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Abstract

Uncertainty Quantification (UQ) is crucial for reliable image segmentation. Yet,
while the field sees continual development of novel methods, a lack of agreed-
upon benchmarks limits their systematic comparison and evaluation: Current UQ
methods are typically tested either on overly simplistic toy datasets or on complex
real-world datasets that do not allow to discern true uncertainty. To unify both
controllability and complexity, we introduce Arctique, a procedurally generated
dataset modeled after histopathological colon images. We chose histopathological
images for two reasons: 1) their complexity in terms of intricate object structures
and highly variable appearance, which yields challenging segmentation problems,
and 2) their broad prevalence for medical diagnosis and respective relevance of
high-quality UQ. To generate Arctique, we established a Blender-based framework
for 3D scene creation with intrinsic noise manipulation. Arctique contains 50,000
rendered images with precise masks as well as noisy label simulations. We show
that by independently controlling the uncertainty in both images and labels, we
can effectively study the performance of several commonly used UQ methods.
Hence, Arctique serves as a critical resource for benchmarking and advancing
UQ techniques and other methodologies in complex, multi-object environments,
bridging the gap between realism and controllability. All code is publicly available,
allowing re-creation and controlled manipulations of our shipped images as well as
creation and rendering of new scenes.

1 Introduction

The crucial importance of reliable UQ for the deployment of segmentation algorithms to safety-
critical real-world settings has long been recognized by the machine learning community, and the
field has seen substantial development of methodology over past years (see e.g. [12, 1, 31]). However,
there is a glaring lack of comprehensive evaluation of UQ methods, which makes it difficult to
contextualize new methods within the existing paradigms, and renders the choice of suitable UQ
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methods burdensome for practitioners. One reason for the lack of comparative insight is that often
UQ methods are developed from theoretical considerations and tested on hand-crafted toy datasets
but fail to provide meaningful, interpretable results on complex real-world datasets [20, 6].

Towards more insightful benchmarking of UQ methods, it is desirable to establish benchmark
datasets with ground-truth uncertainty. However, in real-world settings, ground truth uncertainty
is usually unattainable. Thus related works have resorted to empirically obtained (and therefore
not fully quantifiable and/or controllable) distribution shifts and label noise [20, 3], which has
greatly advanced the field, albeit by construction still does not facilitate comprehensive insight into
method behavior. Synthetic data generation offers a promising avenue towards improved insight by
providing clearly defined data properties and annotations (see [17] for an example from the realm
of Explainable AI). However, previous synthetic data generation methodologies proposed in the
context of challenging image segmentation problems either excel in controllability but fall short in
complexity [30, 39], or vice-versa aim at improved complexity and realism but at the cost of falling
short in controllability [8, 41], the latter because learnt image generation, while able to offer some
level of conditioning on sought image properties, neither provides full control nor full insight into the
image generation process.

To address this gap, we introduce Arctique (ARtificial Colon Tissue Images for Quantitative Un-
certainty Evaluation), a procedurally generated histopathological dataset designed to mirror the
properties of images derived from H&E stained colonic tissue biopsies, as acquired routinely for
safety-critical medical diagnoses in clinical practice [36]. Histopathological images offer a rich and
challenging landscape for the application of advanced machine learning methodology, particularly in
segmentation [2, 25]. The essential task of accurately delineating and classifying cellular structures
is challenging even for trained professionals, due to many sources of uncertainty, e.g. overlapping
structures, partial information from the underlying physical tissue-slicing process, and the inherent
variability of biological tissues. The demanding nature of this task is reflected in the relative scarcity
of fully annotated real-world data sets and high inter-annotator variability (see e.g [14]). Arctique
offers the creation of realistic synthetic histopathological images at full controllability, allowing users
to manipulate a range of easily interpretable parameters that effectively serve as "sliders" for image-
as well as label uncertainties.

Arctique provides 50,000 pre-rendered 512x512-sized images for training and evaluation of seg-
mentation tasks, shipped with exact masks (2D and 3D), metadata storing characteristics of cellular
objects, and rendering parameters to re-generate scenes. Furthermore, Arctique provides two main
avenues for the controlled study of uncertainty: (1) a blender-based generation framework, which
allows to re-generate and manipulate scenes, and (2) a data loader for post-processing images and
emulating noisy labels. To assess Arctique’s degree of realism, we show that segmentation networks
trained exclusively on Arctique can achieve promising zero-shot performance on real H&E images,
proving its ability to learn meaningful semantic attributes.

To showcase how Arctique can be used for insightful benchmarking of UQ methods, we assess
foreground-background segmentation and semantic segmentation and measure the effect of uncer-
tainty in the images and the labels separately. We benchmark the performance of four widely used
UQ-methods (Maximum Softmax Response (MSR), Test Time Augmentation (TTA [38]), Monte-
Carlo Dropout (MCD [11]) and Deep Ensembles (DE [22])). For each uncertainty scenario we
measure model performance, predictive uncertainty, epistemic uncertainty and aleatoric uncertainty.
Overall, we find that our manipulations increase predictive uncertainty in all four benchmarked UQ
methods. In particular, we find that their aleatoric uncertainty components mostly track our devised
label-level manipulations while their epistemic components mostly track our devised image-level ma-
nipulations. This serves as proof-of-concept that Arctique facilitates meaningful and comprehensive
UQ benchmarking. Arctique was rendered and assessed on an internal resource of Nvidia A40 GPUs.
Our work amounted to an estimated total of 150 GPU-hours.

Dataset access The current version of our dataset, as well as the complete version history, can
be accessed via https://doi.org/10.5281/zenodo.11635056. We provide access to 50,000 training
and 1,000 test images along with their corresponding instance and semantic masks, including 400
additional exemplary variations corresponding to 50 of the test images. We also provide the dataset
used for the experimental results presented in this paper as well as the respective noisy variations.
The complete codebase containing scripts for dataset generation, model training and uncertainty
estimation is available on GitHub: https://github.com/Kainmueller-Lab/arctique
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Figure 1: Generation Process: (a) To generate complex microscopic images, Arctique artificially
replicates the H&E colon image creation protocol. From left to right: Initially, the colonic macrostruc-
ture (i.e., the outer epithelial layer) is constructed. This geometry is then artificially sliced, cell nuclei
and other objects are placed, and the resulting scene is rendered along with its corresponding 3D
stack of instance and semantic masks. (b) The result is a synthetic image (top) with corresponding
semantic and instance mask (bottom) featuring numerous cell nuclei that (1) overlap, (2) lie outside
the focal plane, (3) exhibit distinct characteristics, and (4) can be confused with perturbing elements.
(c) A typical image of a natural H&E stained slice of colonic tissue (top) and the corresponding
segmentation (bottom). The epithelium exhibits the characteristic flower-like structures called crypts.
The stroma is the densely populated tissue between epithelial crypts.

2 The Dataset

Histopathological Hematoxylin & Eosin (H&E) stained colon tissue images captured under light
microscopy pose a significant challenge for segmentation models due to their inherent complexity,
manifested by intricate cellular structures, varying staining intensities, and irregular tissue boundaries.
The scarcity of exact annotated data further aggravates the problem, hindering the development
of robust segmentation models. Our synthetic dataset Arctique mimics the complexity of real
H&E stained colon tissue images akin to those in the Lizard dataset [14], capturing the diverse
cellular morphology, nuanced staining patterns, and irregular tissue boundaries present in real
histopathological samples. To this end, we devised a Python-based image generation pipeline on
top of the 3D ray-tracing software Blender. This approach, as opposed to the alternative of relying
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on generative models, ensures controllability (and reproducibility) while allowing for the creation
of realistic scenes. Consequently, each of our 50,000 pre-rendered images and labels can be easily
recreated and subjected to controlled modifications. We generate each H&E image along with its
corresponding masks via the following procedural data generation pipeline, as shown in Figure 1a:

1. Macro-structure: We start with generating a 3D model representing the characteristic topology of
the colon tissue architecture. Specifically, we focus on the epithelial crypts, which do not only follow
an intriguing pattern (see Figure 1a left) but are also of pathological relevance. For example, colon
cancer typically originates at this outer layer of the colon. We create the outer tissue topology by
modeling the rod-shaped crypts in a densely packed hexagonal pattern, as depicted in Figure 1a (for
details see Appendix).

2. Placing of cells: Next, we populate our scene with five predominant cell types. Within the
stroma, the connective tissue between the crypts, we randomly distribute plasma cells, lymphocytes,
eosinophils, and fibroblasts. The cells of the epithelial crypts, specifically epithelial cells and
corresponding goblet cells (white bubbles, see Figure 1), are placed according to a 3D adaptation of
the Voronoi cell generation algorithm (cf. [37, 23] and Appendix). Each cell model includes both
its nucleus and the surrounding cytoplasm. For instance, Figure 1b3 illustrates the peanut-shaped
nucleus of an eosinophil within its reddish-stained cytoplasm. Each cell type is characterized by
controllable parameters such as typical diameter, elongation, and nucleus shape. A comprehensive
description of the parameter sampling methodology is provided in the Appendix.

3. Sectioning: A significant source of complexity arises from the fact that histopathological images
are 2D slices of the underlying 3D architecture. To replicate this, we digitally slice through our 3D
macro structure and cells. This approach ensures that the visible features of cells vary depending on
their location and orientation relative to the sectioning plane. For example, in Figure 1b2, we can
faintly observe two fibroblasts: one cut along its major axis and another cut vertically.

4. Staining: In real-world histopathological images, the staining colors are derived from Hematoxylin
& Eosin (H&E) staining. Hematoxylin binds to DNA in the nucleus, giving it a purple appearance,
while eosin stains the surrounding tissue architecture in a reddish-purple hue (see Figure 1c). To
replicate this, we model digital staining of the cell cytoplasm, cell nuclei, and surrounding tissue
using controllable parameters such as staining hue, staining intensity, and inherent staining intensity
noise. This is achieved using Blender-specific shaders, as detailed in the Appendix.

5. Rendering: The final scene is rendered using ray tracing from a virtual camera positioned above
the light source and tissue slice (see Appendix). By adjusting the camera’s focal plane, we achieve
a depth-blurring effect characteristic of histopathological light microscopy images. This workflow
enables the generation of both 2D images and high-resolution 3D stacks. Moreover, synthetic image
generation provides precise pixel-wise semantic- and instance masks, serving as exact ground truth.

Parameters: Various parameters can be gradually adjusted to control the rendering process and allow
for precise customization of the generated images: Cell shapes: Adjustments include cell diameter,
elongation, bending, and shape noise for linear interpolation between cell types. Cell distribution:
Parameters cover cell locations, occurrence ratios of cell types, and cell density in the stroma. Tissue
parameters: Configurations include tissue thickness and degrees of tearing. Staining parameters:
Settings include staining colors and intensities for cells, nuclei, and tissue. By conducting statistical
analysis of the Lizard dataset [14] and consulting with a pathologist, we fine-tune these parameters to
closely align with the images from the Lizard dataset.

Assessment of Realism: We assess the resemblance between Arctique and real data through two
complementary approaches: a qualitative analysis of the detail captured by Arctique, and a quantitative
evaluation of its effectiveness in training an H&E-based nuclei segmentation and classification model
[4, 33], which is then applied zero-shot to real data. Figure 1b demonstrates the fidelity of our dataset
in capturing the characteristic nuances observed in real histopathological images, such as those in the
Lizard dataset. Figure 1b1 depicts a synthetic ring of densely packed and overlapping epithelial cell
nuclei. Our rendering pipeline generates exact corresponding instance masks, and distinguishes the
depth of each nucleus within the tissue based on precise depth information. In Figure 1b2, an artificial
fibroblast is depicted, exhibiting minimal distinguishability. The pronounced blur is attributed to
the cell’s deep location within the tissue, a phenomenon commonly observed in real images. Figure
1b3 showcases an artificial eosinophil cell, characterized by its distinctive peanut-shaped nucleus.
Our dataset accurately models this characteristic feature, including the reddish hue staining of the
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surrounding cytoplasm, which contrasts with other cytoplasmic staining patterns. The resemblance of
eosinophil cytoplasm to blood cells, which are also modeled in our dataset (Figure 1b4), presents
challenges for pathologists and segmentation models alike.

Zero-shot segmentation of real data: We assess the suitability of Arctique as surrogate training data
as follows: We use Arctique to train a HoVer-NeXt (HN) model [4], an architecture that has been
shown to yield state-of-the-art results when trained on real H&E data; We then conduct zero-shot
inference on real H&E data [14]. To validate Arctique’s ability to infer semantically meaningful
intermediate attributes, we compare baseline results with an enhanced Arctique version containing
randomly injected anomalies, as well as with a simplified version with only pixel depth masks on
background. As shown in Figure 2, both F1 score and Hausdorff distance metric (weighted for true
positives per class) support Arctique’s realism and value. Considering the metrics per class, the
synthetic data achieves a positive correlation between predictions and observations for epithelial
cells without fine-tuning, while higher significance is observed for lymphocytes when anomalies are
used as training data. Qualitative tile inspections further reveal that Arctique can detect previously
discordant nuclei. For further details on the training process, datasets description, and metrics
comparison, see the Appendix.

3 Benchmarking uncertainty quantification methods

To showcase the capabilities of the Arctique dataset for benchmarking uncertainty quantification
methods, we study the effect of image-level and label-level uncertainties on foreground-background
segmentation (FG-BG-Seg) and semantic segmentation (Sem-Seg) [24]. To serve as a proof-of-
concept, we evaluate the performance of established algorithms on our data, namely segmentation
with a UNet backbone [32, 18], and uncertainty estimation with four popular methods, two ensemble-
based, namely Monte-Carlo Dropout (MCD, [11]) and Deep Ensembles (DE, [22]), one heuristic,
namely Test Time Augmentation (TTA, [38]), and, for comparative purposes, one deterministic model
known as Maximum Softmax Response (MSR).1 (See Appendix for implementation details).

In accordance with [20], we use the predictive entropy H[Y |x,D], conditional on the training set
D = {xi, yi}ni=1, as the uncertainty measure of our predictive distribution p(y|x,D), called predictive
uncertainty (PU). For all UQ models except MSR, we compute H[Y |x,D] in (1) by sampling from
the models and averaging over the softmax outputs. Following [7, 21], we can then perform an
information-theoretic decomposition to disentangle, respectively, the epistemic and the aleatoric
components. In this setting, the epistemic uncertainty is defined as the mutual information between
output y and model parameters ω:

H[Y |x,D]︸ ︷︷ ︸
Predictive Unc. (PU)

= I[Y ;ω|x,D]︸ ︷︷ ︸
Epistemic Unc. (EU)

+Ep(ω|D)[H[Y |x, ω]]︸ ︷︷ ︸
Aleatoric Unc. (AU)

. (1)

Eq. (1) shows that the aleatoric component correlates with the ambiguity inherent to the data and
we should expect high values when there is a mismatch between image and label [21]. In particular,
this implies that the aleatoric component is only meaningful for in-distribution data. The epistemic
component, on the other hand, correlates with the model’s lack of knowledge. It is sensitive to
out-of-distribution (OOD) data and can be compensated for by the addition of new training data.

While the UQ measures discussed so far yield pixel-wise results, we want to relate the uncertainty
measures to our image- and label-level manipulations and are thus interested to aggregate pixel-level
results to obtain uncertainty scores per image. It has been shown in [20] that the specific type of
aggregation employed can hugely influence the behavior of uncertainty metrics. To account for
this we tested the three aggregation strategies discussed in [20]: image-level aggregation, where
uncertainty scores for all pixels are summed for each image and averaged over the dataset; patch-level
aggregation, where uncertainty scores are aggregated within a sliding window and the maximum of
the patch scores is taken as the image-level score; and threshold-level aggregation, which considers
only uncertainty scores above an empirical quantile Q̂u(ŷ)(p) for a chosen uncertainty measure u,
then calculates their mean. All results presented in the main text are generated using threshold-level

1Where a deterministic model predicts a distribution p(y|x, ω), we define 1−MRS as 1−max
c

p(y = c|x, ω),
a metric employed as computationally cheap alternative to the predictive entropy [16] despite depending only on
a single model realization (see also [27]).
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Figure 2: Inference on the Lizard dataset using HoVer-NeXt (HN) models trained on Arctique:
(a) Graphical illustration of the Arctique variants used for zero-shot learning, arranged on the left by
complexity level (from most to least complex and noisy). Each variant aims to enhance the model’s
generalization across diverse structural and textural details. On the right, a schematic representation
depicts the post-processed raw class- and instance map outputs from the HN model during inference.
(b) and (c) show visual and quantitative results for instance- and semantic segmentation, respectively,
with bar plots comparing the baseline HN model trained on Lizard data (black) to the three HN
models trained on simulated datasets of varying complexity. All metrics and predictions are averaged
across 5 inference rounds, each with 16 Test-Time Augmentations. Note that the colors of the bars in
(c) correspond to the colors of celltypes in the example.

aggregation and normalization based on the image size. In the Appendix, we provide results from
alternative aggregation strategies for comparison.

In our experiments, we validate uncertainty measures using the variables defined in Eq. (1). Our
approach differs from previous studies, such as [20, 29, 10], by focusing on how well information-
theoretic definitions of aleatoric and epistemic uncertainty capture true uncertainty within our dataset,
especially for complex tasks like semantic segmentation. While some studies, like [15, 26], examine
epistemic uncertainty for segmentation, they are generally limited to in-distribution data. Additionally,
we track prediction accuracy across varying noise levels, expecting accuracy to decrease as overall
uncertainty increases.

3.1 Label Noise

In the first step, we look at the effect of uncertain labels. In biomedical data, this is a common
issue as complex and ambiguous images yield high disagreement even among expert annotators. In
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real-world images, we should expect some correlation between uncertainty in images and uncertainty
in the labels. For example, cells with lower contrast staining might be harder to identify for human
annotators leading to more missing labels. However, we believe, that there is a benefit to studying
label-noise in isolation as it can give us valuable insights into model calibration and the sensitivity of
UQ methods [6, 13, 19].

We devise two types of label-noise tailored to different segmentation tasks: Sem-Seg: Class labels are
randomly switched. The noise level reflects the probability for each single-cell label to be switched
to another class. FG-BG-Seg: Labels of single cells are manipulated by shifting, scaling, elastic
transform or completely removed (missing label). The noise-level reflects the probability that any
singe cell is affected by any of these modifications. Both types of label noise are illustrated in the top
row of Figure 3.

Figure 3 summarizes the results of uncertainty evaluation in the presence of label noise: for both
segmentation tasks, we find that performance decreases with increasing label noise. This is to be
expected as unreliable labels make it harder for the model to learn generalizable patterns. Predictive
uncertainty (PU) increases as a function of label noise across both tasks. This confirms that what
we would intuitively consider as "making the segmentation task harder" will actually decrease
performance and increase uncertainty. Further, we find that across both segmentation tasks the
majority of uncertainty stems from the aleatoric component. This is in keeping with the theoretical
claim that aleatoric uncertainty mainly captures data-inherent uncertainty.

While the aggregate measures provide a convenient way to assess how training with noisy labels
can affect a model’s uncertainty, Arctique also comes with exact labels and thus allows to study the
impacts of label manipulation on the pixel-level. Figure 3 provides a detailed example of what models
trained with and without label-noise learn about the training images. In particular, we see that when
some cell labels are consistently missing the model will not learn to identify these corresponding cells.
However, despite this, uncertainty maps still indicate high uncertainty in regions with missing labels.
This observation suggests that uncertainty quantification may offer a solution to address the common
issue of sparse annotations in biomedical images. Conversely, in densely packed regions, the model
tends to interpolate across missing labels, as seen in the epithelial crypt in the bottom left of 3(c).
Here, however, the incorrect merging of cells is not captured in the uncertainty maps, highlighting an
area for improvement in uncertainty quantification methods. This duality underscores the value of
evaluating UQ methods for their ability to handle both sparse and ambiguous label regions effectively.

3.2 Image Noise

The greatest advantage of having full control over the dataset creation is that it allows us to perform
targeted manipulations to certain aspects of the image while leaving all others unchanged. We are
thus able to create samples that gradually transform from near-OOD, where outlier and inlier classes
are quite similar, to far-OOD, where an outlier is more distinct. This method of generating data is
fundamentally different from other common strategies, such as applying augmentations like color
shifts or blur [5, 32], where we achieve global manipulations which do not correlate with input
features; or testing on images from a different domain [35] (e.g. data from a different organ) where
the exact impact on image components is unknown and uncontrolled.

For the manipulation named Nuclei-Intensity, we progressively remove staining from the cells’ nuclei
until they are virtually indistinguishable from their surroundings. This localized process preserves
contrast and details in other regions of the image and mimics potential real staining inconsistencies.
In contrast, an image-level contrast reduction operation evenly reduces it across the entire image,
affecting all elements equally. For the Blood-Stain manipulation, we progressively increase both the
red stains and the number of blood cells, simulating realistic and extreme variations in blood cell
abundance. This adjustment reflects a possible scenario in histology where red-stained artifacts may
be mistaken for cell types like eosinophils, which naturally exhibit red staining.

Figure 4 shows examples for both types of image-level manipulations and their effects on model
performance and uncertainty. Subfigure 4 (a) shows the impact of manipulating the nuclei-intensity
on the FG-BG-Seg task. As might be expected, we observe a decrease in accuracy and an increase in
the uncertainty measures as staining intensity decreases. While the aggregated effects may appear
subtle, the error maps reveal a clearly visible decline in prediction performance: as staining weakens,
the model starts to hallucinate cells in the tissue of the crypt-structures.
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Figure 3: Illustration of two types of label uncertainty and their effect on model performance
and uncertainty measure. (a) Effect of noisy class labels on Sem-Seg: illustrations on the left show
an example of possible label confusion. The two large panels in the middle show model performance
across noise levels (x-axis) as measured by accuracy and predictive uncertainty for all four UQ
methods. The two smaller panels on the right show aleatoric and epistemic uncertainty for DE, TTA
and MCD. (Note that MSR does not permit decomposition, therefore not shown.) (b) Effect of noisy
label shapes on FG-BG-Seg: subpanels analogous to (a). (c) Qualitative example of the impact of
noisy labels for FG-BG-Seg on prediction performance and how this is captured in the PU maps.

In Subfigure 4 (b) we illustrate the effect of manipulating the the blood-cells and -stains on the Sem-
Seg task. During training, the model has learned to identify eosinophil cells by their characteristic red-
brick color after staining. As the abundance of blood-cells increases, the model begins to misclassify
them as eosinophil cells as is reflected by the qualitative error maps in the top section of 4 (b) and
by the aggregated accuracy results in the bottom part of 4 (b), both of which indicate a significant
decrease in accuracy. Notably, this decrease in performance is not captured by the uncertainty
measures. In fact, the error maps reveal that regions affected by blood cells exhibit particularly low
uncertainty values, indicating that high error rates do not correlate with high uncertainty. For DE we
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Figure 4: Illustration of Image-level noise: (a) Illustration of an image undergoing decreasing
intensity of nuclei staining. The small image patches on the top illustrate qualitatively how FG-BG
prediction performance and PU (for the example of MCD) are affected as staining is removed. The
four panels on the bottom summarize for all four uncertainty methods how accuracy, PU, AU and
EU react to the gradual change in staining. (b) illustrates the effect of the increasing prevalence of
blood-cells. Similar as in (a) the small image patches on the top show the qualitative changes in
semantic prediction performance and uncertainty. Here we additionally show the error maps next to
the PU maps to highlight how blood cells are incorrectly identified as eosinophil cells, however the
model remains confident in its prediction. The four panels on the bottom are arranged analogous to
(a) and further illustrate the decrease in performance while uncertainty remains relatively unchanged.
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even observe a slight decrease in the uncertainty as the prevalence of blood cells increases, further
emphasizing the weak correlation between error rates and uncertainty values.

We conclude that both experiments demonstrate Arctique’s capabilities for in-depth analysis of
uncertainty behavior. The two manipulations highlight common challenges encountered in real-
world H&E images: without perfect labels, it becomes nearly impossible to ascertain whether high
uncertainty values indicate subtle features in the data or stem from a miscalibrated uncertainty model.
In the case of the Nuclei-Intensity alteration, the uncertainty method effectively identifies a genuine
issue. In contrast, with the Blood-Stain manipulation, the uncertainty quantification (UQ) models
demonstrate inadequacies in correctly calibrating the model.

4 Discussion

UQ carries the promise to increase the reliability of machine learning models so that these models
can be more widely deployed even in safety-critical domains. To this end, we must be confident that
the UQ methods we develop follow through on their claims. We believe that Arctique constitutes a
valuable first step for a more thorough and interpretable evaluation of UQ metrics.

While the domain of histopathology may represent a specialized domain it serves as a valuable testbed
due to its versatility and the presence of common uncertainty sources, such as missing or incorrect
labels and overlapping instances. Moreover, this domain is particularly relevant for UQ, as it is
critical for medical diagnosis and often suffers from incomplete and inaccurate annotations.

Our main goal in this publication is to introduce the Arctique dataset and illustrate its utility for
evaluating UQ methods, yet it also opens numerous promising avenues for further research. One
important follow-up would be to expand the range of studied UQ methods, particularly in Active
Learning (AL), where uncertainty plays a central role in sampling strategies. Recent studies suggest
that prioritizing high epistemic uncertainty can improve AL performance, while focusing on aleatoric
uncertainty may be less effective ([6], [28]). Arctique’s controlled uncertainty levels make it suitable
for evaluating AL sampling, integrating uncertainty into optimization, and exploring domain adapta-
tion strategies ([9], [40], [34]). In particular, Arctique allows to straightforwardly combine multiple
sources of uncertainty at any level, thus constituting a unique testbed for methodology that seeks to
disentangle AU and EU.

Our dataset can also be applied in the context of Explainable AI (XAI) evaluations, where transparent
decision-making is crucial for trustworthiness. In contrast to simpler datasets like FunnyBirds
[17], which focus on single-class tasks, Arctique offers a realistic multi-object environment. This
complexity allows XAI methods to be benchmarked on relevant concepts that reflect the characteristics
of real data, and to analyze interpretability and predictiveness across complex co-occurrence patterns,
as for example cell nuclei and cytoplasm, Finally, future research could extend our framework
with image- and label modifications, encompassing imaging modalities, tissue types, and staining
variations. We encourage users to devise their own modifications suitable to their specific evaluation
needs. A direct next step could be studying uncertainty for related tasks such as panoptic segmentation
or 3D models.

To conclude, our work contributes Arctique, a complex, realistic yet fully controllable dataset of
synthetic images, together with a broad range of "sliders" for targeted manipulation. As a proof-of-
concept, we show that we can tailor label- and image manipulations such that they are selectively
picked up by the aleatoric and epistemic components of established UQ methods, which suggests that
Arctique is a valuable resource for UQ methods development and benchmarking, with clear potential
for extensions into orthogonal methodological realms like XAI.
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