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Abstract

The reliability of deep learning based segmentation models is essential to the safe trans-
lation of these models into clinical practise. Unfortunately, these models are sensitive to
distributional shifts. This is particularly notable in MRI, where there is a large variation
of acquisition protocols across different domains leading to varying textural profiles. We
hypothesise that the constrained anatomical variability across subjects can be leveraged to
discretize the latent space to a dictionary of shape components. We achieve this by using
multiple MRI sequences to learn texture invariant and shape equivariant features which
are used to construct a shape dictionary using vector quantisation. This dictionary is then
sampled to compose the segmentation output. Our method achieves SOTA performance
in the task of single domain generalisation (SDG) for prostate zonal segmentation.
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1. Introduction

Magnetic resonance imaging involves a complex acquisition process which differs across
subjects and domains. This can lead to varying textural profiles and artefacts. Deep learning
based segmentation models are however not robust to textural shifts and unencountered
artefacts at test time. Domain generalisability for deep learning has been traditionally
tackled through augmentation based strategies such as CutOut (DeVries and Taylor, 2017)
and BigAug (Zhang et al., 2020). AdvBias (Chen et al., 2020) is an adversarial technique for
MRI data which learns to generate bias field deformations to improve model robustness for
segmentation. RandConv (Xu et al., 2020) which is perhaps the most related work, attempts
to learn textural invariant features by using a randomised convolutional input layer. Here,
we propose an alternative method to learn shape equivariant features based on the principle
that in MRI, T2 weighted images and ADC maps calculated from diffusion weighted imaging
contain the exact same spatial information and only differ in their textural profiles. There
is anatomical consistency across subjects meaning there is reduced spatial variation in the
segmentation outputs. Therefore, we propose to constrain the latent space to a dictionary of
shape components which is sampled to construct the segmentation output. We hypothesise
this will improve the generalisability of any segmentation model which maps the input space,
X to a lower dimensional embedding space, E using an encoder, Φe before mapping to the
segmentation output, Y with a decoder, Φd. This is achieved using vector quantisation
(Van Den Oord et al., 2017) of the shape equivariant features to create a discrete shape
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Figure 1: Overview of our method demonstrating using the ADC map to learn shape equiv-
ariant features which is quantised to construct a shape dictionary, D.

space. We assume the dictionary is complete and sufficient to capture the entire distribution
of segmentation outputs after composition of the discrete shape space using the decoder.
We evaluate the capability of our method to improve domain generalisability in the task
of prostate zonal segmentation with two labels (transitional and peripheral zone) when
training on a single domain.

2. Method

We start with the image input which is the T2 weighted image, x ∈ R1×256×256×24 and apply
an intensity transformation, Ti which is equivalent to acquiring the ADCmap. We also apply
a spatial transformation, Ts to the ADC map which involves rotations. Specifically, we apply
transformations from the dihedral group (d4) which consists of 90 degree rotation in the
z plane and 180 degree rotation in the y plane. The order of this group is 8 so we create
8 transformations per sample during training. The T2 image and spatially transformed
ADC map are passed through an encoder to produce their respective embeddings, z1 and
z2 as shown in Figure 1. Shape equivariance and texture invariance is enforced by satisfying
equation 1.

Φe(Ts(Ti(x))) = Ts(z
1) (1)

Therefore, we minimise the contrastive loss: Lcontr = ∥Ts(z
1)−z2∥22. Note, a contrastive loss

only theoretically learns equivariance to the 8 spatial transformations applied per sample.
It does not constrain the convolutional layers to the D4 group. We assume an approximate
equivariance to the D4 group by using our contrastive loss.

LQuant =
1

m

i=m−1∑
i=0

∥sg(z1i )− ek∥2 + β∥z1i − sg(ek)∥2 (2)

We quantise, z1 ∈ R128×16×16×12 using vector quantisation by dividing z1 into 16×16×12
components and replacing each component in z1 denoted z1i with its nearest component,
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Baseline CutOut BigAug AdvBias RandConv Ours

Dice 0.51±0.13 0.53±0.17 0.63±0.15 0.56±0.13 0.59±0.15 0.64±0.11
HD 0.40±0.11 0.37±0.19 0.25±0.12 0.33±0.15 0.29±0.08 0.23±0.10

Table 1: Dice score and Hausdorff distance(HD) ± standard deviation for different SDG
methods compared to our approach

ek ∈ D where k = argminj∥z1i − ej∥2. This produces the discrete shape latent space, ẑ
which is inputted into the decoder to construct the segmentation output. The quantisation
loss minimises the euclidean distance between z1i and its nearest component, ek ∈ D shown
in equation 2. Stop gradients (sg) are applied to the correct operand. We compute the dice
loss between the output, ŷ and the T2 segmentation label, y. The total loss for training
our framework is Ltotal = Ldice(ŷ, y) + Lcontr + Lquant. Note, only T2 weighted images are
required as input during inference.

3. Experiments and Results

Dataset: The training set comprises the Prostate dataset obtained from the Medical Seg-
mentation Decathlon (Antonelli et al., 2022), consisting of 32 T2-weighted and ADC images
captured at the Radboud University Nijmegen Medical Centre (RUNMC). We use the 30
T2 weighted images in the NCI-ISBI13 Challenge (Bloch et al., 2015) which was acquired
from Boston Medical Centre (BMC) for our test set. All images are centre cropped to
256× 256× 24 and normalised between 0 and 1.

Baseline Model and Comparison: We use a hybrid 2D/3D UNet as our baseline model
in order to deal with the anisotropic Prostate MRI images. The encoder and decoder
is made up of 5 levels consisting of 2D pre-activation residual blocks in the top 4 levels
and a 3D pre-activation residual block in the bottleneck level. We use the same encoder
and decoder architecture for our method. We compare our method to the following SDG
methods applied to the baseline model: CutOut (DeVries and Taylor, 2017), BigAug (Zhang
et al., 2020), AdvBias (Chen et al., 2020) and RandConv (Xu et al., 2020). All models were
trained for up to 500 epochs using Adam optimisation with a learning rate of 0.001.

Results and Discussion: In Table 1, we show that our method outperforms other SDG
methods in terms of the Dice score and Hausdorff distance. We therefore show that one can
improve the domain generalisability of a segmentation model in an anatomical segmentation
task by constraining the latent space to a finite set of shape components.

In future work, we will enforce D4 group equivariant convolutional layers by applying
transformations from the D4 group to the filters themselves to create 8 transformed filters
from each convolutional kernel. We will also constrain the convolutional kernels such that
they are equivariant to other groups such as the SO(3) or SE(3) group as well as develop a
method for SE(3) group equivariant vector quantisation.
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