hands” can be deconstructed into sub-activities such as “turning on the tap”, “applying soap”,
“scrubbing hands”, and “rinsing hands”. An HAR model might learn to identify “washing hands”
by detecting the “turning on the tap” sub-activity, especially if it is a prominent signal. However,
if the model encounters a different activity, such as “filling a water bottle”, which also begins with
“turning on the tap”, it may struggle for HAR models to differentiate between the two activities.
This is because the model might rely on the common initial sub-activity rather than grasping the
complete, semantically meaningful sequence (e.g., the subsequent application of soap and scrubbing
unique to handwashing) that defines the core of the activity. Each of these sub-activities might, in
turn, be composed of even finer-grained movements. The black-box nature of contemporary HAR
models often obscures whether these models are learning the underlying activity structure or merely
exploiting superficial data correlations, thereby exacerbating the interpretability challenge [27} 3]].

Another challenge in sensor-based HAR is data heterogeneity. Variations in sensor types, sampling
rates, on-body placement (e.g., sensors worn on the wrist or the waist), subject characteristics (e.g.,
age, height, fitness level of the individual), and environmental conditions can introduce significant
distributional shifts [32]]. This heterogeneity impedes model generalization across different contexts.
Consequently, developing strategies to address data heterogeneity is crucial for building robust HAR
systems.

To address these challenges, we introduce Motion-Primitive TransFormer (MoPFormer), a novel
pre-training architecture for IMU-based HAR that significantly enhances model interpretability.
Inspired by advancements in language modeling [20]], MoPFormer conceptualizes IMU motion
sequences as a series of “Motion Primitives” that serve as semantically meaningful, discrete building
blocks of human activity. As illustrated in Fig. I, MoPFormer first divides raw IMU sequences into
short segments, analogous to “words” in natural language, creating an interpretable vocabulary of
fundamental movements. Each segment integrates data from various sensor channels at concurrent
time points, forming feature vectors that are then arranged sequentially into a two-dimensional feature
matrix. This construction not only mirrors the arrangement of words in a sentence but also enables
transparent analysis that which motion primitives contribute to activity recognition decisions. To
further enrich semantic understanding, we embed metadata of each sensor using a context-aware
embedding module. The resulting representation allows for direct examination of motion primitive
similarities, frequencies, and their distribution across different activities, providing unprecedented
insights into model behavior. This comprehensive representation is subsequently processed by
a Transformer backbone [48]], enabling MoPFormer to effectively handle heterogeneous channel
configurations and learn robust, interpretable features for diverse downstream tasks.

In summary, the primary contributions of this work are:

* We propose MoPFormer, an effective pre-training framework that achieves state-of-the-art perfor-
mance.

* We introduce a representation method that enables unified training across heterogeneous datasets.

* We extract motion primitives and provide a detailed interpretability analysis of them.



2 Related Work

Traditional human activity recognition approaches train model parameters on different datasets
separately, including statistical feature extraction methods and deep learning approaches. Deep
learning methods include CNN-based architectures such as CALANet [33]], COA-HAR [50], MA-
CNN [37], and SenseHAR [24], RNN-based approaches like DeepConvLSTM [30], and attention-
based models such as THAT [26]] and PA-HAR [51]. Recent research has proposed general-purpose
time series models applicable to various tasks, including classification, such as TimesNet [49],
TSLANet [[17], and FITS [52]. However, these methods are typically trained and tested on splits from
the original datasets and are limited in their ability to achieve cross-dataset generalization.

Self-supervised human activity recognition methods perform representation learning through various
approaches. Reconstruction-based methods such as TST [55] and TARNet [13]] focus on rebuilding
input signals. Contrastive learning methods such as TS2Vec [53]], CL-HAR [35]], DDLearn [36],
TS-TCC [16]], FOCAL [28]], and ModCL [22] execute discriminative representation learning tasks.
Other self-supervised objectives like BioBankSSL [55}|14] and Step2Heart [45] also contribute to
learning time series representations. These methods typically learn feature representations on specific
datasets and fine-tune classifier heads on the target dataset, but they can only perform on datasets
with similar structures and still require labeled data from the target dataset.

Research on sensor-based HAR for composite activity recognition is relatively limited [11]. For
instance, Chen et al. decomposed composite activities into multiple simple activities [11]], where
each simple activity is represented by a sequence of sensor signal segments. These segments are first
fed into a CNN to extract representations for identifying simple activities. Concurrently, the CNN-
extracted features from all segments are passed to an LSTM network to achieve high-level semantic
activity classification. Similarly, prior work [12] inferred composite activities using estimated
activity sequences, where temporal correlations of simple activities were extracted for composite
activity classification. Conversely, predicted composite activities were used to aid the derivation of
simple activity sequences for the next time step, with predictions for both simple and composite
activity sequences mutually updating during inference. While these studies present viable approaches
for composite activity research, datasets with comprehensive, multi-level hierarchical labels for
composite activities are scarce, and existing hierarchical annotations are often incomplete.

The concept of motion primitives has gained traction in robotics research [41} 9]. These primitives
are fundamental movement patterns that can be sequenced and combined to generate or understand a
diverse repertoire of complex human activities. For instance, Calvo et al. utilized eight such primitive
movements, including “static” and partial “squat”, to train Hidden Markov Models for activity
classification. Similarly, Sanzari et al. developed a framework for automatically discovering human
motion primitives from 3D pose data by optimizing “motion flux” and then clustering the results [41].
However, the application of motion primitives to enhance the interpretability of IMU-based HAR has
seen limited progress. This limitation stems largely from the inherently non-intuitive nature of IMU
sensor data, which makes it challenging to define and interpret primitives directly from these signals.

Much of the research on interpretability in HAR has focused on attention mechanisms. The principle
behind deep attention models is to weight input components, with the assumption that components
assigned higher weights are more relevant to the recognition task and exert greater influence on the
model’s decisions [43]]. For example, Shen et al. [44] designed a segment-level attention method to
determine which time periods contain more information; combined with a gated CNN, this segment-
level attention can extract temporal dependencies. Zeng et al. [[54]] developed attention mechanisms
from two perspectives: they first proposed sensor attention on the input to extract salient sensory
patterns, and then applied temporal attention to LSTMs to filter out inactive data segments. Ma
et al. [29]] employed spatial and temporal attention mechanisms, extracting spatial dependencies
by fusing patterns with self-attention. However, their interpretability often remains at a superficial
level, indicating what the model focuses on, rather than why or how these features contribute to the
recognition of complex, hierarchically structured activities.

3 Methodology

The architecture of MoPFormer, as illustrated in Fig. 2] comprises four modules: the motion primitive
module, the context-aware embedding module, and two task heads. The motion primitive module first
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Figure 2: Detailed illustration of key modules in our motion-centric framework. (a) Motion Primitive
Module: raw data windows from multiple sensor channels are partitioned into motion primitives
and processed through instance normalization to generate Vector Quantization (VQ) indices and
statistical features. (b) Context-Aware Embedding Module: special tokens are inserted alongside
masked motion embedding tokens (M) to form the complete input representation, which combines
motion primitive embeddings, positional encodings, and statistical feature embeddings. (c) Task
Heads: The diagram shows transformed features X * representing the corresponding position vectors
after Transformer Encoder processing. The MAE head utilizes M* positions for masked token
prediction during pretraining, while the trainable CLS head operates exclusively on the transformed
[CLS] token representation for downstream task fine-tuning.
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transforms multi-dimensional time-series data windows into index sequences from a fixed vocabulary.
To further extract patterns, the context-aware embedding module extracts semantic information
from contextual relationships and embeds high-dimensional vector sequences for the Transformer
backbone. The Masked Auto-Encoding (MAE) head, as a pre-training task, strengthens the context-
aware embedding module’s ability to understand motion primitives, while the Classification (CLS)
head enables the Transformer backbone to learn effective features for classification. Fig. [2]illustrates
the detailed architecture of each key module in our framework.

3.1 Motion Primitive Module

The Motion Primitive Module transforms raw data windows into discrete motion primitives, serving
as the foundational, interpretable units for our motion-centric representation. For each data window
of shape T' x C, where T is the number of time steps and C' is the number of channels (e.g.,
accelerometer, gyroscope), we first partition the sequence into non-overlapping segments across each
channel independently. Each channel is divided into segments of length L, resulting in S = |T'/L]|
segments per channel and a total of S x C segments per window.

Each segment undergoes a feature extraction process where we compute both low-level temporal
patterns and statistical characteristics. For each segment s; € R” (a single-channel segment), we
apply instance normalization in Eq. (I) to standardize the input:

s SiT pi(s:)
" oo(sy) Fe’
where y(s;) and o(s;) represent the mean and standard deviation of segment s;, and € is a small con-

stant for numerical stability. This normalization removes sensor-specific scale differences, ensuring
all segments are on a comparable scale before quantization.

ey

The normalized segments are then encoded into discrete motion primitives using a Vector Quantization
(VQ) [47]] approach. We maintain a learnable codebook Z = {z1, 29, ..., 2k }, which contains K
prototype vectors (or “motion primitives”), each of dimension L. As illustrated in Fig. 2[a), for each
normalized segment §;, we compute its VQ index through Eq. (Z) by finding the nearest prototype in
the codebook:
¢; = argmin [|§; — 2|3 2)
ke{1,2,....K



This quantization process maps continuous sensor data to discrete motion primitives, establishing
a “vocabulary” of motion primitives. Alongside the VQ indices, we extract statistical features from
each segment (mean, variance) to capture complementary information that might be lost during
quantization. These statistical features f; are concatenated with the VQ indices to form the complete
motion primitive representation.

The codebook is learned end-to-end through a commitment loss defined in Eq. () that encourages
consistency between the input segments and their quantized representations:

Lvq = lIsglsi] = 24|13 + BlI3: — sglzq,]II3, ©)
where sg[-] denotes the stop-gradient operator and 3 is a hyperparameter controlling the commitment
cost.

3.2 Context-Aware Embedding Module

The Context-Aware Embedding Module transforms the discrete motion primitive indices and their
associated statistical features into rich, contextualized representations suitable for the Transformer
backbone. This module aims to capture not only the type of motion primitive but also its intensity,
variability, sensor origin, and temporal position. For each data window, the module processes the
sequence of VQ indices {q1, ¢2, ..., gs } and corresponding statistical features { f1, fa, ..., fs } from
all channels.

For the special tokens [MASK], [START], and [END], we assign reserved indices (KX + 1, K + 2,
and K + 3, respectively) in our vocabulary, ensuring they are consistently represented across different
sensor channels. Using a learnable embedding matrix Ey ¢ € RE+3)xD 'where D is the embedding
dimension, we embed the VQ indices through Eq. (@):

e ¢ = Evola. @)
The [CLS] token is a separate learnable parameter outside the VQ embedding matrix.

The statistical features obtained during instance normalization (mean, variance) are projected into the
same embedding space via a linear projection in Eq. (3):

eftat = Wstatfi + bstat~ (5)

To incorporate sensor metadata (e.g., sensor type, mounting position) and enhance the model’s ability
to generalize across different sensor configurations and distinguish between data from different
sources, we introduce the Metadata Embedding Adapter for sensor-specific embeddings. For each
segment ¢, its corresponding sensor channel ¢ has associated metadata. This metadata is first converted
into a fixed-length vector e™¢® € R¥ using a pre-trained text embedding model. The Metadata
Embedding Adapter uses a linear layer (Wggapter € RPmoder XN badapter € RPmodet) then maps
this N-dimensional vector to our model’s embedding dimension D, ,ge;-

For each segment i, its complete token embedding e; is formed by summing these constituent
embeddings, as shown in Eq. (6). This fusion represents the motion primitive in a way that includes its
quantized shape (ezVQ), magnitude/variability information (eft“t), and sensor context (e‘jda”t”—emb ):

v .
€; = ¢€; @ + e?tat + Wadapter (e(vzneta) + badaptera (6)
where €% is the pretrained text embedding of dimension N for the channel ¢ that segment 7 belongs
to.

The model incorporates various special tokens to provide structural cues in the input sequence.

The final input sequence to the transformer backbone is structured as in Eq. (7):
X =[[CLS],[START),e1,....e5,,,[END], ...,[START), ¢, ...,e5_, [END]], ©)

s
where e represents the j-th embedding from sensor channel ¢, and n. is the number of segments for
channel c.

To provide temporal context, positional encodings are added through Eq. (8):
where P € R®*P contains learnable position embeddings. Importantly, our positional encoding
scheme assigns identical positional embeddings to data from different channels at the same time step,

meaning that el and e{ receive the same positional encoding if they represent data from the same
time point but different channels.



3.3 Task Heads

As shown in Fig. J¢), MoPFormer employs a dual-task learning approach with two specialized heads
built on top of the transformer encoder:

Masked Auto-Encoding (MAE) Head. During pre-training, we randomly mask a portion of
the motion embeddings in the input sequence and replace them with [MASK] tokens. The MAE
head aims to reconstruct the original VQ indices of these masked positions based on the contextual
information processed by the transformer encoder. Eq. (9) shows how for each masked position 4, the
reconstruction is performed:

(ji = softmax(Wmaeh;k + bmae)7 (9)

where h; is the transformer output at position ¢, and Wy, 4e and by, are learnable parameters. The
MAE objective in Eq. (I0) is formulated as a cross-entropy loss between the predicted and true VQ
indices:

1
Emae = T Tar 1Og (jz [Qi]7 (10)
P
where M is the set of masked positions and ; [g;] is the probability assigned to the true index g;.

Classification (CLS) Head. For downstream activity recognition tasks, we utilize a classification
head that operates exclusively on the transformed [CLS] token representation. The [CLS] token
aggregates information from the entire sequence through self-attention mechanisms in the transformer
encoder. Eq. (TT)) defines how the classification is performed:

§ = softmax(Weshl s + beis), (11)

where h},, is the transformed [CLS] token representation and W and b, are learnable parameters.
The classification objective is formulated as a cross-entropy loss in Eq. (I2):

c
Las ==Y y;logi;, (12)
j=1

where y is the true activity label. During pre-training, we primarily focus on the MAE task, while
during different training phases, we balance various objectives through Eq. (I3):

L= )\maeﬁmae + )\clsﬁcls + )\vqﬁqu (13)

where Ap,qe, Acis, and Ay, are hyperparameters balancing the different loss components from
Egs. (10), (T2), and (@), respectively. By adjusting these hyperparameters, we can control which tasks
are optimized during different training stages.

For fine-tuning on downstream tasks, we freeze the Motion Primitive Module and Context-Aware Em-
bedding Module while only updating the classification head parameters, enabling efficient adaptation
to new datasets with minimal computational overhead.

4 [Experiments

4.1 Experimental Setup

Datasets. We conducted extensive evaluations using six publicly available benchmark datasets:
PAMAP?2 [38[39], DSADS [7, [1], MHealth [ [6]], Realworld [46], UCI-HAR [40] 2], and USC-
HAD [56]]. To ensure fair comparison with existing self-supervised methods, we pre-trained our model
on five of these datasets while using the remaining dataset for evaluation, maintaining consistent
experimental settings with other self-supervised approaches. All datasets are resampled to 100 Hz and
segmented with a 500-sample window. To eliminate information leakage from overlapping windows,
we adopt the setting by using strides equal to the window size for all labeled training segments. This
strict non-overlapping approach may reduce absolute performance compared with more permissive
settings, but ensures a more rigorous evaluation. We use accuracy and macro-F1 as evaluation metrics
to assess model performance.



Table 1: Comparison with supervised pretrain-and-transfer baselines (upper block) and supervised
train-from-scratch baselines (middle block) across six HAR datasets. Accuracy and macro-F1 are
reported in percent; the rightmost column lists the mean over all datasets.

Method PAMAP2 DSADS MHealth Realworld UCI-HAR USC-HAD Average
: . Acc 8088 9130  83.94 85.18 82.66 74.04 83.83
BYOL [21}+perm jit "£1"  7905; 8922 8859 86.81 80.32 73.92 82.98
, Acc 7676 9080  89.74 86.08 81.18 72.82 82.90
BYOL 21}+lfc  "pi" 7464 8939 8384 85.99 80.87 69.23 81.49
. Acc 8238 9387  90.06 88.80 8531 75.59 86.00
BYOL [21}+Mixup "1 g093 9329 932 87.95 86.78 70.04 84.72
, Acc 8249 9246  90.19 89.69 89.79 76.64 86.88
ModCL [22] FI 8063 9109  89.98 90.43 90.15 7361 85.98
 Acc 8676 9812 8984 90.03 91.02 79.93 89.28
TSLANet [17) FI 8408 9743 8785 91.81 89.84 77.74 88.13
. Acc 8510 9601  86.05 90.07 8338 77.37 87.16
CALANet [34] FI 8394 9558  83.80 91.59 86.91 7236 85.70
MoPFormer Acc 8608 97.60 9322 92.05 90.58 81.46 90.17
FI 8483 9738  92.28 93.25 89.08 77.67 89.23
o Preteain Acc 8576 9468  90.53 91.84 77.58 78.30 86.45
FI 8394 9464 8995 91.33 76.79 74.86 8525

Training Protocol. All experiments were conducted on a Quadro RTX 8000 GPU. Our training
protocol followed a two-stage approach. In the first pre-training stage, we trained the model across
multiple datasets to extract a diverse set of motion primitives. We set the segment size to 50 samples
for Motion Primitive length, used an internal embedding dimension of 256, and masked 25% of
motion primitives as prediction targets for the MAE task. In the second stage, the classification head
and transformer layers are fine-tuned on each downstream dataset.

Metadata Embedding Adapter. Sensor descriptors are standardized to a consistent string format
(e.g., “body_part: Chest, sensor: acc, axis: x”’). We then obtained embeddings with Google’s text-
embedding-004 API, which enables the model to learn from contextual sensor metadata effectively.

4.2 Results

Baseline Comparisons. We compared MoPFormer with six different baseline approaches. Follow-
ing the comprehensive evaluation in [35]], we selected the BYOL framework [21]], which demonstrated
the best average performance among various contrastive learning frameworks. For time-domain and
frequency-domain augmentations, we used perm_jit and Ifc, respectively, which showed superior
performance in their domains. As noted in [[15]], Mixup provides distinctive benefits compared to
other temporal augmentation methods, so we included it as a baseline. ModCL [22] represents a state-
of-the-art contrastive learning method that leverages both intra-modal and inter-modal consistency
in wearable sensor data. We included it as a contemporary contrastive learning approach. For all
contrastive learning methods, we maintained a consistent 0.2:0.8 train-test split ratio.

Additionally, we compared against recent supervised approaches, including TSLANet [[17] (ICML
2024), a widely recognized foundational model in the time-series domain, and CALANet [34]
(NeurIPS 2024), which was specifically designed for HAR tasks [8]]. Detailed parameter configura-
tions for all baseline models are provided in Appendix A.

Performance Analysis. Tab. [I| presents comprehensive results across all six datasets. MoPFormer
achieves state-of-the-art performance, obtaining the highest average accuracy and F1 scores. Specif-
ically, our model achieved the best performance on MHealth (93.22% Accuracy, 92.28% F1) and
USC-HAD (81.46% Accuracy), while maintaining competitive results on other datasets.

The ablation study (w/o pretrain) demonstrates that our pretraining strategy significantly contributes
to model performance, particularly on datasets like UCI-HAR with limited data but complex activity
patterns, where performance drops by 13 percentage points without pretraining. This confirms the
value of our two-stage training approach with motion primitive extraction and masked autoencoding.
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Figure 3: Motion primitive segmentation and similarity analysis. (a) 5-second raw accelerometer trace
from USC-HAD dataset, segmented into ten 0.5-second motion primitives. (b) Cosine-similarity ma-
trix of motion primitive embeddings from accelerometer data. (c) Corresponding 5-second gyroscope
trace with identical segmentation. (d) Cosine-similarity matrix of embeddings for gyroscope-based
motion primitives. The matrices reveal pattern correlations between different motion primitives after
Motion Primitive Embedding processing.

Table 2: Ablation study for each component on the

Ablation Study. To validate each compo- PAMAP? and DSADS datasets.

nent’s contribution, we conduct an ablation
study on two representative datasets (Tab. [2).

Method ‘ PAMAP2 DSADS
First, removing the pretraining stage leads to a Acc  Fl | Acc FI
modest accuracy drop, highlighting the impor- = MoPFormer | 86.08 84.83 | 97.60 97.38
tance of motion-primitive initialization in cross- - w/o Pretrain 8576 83.94 | 94.68 94.64
: : et - w/o Statistical Feature 69.95 53.60 | 71.15 62.34
modal generalization. Next, further omitting " Wlo Metadata Embedding | 5818 33.10 | 80.94 7540

the statistical features or excluding metadata
embedding causes a dramatic performance loss.
Together, these findings show that pretraining, statistical features, and metadata embeddings each
deliver unique information, and that the combination is critical to MoPFormer’s superior performance.
More results are put in Appendix B.

MoPFormer’s strong performance across diverse datasets validates our motion-centric approach and
demonstrates its generalization capabilities. In the following section, we will further analyze the
extracted motion primitives better to understand their contribution to the model’s effectiveness.

5 Analysis

5.1 Motion Primitive Similarity

To examine what the VQ codebook captures, we analyzed two example segments of five seconds
each, shown in Fig.[3] Each trace is divided into ten 0.5s motion primitives, and we compute pairwise
cosine similarity between the embeddings of those motion primitives. A consistent pattern emerges:
primitives describing similar kinematic shapes, such as indices 8 and 9 in (a) or indices 1 and 3 in
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Figure 4: Frequency and activity composition of the 32 most common motion primitives from
PAMAP2.The stacked bars (left axis) show the proportion of each activity label for every VQ index,
while the black line (right axis) plots the absolute occurrence count of motion primitives.

(c), cluster into blocks with high cosine similarity. In contrast, primitives with opposite or dissimilar
trends (e.g., indices 1 and 3 in (a), and indices 0 and 1 in (c¢)) exhibit low similarity.

5.2 Motion Primitive Frequency

To further explain the rationale of the learned codebook, we analyzed both the overall frequency of
each primitive and its distribution across activity classes (using the PAMAP2 dataset for illustration).
Fig. {] presents the 32 most frequent VQ indices: each stacked bar depicts the relative share of
12 activity classes, and the black curve shows the absolute number of occurrences. Because any
macroscopic activity can be decomposed into a sequence of fine-grained motion primitives, the
codebook naturally captures micro-movements that are reused across different activities. The resulting
distribution is highly skewed: the ten most common primitives cover the vast majority of windows,
whereas the remaining indices form a long-tailed set that represents rare or transitional motions.
Notably, locomotion classes (e.g., walking, running, and cycling) dominate the high-frequency
primitives (e.g., primitive #170 and primitive #567), while low-variance postures such as lying,
sitting, and standing are scattered among the less frequent primitives (e.g., primitive #72 and primitive
#751). This frequency analysis could allow us to identify which primitive motions are more common
and how they relate to high-level activities, which is a step toward explaining model decisions.

6 Conclusion and Future Work

In this work, we introduced MoPFormer, a motion-primitives-based Transformer framework for
wearable-sensor activity recognition. Our approach tackles two key HAR challenges: interpretability
and cross-domain generalization. Through comprehensive experiments, we showed that MoPFormer
achieves state-of-the-art classification performance on six diverse datasets, outperforming both super-
vised and self-supervised baselines. We also demonstrated that MoPFormer’s learned primitives are
semantically meaningful. This interpretability lets us peek inside the “black box” of the HAR model.
Overall, MoPFormer combines the strengths of sequence modeling and symbolic representation
learning, yielding a HAR system that is both accurate and explainable.

Our future work will focus on two key directions. First, developing more robust foundational models
by pre-training on larger, more diverse sensor datasets to extract richer motion primitives. Second,
aligning our learned motion primitive embeddings with large language models as a novel input
modality enables more flexible activity recognition and potentially expresses transfer ability.
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A Experimental Settings

In this section, we provide detailed parameter settings for our proposed MoPFormer model and
baseline models used in our experiments. All experiments can run normally on the RTX 8000 with
40GB VRAM (requiring the use of gradient accumulation techniques).

A.1 Parameter Settings for MoPFormer

We implement the MoPFormer model with the following configuration. For motion representation,
we use 50 as the motion primitive length, which corresponds to 0.5s of motion when resampled to
100Hz. The codebook size is set to 1024 with an embedding dimension of 256. The architecture
consists of 5 standard Transformer Encoder layers with 8 attention heads per layer and an MLP
ratio of 1. We use GELU as the activation function throughout the network. Notably, we do not
employ any dropout in our model. During training, we apply a masking ratio of 0.25 for the masked
modeling objective. For optimization, we employ the AdamW optimizer with a learning rate of
le-4 and a weight decay coefficient of 1e-5. We use a batch size of 512, implemented with gradient
accumulation using PyTorch Lightning to optimize memory usage.

A.2 Parameter Settings for Baseline Models

BYOL For BYOL [21] (Bootstrap Your Own Latent), we implement the model following the
CL-HAR [35] library’s configuration. The architecture consists of two networks: an online network
and a target network, both utilizing the DCL (DeepConvLSTM) architecture as the backbone encoder.
The online network includes a projection head that maps the backbone’s output to a 128-dimensional
embedding space with a hidden layer of the same dimension, structured as a sequence of Linear,
BatchNorm1d, ReLU, Linear, and BatchNorm1d layers. The prediction head follows with the same
dimensionality (128) and is structured as Linear, BatchNorm1d, ReLLU, and Linear layers. The
target network’s parameters are updated via an exponential moving average of the online network’s
parameters with a decay rate of 0.996. We employ three different data augmentation techniques, all
following the settings provided in [35]]. The model is trained using negative cosine similarity as the
loss function with the Adam optimizer. We set the learning rate to 1e-4 for the online encoder and
le-3 for the online predictor, with a weight decay of 1.5e-6, using a CosineAnnealingLLR scheduler.
For downstream activity recognition, we freeze the backbone encoder and train a linear classifier with
the Adam optimizer at a learning rate of 1e-3 for the same number of epochs.

ModCL For ModCL, we follow the default parameter settings as described in the original paper.
Since the official code was not publicly available, we implemented the model based on the paper’s
specifications. During our reproduction, we enabled several data augmentation techniques, specifically
applying five methods: Jittering, Scaling, Permutation, Masking, and Time Warping, all using the
same proportions and parameters as specified in the original work.

TSLANet For TSLANet, we implement the model using the default parameter settings specified
in the original paper. For parameters not explicitly mentioned in the paper, we adopt the default
configurations from the authors’ publicly released code repository. Following the original architecture,
we enable both the ICB (Input Channel Block) and ASB (Attention Sub-Block) modules. The model
is trained with the same optimization strategy and hyperparameters as described in the original
TSLANet paper.

CALANet For CALANet, we follow the default parameter settings described in the original paper.
For configuration details not explicitly stated in the paper, we use the default settings provided in the
authors’ official code implementation. We set the number of layers in the layer aggregation pool to 9
based on the authors’ ablation study results, which identified this as the optimal configuration. All
other hyperparameters and training procedures follow the specifications in the original paper.

B Supplementary Ablation Studies

Since our work primarily focuses on investigating interpretable motion primitives in human activity
recognition (HAR), the main paper demonstrates the necessity of each architectural component
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through module-wise ablation experiments. This appendix provides additional ablation studies
examining the impact of key hyperparameters on model performance to provide comprehensive
insights into our method’s design choices.

B.1 Motion Primitive Window Length
The choice of motion primitive window length significantly affects the model’s ability to capture

meaningful motion patterns. We evaluate different window lengths to determine the optimal temporal
granularity for motion primitive extraction.

Table 3: Ablation study on motion primitive window length

Window Length PAMAP2 DSADS
Acc F1 Acc F1
25 8571 82.11 97.09 96.37
50 (ours) 86.08 84.83 97.60 97.38
100 80.81 79.85 9294 92.17

As shown in Table 3] a window length of 50 achieves optimal performance across both datasets.
While shorter windows 25 demonstrate comparable performance, we select the length of 50 to ensure
sufficient temporal context for comprehensive motion primitive analysis. This choice prioritizes cap-
turing complete motion phases within each primitive, which is crucial for meaningful interpretability
analysis. Longer windows 100 lead to substantial performance degradation due to the inclusion of
multiple distinct motion phases within a single primitive, confirming that our selected window length
provides the appropriate temporal granularity without compromising motion primitive coherence.

B.2 Transformer Encoder Depth

We investigate the impact of transformer encoder depth on the model’s representational capacity and
its effect on motion primitive quality.

Table 4: Ablation study on transformer encoder layer number
PAMAP2 DSADS

Acc F1 Acc F1

2 85.01 84.59 96.92 96.56
5 (ours) 86.08 84.83 97.60 97.38
7 86.11 8498 97.53 97.31
10 86.05 84.79 97.28 97.02

Depth

The results in TableE] show that performance differences between 5, 7, and 10 layers are minimal.
However, we adopt 5 layers as our configuration to ensure adequate modeling capacity for motion
primitive extraction without introducing unnecessary complexity. This choice reflects our preference
for slightly conservative parameter settings that guarantee sufficient representational power for motion
primitive analysis, while avoiding potential overfitting. The 2-layer configuration shows reduced
performance, confirming that our selected depth provides the necessary capacity for high-quality
motion primitive learning.

B.3 Hidden Embedding Dimensionality

The dimensionality of hidden embeddings critically determines the model’s representational capacity
for motion primitive encoding and subsequent interpretability analysis.

From Table E} we observe that performance reaches saturation around 128 dimensions, with 256
dimensions providing marginal improvements. We choose 256 dimensions to ensure comprehensive
representational capacity that does not limit our motion primitive analysis. This decision follows
our principle of using slightly excessive parameters to guarantee that motion primitive quality and
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Table 5: Ablation study on hidden embedding size

Embedding Size _ TAMAP2 DSADS
Acc F1 Acc F1
3 8218 8170 9481 93.88
64 8590 8586 9693 963l
128 8645 8550 9728 97.35

256 (ours) 86.08 84.83 97.60 97.38

interpretability are not compromised by insufficient representational capacity. Lower dimensions (32-
64) show significant performance degradation, validating that our selected dimensionality provides
adequate space for capturing the complexity and nuances of human motion patterns.

B.4 Vector Quantization Codebook Size

The VQ codebook size determines the discrete vocabulary available for motion primitive representa-
tion, directly impacting both model performance and the richness of discoverable motion primitives.

Table 6: Ablation study on VQ codebook size

Codebook Size PAMAP2 DSADS
Acc F1 Acc F1
16 78.81 76.89 90.05 88.93
64 84.31 83.79 9555 9543
256 85.62 84.87 9752 97.18

1024 (ours) 86.08 84.83 97.60 97.38

As demonstrated in Table[6] performance steadily improves with larger codebook sizes and appears
to saturate around 256 codes for the current pretraining datasets. However, we adopt 1024 codes to
ensure comprehensive coverage of motion primitive diversity, particularly to avoid any limitations
that might affect our detailed motion primitive analysis. This choice exemplifies our approach of
using generously-sized parameters to guarantee that the learned motion primitives fully capture the
richness and subtlety of human motion patterns without being constrained by codebook capacity.
Smaller codebooks (16-64) exhibit substantial performance degradation, confirming the necessity of
adequate representational diversity for meaningful motion primitive discovery.

B.5 Model Stability across Random Seeds

To validate the stability of MoPFormer’s performance, we conducted additional experiments by
fine-tuning our pre-trained model three times with different random seeds on the PAMAP2, DSADS,
and RealWorld datasets. For each run, we followed the exact same fine-tuning protocol as in the main
experiments (i.e., freezing the pre-trained encoder and training a linear classifier). Table [7]reports the
mean and standard deviation of accuracy and F1-score across the three independent runs.

Table 7: Comparison of original reported results with new results from multiple runs (Mean+Std).
Original Reported ~ New Results (Mean+Std)
Acc (%) F1(%)  Acc (%) F1 (%)

PAMAP2 86.08 84.83  87.49+4.10 85.74+3.04
DSADS 97.60 97.38  97.27x0.49 97.11x0.24
RealWorld  92.05 93.25 91.32+#1.07 92.65+1.23

Dataset
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C Additional Motion Primitive Analysis

To provide deeper insights into the interpretability of our learned motion primitives, we analyze the
distribution of motion primitive usage across different human activities. This analysis demonstrates
how distinct activities exhibit characteristic motion primitive patterns, validating the semantic mean-
ingfulness of our learned representations.Figures [5] through[T2] present the motion primitive usage

distributions for eight representative activities from our dataset.
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Figure 6: Motion primitive usage distribution for cycling activity.
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Figure 11: Motion primitive usage distribution for sitting activity.
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Through careful observation of these distributions, we can identify distinct patterns that reflect the
fundamental differences in motion primitive composition across various activities. The distributions
clearly separate into two categories: dynamic activities (Figures [5] through ) and static activities
(Figures [10] through[T2). This contrast is particularly striking in terms of primitive usage patterns.
Dynamic activities demonstrate concentrated utilization of specific motion primitives, with certain
primitives exhibiting significantly higher activation frequencies, indicating the presence of character-
istic movement patterns essential for these activities. In contrast, static activities show a more uniform
distribution across motion primitives, suggesting these behaviors rely on a broader range of subtle
motion components for postural maintenance and minor adjustments. This fundamental difference
in primitive usage validates that our learned motion primitives capture meaningful biomechanical
distinctions between different categories of human activities.

Furthermore, to analyze the temporal relationships between motion primitives, we construct and
visualize the Markov transition probability matrix for all learned motion primitives, as illustrated in

Figure[T3]

Markov Transition Probability Matrix (Top K Dynamic)
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Figure 13: Markov transition probability matrix showing the temporal dependencies between motion
primitives.

D Dataset Description

All datasets used in this paper adopt a sliding window approach with a window size of 500 samples
and a step size of 500 samples as the basic recognition unit. All sensor data is resampled to 100 Hz to
ensure consistency across different datasets. Data segments shorter than the specified window size
are discarded from the analysis. For fine-tuning and evaluation purposes, we allocate 20% of each
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dataset for fine-tuning while the remaining data is used for testing. The datasets employed in this
study are described as follows:

PAMAP2 The PAMAP2 Physical Activity Monitoring dataset is a comprehensive collection
designed for activity recognition and intensity estimation research, containing recordings of 18
different physical activities such as walking, cycling, and playing soccer performed by 9 subjects.
Each subject wore three Colibri wireless inertial measurement units (IMUs) positioned on the wrist
of the dominant arm, chest, and ankle of the dominant side, sampling at 100 Hz, along with a heart
rate monitor operating at approximately 9 Hz. The data collection protocol required each subject to
perform 12 standardized activities, with some subjects also completing additional optional activities.

DSADS This dataset captures activity recognition data from 19 different physical activities per-
formed by 8 subjects (4 female, 4 male, aged 20-30). Activities include basic postures, locomotion,
daily activities, and exercises, each performed for 5 minutes and segmented into 5-second intervals.
Five sensor units were placed on different body locations (torso, arms, legs), with each unit containing
accelerometer, gyroscope, and magnetometer sensors. Data was recorded at 25 Hz and organized
hierarchically by activity, subject, and segment.

MHealth This dataset contains human activity recognition data from 12 physical activities (sta-
tionary postures, locomotion, and exercises) performed by 10 volunteers in natural settings. Three
wearable sensors placed on the chest, right wrist, and left ankle measure motion parameters (accelera-
tion, rotation, magnetic orientation), with the chest sensor also capturing ECG data. All recordings
were sampled at 50 Hz, providing comprehensive movement and physiological data for activity
recognition research.

Realworld This dataset captures human activity recognition data from 8 different physical activities
(walking, running, sitting, standing, lying, stairs up, stairs down, jumping) performed by 15 subjects
(8 males, 7 females; age 31.9+12.4, height 173.1+6.9 cm, weight 74.14-13.8 kg). Each activity was
performed for approximately 10 minutes per subject (except jumping at ~1.7 minutes due to physical
exertion), with data equally distributed between genders. The dataset includes IMU sensor readings
(acceleration, gyroscope, magnetic field) collected at a 50 Hz sampling rate simultaneously from 7
different body positions (chest, forearm, head, shin, thigh, upper arm, and waist).

UCI-HAR This dataset captures human activity recognition data from 6 different physical activities
(walking, walking upstairs, walking downstairs, sitting, standing, lying) performed by 30 volunteers
aged 19-48 years. The experiments were video-recorded for manual data labeling. The sensor signals
were pre-processed with noise filters, while a Butterworth low-pass filter with 0.3 Hz cutoff frequency
was applied to separate body acceleration from gravity, with features extracted from both time and
frequency domains for activity recognition analysis.

USC-HAD This dataset captures human motion data using MotionNode sensors operating at 100Hz
(£6g accelerometer range, £500dps gyroscope range). It includes 12 different physical activities:
Walking Forward/Left/Right, Walking Upstairs/Downstairs, Running Forward, Jumping Up, Sitting,
Standing, Sleeping, and Elevator Up/Down.

E Limitations

Our approach introduces computational overhead through Vector Quantization and multi-layer
Transformer processing, which could pose some problem for real-time inference on resource-limited
wearable devices.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the three main contributions: (1)
the MoPFormer pre-training framework, (2) a representation method that enables unified
training across heterogeneous datasets, and (3) extraction of motion primitives with detailed
interpretability analysis. These claims are substantiated throughout the paper, particularly in
the methodology, experiments, and analysis.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides comprehensive details on datasets (Section 4.1), prepro-
cessing steps (resampling to 100 Hz, segmentation with 500-sample windows), architecture
specifics (segment size, embedding dimensions, masking ratio), and training protocol. Addi-
tionally, the methodology section fully describes all model components, loss functions, and
training objectives. Additionally, we will provide further details in the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Code will be provided soon.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper details all necessary details about the training and testing processes.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: The paper does not report error bars or other statistical significance measures.
Guidelines:

* The answer NA means that the paper does not include experiments.
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10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research focuses on analyzing public, anonymized sensor datasets for
activity recognition, which presents minimal ethical concerns. The methodology and
evaluations follow standard practices in machine learning research without raising issues
related to privacy, harm, or misrepresentation.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: As HAR is a fundamental technique in healthcare, fitness tracking, and
surveillance, our accurate and real-time model can reduce the negative societal impacts due
to false predictions.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We will include the usage guidelines or restrictions in code release.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the original paper that produced the datasets and our source code
release follows CC BY 4.0 license.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

25



13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper and the code release include the details about training, license, usage
guidelines, etc.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve any research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve any research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We only used an LLM for language polishing of the paper.
Guidelines:

* In the Metadata Embedding Adapter module, we used Google’s text-embedding-004
API to convert the original sensor information into embeddings.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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