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Abstract

Long-context understanding poses significant001
challenges in natural language processing, par-002
ticularly for real-world dialogues character-003
ized by speech-based elements, high redun-004
dancy, and uneven information density. Al-005
though large language models (LLMs) achieve006
impressive results on existing benchmarks,007
these datasets fail to reflect the complexities008
of such texts, limiting their applicability to009
practical scenarios. To bridge this gap, we010
construct the first spoken long-text dataset, de-011
rived from live streams, designed to reflect the012
redundancy-rich and conversational nature of013
real-world scenarios. We design tasks across014
three main categories—retrieval-dependent,015
reasoning-dependent, and hybrid—and evalu-016
ate both popular LLMs and specialized meth-017
ods for their ability to understand long-contexts018
in these tasks. Our results reveal that current019
methods struggle to effectively process highly020
redundant texts, with clear preferences for spe-021
cific task types but no single method excelling022
across all tasks. Based on our findings, we023
propose a simple yet strong baseline that ad-024
dresses these challenges, achieving substantial025
improvements in performance. Our analysis026
offers valuable insights into the strengths and027
limitations of existing methods for processing028
spoken texts, laying the groundwork for advanc-029
ing long-text understanding in real-world ap-030
plications. As the first benchmark specifically031
designed for spoken long-text understanding,032
it not only tackles key challenges in this do-033
main but also serves as a valuable resource for034
driving innovation in e-commerce applications.035

1 Introduction036

Spoken texts, prevalent in scenarios such as di-037

alogues and live streams, are becoming increas-038

ingly common as conversational AI and real-time039

communication continue to expand. Existing stud-040

ies have demonstrated that spoken text exhibits041

unique linguistic properties (Eisenstein, 2013), par-042

ticularly high redundancy characterized by repet- 043

itive phrases and filler words. This redundancy 044

imposes significant computational challenges, in- 045

cluding increased processing overhead and difficul- 046

ties in semantic understanding. While advanced 047

LLMs support long context lengths (Touvron et al., 048

2023) and current KV cache compression meth- 049

ods (Liu et al., 2024b; Jiang et al., 2024; Pan et al., 050

2024) have been designed for written texts, their 051

ability to handle the unique redundancy patterns of 052

spoken texts remains unexplored. This gap under- 053

scores the need for specialized approaches tailored 054

to the characteristics of spoken language. 055

Generally, long contexts pose challenges for 056

both understanding and computation. LLMs of- 057

ten struggle with lengthy texts, such as the lost in 058

the middle phenomenon (Liu et al., 2024a). How- 059

ever, existing benchmarks (Bai et al., 2023; Zhang 060

et al., 2024a) for long-context understanding pre- 061

dominantly focus on written texts, neglecting the 062

informal characteristics of spoken language. Com- 063

pressing the KV cache can alleviate some of the 064

computational burden on LLMs when handling 065

long contexts, as many filler words (e.g.,, “um”, 066

“uh”) contribute unnecessary redundancy. This re- 067

quires higher compression rates and more efficient 068

context compression. Therefore, we raise two ques- 069

tions: 070

Question (1): Can base models effectively pro- 071

cess long spoken texts with informal language char- 072

acteristics? 073

Question (2): Can existing methods achieve 074

higher compression rates, for example, through the 075

combination of multiple techniques? 076

To showcase the effectiveness of current foun- 077

dation models and context compression methods 078

to long-form spoken texts, we construct a new 079

benchmark, LiveLongBench, as summarized in 080

Table 1. We construct a novel dataset recorded 081

from live streams, featuring both Chinese and En- 082

glish, with sequences averaging approximately 9̃7K 083
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Response Type Multi Span Language Style
Dataset Closed Open Explicit Semantic Spoken Texts Languages Avg. Words

LongBench ✓ ✓ En.&Zh. ~13k
∞Bench ✓ ✓ En. ~300k
Loong ✓ ✓ En.&Zh. ~110k
Marathon ✓ En. ~163k
L-Eval ✓ ✓ ✓ ✓ En.&Zh. 3k - 62k
M4LE ✓ ✓ ✓ ✓ En.&Zh. ~4k
TCELongBench ✓ ✓ ✓ En. ~18k
FinTextQA ✓ ✓ ✓ En. ~19k

LiveLongBench ✓ ✓ ✓ ✓ ✓ En.&Zh. ~97k

Table 1: Comparison of Different Long-context Benchmark Datasets.

tokens. To tackle the first question, we follow the084

study (Wang et al., 2024a) covering three perspec-085

tives: retrieval, reasoning, and hybrid tasks, and086

design a total of nine distinct tasks. For each cate-087

gory, we synthesize multiple task types to evaluate088

various model capabilities, including both open-089

domain and closed-domain tasks to measure knowl-090

edge recall and generalization. Additionally, to091

test the model’s ability to understand information092

across different context lengths, we incorporate093

tasks with both explicit spans, which require lit-094

eral matching, and semantic spans, which empha-095

size inferential comprehension. Together, these de-096

sign choices ensure that LiveLongBench provides097

a comprehensive evaluation of long-context under-098

standing, particularly in the challenging domain of099

spoken language.100

To address the second question, we first evaluate101

individual KV cache compression methods, includ-102

ing KIVI (Liu et al., 2024b), MInference (Jiang103

et al., 2024), and Lingua (Pan et al., 2024). In-104

terestingly, we discover that certain method com-105

binations achieve better performance with lower106

memory consumption compared to single ones.107

For example, using Minference+Lingua-4x out-108

performs any single method, while using KIVI-109

4bit+Minference+Lingua-2x achieves the lowest110

memory usage and still surpasses individual ap-111

proaches such as KIVI or M-Inference. To further112

balance memory efficiency and performance, we113

adopt a Data Envelopment Analysis (DEA) frame-114

work to rank all method combinations based on115

their cost-effectiveness. This analysis produces a116

practical strategy list, providing a convenient refer-117

ence for selecting optimal compression combina-118

tions according to different performance-memory119

trade-offs.120

Our contributions are summarized as follows:121

• We construct and release LiveLongBench,122

the first bilingual benchmark derived from live- 123

streaming spoken texts, designed to evaluate long- 124

context understanding and reasoning, with se- 125

quences averaging approximately ∼97K tokens. 126

• We systematically evaluate current LLMs, un- 127

covering significant performance degradation when 128

processing lengthy spoken contexts and highlight- 129

ing the unique challenges posed by informal lan- 130

guage patterns. 131

• We propose a hybrid KV cache compres- 132

sion strategy, which combines multiple compres- 133

sion methods and achieves superior performance- 134

memory trade-offs, as identified through a compre- 135

hensive DEA-based efficiency analysis. 136

• Our experimental results and analyses provide 137

new insights into long-context compression and 138

offer practical guidance for enhancing LLM perfor- 139

mance in real-world spoken-language applications. 140

2 Related Work 141

This section reviews related work in three primary 142

areas: benchmarks for long-text understanding, 143

conversational and spoken text processing, and 144

techniques for handling redundancy in NLP tasks. 145

Long-context Understanding Benchmarks. 146

Numerous benchmarks have been developed to 147

evaluate long-text understanding, predominantly 148

focusing on formal, written texts. Datasets such 149

as (Zhang et al., 2024b; Wang et al., 2024b) empha- 150

size structured, coherent, and information-dense 151

content, while tasks like document summarization, 152

information retrieval, and long-form question 153

answering have been extensively studied using 154

datasets such as NarrativeQA (Kočiskỳ et al., 155

2018), MultiNews (Fabbri et al., 2019), and 156

SQuAD 2.0 (Sulem et al., 2021). Although these 157

benchmarks have driven progress in long-text 158

understanding, their reliance on formal language 159
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overlooks the challenges posed by spoken lan-160

guage—characterized by disfluencies, redundancy,161

and variability—which leads to models that often162

struggle with real-world applications such as163

live-stream transcripts and conversational logs.164

Conversational and Spoken Text Process-165

ing. Research in conversational text process-166

ing—especially within dialogue systems and167

ASR—has produced benchmarks such as Daily-168

Dialog (Li et al., 2017), PersonaChat (Zhang,169

2018), and DSTC that typically feature short, goal-170

oriented dialogues with minimal noise and redun-171

dancy, failing to capture the full complexity of172

spontaneous speech. In contrast, corpora like173

Switchboard (Godfrey et al., 1992) and CallHome174

reflect the irregular, fragmented nature of natural175

spoken language, albeit in limited domains like176

telephony. Emerging sources from live commerce177

and streaming platforms offer a more diverse range178

of spoken data, yet systematic collection and analy-179

sis remain sparse. Recent efforts in video sum-180

marization (e.g., TVSum) and e-commerce dia-181

logue datasets highlight the need for specialized ap-182

proaches, as comprehensive solutions for long-text183

understanding in spoken contexts are still lacking.184

Spoken Long-Text Benchmarks: Gaps and Ad-185

vances Existing long-text benchmarks primarily186

target formal written language, overlooking the re-187

dundancy, informality, and variability of spoken188

texts and rarely evaluating methods for redundancy189

reduction or long-context processing on authen-190

tic spoken data. To address this gap, we introduce191

LiveLongBench—the first benchmark explicitly de-192

signed for long-text understanding in spoken con-193

texts, focusing on live streams and dialogues. As194

shown in Table 1, while LongBench (Bai et al.,195

2023) offers rich content with key evidence often196

confined to specific paragraphs, and benchmarks197

such as ∞Bench (Zhang et al., 2024a), Marathon,198

and Loong (Wang et al., 2024b) provide ultra-long199

contexts with limited question diversity, and L-200

Eval (An et al., 2023) and M4LE (Kwan et al.,201

2023) feature varied question types over shorter202

contexts, and domain-specific benchmarks like203

TCELongBench (Zhang et al., 2024b) and FinTex-204

tQA (Chen et al., 2024) target the news and finance205

domains, LiveLongBench preserves extensive con-206

text, offers a broader range of question types, and207

incorporates spoken linguistic characteristics, mak-208

ing it more representative of real-world spoken209

language.210

3 LiveLongBench 211

3.1 Basic Challenges 212

We aim to construct a dataset that captures the 213

real-world challenges associated with long-context 214

processing, particularly the issues of informal lan- 215

guage and high redundancy. Live streams, with 216

its spontaneous conversational style and repetitive 217

content, exemplifies these challenges through nu- 218

merous real-world instances, making it an ideal 219

domain for studying long spoken text understand- 220

ing. 221

Informal Language. Live-streaming e- 222

commerce data often involves conversational 223

speech, contributing to the informality of the 224

language. Unlike formal text, live-stream content 225

typically consists of short, fragmented utterances, 226

leading to a high occurrence of syntactic reduction. 227

Additionally, interactive conversations with 228

viewers frequently introduce topic drift, where 229

discussions shift abruptly, making it difficult 230

for models to maintain contextual coherence. 231

These characteristics significantly increase the 232

complexity of document understanding compared 233

to well-structured formal text.

Examples of the informal languages

▷ Syntactic Reduction:
“Big scarf The discount office.”
Verbless

“This place, the focus of our vision.”
Right-Dislocation

▷ Topic Drift:
“This handbag is made of genuine leather and comes
in three colors. I bought one for my sister last week...
Oh, by the way, did you see the movie I talked about
yesterday?” From product details to unrelated
personal topics

234

High Redundancy. Live-stream transcripts con- 235

tain a substantial amount of filler words. To empha- 236

size key product features, presenters often include 237

repetitive content ,reiterating the same information 238

multiple times. Furthermore, interactive dialogues 239

introduce additional non-informative tokens, which 240

inflate the overall length while lowering the density 241

of useful information. This high redundancy poses 242

challenges for long-context processing, requiring 243

models to efficiently filter out noise while retaining 244

essential details. 245

These inherent challenges highlight the need for 246
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Examples of the redundant content

▷ Filler Words:
“Um, okay, so, yeah, you know, like, I mean, actually,
basically...”

▷ Repetitive Content:
“This bag is beautiful, really beautiful, so beautiful! I
mean, it’s just beautiful!”

▷ Non-informative Tokens:
“This is really nice, you know? It’s just so good. Like,
really good, you know what I mean?”
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Figure 1: Distribution of Data Categories Across E-
Commerce Domains

a benchmark that not only captures the complexity247

of long-context processing but also reflects the nu-248

ances of informal language and high redundancy249

features.250

3.2 Dataset Collection251

To tackle the challenges of long-context compres-252

sion in spoken language, we introduce LiveLong-253

Bench, a novel dataset that captures the informal,254

repetitive, and dynamic nature of e-commerce live-255

stream discourse.256

Data Source. The dataset is built from Douyin e-257

commerce live streams, known for their diverse and258

dynamic Live streaming styles. We collected and259

transcribed audio from live sessions spanning 11260

major product categories and 32 subcategories, in-261

cluding apparel, electronics, beauty, and household262

goods. Figure 1 shows the distribution of product263

categories included in the dataset.264

This dataset captures the spontaneous and repet-265

itive nature of spoken language in live-stream set- 266

tings, making it highly representative of real-world 267

discourse. Each document mainly contains con- 268

tinuous host monologues, which characterized by 269

informal expressions, repetitive promotional con- 270

tent, and frequent Q&A exchanges. This diversity 271

ensures that this dataset accurately mirrors the lin- 272

guistic challenges of real-world spoken language, 273

providing a valuable benchmark for developing 274

compression methods tailored to informal and re- 275

dundant nature of spoken text. 276

Processing and Structuring. Our raw video data 277

is sourced exclusively from publicly accessible 278

Douyin live streams. To ensure complete preser- 279

vation of all information, we utilize a pre-trained 280

Whisper speech-to-text model 1 to transcribe the 281

audio, retaining all repetitions and filler words so 282

as to maintain the authenticity of the spoken con- 283

text. Based on the transcribed text, the most critical 284

step is to remove all sensitive information, such 285

as personal identifiers, during the data processing 286

phase, ensuring that the dataset is solely for re- 287

search purposes. Subsequently, we apply a filtering 288

process to remove non-informative noise, such as 289

consecutive repetition of the same sentence more 290

than ten times, thereby ensuring that the dataset re- 291

mains faithful to the informal and redundant nature 292

of live-stream discourse while enhancing its quality 293

for subsequent analyses. 294

3.3 Task Construction 295

We define three primary task categories that align 296

with the inherent characteristics of spoken language 297

(Figure 2): 1) retrieval-dependent tasks, which 298

challenge models to extract specific information 299

from lengthy and often redundant spoken content, 300

2) reasoning-dependent tasks, which require mod- 301

els to navigate informal expressions, filler words, 302

and fragmented structures to perform complex log- 303

ical inference, and 3) hybrid tasks, which combine 304

both retrieval and reasoning, reflecting real-world 305

spoken scenarios where models must identify rel- 306

evant details while simultaneously reasoning over 307

loosely structured discourse. 308

Retrieval-Dependent Tasks. Retrieval in this 309

context refers to a model’s ability to locate specific 310

information from spoken content, including iden- 311

tifying product policy (task Policy), and product 312

specifications in the single document (task Single). 313

1Whisper pre-trained on a large-scale audio corpus.
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Figure 2: Showcase of Three Evaluation Tasks in LiveLongBench

For instance, a model may be asked to find the314

listed price of a product mentioned during a live-315

stream session or verify the product’s specifications316

based on the host’s descriptions.317

Reasoning-Dependent Tasks. Reasoning refers318

to a model’s ability to infer information not ex-319

plicitly mentioned in the spoken content by lever-320

aging internal knowledge within the LLMs. This321

includes classifying a product into the correct cat-322

egory (task Class), which often requires external323

knowledge about product types and market con-324

ventions, or summarizing key points from lengthy325

and informal conversations (task Summary), where326

the model must identify and synthesize essential327

information despite the presence of redundant and328

irrelevant content. For example, a model may need329

to categorize a niche electronic gadget that is not330

explicitly labeled during the live stream or produce331

a concise summary of a promotional session.332

Hybrid Tasks. Hybrid tasks combine both re-333

trieval and reasoning, requiring models to first ex-334

tract multiple relevant pieces of information from 335

spoken content and then synthesize them through 336

reasoning to form a coherent response. This in- 337

cludes answering questions that span multiple seg- 338

ments of a live-stream transcript (task Multiple 339

Document QA), where the model must retrieve dis- 340

persed details and integrate them to provide accu- 341

rate answers, and comparing product prices (task 342

Price), which involves locating price points men- 343

tioned at different times and reasoning about differ- 344

ences or promotions. For example, a model might 345

need to compare two smartphones’ battery lives 346

and prices when the relevant information is scat- 347

tered across various moments of the live streams. 348

4 Experiments 349

Next, we present the evaluation results of Live- 350

LongBench from large language models and con- 351

text compression methods separately. 352
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Score

Retrieval Hybrid Reasoning OverallSingle Policy Avg. Multi Price Avg. Class Sum. Avg.

Human 91.5 100.0 92.1 81.8 55.4 74.9 41.0 65.8 50.0 76.3

GLM4plus 25.1 75.0 28.5 34.1 16.5 29.5 36.2 92.1 56.5 35.4
Qwen2-7B 17.1 20.0 17.3 42.0 16.7 35.4 35.7 78.1 51.1 31.5
Mistral-7B 9.0 80.0 13.8 33.9 13.5 28.6 33.8 52.1 40.5 25.2
LLaMA-8B 19.2 74.6 23.0 30.9 33.2 31.5 39.7 64.1 48.6 31.9
eCeLLM 11.5 75.0 15.8 48.4 16.9 40.2 21.4 20.0 20.9 25.6

Exact Match (%)

Retrieval Hybrid Reasoning OverallSingle Policy Avg. Multi Price Avg. Class Sum. Avg.

Human 89.1 100.0 89.8 51.4 15.4 42.0 4.8 8.3 6.1 53.5

GLM4plus 18.2 75.0 22.0 21.6 7.7 18.0 0.0 50.0 18.2 19.7
Qwen2-7B 10.9 0.0 10.2 16.2 6.7 13.7 0.0 30.8 11.2 11.7
Mistral-7B 3.6 75.0 8.5 16.2 0.0 12.0 0.0 0.0 0.0 7.8
LLaMA-8B 12.8 72.7 16.8 6.7 10.0 7.5 11.5 6.9 9.9 11.9
eCeLLM 5.5 75.0 10.2 35.1 7.7 28.0 0.0 0.0 0.0 14.1

Table 2: Performance of large language models including close sourced (GLM4) and popular open sourced (Qwen,
LLaMA and Mistral models).

4.1 Large Language Models353

Experimental Setup. We investigate whether354

foundation models can handle long and spo-355

ken queries using both closed-source models356

(GLM4plus) and open-source models (Qwen,357

LLaMA, and Mistral). Our experimental setup358

ensures that each model is evaluated under the359

same conditions, e.g., max sequence length. To360

investigate the impacts of domain-specific fine-361

tuning, we also include eCeLLM (Peng et al.,362

2024), a model fine-tuned for e-commerce, along-363

side general-purpose LLMs.364

For evaluation metrics, we use Exact Match365

(EM) (%) to measure the accuracy of model outputs366

against ground-truth answers, and a Score metric367

to provide a softer, more continuous measure of368

performance across different tasks.369

Comparison of Foundation Models. As sum-370

marized in Table 2, closed-source models gener-371

ally outperform open-source ones. It is notable372

that GLM4plus achieves the highest overall score373

(35.4). Among open-source models, LLaMA at-374

tains 31.9, closely approaching GLM4plus’s per-375

formance. Notably, task-specific variations are376

observed: Qwen2-7B excels in reasoning tasks,377

LLaMA demonstrates strong retrieval performance,378

and eCeLLM performs well in integrated tasks.379

Impacts of Domain-specific Fine-tuning. Mod-380

els pre-trained or fine-tuned on specialized domains381

(e.g., finance, e-commerce) often exhibit deeper382

knowledge in those areas, which can enhance rea- 383

soning or mitigate redundancy in domain-specific 384

tasks. Notably, eCeLLM demonstrates superior 385

performance in integrated tasks (40.2 in score and 386

28.0% exact match), likely due to its enhanced 387

domain understanding. However, this specializa- 388

tion compromises its reasoning ability, resulting in 389

the lowest reasoning score (20.9) and 0.0% exact 390

match among all evaluated models. 391

4.2 Context Compression Methods 392

LLMs show varying capabilities in long-context 393

scenarios but often face challenges due to mem- 394

ory usage and computational overhead. To address 395

these limitations, we evaluate existing context com- 396

pression methods and introduce a simple yet effec- 397

tive baseline for improving their performance. 398

Experimental Setup. We evaluate representative 399

context compression methods on LiveLongBench 400

to assess their utility for long-context understand- 401

ing and their performance across retrieval, reason- 402

ing, and hybrid tasks. The evaluated methods fall 403

into three categories: 404

• Token pruning, which directly removes to- 405

kens deemed less relevant, exemplified by LLM- 406

Lingua (Pan et al., 2024). 407

• Attention sparsification, which reduces compu- 408

tational complexity by applying sparse attention 409

mechanisms, represented by MInference (Jiang 410

et al., 2024). 411
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Figure 3: Performance of Context Compression Methods on LLaMA-3.1-8B-Instruct. “K.” denotes KIVI, “M.”
denotes MInference, and “L.” denotes LLMLingua, while “2x” and “4x” refer to compression ratios. Methods shown
in bold along the x-axis represent multi-methods. From left to right, these methods are arranged in descending order
of their Overall average score. To visually convey each method’s exact match rate (%) on different tasks, the darker
segment of each bar is computed by “Avg. Score × Exact Match”. Details are shown at Table 4 in the Appendix.

Answer the Question (1):
While closed-source models remain the
strongest, there is a clear gap compared
to humans, with retrieval tasks being the
most challenging for current models when
processing spoken texts.

• Quantization, which compresses internal key-412

value caches into lower-precision formats, as im-413

plemented by KIVI (Liu et al., 2024b).414

Additionally, we report the performance and re-415

source usage of each model when applying com-416

pression methods, ensuring a comprehensive as-417

sessment of both accuracy and efficiency. The re-418

sults are summarized in Table 4.419

Single-Method Analysis. Our analysis reveals420

that different compression methods exhibit distinct421

preferences across tasks. 1) Low-bit quantization,422

by preserving all information, performs better in423

retrieval tasks, where retaining comprehensive de-424

tails is critical. For example, KIVI, even under425

ultra-low-bit quantization, achieves the highest re-426

trieval accuracy of 80% in the policy task while427

maintaining the lowest memory usage. However,428

its performance declines in other tasks, likely due429

to excessive compression leading to information430

loss. The advantage of KIVI in retrieval is further431

KIVI 4b
KIVI 2b

MInference

Lingua 2x

Lingua 4x

K. & M.

K. & L. 2x

M. & L. 4x

M. & L. 2x

M. & L. 4x

K. & M. & L. 2x

K. & M. & L. 4x

Figure 4: Efficiency Scores Based on DEA Analysis

validated by our experiments on the “Needle in the 432

Haystack” task (See Section B), underscoring the 433

critical role of information retention in achieving 434

accurate retrieval. 2) In contrast, sparsification 435

and token pruning methods, which discard por- 436

tions of the input, struggle with retrieval due to 437

incomplete information but demonstrate superior 438

reasoning performance. For instance, LLMLin- 439

gua, with a 4x compression rate, significantly out- 440

performs other single methods in reasoning tasks. 441

This improvement is likely due to the removal of 442

redundant content, which serves as a form of noise 443

reduction, enabling models to focus on essential 444

semantic information. An empirical case study 445
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Examples of Denoising Effects of Lingua4x

▷ Oringinal Text:
“Let me show you this pair of gloves...”
<long noisy text>

“...rabbit wool thermal gloves, just 9.9 yuan per pair!
Item No. 1, available for two days. 9.9 yuan per pair,
9.9 yuan per pair!... ”
<long noisy text>
▷ Compressed Text by Lingua4x:

“...The Rabbit wool thermal gloves, just 9.9 yuan per
pair! 9.9 yuan per pair!...”

▷ Question:
“What is the price of the rabbit wool thermal gloves?”
▷ w/o Lingua4x Answer:
“8.8 yuan”
▷ w Lingua4x Answer:
“The price of the rabbit wool thermal gloves is 9.9
yuan per pair.”

demonstrates how Lingua4x, by eliminating redun-446

dancy, enhances the clarity of key information (i.e.,447

price).448

Notably, while compression methods are typi-449

cally used to reduce computational costs in formal450

text, our findings reveal that in high-redundancy451

contexts, they also offer significant denoising ef-452

fects, improving both model accuracy and overall453

performance.454

Multi-Methods Analysis. Our analysis high-455

lights that combining different compression strate-456

gies can achieve extreme sparsity without compro-457

mising performance. As shown in Table 4, the458

MInference+Lingua4x combination achieves the459

highest overall performance by balancing retrieval460

accuracy and reasoning capabilities. Its strength461

likely comes from efficient memory utilization and462

selective token retention. In comparison, MInfer-463

ence+Lingua2x excels in reasoning tasks, partic-464

ularly logical inference, due to its prioritization465

of critical tokens and attention heads, though with466

slightly lower retrieval scores. Integrating KIVI467

with Lingua and MInference maintains competitive468

retrieval performance but shows weaker reasoning469

abilities, possibly due to excessive compression470

affecting long-range coherence.471

Optimal Combination of Balancing Perfor-472

mance and Memory. To better understand the473

trade-offs between performance and memory ef-474

ficiency, we apply Data Envelopment Analysis475

(DEA), a robust method for evaluating the relative476

efficiency of different context compression strate-477

Answer the Question (2):
The combination of Minference and Lin-
gua achieves the best overall performance,
while integrating all three methods (KIVI,
Minference, and Lingua) strikes the most
balanced trade-off between performance
and memory efficiency.

gies. DEA is a non-parametric approach that treats 478

each method as a Decision-Making Unit (DMU), 479

where memory consumption is considered the input 480

and performance (measured by average score) is 481

the output. By constructing a linear programming 482

model, we assess the efficiency of each compres- 483

sion method, considering both their computational 484

cost and ability to maintain performance across 485

tasks. As shown in Figure 4, the Efficiency Scores 486

reveal crucial insights: hybrid approaches, no- 487

tably the combination of KIVI, Minference, and 488

LLMLingua2x, emerge as the most efficient con- 489

figuration overall. This hybrid strategy strikes the 490

best balance, effectively improving performance 491

while minimizing memory usage. The results high- 492

light that hybrid methods outperform individual 493

techniques by integrating complementary strengths, 494

making them an ideal choice for applications like 495

LiveLongBench, where both performance and re- 496

source constraints are critical. 497

5 Conclusion 498

In this work, we introduce LiveLongBench, the first 499

benchmark for evaluating long-context understand- 500

ing in live-stream spoken texts, featuring sequences 501

of up to 97K tokens. Our evaluation shows that cur- 502

rent LLMs suffer notable performance degradation 503

when processing lengthy, informal speech due to 504

redundancy, colloquial expressions, and complex 505

discourse structures. To address these challenges, 506

we found that a hybrid compression strategy that 507

integrates multiple techniques can improve both 508

performance and memory efficiency. Using DEA- 509

based efficiency analysis, we determine the optimal 510

balance among context length, computational cost, 511

and performance. Overall, our study offers new in- 512

sights into long-context compression and provides 513

practical guidelines for enhancing LLM efficiency 514

in real-world spoken-language applications. 515
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6 Limitations516

Our work has several limitations. First, LiveLong-517

Bench is primarily based on live-streaming content,518

which may not fully represent the variety of spoken519

language found in other domains, such as academic520

lectures or news broadcasts. However, this focus521

was chosen to capture the dynamic and informal522

nature of live communication. Second, the evalua-523

tion process involves substantial annotation effort,524

as assessing long-context understanding requires525

bilingual experts to review extensive documents.526

Future work should explore automated solutions to527

reduce this cost while maintaining high evaluation528

quality.529
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A Appendix665

A.1 Human Annotators.666

To facilitate the evaluation of LLMs, we employed667

a group of students as human annotators to provide668

gold-standard labels for the datasets used in our669

study. These human-generated scores serve as a670

reference point for comparing the performance of671

various LLMs. Next, we will introduce the annota-672

tion process in detail.673

Selection of Annotators. We selected five stu-674

dents with relevant background knowledge for the675

task. The annotators have been trained to ensure676

consistency and accuracy in their labeling, with a677

focus on the specific requirements of our dataset.678

Cost of the Annotation. The annotation task was679

carried out by five full-time students over two days.680

With each student receiving a monthly salary of681

800 RMB, the total cost for this annotation effort682

amounted to around 400 RMB.683

Quality Control. To maintain high annotation684

quality, we conducted regular quality checks685

throughout the process. This included cross-686

checking annotations from different annotators and687

resolving discrepancies through consensus or re-688

view by senior researchers.689

A.2 Further Analysis of the Data690

LiveLongBench is constructed through a system-691

atic data collection and processing pipeline, as il-692

lustrated in Figure 7. The benchmark integrates693

multiple task types relevant to long-context under-694

standing in the live-streaming e-commerce domain,695

ensuring a comprehensive evaluation of large lan-696

guage models. The detailed statistics of each task697

within LongLiveBench are presented in Table 3,698

outlining key dataset characteristics such as the699

number of instances, average context length, and700

task-specific attributes. These details provide a701

quantitative overview of the dataset composition,702

highlighting its suitability for assessing KV cache703

optimization techniques in long-context scenarios.704

Length of the Data. We present the statistics on705

the length of LifelongBench. Table 3 illustrates706

the average number of tokens, languages, and test707

instances across major categories (retrieval, reason-708

ing, hybrid) and their fine-grained subcategories.709

In addition, we use a bar plot (see Figure 6) to il-710

lustrate the distribution of data lengths in Lifelong-711

Bench. As shown, the data follows a power-law712

Figure 5: Wordcloud
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Figure 6: Distributions of the length in LiveLongBench

distribution, with the majority of instances con- 713

centrated below 220K tokens, while the overall 714

distribution extends beyond 500K tokens. 715

World Cloud. To further explore the dataset, we 716

generate a word cloud representation in Figure 5 717

that highlights the most frequent terms across the 718

various categories and subcategories of Lifelong- 719

Bench. From this result, we observe a high degree 720

of redundancy in the content, with frequent terms 721

mostly consisting of discourse markers or exclam- 722

atory phrases, rather than being closely related to 723

specific content. This observation aligns with the 724

main challenges discussed in Section 3.1. 725

B Needle-in-a-Haystack Test 726

Experimental Setup. We follow the work (Mo- 727

htashami and Jaggi, 2023) to execute the Needle-in- 728

a-Haystack Test. The corpus comprises live stream 729

transcripts characterized by high redundancy and 730
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Task Category Avg Token Language #Test Instance

Task

Retrieval 132107.62 EN, ZH 443
Reasoning 20797.54 EN, ZH 129
Hybrid 85067.58 EN, ZH 434

Sub Task

Single Product Retrieval 147893.78 EN, ZH 351
Logistics Policy 71879.97 EN, ZH 92
Multiple Product comparison 101471.92 EN, ZH 349
Price Comparison 17713.27 EN, ZH 85
Product Classification 20531.62 EN, ZH 21
Live stream Summary 24380.45 EN, ZH 69

Table 3: Data statistics of LongLiveBench.

informal, spoken language. The results are pre-731

sented in the Figure 8.732

Results. Our results highlight the unique advan-733

tage of low-bit quantization in preserving retrieval734

performance, aligning with previous findings that735

retaining more information is critical for accurate736

retrieval. KIVI effectively reduces memory usage737

while maintaining retrieval accuracy, reinforcing738

the importance of information retention in long-739

context tasks. In addition, we also observe that740

the combination of MInference+KIVI consistently741

achieves strong retrieval performance, validating742

the effectiveness of hybrid compression methods743

in balancing efficiency and accuracy.744

B.1 Needle-in-a-Haystack Test Details745

Needle-in-a-Haystack (NIAH) a style of syntheti-746

cally generated stress test designed to assess a lan-747

guage model’s ability to retrieve specific informa-748

tion embedded within a large volume of unrelated749

background text. The core task involves insert-750

ing a critical piece of information at varying posi-751

tions within different lengths of irrelevant content752

and then querying the model to recall this informa-753

tion accurately. Specifically,Mohtashami and Jaggi754

(2023) introduced a standardized passkey retrieval755

task, in which a key phrase formatted as “The pass756

key is <PASS KEY>. Remember it. <PASS KEY>757

is the pass key” is inserted into background text758

composed of repetitive generic sentences such as759

“The grass is green. The sky is blue. The sun760

is yellow. Here we go. There and back again.”761

This formulation ensures that the task is purely fo-762

cused on retrieval rather than inference. A variation763

of NIAH proposed by Greg Kamradt replaces the764

passkey with a more natural sentence, such as “The765

best thing to do in San Francisco is eat a switch and766

sit in Dolores Park on a sunny day,” which serves 767

as the retrievable target. In both formulations, the 768

objective for large language models (LLMs) re- 769

mains the same: they must successfully extract 770

the inserted key information from an overwhelm- 771

ing amount of distractor text. Our implementation 772

of the NIAH task closely follows the passkey re- 773

trieval template proposed by Mohtashami and Jaggi 774

(2023). However, we introduce two key modifica- 775

tions: (1) the use of a 7-digit passkey instead of a 776

generic phrase, and (2) the replacement of artifi- 777

cially structured background text with colloquial 778

multi-domain live-streaming transcript fragments. 779

This adjustment more closely reflects real-world 780

applications where models must filter out irrelevant 781

conversational noise while preserving and retriev- 782

ing critical embedded information. As described in 783

Arize-ai and Reid et al. (2024), the general retrieval 784

prompt structure follows: "There is an important 785

piece of information hidden inside a large volume 786

of irrelevant text. Your task is to find and mem- 787

orize it. I will later quiz you about this informa- 788

tion." A standard filler, such as excerpts from Paul 789

Graham’s essays, precedes the inserted passkey 790

phrase: "The pass key is <7-DIGIT PASS KEY>. 791

Remember it. <7-DIGIT PASS KEY> is the 792

pass key." A suffix filler follows, after 793

which the model is prompted with: "What 794

is the pass key?" 795

C Optimal Combination of Compression 796

Methods with the Effect of SelfExtend 797

To evaluate the effectiveness of various KV cache 798

compression methods and their combinations, we 799

conduct experiments on LiveLongBench using 800

LLaMA-3.1-8B-Instruct. The results, presented 801

in Table 4, illustrate the performance of individ- 802
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Figure 7: Illustrations of the Construction of LiveLongBench.

ual compression techniques as well as hybrid ap-803

proaches, providing insights into their impact on804

long-context processing. The table details the ac-805

curacy and overall scores achieved under different806

configurations, highlighting the trade-offs between807

compression efficiency and model performance.808

Building upon our evaluation of KV cache com-809

pression methods, we further explore the inte-810

gration of Self-Extend (Jin et al., 2024), a self-811

regressive extension technique designed to enhance812

inference by expanding the context window of ex-813

isting LLMs. As shown in Table 5, we incorporate814

Self-Extend into two compression method combi-815

nations: (1) the performance-optimal configuration,816

“MInference (③) + LLMLingua 4× (⑤)”, and (2)817

the resource-performance balanced configuration,818

“KIVI 4-bit (①) + MInference (③) + LLMLingua819

4× (⑤)”, identified using the DEA method. In the820

table, different compression methods are denoted821

as follows: ① for KIVI, ③ for MInference, ④ for822

LLMLingua 2×, ⑤ for LLMLingua 4×, and ⑥ for823

Self-Extend. Experimental results demonstrate that824

incorporating Self-Extend (⑥) into the resource-825

optimal method further enhances inference perfor-826

mance, reinforcing the model’s ability to process827

long-context inputs effectively.828

D Case Study on the Performance of 829

Different Compression Methods. 830

To help readers better understand the impact of 831

KV cache compression methods on predictions, 832

we provide several case studies in Figure 9 and 833

Figure 10. 834
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(e) LLMLingua + KIVI
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(f) MInference + KIVI

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h
(g) Lingua + MInference
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(h) Lingua + MInf + KIVI
Figure 8: Needle-in-a-Haystack results for each method on Llama-3-8B-Instruct. where a 20k words length input is
converted to approximately 28k tokens.

Score

Mem. Retrieval Hybrid Reasoning Overall(GB) Single Policy Avg. Multi Price Avg. Class Sum. Avg.

Full OOM - - - - - - - - - -

① KIVI 4bit 11.4 11.2 80.0 15.8 22.7 16.2 21.0 23.1 58.8 36.1 22.4
② KIVI 2bit 11.2 15.1 80.0 19.5 21.9 7.7 18.2 10.5 19.2 13.6 17.7
③ Minference 15.7 21.6 57.1 24.0 24.1 17.0 22.2 19.5 58.3 33.6 25.6
④ Lingua 2x 37.2 26.0 67.5 28.8 41.2 8.5 32.7 28.3 66.3 42.1 33.3
⑤ Lingua 4x 25.9 22.7 52.5 24.7 46.6 25.0 41.0 39.5 72.5 51.5 36.7

①+③ 11.7 18.3 75.0 22.1 29.3 18.5 26.5 22.9 56.7 35.2 26.7
①+④ 17.3 19.9 60.0 22.6 36.1 35.9 36.0 15.4 55.0 29.8 29.0
①+⑤ 15.5 17.8 60.0 20.7 35.0 11.5 28.9 12.1 55.8 28.0 24.7
③+④ 18.7 22.6 61.7 25.2 34.6 24.1 31.9 28.1 80.7 47.2 32.7
③+⑤ 18.1 26.4 61.3 28.7 46.1 42.3 45.1 34.5 81.3 51.5 39.8

①+③+④ 9.6 17.6 60.0 20.4 34.7 31.5 33.9 18.6 61.7 34.2 28.4
①+③+⑤ 7.6 17.9 40.0 19.4 28.6 14.6 25.0 12.1 58.8 29.1 23.6

Exact Match (%)

Mem. Retrieval Hybrid Reasoning Overall(GB) Single Policy Avg. Multi Price Avg. Class Sum. Avg.

Full OOM - - - - - - - - - -

① KIVI 4bit 11.4 1.8 75.0 6.8 2.7 0.0 2.0 0.0 0.0 0.0 3.5
② KIVI 2bit 11.2 5.5 75.0 10.2 2.7 0.0 2.0 0.0 0.0 0.0 4.9
③ Minference 15.7 10.9 57.1 14.0 8.1 0.0 6.0 0.0 0.0 0.0 8.0
④ Lingua 2x 37.2 14.6 50.0 17.0 18.9 0.0 14.0 0.0 16.7 6.1 13.4
⑤ Lingua 4x 25.9 10.9 25.0 11.9 18.9 7.7 16.0 14.3 8.3 12.1 13.4

①+③ 11.7 12.7 75.0 17.0 10.8 7.7 10.0 0.0 0.0 0.0 10.6
①+④ 17.3 9.1 50.0 11.9 16.2 29.4 19.7 0.0 0.0 0.0 11.9
①+⑤ 15.5 10.9 50.0 13.6 13.5 0.0 10.0 0.0 8.3 3.0 9.9
③+④ 18.7 12.5 33.3 13.9 20.0 9.5 17.3 4.8 13.0 7.8 13.7
③+⑤ 18.1 20.0 25.0 20.3 16.2 15.4 16.0 9.5 8.3 9.1 16.2

①+③+④ 9.6 9.1 50.0 11.9 10.8 7.7 10.0 0.0 0.0 0.0 8.5
①+③+⑤ 7.6 9.1 25.0 10.2 10.8 0.0 8.0 12.5 8.3 4.9 7.8

Table 4: Performance of context compression methods on LLaMA-3.1-8B-Instruct.
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Score

Mem. Retrieval Hybrid Reasoning Overall(GB) Single Policy Avg. Multi Price Avg. Class Sum. Avg.

③+⑤ 18.1 26.4 61.3 28.7 46.1 42.3 45.1 34.5 81.3 51.5 39.8
③+⑤+⑥ 18.1 18.7 68.8 22.1 39.7 43.5 40.7 36.7 72.1 50.0 35.0

①+③+⑤ 7.6 17.9 40.0 19.4 28.6 14.6 25.0 12.1 58.8 29.1 23.6
①+③+⑤+⑥ 7.6 14.6 52.5 17.2 29.7 21.5 27.6 21.4 60.8 35.8 25.2

Exact Match (%)

Mem. Retrieval Hybrid Reasoning Overall(GB) Single Policy Avg. Multi Price Avg. Class Sum. Avg.

③+⑤ 18.1 20.0 25.0 20.3 16.2 15.4 16.0 9.5 8.3 9.1 16.2
③+⑤+⑥ 18.1 12.7 25.0 13.6 16.2 7.7 14.0 14.3 25.0 18.2 14.8

①+③+⑤ 7.6 9.1 25.0 10.2 10.8 0.0 8.0 12.5 8.3 4.9 7.8
①+③+⑤+⑥ 7.6 3.6 25.0 5.1 10.8 7.7 10.0 9.5 9.1 7.3 7.8

Table 5: Optimal Combination of Compression Methods with the Effect of SelfExtend
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Figure 9: Case Study of Retrieval-Dependent & Hybrid Tasks.
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Figure 10: Case Study of Reasoning-Dependent Tasks.
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