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Abstract

Graph neural networks (GNNs) are models that allow learning with structured data of
varying sizes. Despite their popularity, theoretical understanding of the generalization of
GNNs is an under-explored topic. In this work, we expand the theoretical understanding
of both in-distribution and out-of-distribution generalization of GNNs. Firstly, we improve
upon the state-of-the-art PAC-Bayes (in-distribution) generalization bound primarily by
reducing an exponential dependency on the node degree to a linear dependency. Secondly,
utilizing tools from spectral graph theory, we prove some rigorous guarantees about the
out-of-distribution (OOD) size generalization of GNNs, where graphs in the training set
have different numbers of nodes and edges from those in the test set. To empirically verify
our theoretical findings, we conduct experiments on both synthetic and real-world graph
datasets. Our computed generalization gaps for the in-distribution case significantly improve
the state-of-the-art PAC-Bayes results. For the OOD case, experiments on community
classification tasks in large social networks show that GNNs achieve strong size generalization
performance in cases guaranteed by our theory.

1 Introduction

Graph neural networks (GNNs), first proposed in Scarselli et al. (2008), generalize artificial neural networks
from processing fixed-size data to processing arbitrary graph-structured or relational data, which can vary in
terms of the number of nodes, the number of edges, and so on. GNNs and their modern variants (Bronstein
et al., 2017; Battaglia et al., 2018) have achieved state-of-the-art results in a wide range of application
domains, including social networks (Hamilton et al., 2017), material sciences (Xie & Grossman, 2018), drug
discovery (Wieder et al., 2020), autonomous driving (Liang et al., 2020), quantum chemistry (Gilmer et al.,
2020), and particle physics (Shlomi et al., 2020).

Despite their empirical successes, the theoretical understanding of GNNs are somewhat limited. Existing
works largely focus on analyzing the expressiveness of GNNs. In particular, Xu et al. (2018) show that
GNNs are as powerful as the Weisfeiler-Lehman (WL) graph isomorphism test (Weisfeiler & Leman, 1968) in
distinguishing graphs. Chen et al. (2019) further demonstrate an equivalence between graph isomorphism
testing and universal approximation of permutation-invariant functions. Loukas (2019) show that GNNs with
certain conditions (e.g., on depth and width) are Turing universal. Chen et al. (2020) and Xu et al. (2020a)
respectively examine whether GNNs can count substructures and perform algorithmic reasoning.

In the vein of statistical learning theory, generalization analyses for GNNs have been developed to bound the
gap between training and testing errors using VC-dimension (Vapnik & Chervonenkis, 1971), Rademacher
complexity (Bartlett & Mendelson, 2002), algorithmic stability (Bousquet & Elisseeff, 2002), and PAC-Bayes
(McAllester, 2003) (a Bayesian extension of PAC learning (Valiant, 1984)). Depending on whether the
problem setup is in-distribution (ID) or out-of-distribution (OOD), i.e., whether test data comes from the
same distribution as training data, we categorize the literature into two groups.

ID Generalization Bounds. Scarselli et al. (2018) provide a VC-dimension based generalization bound for
GNNs whereas Verma & Zhang (2019) present the stability-based generalization analysis for single-layer graph
convolutional networks (GCNs) (Kipf & Welling, 2016). Both consider node classification and assume the node
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features are independent and identically-distributed (IID), which conflicts with the common relational learning
setup (e.g., semi-supervised node classification) at which GNNs excel. Relying on the neural tangent kernel
(NTK) approach (Jacot et al., 2018), Du et al. (2019) characterize the generalization bound of infinite-width
GNNs on graph classification. Garg et al. (2020) derive the Rademacher complexity based bound for message
passing GNNs on graph classification. Lv (2021) establishes results for GCNs on node classification using
Rademacher complexity as well. Based on PAC-Bayes, Liao et al. (2020) obtain a tighter bound for both
GCNs and message passing GNNs on graph classification compared to (Garg et al., 2020; Scarselli et al.,
2018). Subsequently, Ma et al. (2021) also leverage PAC-Bayes and show generalization guarantees of GNNs
on subgroups of nodes for node classification. More recently, Li et al. (2022) study the effect of graph
subsampling in the generalization of GCNs.

OOD Generalization Yehudai et al. (2021) study size generalization for GNNs — this is a specific OOD
setting where training and testing graphs differ in the number of nodes and edges. They show negative results
that specific GNNs can perfectly fit training graphs but fails on OOD testing ones. Baranwal et al. (2021)
consider specific graph generative models, i.e., the contextual stochastic block model (CSBM) (Deshpande
et al., 2018), where CSBMs during training and testing are of the same means but different number of nodes,
intra-, and inter-class edge probabilities. They present generalization guarantees for single-layer GCNs on
binary node classification tasks. Later, Maskey et al. (2022) assume yet another class of graph generative
models, i.e., graphons, where the kernel is shared across training and testing but the number of nodes and
edges could vary. They obtain generalization bounds of message passing GNNs on graph classification and
regression that depend on the Minkowski dimension of the node feature space.

Relying on a connection of over-parameterized networks and neural tangent kernel, Xu et al. (2020b) find that
task-specific architecture/feature designs help GNNs extrapolate to OOD algorithmic tasks. Wu et al. (2022a)
propose explore-to-extrapolate risk minimization framework, for which the solution is proven to provide
an optimal OOD model under the invariance and heterogeneity assumptions. Yang et al. (2022) propose a
two-stage model that both infers the latent environment and makes predictions to generalize to OOD data.
Empirical studies suggest it works well on real-world molecule datasets. Wu et al. (2022b) study a new
objective that can learn invariant and causal graph features that generalize well to OOD data empirically.
All above works follow the spirit of invariant risk minimization (Arjovsky et al., 2019) and focus on designing
new learning objectives. Instead, we provide generalization bound analysis from the traditional statistical
learning theory perspective.

Our Contributions. In this paper, we study both in-distribution and out-of-distribution generalization for
GNNs.

• For in-distribution graph classification tasks, we significantly improve the previous state-of-the-art
PAC-Bayes results in (Liao et al., 2020) by decreasing an exponential dependency on the maximum
node degree to a linear dependency.

• For OOD node classification tasks, a significant departure from previous work is that we do not
assume any known graph generative models. We instead assume GNNs are trained and tested on
subgraphs that are sampled via random walks from a single large underlying graph, as an efficient
means to generate a connected subgraph. We identify interesting cases where a graph classification
task is theoretically guaranteed to perform well at size generalization, and derive generalization
bounds.

We validate our theoretical results by conducting experiments on synthetic graphs, and also explore size
generalization on a collection of real-world social network datasets. In the in-distribution case, we observe an
improvement of several orders of magnitude in numerical calculations of the generalization bound. In the
out-of-distribution case, we validate that, in cases where the theory guarantees that size generalization works
well, the prediction accuracy on large subgraphs is always comparable to the accuracy on small subgraphs,
and in many cases is actually better.
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(a) An example of a small expander graph.
Any labelling of its nodes cannot exhibit
homophily.

(b) Example of a small barbell graph. If a labelling is exactly differen-
tiated between the two groups, then it exhibits homophily.

2 Background Information

A graph G is an abstract mathematical model for pairwise relationships, with a set of vertices V and a set
of edges E ⊆ V × V . Two vertices v1, v2 are said to be connected if (v1, v2) ∈ E. For a given graph G ∈ G
we can also denote its vertices by V (G) and edges E(G). Unless otherwise specified, we assume graphs are
undirected and without multi-edges. In machine learning, a graph (or graph-structured data) typically come
with a set of node features. Common graph based machine learning tasks include node classification (or
regression) and graph classification (or regression). We use the following notation.

• Graph data {Gi = (Vi, Ei)}mi=1 ∈ G, where G is the set of all graphs. The neighborhood of a vertex v
is denoted N (v) = {u ∈ V (Gi) : (v, u) ∈ E(Gi)}.

• Node feature xv : V → X , with X being the feature space, e.g., X = Rdv .

• Node labels y : V → Y, with Y being the set of labels, e.g., Y = [n].

Graph neural networks (GNNs). GNNs generalize regular neural networks to process data with varying
structures and dependencies. GNNs achieve this flexibility via a message passing computational process. In
particular, at the k-th step (or layer) of message passing, we update the representation h(k+1)

u of node u as
follows,

h(k+1)
u = UPDATE(h(k)

u , AGGREGATE({h(k)
v |v ∈ N (u)})). (1)

This update happens for all nodes in parallel within each message passing step. Moreover, the UPDATE
and AGGREGATE operators are shared by all nodes, which enables the same GNN to process varying-
sized graphs. Once we have finished the finite-step message passing process, we can use the output node
representations to make predictions on nodes, edges, and the graph via additionally parameterized readout
functions. This message passing framework is quite general since one can instantiate the UPDATE and
AGGREGATE operators by different neural networks. For example, the widely used Graph Convolutional
Networks (GCNs) (Kipf & Welling, 2016), which are the main interest of our work, have the form

h(k+1)
u = σ

Wk

∑
v∈N (u)∪{u}

h(k)
v√

|N (u)|
√

|N (v)|

 (2)

where one applies a linear transformation (Wk) to all node representations, a weighted-sum over the
neighborhood, and an element-wise nonlinearity (e.g., ReLU activation). Note that the learnable weights Wk

are different from layer to layer.

Homophily. “Birds of a feather flock together” goes the familiar saying. In the context of network science,
homophily is the analogous property that similar nodes group together (McPherson et al., 2001). For node
classification (or node labelling), this means that neighbouring nodes tend to have the same label. Size
generalization is plausible when the labelling of the nodes exhibits homophily. The presence of a homophilic
graph labelling implies that the labels of the nodes are unlikely to change during the course of a long random
walk on the graph.
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It is important to note that homophily is also a concept that relates to the graph topology, as not every
possible graph structure can be given a labelling that exhibits homophilic properties. An example of one
such topology where homophily is impossible is an expander graph (Hoory et al., 2006), as shown in Figure
1a, where nodes have either random or random-like edges connected to a constant number of other nodes in
the entire graph. In this case, any labelling of the nodes is far from homophilic, as can be shown using the
expansion property. A setting with more homophily is akin to a barbell graph, as shown in Figure 1b, where
there are two densely connected components, and comparatively few edges connecting the two dense regions.
If the graph labelling of interest lines up with these divisions inherent in the topology, then it is natural to
say that it exhibits a homophilic property.

Cheeger’s Inequality. A mathematical description of homophily can be given using concepts from spectral
graph theory. Cheeger’s inequality (Hoory et al., 2006) is a theorem that pertains to partitions of graphs, or
equivalently binary-valued labellings on graphs (one side of the partition is labelled 0, the other 1). A crucial
definition is the conductance, defined by

ϕ(S) = |E(S, S̄)|
|S|

∀S ⊆ V

ϕ(G) = min
|S|≤ |V |

2

ϕ(S).
(3)

Here E(S, S̄) is the set of edges connecting a node in S to a node outside of S. Cheeger’s inequality states

λ2/2 ≤ ϕ(G) ≤
√

2λ2,

where λ2 is the second-smallest eigenvalue of the normalized Laplacian1 L̃. This inequality links the real-valued
quantity λ2 to the concept of homophily. If λ2 is small then the conductance of G must also be low, by
Cheeger’s inequality. If a labelling on graph nodes f : V (G) → {0, 1} roughly agrees with a low-conductance
partition (i.e., one side of the partition S is generally labelled 0 and the complement S̄ is generally labelled 1)
then the labelling f exhibits homophily.

3 Improvement of In-Distribution PAC-Bayes Bound

The state-of-the-art generalization bounds for GNNs in the in-distribution case were formulated by Liao et al.
(2020) using the PAC-Bayes theory. Specifically, they build upon the PAC-Bayes theorem in (Neyshabur
et al., 2018) that pertains to homogeneous feedforward neural networks.

We denote one sample as z = (X, A, y) where X ∈ X , A ∈ G, and y ∈ Y are the node features, the adjacency
matrix, and the graph label respectively. Each sample is drawn from some unknown data distribution D
(with support X × G × Y) in an i.i.d. fashion. Since both training and testing samples are drawn from the
same distribution, this is the in-distribution setup. Following (Liao et al., 2020), we consider a margin loss
for multi-class graph classifications as below,

LD,γ = LD,γ(fw) = Pz∼D

(
fw(X, A)[y] ≤ γ + max

j ̸=y
fw(X, A)[j]

)
(4)

where γ > 0 is the margin parameter and fw is the model (hypothesis) parameterized by weights w. Since D
is unknown, we can not compute this true loss (risk). We instead minimize the empirical loss (risk) that is
defined on the sampled training set S as below,

LS,γ = LS,γ(fw) = 1
m

∑
z∈S

1
(

fw(Xi, Ai)[y] ≤ γ + max
j ̸=y

fw(Xi, Ai)[j]
)

, (5)

where m is the number of training samples. For simplicity, we abbreviate LD,γ(fw) and LS,γ(fw) as LD,γ
and LS,γ respectively from now on.

Our main in-distribution result bounds the gap between true and empirical risks for GCNs, shown in the
following theorem. The proof is in Appendix A.1.

1Here L̃ = D−1/2(D − A)D−1/2, where D is the diagonal matrix of vertex degrees and A is the adjacency matrix.

4



Under review as submission to TMLR

Theorem 3.1. For any B > 0, l > 1, let fw ∈ H : X × G → Rk be an l-layer GCN. Then with probability
≥ 1 − δ over the choice of an iid size-m training set S from the data distribution D, we have for any w:

LD,0 ≤ LS,γ + O


√√√√B2 d l2 (h + ln l) g({Wi}) + ln m

δ

γ2m

 , (6)

where g({Wi}) =
∏l
i=1 ∥Wi∥2

2
∑l
i=1
(
∥Wi∥2

F /∥Wi∥2
2
)

Here d equals to one plus the maximum node degree that can be achieved by the data distribution. l is the
depth, i.e., the number of layers, of GCNs. Wi is the weight matrix of GCNs in the i-th layer. B is the radius
of the minimal ℓ2 ball that contains all node features, i.e., ∀v, ∥xv∥2 ≤ B. This improves the bound in (Liao
et al., 2020), which is

LD,0 ≤ LS,γ + O


√√√√B2 dl−1 l2 h log(lh) g({Wi}) + log ml

δ

γ2m

 . (7)

Notice the exponential improvement on the degree: we improve the dl−1 factor to d, which is an enormous
improvement even for graphs with small node degrees. Furthermore, we roughly improve the dependence on
h from O(h log h) to O(h). This is a strict improvement as long as h > 1 and l > 1.

The proof of the theorem from (Liao et al., 2020) is an induction over the l layers, in which the spectral norm
of the weights and a maximum degree term is multiplied at each step. By a refined argument, we are able to
avoid passing the maximum degree term through their inductive proof. This leads to a tightening of one of
the main inequalities used in the induction proof, thus in turn resulting in substantial improvements to the
overall bound.

4 Towards A Theory for Size Generalization

In this section, we develop an out-of-distribution (OOD) generalization theory for GNNs. Since we adopt a
statistical learning viewpoint, there must necessarily be some assumptions relating the training and testing
graphs (otherwise the No-Free Lunch theorem applies). There is a tradeoff between assumptions that are
practically relevant, and those for which rigorous guarantees are provable. We have chosen assumptions that
we believe strike a balance between those objectives, at least for applications like social networks.

Size Generalization Assumptions. We consider the following setup. First, we assume that there exists
an extremely large graph G, like the user network in Twitter, so that one needs to sample subgraphs for
training and testing machine learning models. This is akin to the practical setups of (Grover & Leskovec,
2016; Hamilton et al., 2017).

The right approach to sample subgraphs is a thorny question. If we sampled vertices independently at random,
the induced subgraph would be unlikely to contain any edges, assuming that G is sparse. If we sampled edges
independently at random, they would be unlikely to share any vertices, and therefore they would simply
constitute a matching. Some approach is needed for sampling connected subgraphs, that are reflective of the
graph’s local structure. We propose an approach based on random walks.

To generate training and testing subgraphs, we run random walks of length N and M respectively on this
single large graph, where M ≫ N , and collect the subgraphs induced by these walks. GNNs are then trained
on the subgraphs induced by the shorter (length-N) walks. In testing, we assume a procedure where a
length-M random walk induced subgraph is sampled from the large subgraph. Random walks are initiated
by choosing an initial node uniformly at random from all the nodes in the graph, and at each step there is an
equal probability of selecting any of the current node’s neighbors. This is an interesting OOD problem where
training and testing graphs come from different distributions determined by the underlying large graph and
the random walk sampling with specific length. We consider the graph classification problem and assume
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that the graph label is determined by the majority of node labels within the graph, which is reasonable for
many applications that involve homophilic graphs. For the node labeling, we assume it is binary but have no
assumptions on how labels are generated. Crucially, we assume nothing about the underlying large graph;
however, our generalization error depends on the extent to which the labels are homophilic. Therefore, our
setup has advantages over some OOD setups in the literature where a generative model of graphs and labels
is explicitly assumed.

Relation with In-Distribution Result. We know the relationship between true error defined on the
unknown data distribution D and empirical error defined on the size-m training set S. Specifically, for any
GCN f , with probability at least 1 − δ, we have a general bound as follows,

LD,0 ≤ LS,γ + A(f, δ, m), (8)

where we abbreviate the bound as A(f, δ, m) and omit specific parameters like maximum node degree d.

In the size generalization problem, we use random walks with lengths N and M for collecting training and
testing subgraphs (data) respectively. We are interested in proving a statement of the following form: for any
GCN f , we have with probability at least 1 − δ,

LDM ,0 ≤ LSN ,γ + B(f, δ, m, M, N). (9)

The key detail is that DM is the distribution of subgraphs induced by random walks with length M and SN
is the training set of subgraphs induced by random walks with length N . (Again, M ≫ N .) Comparing
these two losses is the essence of our OOD result. The final term B(f, δ, m, M, N) is a general bound involving
these parameters.

Based on the in-distribution result like in Theorem 3.1, we can similarly obtain,

LDN ,0 ≤ LSN ,γ + AN (f, δ, m), (10)

where DN is the distribution of subgraphs induced by random walks with length N and AN is the general
bound. The key question boils down to: what is the relationship between LDN ,0 to LDM ,0? This question
will be answered in the following sections.

4.1 A probability bound for partition crosses

The above size generalization problem involves the distributions of random-walk-induced subgraphs from a
large graph G with two lengths: N for training and M for testing. Also, M is much larger than N . Before
we state our results, we would like to explain the simple intuition that motivates our theory:

If the random walk always stays within the same partition, then the graph label of the random-walk-induced
subgraph can be well predicted, no matter how long the random walk is.

Here a partition means the subset of nodes with the same node label. The goal of this section is to find
bounds on M for which we can provide OOD guarantees. We begin by considering a special labelling.

Special Node Labeling: Sparsest Cut. A set S that minimizes ϕ(S) (and has |S| ≤ |V |/2) is called a
sparsest cut. For simplicity assume that S is unique. Using Cheeger’s inequality, we first prove the following
probability bounds related to this sampling procedure, thereby identifying the length M for which a random
walk is likely to stay within the sparsest cut for d-regular graphs. The theorems are as follows.
Theorem 4.1. Let UM = [u1, u2, . . . , uM ] be a length-M random walk over a connected, d-regular graph G,
with u1 chosen from the stationary distribution of the nodes of G. If M ≤ d/(25/2√

λ2), then the probability
that UM crosses the sparsest-cut partition at least once is under 1/2.

Here crossing the sparsest-cut partition S means that there exists an edge (u, v) of the random walk satisfies
u ∈ S and v ∈ S̄. λ2 is the second-smallest eigenvalue of the normalized Laplacian, i.e., L = D− 1

2 (D−A)D− 1
2 .

We can easily generalize the previous theorem to an arbitrary probability δ > 0 as below.
Corollary 4.2. If M ≤ (δd)/23/2√

λ2, the probability of the above random walk UM crossing over the
sparsest-cut partition at least once is at most δ.
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General Node Labeling. Theorem 4.1 is restrictive in that it requires the partition S to be the sparsest
cut. We now modify the proof to yield a quantity that can work for any node labelling f . Specifically, let φ
be any boolean (i.e., {0, 1}-valued) labelling on the vertices of the graph. Let the positive node labelling of φ
be S = {v ∈ V (G) : φ(v) = 1}. We are interested in bounding the probability that a random walk of length
M includes an edge that crosses the positive node labelling S, i.e., an edge (u, v) satisfies u ∈ S and v ∈ S̄.
Theorem 4.3. Let φ be a boolean labelling on the nodes of a connected, d-regular graph G with positive
node labelling S (0-1 valued vector with φ[i] = 1 if vi ∈ S). Let L denote the Laplacian of G. Let
UM = [u1, u2, . . . , uM ] be a length-M random walk over G, with u1 chosen from the stationary distribution
of the nodes of G. Let Xi be the indicator variable of the event that the i-th edge of UM crosses S, i.e.,
Xi = 1

[
ui ∈ S, ui+1 ∈ S̄

]
and Yk =

∑k
i=1 Xi is the number of times that UM crosses S in the first k steps.

Let φ′ = φ − 1⃗ · (|S|/|V |) and α = φ′⊤Lφ′/∥φ′∥2
2. The conclusion is that:

if M ≤ d

25/2√
α

then Pr [YM ≥ 1] ≤ 1
2 .

Corollary 4.4. If M ≤ δd/23/2√
α, the probability of the above random walk UM at least crosses over the

positive node labelling of f once is at most δ, i.e., Pr [YM ≥ 1] ≤ δ.

The formula for α arises from an alternative formulation of Cheeger’s inequality which expresses λ2 using a
Rayleigh quotient (Spielman, 2015), in which y may be viewed as a real-valued labelling on the vertices.

λ2 = min
y⊥d·⃗1

(y⊤Ly)/(y⊤Dy)

4.2 Size Generalization Error

Recall that, in the size generalization setup, we first train a GNN model f on subgraphs induced by many
length-N random walks on G. Then during testing, given a large testing subgraph GM induced by a length-M
random walk on G, we sample a subgraph GN via a length-N random walk on GM and feed it to f to
compute the empirical (classification) error for GM . If all nodes of GM are within a single positive node
labelling, then all of their labels are the same. Therefore, no matter which subgraph GN is sampled, the
generalization error (i.e., the probability of making a wrong prediction) for GM should be the same as the
one for GN . Based on this reasoning, we have the following result.
Theorem 4.5 (Size Generalization Error). For any δ ∈ [0, 1), any M ≤ δd/23/2√

α, and any N ≤ M , then

LDM ,0 ≤ δ + LDN ,0. (11)

where LDM ,0 is the in-distribution generalization error (i.e., the probability of a wrong prediction on a subgraph
induced by a length-M random-walk).

Note that this theorem explicitly constrains M , whereas the only condition on N is that LDN ,0 is small.

Proof. Observe that, for any events F and E, we have Pr [F ] ≤ Pr [E] + Pr
[
F |Ē

]
. Let E be the event that

a length-M random walk crosses the positive node labelling of the ground truth labels, and let F be the
event that we make a wrong prediction on the induced subgraph GM . Theorem 3.1 bounds the second term,
Pr
[
F |Ē

]
, because the generalization error on GM is the same as the one on GN (subgraphs induced by

length-N random walks) when GM does not cross the positive node labelling. Corollary 4.4 bounds the first
term. Substituting the values from the previous two theorems yields the claimed inequality.

We already know the bound of the in-distribution generalization error LDN ,0 due to Theorem 3.1 — let us
call this quantity δ̂. Using this we can obtain the final result for GCNs under our OOD setup. Theorem 4.5
simply states that, if the length M ≤ (δd)/23/2√

α, with probability at least 1 − δ̂, the OOD generalization
error on large subgraphs (induced by length-M random walks) is the sum of error δ and the in-distribution
generalization bound on small subgraphs (induced by length-N random walks).
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Figure 2: Log-generalization gap values for in-distribution experiments: (a) l = 4, Synthetic (b) l = 6,
Synthetic (d) l = 4, Real-world (e) l = 6, Real-world. Accuracies for OOD experiments: (c) Synthetic
(including both homophilic (Homo) and non-homophilic (NonHomo) graphs) (f) Real-world (Twitch data).

5 Experiments

5.1 In-distribution: Numerical PAC-Bayes bound computation

We conduct multi-class graph classification experiments to compare our improved bound to the original
PAC-Bayes bound in (Liao et al., 2020). We use the same GCN model, adopt the same datasets, i.e., 6
synthetic datasets obtained from random graph models and 3 real world graph datasets used in (Yanardag &
Vishwanathan, 2015), and follow the same experimental protocol. After training a GCN on each dataset, we
compute the theoretical bounds using final model. The numerical comparisons of log bound values are
shown in Figure 2 (a), (b), (d), and (e). It is clear that our new bounds are significantly tighter and reduce
the bound values by several orders of magnitude. The gap is further increased as the depth increases. The
tables of bound values and the specific equations to compute them are provided in Appendix B.1.

5.2 Out-of-distribution: Efficacy of size generalization

We performed OOD experiments to validate the values of the upper bound on the size of large subgraphs M
that was set in Theorem 4.1 and its related theorems, for synthetic graphs. We also performed experiments on
synthetic graphs that were non-homophilic with the same values of M and N , to examine size generalization
in this case. We further examined the general feasibility of size generalization in real-world social network
data. For synthetic graphs, we calculated this theoretical value for the upper bound, and selected large
subgraph size M and small subgraph size N ≪ M accordingly. For the real-world case, we chose constant
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Graph Dataset δd

2
3
2

√
α

N M
Train
loss

ID Val.
loss

OOD Test
(sampling)

loss

OOD Test
loss

Train
acc.

ID Val.
acc.

OOD Test
(sampling)

acc.

OOD Test
acc.

CSBM (synthetic)
homo,var=2 12.3 10 20 3.9e-3 ± 1.8e-3 7.7e-3 ± 3.2e-3 2.8e-2 ± 8.3e-3 4.3e-3 ± 1.1e-3 95.0 ± 2.6 94.7 ± 2.5 83.3 ± 2.5 95.7 ± 1.2
homo,var=4 11.6 10 20 1.1e-2 ± 7.0e-4 1.8e-2 ± 7.1e-3 3.4e-2 ± 6.4e-3 1.1e-2 ± 2.9e-3 90.7 ± 1.5 87.0 ± 4.0 77.7 ± 0.6 90.7 ± 2.9
homo,var=8 11.1 10 20 2.8e-2 ± 5.5e-3 2.9e-2 ± 3.2e-3 4.3e-2 ± 4.6e-3 2.5e-2 ± 5.3e-3 78.0 ± 6.1 76.0 ± 4.4 66.7 ± 5.5 79.0 ± 6.2

non-homo,var=2 3.4 10 20 2.4e-2 ± 4.7e-3 3.3e-2 ± 1.2e-3 5.9e-2 ± 2.9e-3 3.8e-2 ± 3.2e-3 79.7 ± 2.5 69.3 ± 2.5 57.7 ± 3.5 67.3 ± 4.7
non-homo,var=4 3.4 10 20 3.5e-2 ± 1.8e-3 3.7e-2 ± 1.9e-3 4.9e-2 ± 7.3e-3 4.0e-2 ± 4.0e-3 67.3 ± 4.0 66.7 ± 2.3 58.3 ± 3.2 64.0 ± 5.6
non-homo,var=8 3.4 10 20 3.6e-2 ± 1.1e-3 4.3e-2 ± 1.7e-3 5.7e-2 ± 6.3e-3 4.7e-2 ± 5.2e-3 69.0 ± 1.0 60.7 ± 3.2 53.3 ± 3.5 55.3 ± 6.7

Twitch (real-world)
ENGB 11.9 10 50 5.4e-5 ± 9.3e-5 5.8e-2 ± 1.1e-2 1.2e-1 ± 5.1e-3 7.9e-2 ± 2.2e-2 99.9 ± 0.1 68.9 ± 4.2 44.6 ± 3.8 38.1 ± 12.7

FR 43.1 10 50 3.3e-4 ± 5.7e-4 6.4e-2 ± 5.6e-3 1.2e-1 ± 9.6e-3 8.8e-2 ± 2.4e-2 99.7 ± 0.5 65.4 ± 3.1 43.0 ± 1.9 30.7 ± 13.6
ES 46.1 10 50 1.5e-5 ± 2.6e-5 5.0e-2 ± 4.9e-3 7.9e-2 ± 8.0e-3 4.8e-2 ± 3.0e-2 100.0 ± 0.0 71.0 ± 0.4 61.2 ± 2.0 65.3 ± 17.6

PTBR 54.8 10 50 1.4e-4 ± 2.4e-4 2.5e-2 ± 1.3e-3 3.6e-2 ± 3.0e-3 2.5e-3 ± 1.6e-3 99.9 ± 0.2 85.1 ± 1.9 79.5 ± 2.9 97.8 ± 1.7
DE 74.6 10 50 7.6e-4 ± 8.2e-4 5.8e-2 ± 5.6e-3 1.1e-1 ± 7.8e-3 8.6e-2 ± 2.0e-2 99.3 ± 1.0 65.2 ± 3.3 44.1 ± 0.8 27.7 ± 8.9
RU 23.4 10 50 3.0e-4 ± 4.0e-4 4.2e-2 ± 8.3e-3 5.8e-2 ± 1.1e-2 1.7e-2 ± 4.8e-3 99.8 ± 0.2 74.3 ± 3.6 67.1 ± 3.4 86.3 ± 5.1

Table 1: Experimental results on synthetic and real-world datasets for out-of-distribution size generalization.
When computing the upper bound δd/(2 3

2
√

α) on M , we use the average degree and set δ = 0.5.

values of N = 10 and M = 50. After sampling datasets of subgraphs of sizes M and N , we train GCN models
on the dataset with N -length random walks and measure their performance on the training set, the validation
set (a smaller data set generated the same way as the train set), and the testing set (a set of subgraphs
induced by length-M random walks). On the test set we record both the performance when inputting the
whole large subgraph (denoted as OOD Test), as well as when performing the sampling procedure used for
Theorem 4.5, in which we sample an induced subgraph from an N -length random walk for each data item
(denoted as OOD Test Sampling). More experimental details can be found in Appendix B.2.

Synthetic Graphs. We adopt the CSBMs (Deshpande et al., 2018) to generate graphs that exhibit the
homophily property. We use two blocks with much higher probability of connections inside the same block
than between blocks, which leads to barbell-like graphs. In the non-homophilic case, we set these probabilities
to be equal. We generate binary node labellings via the sparsest cut. CSBMs generate node features via a
Gaussian mixture where individual choices of the component are determined by the node label. For each
subgraph, we assign as its graph label the label observed most often among its nodes. For each of the synthetic
graphs, we calculate an upper bound for M set in the OOD inequalities we have derived. Since the graphs
examined are all not d-regular, we choose the value of α to be φ⊤Lφ

φ⊤Dφ
, where L is the graph Laplacian matrix

and D is the diagonal degree matrix. This is the analog of the formula for α in Theorem 4.3, generalized to
the non-regular case. Furthermore, we use a permissive value of δ = 0.5.

The accuracy on the training set, the validation set, the testing set with subgraph sampling, and the whole
testing set are shown in Figure 2 (c), and the numerical values are shown in Table 1. In the cases of
homophilic graphs, the GCN model achieves OOD test accuracy on large subgraphs that was comparable or
even better than ID (train and validation) accuracy on small-subgraph. On non-homophilic graphs, the OOD
test accuracy becomes worse compared to the ID accuracy, which is expected as the random walks might
frequently cross labelling partitions. However, it’s noteworthy that the OOD test accuracy is only slightly
worse compared to the ID validation accuracy. These results, combined with the fact that the constraint of
d-regular graphs is violated (the upper bound is estimated with the average degree) in all cases, indicate that
our theory is promising in practice for general forms of size generalization.

Real-world Graphs. We used social network data for Twitch streamers from (Rozemberczki et al., 2019).
Each node is a streamer (Twitch user), and nodes are connected to mutual friendships. Node features are
3,169 different binary indicators of a wide array of attributes, including games liked, location, etc. Each node
is labelled with a boolean value of whether the livestreamer has indicated that they use explicit language. For
each subgraph, we assign as its graph label positive if there is at least one node label is positive. Otherwise,
we assign it as negative. We also calculate the upper bound for M using node label partition and δ = 0.5.

The results are again shown in Figure 2 (f) and Table 1. We can see that if the value of M is larger than
the upper bound (i.e., for languages “ENGB”, “FR”, “ES”, and “RU”), the OOD performances significantly
drops compared to the ID performance, except for the language “RU”. In the case of “PTBR”, where the
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upper bound 54.8 is about the same as the value of M = 50, the OOD test accuracy is significantly better
than the ID validation accuracy. These observations provide empirical validation for our theory. However, for
“DE”, the OOD performance is significantly worse compared to the ID validation performance, even though
the value of M is less than the upper bound. This might be attributed to the potential looseness of the upper
bound. Again, for the above experiments, the constraint of d-regular graphs is violated (the upper bound is
estimated with the average degree) and the situation of homophily is unknown. Overall, the results show
that our theory is still promising in explaining real-world size generalization of GNNs.

6 Discussion

In this work we have expanded the theoretical understanding of the generalizations of GNNs in both in-
distribution and out-of-distribution settings, deriving new theoretical guarantees in each setting. The results
for in-distribution learning improve upon the state-of-the art PAC-Bayes bounds in (Liao et al., 2020), and
the results for out-of-distribution learning provide insight into a practical learning setting under which GNNs
are guaranteed to perform effective size generalization. Future directions for the in-distribution understanding
would involve lowering the dependencies of other variables like the spectral norm of weights. Generalizing the
results to other problems like node classification would also be interesting. In the out-of-distribution case, a
number of different observations in experimentation indicate that the theory can still be very much expanded.
We have identified cases in real-world datasets where well beyond the bounds on size set forth in the theory,
and in all experiments the d-regularity assumption is violated, yet GCN size generalization is still effective in
these cases. Expansions to the theory, including generalizing to non-d-regular graphs, can be explored to
explain cases like these.
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A Mathematical Proofs

A.1 Proof of Theorem 3.1

The proof is as follows, and makes up the remainder of the chapter.

A.1.1 Improvement on degree dependency

In (Liao et al., 2020), a generalization bound is attained on graph convolutional networks; this bound is
dependent on a bound on the maximum perturbation of the function value when a perturbation U is applied
to the weights W , presented in that paper’s Lemma 3.1. The bound is as follows

|fw+u(X, A) − fw(X, A)|2 ≤ eBd
l−1

2

(
l∏
i=1

∥Wi∥2

)
l∑

k=1

∥Uk∥2

∥Wk∥2
(12)

The primary goal of this set of improvements is to reduce the factor of d
l−1

2 . For each layer, let Hi ∈ R|V |×h

be the matrix containing the hidden embeddings of all of the nodes in its rows, with h being the hidden
dimension. In the process of the proof of Theorem 3.1, we are able to show the following:

Φj = max
i

|Hj [i, :]|2 ≤ d
j
2 B

j∏
i=1

∥Wi∥2 (13)

Ψj = max
i

|H ′
j [i, :] − Hj [i, :]|2

≤ Bd
j
2

(
j∏
i=1

∥Wi∥2

)
j∑

k=1

∥Uk∥2

∥Wk∥2

(
1 + 1

l

)j−k
(14)

|∆l|2 =
∣∣∣∣ 1n1nH ′

l−1(Wl + Ul) − 1
n

1nHl−1Wl

∣∣∣∣
2

≤ eBd
l−1

2

(
l∏
i=1

∥Wi∥2

)[
l∑

k=1

∥Uk∥2

∥Wk∥2

]
(12)

We begin to simplify these bounds by removing the dependency on d
j
2 , replacing it instead with a fixed power

of d1/2 that remains constant for every layer, and thus in the final result of Equation 12 as well.
Theorem A.1. For all 1 ≤ j ≤ l − 1, we have:

Φj ≤
√

d B

k∏
i=1

∥Wi∥2 (15)

Ψj ≤

(
1 +

(
1 + 1

l

)j)
B

√
d

(
j∏
i=1

∥Wi∥2

)
(16)

Finally,

13

https://proceedings.mlr.press/v139/yehudai21a.html


Under review as submission to TMLR

|fw+u(X, A) − fw(X, A)|2 = |∆l|2 ≤
(

e + 1 + 2
l

)
B

√
d

l∏
i=1

∥Wi∥2 (17)

The proof follows from a lemma about the 2-norm of any node representation at any layer:
Lemma A.2. We have, for all k ∈ [n] and for j ∈ [l]:

|Hj [u, :]|2 ≤ B
√

deg(u)
(

j∏
i=1

∥Wi∥2

)
(18)

Proof. We prove this by induction. By definition |H0[u, :]|2 ≤ B and thus

|H0[u]| ≤
√

deg(u)B
0∏
k=1

∥Wk∥2.

We assume that for all u, we have

Hj−1[u, :] ≤
√

deg(u)B
j−1∏
k=1

∥Wi∥2.

From these statements we are able to deduce

|Hj [u, :]| ≤
∑
v∈Nu

L̃[u, v]|Hj−1[v, :]|2∥Wj∥2

≤
∑
v∈Nu

1√
deg(u)deg(v)

[√
deg(v)B

j−1∏
k=1

∥Wk∥2

]
∥Wj∥2

=
∑
v∈Nu

1√
deg(u)

B

(
j−1∏
k=1

∥Wk∥2

)
∥Wj∥2

= deg(u)√
deg(u)

B

j∏
k=1

∥Wk∥2

=
√

deg(u)B
j∏

k=1
∥Wk∥2

(19)

In these inequalities we use the fact that L̃[i, j] = (A + I)ij/
√

deg(i)deg(j), and we assume the simple case
where there are unweighted edges so that (A + I)ij is 1 if and only if nodes i and j are connected and 0
otherwise.

By Lemma A.2, we have that Φj = maxi |Hj [i, :]|2 ≤
√

dB
∏j
i=1 ∥Wi∥2, which is exactly the result of equation

(15).
Claim A.1. For all v ∈ [n], |∆j [v, :]|2 ≤ B

√
deg(v)

(
1 + 1

l

)j (∏j
i=1 ∥Wi∥

)(∑j
i=1

∥Ui∥
∥Wi∥

)
14
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Proof. Proof: We use induction assuming this is true for ∆j−1. We then have

|∆j [v, :]|2 ≤
∑

u∈N (v)

L̃[v, u]|H ′
j−1[u, :] − Hj−1[u, :]|2∥Wj + Uj∥2 +

∑
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∆l has a slightly different formulation but it has a very similar bound:

|∆l|2 =
∣∣∣∣ 1n1n
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(22)

From this we have proven a tighter bound on the final output of the GNN under perturbation, which we will
use to calculate probabilistic and generalization bounds.
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A.1.2 Improvement on probabilistic bounds using random matrix theory

In (Liao et al., 2020), for all i ∈ [l], with l being the number of layers, the prior and the distribution of
the perturbations Ui ∈ Rdi+1×di ,, where all hidden dimensions di are upper-bounded by a value h, were
generated by a normal distribution N (0, σ2I), and give probabilistic bounds on the operator norms ∥Ui∥ as
P (∀i, ∥Ui∥ ≤ t) with probability greater than 1−2lh exp −t2/2hσ2. We improve these bounds using theorems
on random matrices from work on high-dimensional probability, namely (Vershynin, 2018).
Theorem A.3 (Theorem 4.4.5 in (Vershynin, 2018)). Let A be a matrix in Rm×n, where the entries Aij are
independent, mean-zero, sub-Gaussian random variables. Then, for all t > 0 we have

∥A∥ ≤ CK(
√

m +
√

n + t)

with probability ≥ 1 − exp(−t2), where K = maxi,j ∥Aij∥ψ2 and C is some constant.

In the above theorem the norm ∥X∥ψ2 is defined as inf{t : E[exp(X2/t2)] ≤ 2}. In Example 2.5.8 in
(V ershynin, 2018), it is shown that if X ∼ N (0, σ2) then it has ∥X∥ψ2 ≤ Cσ.
Corollary A.4. If U ∈ Rm×n is a random matrix generated with the distribution N (0, σ2I) (i.e. all entries
are independent and identically distributed Gaussian random variables), then we have

∥U∥ ≤ σ(
√

m +
√

n + t)

with probability at least 1 − 2 exp(−t2).

With a change of variable, we are able to calculate the following:

P (∀i.∥Ui∥2 ≤ t) ≥ 1 − P (∃i, ∥Ui∥ > t)

≥ 1 −
l∑
i=1

P (∥Ui∥ > t)

≥ 1 − 2l exp
((

t

Cσ
− 2

√
h

)2
)

And by setting the right-hand side to 1/2, we obtain:

t = Cσ(2
√

h +
√

ln(4l))

Using the above equation combined with our bound we are able to get

|fw+u(X, A) − fw(X, A)|2 ≤ eB
√

dl

(
l∏
i=1

∥Wi∥2

)
l∑

k=1

∥Uk∥2

∥Wk∥2

= eB
√

dβll

l∑
k=1

∥Uk∥2

β

≤ eB
√

dβl−1l(σ(2
√

h +
√

ln(4l)))

≤ e2B
√

dβ̃l−1(σ(2
√

h +
√

ln(4l))) ≤ γ

4 (23)

Here β̃ is an estimated of β such that |β − β̃| ≤ β/l that can be generated a priori; we discuss this in a later
subsection.

We can set σ = γ

4e2Bβ̃
√
dC
(

2
√
h+

√
ln(4l)

) to satisfy the final inequality. From this we can calculate the

KL-divergence between the posterior and the prior:
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KL(Q∥P ) = |w|22
2σ2 =

16e4B2dl2β2(l−1)
(

2
√

h +
√

ln(4l)
)2

2γ2

l∑
i=1

∥Wi∥F

≤ O

(
B2dβ2ll2(h + ln(l))

γ2

l∑
i=1

∥Wi∥2
F

β2

)

≤ O

(
B2dl2 (h + ln(l))

∏l
i=1 ∥Wi∥2

γ2

l∑
i=1

∥Wi∥2
F

∥Wi∥2

)
(24)

From this we are able to calculate the generalization bound and thus prove the theorem.

LD,0 ≤ LS,γ + O


√√√√B2dl2(h + ln(l))

∏l
i=1 ∥Wi∥2

2
∑l
i=1

∥Wi∥2
F

∥Wi∥2
2

+ ln m
δ

γ2m

 (25)

A.1.3 Selecting parameter β̃

The prior normal distribution’s variance parameter σ2 is dependent on β, but β cannot be used in its
calculation because that information is only known after model training. Instead, we can select a parameter
β̂ such that |β − β̂| ≤ 1

l β and thus 1
eβl−1 ≤ β̂l−1 ≤ eβl−1 (as per equation 33 in (Liao et al., 2020)).

As in (Liao et al., 2020) we only have to consider values of β in the range

(
γ

2B
√

d

)1/l
≤ β ≤

(
γ

√
m

2B
√

d

)1/l

as otherwise the generalization bound holds trivially because LD,0 ≤ 1 by definition.

If we consider values of β̂ that cover this interval then by union bound we are still able to get a high
probability; the covering C needs to have |C| = l

2 (m 1
2l − 1).

A.2 Proofs of Out-of-distribution probability bounds

A.2.1 Proof of Theorem 4.1

Proof. Because u1 is chosen from the stationary distribution (uniform over vertices, because G is connected
and d-regular), then for all i ≥ 1 the distribution for ui, ui+1 follows the distribution Unif[E], where E is the
edge set of the graph.

Let S be the sparsest-cut partition of G. Let Xi be the indicator of the event that the vertex pair is in the
set of edges crossing the partition, namely 1{(ui, ui+1) ∈ E(S, S̄)}. By linearity of expectation, this means
that E[Xi] = |E(S, S̄)|/|E|.

Furthermore, let Yk be the cumulative number of edges crossing the partition along the first k steps of the
random walk. This is expressed nicely as Yk =

∑k
i=1 Xi. Thus E[Yk] = k |E(S,S̄)|

|E| .

Applying Markov’s inequality, we get Pr[Yk ≥ tk|E(S, S̄)|/|E|] ≤ 1/t. Suppose we wish to examine under
what conditions we can ensure that we do not cross over the partition at all in M steps, i.e. Pr[YM ≥ 1] ≤ 1/2.
From the inequality above, we are able to get that

Pr
[
YM ≥ 2M

|E(S, S̄)|
|E|

]
≤ 1

2
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just by setting k = M and t = 2. We then use the following basic fact: if we have an inequality of the form
Pr[Z ≥ z] ≤ 1

2 , then Pr[Z ≥ z′] ≤ 1
2 for any z′ ≥ z.

Let E(S) denote the set of edges connected to any vertex in S. Because |E(S)| ≤ |E|, then we have
|E(S, S̄)|/|E| ≤ |E(S, S̄)|/|E(S)|. Furthermore, since we assume a connected graph, |E(S)| ≥ (d/2)|S|, and
thus |E(S, S̄)|/|E(S)| ≤ |E(S, S̄)|/[(d/2)|S|]. 2 Thus using the fact above we can deduce

Pr
[
YM ≥ 2M

|E(S, S̄)|
(d/2)|S|

]
≤ 1

2
Note that |E(S, S̄)|/|S| is the conductance of the graph ϕ(G), because S was defined to be the sparsest-cut
partition of G. Thus we can apply the fact again with Cheeger’s inequality to get

Pr
[
YM ≥ 2M(2/d)

√
2λ2

]
≤ 1

2
And since we are interested in Pr[YM ≥ 1], we can thus set 2M

√
2λ2 ≤ 1 to get a necessary condition for M ,

from which we achieve

M ≤ d

25/2
√

λ2

This completes the proof.

A.2.2 Proof of Theorem 4.3

Proof. The quantity φ′ is a transformation of φ that retains all the information contained in φ while still
being orthogonal to the all-ones vector 1, so that we can apply Cheeger’s inequality. This orthogonalization
is rather standard and can be found in (Spielman, 2015).

Let s = |S|/|V (G)|. Note that s ∈ [0, 1], and without loss of generality we can assume that s ≤ 1/2.

We observe that the vth coordinate of the vector φ′ corresponds to the mapping

φ′(v) =
{

1 − s v ∈ S

−s v /∈ S
(26)

This ensures that φ′ is orthogonal to 1, as

φ′⊤1 =
n∑
i=1

φ′(vi) = |S|
(

1 − |S|
|V |

)
+ (|V | − |S|)

(
− |S|

|V |

)
= |S| − |V |

(
|S|
|V |

)
= 0.

We then note that ∥φ′∥2
2 =

∑n
i=1 φ′(v)2 is equal to s(1 − s)|V |, and we can infer |S|/2 ≤ ∥φ′∥2

2 ≤ |S|; the
first inequality holds since s ≤ 1/2.

The number of edges |E(S, S̄)| crossing the labelling-partition is equal to φ′⊤Lφ′, as

φ′⊤Lφ′ =
∑

(u,v)∈E

((φ(u) − s) − (φ(v) − s))2 = |E(S, S̄)|

where L is the Laplacian matrix of G.

Thus the quantity 2M |E(S,S̄)|
|E(S)| = 2M φ′⊤Lφ′

|E(S)| ≤ 2M φ′⊤Lφ′

(d/2)|S| . We are able to get the second inequality because
we know |E(S)| ≥ (d/2)|S|. Because we know that |S| ≥ ∥φ′∥2, we can then upper bound this further by
2M φ′TLφ′

(d/2)∥φ′∥2
2
. Substituting this quantity in the proof of Theorem 4.1, we achieve the desired bound for

M .
2It is important to note that this specific dependency of |E(S)| on d requires G to be a d-regular graph. If the theorem is to

be expanded to more general cases, one may use the simple inequality |E(S)| ≥ |S|.
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B Experimental Methodology and Results

B.1 In-distribution experiments

The datasets used are a combination of synthetic (Erdos-Renyi and Stochastic Block Model) and real-world
graphs (IMDBBINARY and IMDBMULTI of data from the Internet Movie Database, and COLLAB, a dataset
of academic collaborations), and a bioinformatics dataset, PROTEINS, from (Yanardag & Vishwanathan,
2015).

Two different GCN network depths of of l = 4 and l = 6 were used.

We use the following formulae for the generalization bound from (Liao et al., 2020) and our new bound, using
an explicit constant factor of 42 from (Liao et al., 2020).

GenGap(B, d, l, {Wi}li=1) =

√√√√
42 ·

B2dl−1l2 ln(4lh)
∏l
i=1 ∥Wi∥2

2
∑l
i=1

∥Wi∥2
F

∥Wi∥2
2

γ2m
(27)

Similarly, the formula used for the new PAC-Bayes generalization bound is

GenGap(B, d, l, {Wi}li=1) =

√√√√
42 ·

B2dl2(h + ln(l))
∏l
i=1 ∥Wi∥2

2
∑l
i=1

∥Wi∥2
F

∥Wi∥2
2

γ2m
(28)

We remove an additive O(log m) term in the numerator within the square root after validating that it was
numerically negligible.

Tables below are for calculated bounds in the case of 4 layers (Table 2) and 6 layers (Table 3).

Dataset (Liao et al., 2020) New bound

Synthetic
ER-1 14.985735 ± 0.071 11.727639 ± 0.071
ER-2 15.972616 ± 0.068 12.080796 ± 0.068
ER-3 16.533779 ± 0.038 12.285284 ± 0.038
ER-4 16.869156 ± 0.000 12.391819 ± 0.000
SBM-1 15.859210 ± 0.080 12.030569 ± 0.080
SBM-2 15.503044 ± 0.066 11.892126 ± 0.066

Real-world
IMDBBINARY 17.370839 ± 0.079 12.458184 ± 0.079
IMDBMULTI 16.466189 ± 0.038 11.977553 ± 0.038
COLLAB 19.773157 ± 0.009 13.574678 ± 0.009
PROTEINS 14.011104 ± 0.079 10.753008 ± 0.079

Table 2: Table of generalization bounds, 4 layers (log values)

B.2 Out-of-distribution experiments

B.2.1 Methodology

Experiments were performed to measure the effectiveness size generalization of GCN models when applied to
the size generalization learning case described in Section 4, where the learning task is classifying the most
common node label in sub-communities of a large underlying network.
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Dataset (Liao et al., 2020) New bound

Synthetic
ER-1 20.123308 ± 0.046 13.607115 ± 0.046
ER-2 21.814967 ± 0.017 14.031327 ± 0.017
ER-3 22.782537 ± 0.008 14.285547 ± 0.008
ER-4 23.377554 ± 0.021 14.422881 ± 0.021
SBM-1 21.605130 ± 0.037 13.947847 ± 0.037
SBM-2 21.028283 ± 0.047 13.806447 ± 0.047

Real-world
IMDBBINARY 24.648394 ± 0.058 14.823084 ± 0.058
IMDBMULTI 23.373624 ± 0.105 14.396352 ± 0.105
COLLAB 28.261012 ± 0.106 15.864055 ± 0.106
PROTEINS 19.421826 ± 0.059 12.905633 ± 0.059

Table 3: Table of generalization bounds, 6 layers (log values)

For each of the synthetic graphs, we calculate an upper bound for M set in the out-of-distribution inequalities
we have derived. Since the graphs examined are all not d-regular, we calculate a value of α as φ⊤Lφ

φ⊤Dφ
, where

L is the graph Laplacian matrix and D is the diagonal degree matrix, to apply to the formula set in Theorem
4.3. Furthermore, we use a more permissive value of δ = 0.75.

Similar upper bounds for M were computed for the real-world cases, but the values were too small for
experimental use. In this case, we just set N = 10 and M = 50 to attempt to gain insight about the size
generalization task’s general feasibility in real-world cases.

All experiments were performed with use of the Adam optimizer (Kingma & Ba, 2015), with a constant
learning rate 0.01. Models were trained for 10 epochs, with a batch size 32 randomly selected.

The models used are different parameterizations of the Graph Convolutional Network as implemented by the
library pytorch-geometric (Fey & Lenssen, 2019). For synthetic experiments, which used smaller graphs
with generally smaller degree, the parameterization was 3 layers with a hidden dimension of 5, and for the
real-world data case, the parameterization was 10 layers with a hidden dimension of 32.

For each underlying graph, we generate three train/validation sets (of size N random walks) and test sets (of
size M random walks) and we record the loss and accuracy as the average of the three runs.

B.2.2 Synthetic graph experiments

A large underlying synthetic graph was generated using the stochastic block model, with some adjustment
to ensure that the randomly-generated graph had a single connected component. By controlling the intra-
and inter-block connection probability values, we are able to control the homophily of the generated graph,
which we validate by measuring the value of λ2, as well as calculating the sparsest cut via “Cheeger rounding”
(Spielman, 2015) and subsequently the conductance of the graph with respect to this partition.

In the experiments, we generated a graph with approximately 6000 nodes, with in-block connectivity
probability set to 8/1000 and inter-block connectivity set to 6/105.

Node features are generated from a mixture of multivariate Gaussian distributions with dimension 3, mean
(−0.5, −0.5, −0.5) for one block, and mean (0.5, 0.5, 0.5) for the other; the covariance matrix is a diagonal
matrix (each coordinate is independent) of variance either 2, 4, or 8.

Experiments were also performed on non-homophilic synthetic graphs. Like the homophilic synthetic graphs
they are generated with the stochastic block model with about 6000 nodes, about 3000 of each label, and with
the same mixture-of-Gaussian node features. However the parameters used for the generation of connection
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are crucially different. The probabilities of connection between nodes of the same block and nodes of a
different block are set to be equal, with both being set to 8/1000. These settings ensure that a node’s label is
independent from the labels of its neighbors, so the homophily property is not exhibited.

Contrasting with the results shown for the homophilic synthetic graphs, the non-homophilic graph results
show that the out-of-distribution test accuracy is less than the training accuracy. This further illustrates the
association between homophily and size generalization.

For all experiments, we train a GCN with 3 layers, hidden dimension 5, and batch size 32 for 200 epochs. We
optimize the model using Adam optimizer with initial learning rate being 1e−3 and cosine scheduler that
decays the learning to 1e−5 in the end.

B.2.3 Real-world graph experiments

Since the node features are indicators, we encoded the node feature information by using the positional
encoding mechanism introduced in the Transformer model (Vaswani et al., 2017). For each node, each of
their integer indicators was encoded via positional embedding and aggregated via sum. For all experiments,
we train a GCN with 5 layers, hidden dimension 32, and batch size 32 for 200 epochs. We optimize the model
using Adam optimizer with initial learning rate being 1e−3 and cosine scheduler that decays the learning to
1e−5 in the end.
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