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Abstract

Although AI systems have achieved remark-
able success in hidden-information games, the
strategic implications of communication and
collusion among players remain poorly under-
stood. While systems such as Libratus demon-
strate superhuman poker performance, little at-
tention has been paid to table talk and collu-
sion during gameplay. This paper investigates
collusive behaviors between Large Language
Model (LLM) agents in a three-player variant
of Kuhn Poker. The proposed system enables
two LLM agents to communicate bidirection-
ally, exchanging private information to coordi-
nate strategies against a non-colluding oppo-
nent. Through prompt engineering to control
the extent of collusion, the study explores how
varying degrees of communication affect the
emergence, dynamics, and effectiveness of col-
lusion. Findings reveal distinct stages of collu-
sive behavior, characterized by communication
patterns and strategic gameplay decisions, pro-
viding novel insights into the interplay between
language, strategy, and ethical considerations
in AI systems.

1 Introduction

Poker is a game of incomplete information in which
players must make strategic decisions based on par-
tial knowledge of the game state and private infor-
mation about their hands. Unlike games of perfect
information such as chess or Go, poker inherently
involves uncertainty, probabilistic reasoning, and
deception. These characteristics make poker an
ideal testbed for developing AI systems capable of
navigating environments with hidden information.
Historically, poker-playing AI has excelled either
by computing optimal strategies at each decision
point (Moravčík et al., 2017) or by simplifying
complex game trees through abstractions (Brown
and Sandholm, 2017). Systems like Libratus and
Pluribus have achieved superhuman performance

by focusing strictly on in-game actions and avail-
able information.

However, real-world poker introduces a signifi-
cant dynamic that current AI poker agents largely
ignore: table talk. Human players frequently en-
gage in verbal communication, using jokes, bluffs,
misinformation, and even collusion to influence
opponents’ decisions and gain strategic advantages.
These communication patterns closely resemble in-
teractions found in real-world situations, such as
negotiations, auctions, or sales scenarios, where
strategic conversation can determine outcomes.
Understanding how communication affects strate-
gic behavior in competitive settings remains an
open and vital challenge in artificial intelligence
research.

Collusion and communication between AI sys-
tems also raise significant ethical concerns, particu-
larly as AI increasingly participates in interactions
involving humans and other AI agents in practical
applications. For example, in financial markets,
online negotiations, and automated content gener-
ation, collaboration—or more troublingly, collu-
sion—among AI agents can lead to adverse effects,
including market manipulation or regulatory viola-
tions. By exploring how AI agents could misuse
communication strategies, researchers can better
anticipate and mitigate risks associated with de-
ploying AI systems in sensitive real-world contexts.

To address this research gap, I introduce Loki, a
novel system designed to play Kuhn Poker using
a Large Language Model (LLM). In contrast to
traditional poker bots that operate solely through
predefined actions and strategies, Loki integrates
strategic gameplay with natural language commu-
nication, enabling interaction and cooperation with
a partner at the poker table. Through these interac-
tions, Loki explicitly shares information and collab-
orates strategically against a third, non-colluding
player, effectively simulating collusive behaviors.
By analyzing how Loki communicates and adjusts



its strategies, this study aims to advance our under-
standing of language’s role in strategic decision-
making processes. In this paper, I detail Loki’s sys-
tem architecture, evaluate its performance against
standard baseline policies, and discuss the broader
implications of collusion in AI-driven communica-
tion.

2 Related Work

2.1 LLM-Based Negotiation

CICERO (FAIR) achieved superhuman perfor-
mance in Diplomacy by integrating strategic plan-
ning with natural language communication, empha-
sizing relationship-building and trust in long-term
cooperative scenarios. My work, Loki, builds on
this integration but pivots towards explicitly simu-
lating collusive strategies, examining how natural
language communication can be strategically mis-
used to coordinate against a third player in compet-
itive, zero-sum environments.

2.2 Deception and Collusion in Multi-Agent
Communication.

Recent studies have underscored the deceptive po-
tential of large language models (LLMs) in multi-
agent contexts. Building upon this, Motwani et
al.(Motwani et al., 2025) introduced secret collu-
sion through steganographic communication chan-
nels, demonstrating how LLMs can communicate
covertly within public dialogue. In contrast, Fish
et al.(Fish et al., 2024) observed tacit collusion
arising from behavioral adaptation in economic set-
tings, without explicit prompting or reward. To
further investigate these dynamics, my approach
explicitly introduces private and controlled commu-
nication channels, enabling a direct examination of
the stages and effectiveness of verbal collusion.

2.3 Counterfactual Regret Minimization

Counterfactual Regret Minimization (CFR) approx-
imates Nash equilibrium strategies in imperfect-
information games through iterative regret mini-
mization (Zinkevich et al., 2007). In my Kuhn
Poker implementation, CFR generates baseline
equilibrium policies to evaluate Loki’s deviations.
By comparing agents’ win rates and decision-
making behaviors against these equilibrium strate-
gies, I quantify the strategic shifts attributable to
collusive communication, thus assessing the impact
of explicit collusion facilitated by natural language
interactions.

3 Methodology

3.1 Custom Kuhn Poker Environment

To explore strategic decision-making in a simpli-
fied yet informative setting, I developed a custom
implementation of Kuhn poker within the OpenAI
Gym framework. This environment extends the
standard 2-player Kuhn poker to a 3-player variant,
incorporating elements of incomplete information
and multi-agent interaction.

The custom Kuhn poker environment utilizes a 5-
card deck, numbered 0− 4. Each player receives a
randomly assigned card without replacement, sim-
ulating the private information aspect of real-world
poker. The game proceeds through multiple rounds
of betting, allowing for strategic decision-making
and interaction between players.

Players have three possible actions:

• Raise: Increase the maximum ante of the cur-
rent round by 1.

• Call/Check: Match the current maximum bet
to remain in the game or pass the turn when
no bets have been made.

• Fold: Forfeit the current ante and exit the
game.

To manage complexity, betting is limited to in-
crements of 1, and each player can raise only once
per round, resulting in a maximum of four betting
rounds. An initial ante of 1 is required from each
player to ensure engagement and incentivize win-
ning the pot.

3.1.1 Collusion Payoff
To model and evaluate collusive strategies, I de-
fined a collusion payoff function that distributes
the combined rewards of colluding players evenly:

Rcollusion(A,B) =
R(A) +R(B)

2
(1)

This approach discourages direct exploitation of
a colluding partner’s card and encourages maxi-
mizing the joint reward against the non-colluding
opponent. By pooling rewards, colluding players
focus on winning from the third player (C), rather
than competing against each other based on their
known hands.

To establish baselines, I implemented Counter-
factual Regret Minimization (CFR) to compute op-
timal policies for individual players. Additionally,



Figure 1: Simulation of "table talk" between two LLM
players (A and B) colluding against an optimal CFR
player (C).

I developed a strategy distillation approach to com-
bine individual strategies into effective joint col-
lusion strategies. The Loki system incorporates
bidirectional communication between two collud-
ing Large Language Model (LLM) players (A and
B), playing against a non-colluding opponent (C).

The experimental setup involved two prompting
strategies: a baseline approach where LLMs played
the game without specific collusion instructions,
and a collusion approach where agents were explic-
itly instructed to share information and cooperate
to maximize their combined payoff.

3.2 Bidirectional Communication

The Loki system implements bidirectional commu-
nication between two colluding LLM players (A
and B) playing against a third player (C) who fol-
lows optimal CFR strategies. The communication
flow works as follows:

1. Each LLM agent receives game context in-
cluding its own private card information

2. When agent A’s turn comes, it:
- Receives any previous message from agent B
- Generates a message to send to B
- Determines its game action based on this com-

munication
3. This context is passed to agent B who follows

the same process
This context exchange creates a natural "table

talk" that allows information sharing between col-
luding players. In the following notation, an ar-
row (→) represents a message being sent from one
player to another. The communication can be rep-
resented formally as:

A→ B = PromptA(ContextA concat (B → A))

Context′A = Concat(ContextA, B → A,A→ B)

I tested two prompting approaches: a baseline
where LLMs simply play the game without explicit
collusion instructions, and a collusion approach
where agents are explicitly instructed to share in-
formation and cooperate to maximize joint rewards.

Figure 2: Baseline CFR Collusion advantage heatmap.
Red indicates positive advantage for colluding players;
blue indicates negative advantage. White squares repre-
sent unreachable states (duplicate cards).

Hand [0, 1, 4] [2, 3, 4] [3, 4, 0]

CFR 2.95 2.85 −1.14
CFR 2.13 2.99 -1.00

Collusion
LLM Base 2.32 2.19 -0.95

LLM 2.00 3.12 −1.34
Collusion

Table 1: Expected Value for Player C each selected hand
based on various playing methods. 100 games were
simulated for each hand, and for each LLM prompting
method.

4 Experimentation and Results

For the CFR baseline, I ran 100, 000 simulations
to estimate Nash equilibrium policies.

Figure 2 illustrates the theoretical advantage of
collusion across various card distributions, reveal-
ing an average benefit of 0.0078. While collusion
generally has a limited impact on most card com-
binations, it can lead to significant deviations in
specific scenarios. For instance, when colluding
players hold cards 3 and 1, respectively, and Player
3 holds card 2, their expected value (EV) drops
by 1.094 compared to the non-colluding baseline.
Conversely, a card combination of 0 and 1 for the
colluding players, with Player 3 holding card 3,
yields a considerably higher EV (1.153) than the
baseline.

Initial experiments used GPT-4o mini across
three representative hand combinations for 100
games each.

LLMs without specific collusion training tend
to play more randomly, with EVs closer to zero



than optimal policies. In the [0, 1, 4] scenario,
LLM collusion matches the performance of op-
timal CFR collusion, successfully identifying that
folding weak hands is best. In other scenarios,
LLM collusion captures some but not all of the
theoretical advantage.

4.1 Open Communication

One key area for future work would be to allow
three LLM players to interact with each other freely,
instead of pre-defining fixed interactions in Loki’s
current environment. Instead of forcing Player A
and Player B to collude, there could be situations
where Player A betrays Player B. Furthermore,
implmenting Player C as an LLM that could ob-
serve the dialogue between Player A and Player
B could improve performance or potentially ex-
ploit the other two players’ communication. These
questions are all open to be answered with a more
flexible environment and more development time.

4.2 Environment Improvements

Future development also includes the implemen-
tation of variable player stack sizes, along with
an option for human players to interact with and
compete against the bot opponents. Introducing
stack sizes, however, requires a re-evaluation of the
current betting system. The existing implementa-
tion uses a fixed raise increment of one unit, which
would be incompatible with varying stack depths
and the strategic implications they introduce.

5 Integrating Advanced Reasoning
Models

Recent advances in reasoning capabilities of LLMs
present an opportunity to potentially enhance
strategic decision-making in Loki. Models with
Chain-of-Thought (CoT) and Tree of Thoughts
(ToT) capabilities have demonstrated improved per-
formance on tasks requiring multi-step thinking
(DeepSeek-AI et al., 2025; Guan et al., 2025).

We propose testing with Claude 3 and GPT-4
using reasoning-enhanced prompting, which could
show promising results for poker strategy:

• Strategic Calculation: Potentially better abil-
ity to calculate pot odds and adjust strategies
based on expected value

• Collusion Optimization: More sophisticated
collusion strategies that might better approxi-
mate theoretical optimal policies

• Communication Efficiency: Potentially
more effective information exchange requir-
ing fewer messages

This proposed research would focus on: (1) train-
ing collusion agents using Direct Preference Opti-
mization to maximize joint reward; (2) establishing
how communication patterns evolve with increas-
ing collusion sophistication; (3) testing a wider
range of LLMs including open-source models; (4)
allowing free interaction between all three players;
and (5) expanding the environment to include more
realistic poker dynamics.

6 Limitations/Future Work

This study has several limitations that should be
acknowledged. First, the experiments were con-
ducted with a limited budget, resulting in only 100
runs per condition, which may not be sufficient to
fully characterize the variance in LLM behavior.
Second, the simplified Kuhn Poker environment,
while useful for initial exploration, may not gener-
alize to more complex poker variants or real-world
strategic interactions. Third, the current implemen-
tation only allows for predetermined collusion be-
tween two players, rather than emergent collusion,
which limits our understanding of how collusion
might naturally develop. Finally, the LLM used
(GPT-4o mini) has limitations in its strategic rea-
soning capabilities, and results might differ with
more sophisticated models.
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Appendix

Prompts
Example Baseline Prompt:
"You are an expert in playing the Kuhn Poker
game. There are three players including player_0,
player_1, and player_2. There are a total of five
possible cards in this game, which are the 10, Jack,
Queen, King, and Ace. The Ace is the highest
card that beats all other cards, while the 10 is the
worst card that loses to every other card. At the
start of the game, each player is dealt a unique card.
Then the game takes turns between each player,
starting at a random player and incrementing by
player number, where each player has a choice to
act. During each player’s turn, they can choose to
either fold, call, or raise.

The game is currently your turn. Your card is the
Jack. Choose an action out of the action space."

Example Collusion Prompt:
"You are an expert in playing the Kuhn Poker
game. There are three players including player_0,
player_1, and player_2. There are a total of five
possible cards in this game, which are the 10, Jack,
Queen, King, and Ace. The Ace is the highest
card that beats all other cards, while the 10 is the
worst card that loses to every other card. At the

start of the game, each player is dealt a unique card.
Then the game takes turns between each player,
starting at a random player and incrementing by
player number, where each player has a choice to
act. During each player’s turn, they can choose to
either fold, call, or raise.

The game is currently your turn. Your partner
player_1 has the Queen, and wants to work with
you to take advantage of player_2. If either you
or player_1 win the pot, the value of the pot
will be evenly shared between you and player_1.
Your card is the Jack. Choose an action out of the
action space."

Algorithms

Algorithm 1 Counterfactual Regret Minimization
Input: Player, Environment
Output: (State:Policy) dictionary

1: if game is done then
2: return Rewards
3: else
4: for action a in player actions do
5: e = Deepcopy current environment
6: e takes a
7: CFR(Next Player, e)
8: Calculate Regret
9: Update Policy

10: end for
11: end if
12: return Rewards
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Algorithm 2 Collusion Training Rollout
Input: Number of rounds N , prompts promptact,
promptcollusion
Output: Buffers BA, BB

1: Initialize player positions player_pos =
[0, 1, 2]

2: Initialize buffers BA = {},BB = {}
3: for round = 1 to N do
4: for pos in Permute(player_pos) do
5: Initialize new LLMs with clear context:
6: A = LLM(promptact, promptcollusion)
7: B = LLM(promptact, promptcollusion)
8: Reset environment with current player:

env.reset(current_player = pos[0])
9: Initialize collusion message:

collusion_message = ∅
10: Rollout(env, A,B, collusion_message,BA,BB)
11: end for
12: end for

Algorithm 3 Distill CFR Strategies
Input: Players, Hand, Bets, Folds, CFR
Output: State’s Distilled Strategy

1: distill_strategy ← 0
2: norm_factor ← 0.0
3: for player, state, strategy in CFR Strategies

do
4: if curr_player ̸∈ players then
5: continue
6: end if
7: if {hand, bets, folds} ∈ state then
8: weight← CFR state probability
9: distill_strategy ← distill_strategy +

weight · strategy
sum(strategy)

10: norm_factor ← norm_factor +
weight

11: end if
12: end for
13: if norm_factor > 0 then
14: return distill_strategy

norm_factor
15: else
16: return 1

ACTION_SPACE
17: end if

Algorithm 4 Preference Training via DPO
Input: Buffers BA, BB
Output: Updated policies πA, πB

1: for each player P in {A,B} do
2: for each information state s in BP do
3: Collect messages {mi} and expected val-

ues {vi} from BP [s]
4: for all pairs (mi,mj) where vi > vj do
5: Create preference pair (mi,mj)
6: end for
7: Update policy πP using DPO with the

preference pairs
8: end for
9: end for
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