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Abstract
Generative models, such as diffusion-based mod-
els and large language models, have become in-
creasingly popular in cheminformatics research.
These models have shown promise in accelerating
the discovery of molecules. However, they are
hindered by data scarcity and struggle to accu-
rately generate molecules when the desired prop-
erties lie outside the range of the training data, a
task known as tail extrapolation in statistics. To
this end, we propose tail-extrapolative generative
models in this work. The key idea is to adapt
pre-additive noise models, which can provably
perform tail extrapolation in classical regression
tasks, to a variety of conditional generative mod-
els. Across empirical studies, we find that tail-
extrapolative generative models exhibit improved
extrapolation capabilities. They enable the gen-
eration of molecules with properties that more
closely align with desired targets. Furthermore,
these models enhance the diversity of the gener-
ated molecules compared to existing approaches,
representing an advancement in molecular design.

1. Introduction
Discovering new molecules with desired properties is
needed to address critical technological challenges ranging
from energy storage to drug-molecule development. The
traditional trial-and-error approach of synthesizing and test-
ing molecules is expensive, inefficient, and time-consuming.
Likewise, it is too computationally expensive to use purely
quantum mechanical calculations to adequately screen the
vast space of possible molecules for target applications.
Thus, it is important to develop machine learning meth-
ods that efficiently navigate chemical space to discover
molecules capable of addressing important problems.

Generative models are a promising approach to address the
molecule discovery challenge (Bilodeau et al., 2022). Al-
though generative modeling approaches have demonstrated
utility for generating new molecules with target properties,
they are hindered by data scarcity and struggle to accurately

generate molecules when the desired properties lie outside
the range of the training data, a task known as tail extrapo-
lation in statistics. It is important to emphasize that when
trying to generate new molecules, researchers typically look
for molecules that have exceptional properties, thus making
them rare and likely outside the range of the training data.
Here we aim to address this challenge via tail extrapolative
conditional molecule generation.

Generally speaking, we are interested in property-
constrained sampling (Bilodeau et al., 2022; Anstine &
Isayev, 2023). Formally, let f : M 7→ Y be the oracle
function that maps the molecule M ∈ M to the proper-
ties y ∈ Y . Property-constrained sampling learns the dis-
tribution p(M) given a set of N molecules {Mi}Ni=1 and
samples new molecules that satisfy the property constraints
Mnew ∼ p(M | y), given the desired property y.

1.1. Molecule representations and conditional
generative models

One popular representation of a molecule M is a molec-
ular formula string, expressed as a sequence of sym-
bols (s0, s1, . . . , sn), such as Simplified molecular-input
line-entry system (SMILES) (Weininger, 1988) and Self-
referencing embedded strings (SELFIES) (Krenn et al.,
2020). If the 3D geometry is also available, a molecule
M containing n atoms can be expressed as M = (x,v)
where x ∈ Rn×3 denotes the Cartesian coordinates for each
of the j = 1, . . . , n atoms in the system, v ∈ Rn×d de-
notes the attribute matrix, containing d atom features (e.g.,
atom type, atom charge, etc.). Given different molecule
representations, different generative models are designed
accordingly.

1.1.1. CONDITIONAL GENERATIVE MODELS FOR 3D
MOLECULAR DATA

For data that contains continuous 3D coordinates, one can
leverage diffusion-based models (Ho et al., 2020; Sohl-
Dickstein et al., 2015; Song et al., 2021; Song & Ermon,
2019; Song et al., 2020), which have achieved great suc-
cess in image generation tasks and demonstrated an even
higher quality of image synthesis performance (Dhariwal &
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Nichol, 2021) compared to variational autoencoders (VAEs)
(Kingma & Welling, 2022; van den Oord et al., 2017; Razavi
et al., 2019), flows (Dinh et al., 2017; Kingma & Dhariwal,
2018; Rezende & Mohamed, 2015), auto-regressive mod-
els (Menick & Kalchbrenner, 2018; Oord et al., 2016), and
generative adversarial networks (GANs) (Goodfellow et al.,
2014; Karras et al., 2020; 2021).

Diffusion-based property-constrained sampling often as-
sumes a conditional forward diffusion process on the con-
catenated 3D atom coordinates and atom attributes [x,v]
and a conditional generative denoising process using equiv-
ariant neural networks, both defined as Markov chains.
The conditional forward diffusion process gradually injects
Gaussian noise ε ∼ N (0, I) into data, q(zt | [x, v]) =
αt[x, v] + σtεt, where αt, σt ∈ R+ are hyperparameters
that controls the noising process, and zt = [z

(x)
t , z

(v)
t ],

t = 0, 1, . . . , T is a sequence of the concatenated latent
representation of the positions and the latent representa-
tion of the atom attributes. The conditional reverse process
starts from a noise distribution p(zT | y) = p(zT ), and
learns to recover data distribution with pθ([x,v] | y) =∫
p(zT ) pθ([x,v], z0:T−1 | zT , y) dz0:T , with the reverse

denoising process pθ([x,v], z0:T−1 | zT , y) = pθ([x,v] |
z0, y)

∏T
t=1 pθ(zt−1 | zt, y). The conditional distribution

pθ(zt−1 | zt, y) can be parametrized in terms of a noise
prediction model, where a neural network εθ is trained to
predict the Gaussian noise ε with zt (Kingma et al., 2021)
with the tth step Kullback–Leibler (KL) divergence loss ℓt,
defined as ℓt := KL

(
q(zt−1 | zt, (x, v), y) ∥ pθ(zt−1 |

zt, y)
)
= Eε

[
∥ε− εθ(zt, y)∥2

]
.

Equivariant molecule generative models As molecules
are naturally represented as graphs, where atoms are nodes
and chemical bonds are edges, Graph Neural Networks
(GNNs) become an ideal choice to equip these generative
models for modeling the relationships between atoms and
the overall topology of the molecule. Furthermore, the re-
markable physical properties that the molecular systems
possess can be readily introduced into the generative model
as an inductive bias for improved learning performance.
Equivariant Graph Neural Networks (GNNs) that preserve
permutation symmetry and respect SE(3) symmetries have
been developed to model εθ(zt, y) and shown great improve-
ment over the generic GNNs (Köhler et al., 2020; Satorras
et al., 2021; Xu et al., 2022; Guan et al., 2023).

Classifier and classifier-free guidance with unlabeled
data In practice, it is often the case that the available
labeled dataset (with y known) is small because of the
high computational cost of calculating properties. On the
other hand, unlabeled data (with y unknown) can often
be gathered with a much lower cost are usually and are
more accessible. To make use of the abundant unlabeled

data, classifier guidance (CG) (Dhariwal & Nichol, 2021)
or classifier-free guidance (CFG) (Ho & Salimans, 2022)
can be used in combination with generative models (Zeni
et al., 2023). In particular, CG is a technique used in
generative models to steer the generation process toward
desired classes or conditions by using an auxiliary classi-
fier p(y | zt) trained on the unlabeled samples, whereas
CFG allows the generative model to be trained to handle
both conditional and unconditional generation without re-
lying on an auxiliary classifier. It applies a guidance fac-
tor ω to the conditional distribution p(zt | y), such that
pω(zt | y) ∝ p(y | zt)ωp(zt) ∝ p(zt | y)ωp(zt)1−ω is
used instead of p(zt) when evaluating the model score dur-
ing the reverse process in the conditional setting. In the
sampling stage, given the target property value y, instead of
εθ(zt, y), CFG computes the tth step noise variable εt

εt = (1 + ω) εθ(zt, y)− ω ε(zt). (1)

In this paper, we use diffusion models with classifier-free
guidance with ω = 5 to utilize the unlabeled data samples.

1.1.2. CONDITIONAL GENERATIVE MODELS FOR
MOLECULAR STRINGS

The string representation enables the application of lan-
guage modeling techniques to the field of cheminformatics
(M. Bran et al., 2024). By treating molecular sequences
similarly to natural language texts, one can leverage Natural
Language Processing (NLP) models, such as transformers,
to understand and generate new molecular structures (Born
& Manica, 2023; Bagal et al., 2022; Frey et al., 2023).

For unconditional molecule generation, transformer-based
models for molecule language modeling factorize the
probability of the molecule p(M) = q(s1, . . . , sn) into
a product of conditional probabilities q(s1, . . . , sn) =
q(s1)

∏n
i=2 q(si | s1, . . . , si−1) (Frey et al., 2023). There

are various ways to adapt unconditional molecule gener-
ation for conditional generation. Born & Manica (2023)
proposed converting numerical property values into tokens;
the input for transformers is then defined by a concatena-
tion of property tokens and textual tokens. This approach
leverages existing tokenization and embedding mechanisms,
simplifying implementation. With pretrained embeddings,
numerical tokens might benefit from rich contextual infor-
mation derived from large corpora. However, converting
numerical values to tokens can lead to a loss of precision,
and pretrained embeddings might not effectively capture the
nuances of numerical values, as they are primarily trained
on text data. The loss of precision and contextual irrelevance
can be especially problematic for tail extrapolation.

To capture the precise nature of numerical values, one can
augment the unconditional large language model with an
additional encoder that maps property conditions to con-
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tinuous embeddings. The resulting embeddings are con-
catenated at the start of the sequence of token embeddings
(Bagal et al., 2022). Such a separate encoder can capture
the precise nature of numerical values, allowing for finer
granularity and better handling of continuous data. Con-
ceptually, it models the following conditional probabili-
ties (with the property conditioning through an encoder),
p(s1, . . . , sn | y) = p(s1 | y)

∏n
i=2 p(si | s1, . . . , si−1, y).

The augmented transformer is trained such that the predicted
tokens result from attention to both the previous tokens and
the conditions. The model is trained by minimizing the
cross-entropy loss between the predicted logits and the se-
quence token embeddings of the molecule string s (Bagal
et al., 2022).

1.2. Engression and extrapolation

Shen & Meinshausen (2023) proposed engression, a distri-
butional regression technique for pre-additive noise models
(pre-ANMs), to enable extrapolation for nonlinear regres-
sion. Under the regression setup where the goal is to model
the nonlinear relationship between the covariate X and the
response variable Y , the conventional regression model as-
sumes Y = g(X) + η where noise is added after applying a
nonlinear transformation g, referred to as the post-additive
noise model (post-ANM). With engression, the noise is
added to the covariates before applying a nonlinear transfor-
mation, that is, it assumes a model Y = g(WX + η) where
W is some linear operation. For simplicity and without loss
of generality, we illustrate the idea with W being an identity
linear operator.

The training of pre-ANMs is performed by minimizing the
energy score-based loss (Gneiting & Raftery, 2007) to find
the optimal g̃ with g̃ ∈ argming EX [EY,η|Y −g(X+η)|−
1
2Eη,η′ |g(X + η) − g(X + η′)|], where η and η′ are inde-
pendent draws from some noise distribution.

The intuition behind the extrapolability lies in the fact that
the pre-ANM captures the full distribution around each data
point X + η, including the X-values at the boundary of the
training data support. This knowledge about the full distri-
bution in the neighborhood lends extrapolability outside of
the training data support. This is in particularly useful in
practical applications, where statistical and machine learn-
ing models often encounter data points that go beyond the
support of the training data.

1.3. Main contributions

In this paper, we demonstrate how engression can be inte-
grated into conditional molecule generation for tail extrapo-
lation. Our main contributions include

(1) We first present engression for distributional extrapo-
lation in the conditional generation p(x | y) setup in

Section 2.

(2) We introduce the algorithms to integrate engression
into conditional molecule generation using classifier-
free guided equivariant diffusion models and large lan-
guage models via pre-ANMs, accordingly, in Section
2.1 and 2.2.

(3) We demonstrate that when there are few labeled and
unlabeled samples around the target property values
for generating molecules, engression can significantly
enhance the performance of baseline conditional gener-
ative models in tail extrapolation tasks, particularly in
terms of property value accuracy, diversity, and unique-
ness. However, when the number of unlabeled samples
in the neighborhood increases, the baseline conditional
generative models with engression do not benefit as
much as those without engression. This highlights the
need for developing “engression for unlabeled sam-
ples”.

2. Engression for distributional extrapolation
in conditional molecule generation

Following the idea of engression for nonlinear regression
extrapolation introduced in Shen & Meinshausen (2023),
we inject noise to the property value y before feeding it into
the generative models. That is, instead of modeling p(x | y)
as x = g(y) + η, where η denotes some noise distribution,
we adopt the pre-ANMs approach, setting x = g(y + η).
This change enables extrapolation within some radius of
δ. Formally, let F be a distribution class of y ∈ Rd, and
Dy′(P, P ′) := D(P (x | y), P ′(x | y)), ∀y ∈ Y , be a
divergence measure of the two distributions P, P ′ ∈ F . The
distributional extrapolation uncertainty of F is defined as

UF := sup
y′:d(y′,Y)≤δ

sup
P,P ′∈F

Dy(P,P ′)=0, ∀y∈Y

Dy′(P, P ′). (2)

Proposition 2.1. Modeling p(x | y) with x = g(y + η) is
distributionally extrapolable within the radius of δ > 0, i.e.,
distributional extrapolation uncertainty of F , defined as in
(2), UF (δ) = 0.

2.1. Conditional molecule generation using CFG
equivariant diffusion models via pre-ANMs

The most recent equivariant diffusion models for conditional
3D molecule generation require all data samples to be la-
beled with target property values known Hoogeboom et al.
(2022); Guan et al. (2023). This is not often the case given
the high computational cost of property value computation.
We use classifier-free guidance (Ho & Salimans, 2022) in
combination with equivariant diffusion models to learn εθ
to make full use of unlabeled data. For implementation, we
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impute the missing property y value in the unlabeled data
with the median value ȳ. In addition, we also append an
NaN indicator δ, which takes value δ = 1 if y is known and
0 otherwise. That is, at each time step t, the conditional
diffusion models learn ε with εθ(zt, y, δ = 0) for labeled
samples and εθ(zt, ȳ, δ = 1) for unlabeled samples.

Training To train CFG diffusion models via pre-ANMs,
we first create two noised copies of the property y + ηj ,
j = 1, 2, but only for the ones with δ = 0, as we only
want to capture the distribution characteristic around valid
property values. We propose the following modified CFG
loss function for any given sample with property value y:
(i) ℓθ = 1

2

∑2
j=1 ∥εθ(zt, y + ηj , δj)− ε∥ − 1

2∥εθ(zt, y +
η1, δ1)− εθ(zt, y + η2, δ2)∥ if y is unknown (δ = 1); (ii)
∥εθ(zt, y, δ)− ε∥ otherwise. The loss function introduces
the pre-additive noise η to y, and an additional term that
matches the conditional distribution given y+η1 and y+η2,
enhancing robustness against the sampled noise term η.

Sampling To sample from target property value y, CFG
equivariant diffusion models via pre-ANMs first samples
m number of noised property values, ỹj = y + ηj , j =
1, . . . ,m, and modifies the computation εt in (1) with these
noised samples

ε̃t = (1+ω)
1

m

m∑
j=1

εθ(zt, ỹj , δ = 0)−ω εθ(zt, ȳ, δ = 1).

We present the training and sampling algorithms in Ap-
pendix B.

2.2. Conditional molecule generation using large
language models via pre-ANMs

We extend the unconditional molecule generation model
ChemGPT (Frey et al., 2023) for conditional molecule gen-
eration. ChemGPT is a generative pre-trained transformer 3
(GPT3)-style model based on GPT-Neo (Brown et al., 2020;
Radford et al., 2019) with a tokenizer for SELFIES repre-
sentations of molecules. During the training, if the property
value is unavailable (an unlabeled sample), the molecule
strings are mapped to the token embedding es and fed into
the transformer ϕ as in the unconditional generation. When
the property value y is available (a labeled sample), we use
a separate encoder ψ to map y to continuous embedding
ey = ψ(y). The input of the transformer ϕ now becomes
the concatenated embedding [ey; es] where the property em-
bedding ey is concatenated at the start of the sequence of
the token embeddings es.

Using the attention mechanism in transformers for condi-
tional molecule generation differs slightly from its use in
text generation, where tokens at earlier positions in the se-
quence cannot “see” tokens at later positions and therefore

should not attend to them. For conditional molecule gen-
eration with target property values, the attention masks are
designed so that each token attends only to the previous
tokens and the property condition, whereas the property
condition attends to all tokens in the sequence. This ap-
proach is different from the conditional generation proposed
in Bagal et al. (2022).

To train transformer-based large language models for con-
ditional molecule generation, we further consider property
reconstruction loss in addition to the cross-entropy loss
on molecule strings, ℓ(s). A decoder ψ̃ is used to recon-
struct the property values from the last hidden states of
the transformers. The training loss is computed as follows:
(i) ℓθ(s, y) = CrossEntropy(ϕ(s), s) for unknown y; (ii)
ℓθ(s, y) = CrossEntropy(ϕ([ψ(y); s]), s) + κ∥ψ̃(y)− y∥
for known y, where κ controls the strength of the labeled
samples and θ denotes the model parameters for all submod-
els involved (ϕ, ψ, ψ̃).

Training To train transformer-based large language mod-
els via pre-ANMs with two noised property values, ỹj =
y + ηj , j = 1, 2, the training loss is modified to be
(i) ℓθ(s, y) = CrossEntropy(ϕ(s), s) for unknown y;
(ii) ℓθ(s, y) = NLL( 12

∑2
j=1 softmax(ϕ([ψ(ỹj); s])), s) +

1
2

∑2
j=1 ∥ψ̃θ(ỹj)− y∥− 1

2∥ψ̃θ(ỹ1)− ψ̃θ(ỹ2)∥ for known y.

Sampling To sample from transformer-based large lan-
guage models via pre-ANMs, the generation starts with
m noised property values ỹj = y + ηj , j = 1, . . . ,m.
At each step, given the current generated string scurr,
the predicted probabilities for the next tokens are com-
puted by averaging over the results from m noised copies,
1
m

∑m
j=1 softmax(ϕ([ψ(ỹj), scurr]), from which the next

token is sampled.

We present the training and sampling algorithms in Ap-
pendix C.

3. Empirical Studies
3.1. Tail extrapolative experimental design on

pseudo-labeled QM9

We use QM9 (Ramakrishnan et al., 2014) to evaluate the
generative performance for the property LUMO energy
(multiplied by 1 Hartree ≈ 27.2114 eV) across the mod-
els. QM9 contains molecular properties and atom coordi-
nates for 130K small molecules with up to 29 atoms (of
type H, C, N, O, F). To evaluate the property values of the
3D molecules generated by the diffusion model, we gen-
erate pseudo labels using the property predictor provided
in Hoogeboom et al. (2022) on all available samples from
QM9 with a train/valid/test split, 0.84/0.15/0.01.
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To evaluate the performance of different methods for tail
extrapolative tasks in a more realistic setting, we designed
two experiments. We first define a controllable property
value region, DC := [1.857, 2.385], and vary the number
of labeled and unlabeled samples available from DC . No
data samples are accessible beyond this region, D+

C :=
(2.385,+∞) (for extrapolation propose). Additionally, 90%
of the samples from the region D−

C = (−∞, 1.857) are
unlabeled, reflecting common real-world scenarios where
labeled data is often scarce. The training data distribution
and test data distribution for the two experiment setups are
provided in Appendix A.

3.2. Evaluation metrics

Target property value evaluation Target evaluation fo-
cuses on assessing how well the generated molecules
achieve the desired properties set by the conditional tar-
gets. Specifically, it measures the deviation of the properties
of generated molecules from the target values, aiming for
minimal deviation to ensure high accuracy in meeting the
specified conditions.

Vendi score for diversity The second critical metric is
diversity, which evaluates the variety among the generated
molecules. A diverse set of molecules indicates the model’s
ability to explore a wide chemical space, reducing redun-
dancy and increasing the likelihood of discovering novel
compounds. We use Vendi Score to measure the diversity of
the generated molecules (Friedman & Dieng, 2022; Pasarkar
& Dieng, 2023). The Vendi Score is defined as the expo-
nential of the Shannon entropy of the eigenvalues λi of a
similarity matrix K, VS(K) = exp(−

∑
i λi log λi). For

molecule generation, the similarity function is chosen to be
the Morgan fingerprint similarity (radius 3), implemented
in RDKit (Landrum, 2016). The higher Vendi score is, the
more diverse the generated molecule set is.

Molecule stability We assess the validity of a gener-
ated molecule set in terms of a molecule stability metric,
which expresses what percentage of a generated molecule
set has expected valence behavior (e.g., checking if car-
bon atoms make four bonds as expected of its’ valence
behavior). This metric is assessed by computing the per-
centage of a molecule set that passes successful execu-
tion of standard RDKit cheminformatic routines that rely
on proper valencies of the molecules, namely using the
subroutines SANITIZE PROPERTIES (valency check),
SANITIZE ADJUSTHS (implicit hydrogen check), and
SANITIZE CLEANUPCHIRALITY (corrects chirality in-
consistencies). Lastly, we convert any generated SMILES
string into RDKit’s canonical SMILES form, which per-
forms an additional valency check internally to the function.
The percentage of the molecule set that passes these series

of checks represents the molecule stability of the generated
set.

Uniqueness We assess the uniqueness of a SMILES batch
of generated molecules by converting the batch into a
Python-native set variable. Python-native sets are hash
tables and remove duplicate entries by nature of their im-
plementation. Uniqueness is calculated by calculating the
ratio of the SMILES batch-set size divided by the original
SMILES batch size.

Together, these metrics provide a comprehensive evalua-
tion framework, ensuring that the generated molecules are
not only accurate and diverse but also valid and unique,
thereby enhancing the overall utility and effectiveness of the
molecule generation process.

3.3. Results

In this section, we provide empirical studies on the pro-
posed equivariant diffusion models for 3D molecule data
and large language models for molecule strings via pre-
ANMs. Among all experiments, we set the number of noise
variables η to be m = 100, and the noise standard deviation
to be η = 0.3. For performance comparison on conditional
CFG equivariant diffusion models introduced in Section 2.1,
we train the model on pseudo-label QM9 data from scratch
for 3000 epochs. For performance comparison on condi-
tional large language models, we fine-tune the constructed
pseudo-label QM9 data on the pre-trained unconditional
large language model ChemGPT (Frey et al., 2023), with 19
million non-embedding parameters, available on Hugging-
Face (Frey et al., 2022). We train the conditional language
model introduced in Section 2.2 for 100 epochs.

Figure 1 shows the property evaluation of generative
molecules from conditional CFG equivariant diffusion mod-
els, with and without engression, under Experiment Setup I
and Experiment Setup II. In both experiments, engression
enhances the performance of conditional CFG equivariant
diffusion models by generating molecules with property
values closer to the target values and smaller variations.
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Table 1. Composition of training data samples in the designed experiment setups. The only difference between the two different
experimental setups is the number of unlabeled samples in D−

C that are available. The number of training samples in D+
C is zero.

Setup Training data composition1

# Labeled in DC # Unabeled in DC # Labeled in D−
C # Unlabeled in D−

C

I 1000 1000 10000 90000
II 1000 9000 10000 90000
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Figure 1. Property evaluation of the generative molecules from
CFG equivariant diffusion models, with and without engres-
sion, under Experiment Setup I (Left) and Experimental Setup
II (Right), accordingly. Under Experiment Setup I, around 1000
labeled samples within the property range DC = [1.857, 2.385].
Under Experiment setup II, around 9000 labeled samples within
the property range DC . In both experiments, engression improves
the performance of CFG equivariant diffusion models as it can
generate molecules whose property values are closer to the target
property values with smaller variations.

We evaluated molecule stability on the raw generated 3D
molecular data and assessed diversity using the Vendi Score

and Uniqueness on the sanitized generated 3D molecular
data. The metric evaluation results for conditional CFG
equivariant diffusion models and conditional large language
models are presented in Tables 2 and 3, respectively.

The experimental results are generally consistent across
the two generative models. In Experiment Setup I, where
unlabeled samples are scarce inDC , engression improves di-
versity and facilitates extrapolation in the tail region for both
diffusion-based models and large language models. How-
ever, performance may decline when extrapolative tasks
extend further into D+

C . This aligns with the engression
methodology, which injects noise of a certain size to aid ex-
trapolation in the neighborhood around the property values
of the available training samples.

In Experiment Setup II, when the number of unlabeled train-
ing samples in DC increases from 1000 to 9000, the met-
rics for the baseline generative models without engression
show significant improvement compared to those from Ex-
periment Setup I. This demonstrates the effectiveness of
generative modeling in learning the latent representation
of molecular features. In contrast, the metrics for base-
line generative models with engression do not improve as
much (for diffusion models in Table 2) or even decline (for
large language models in Table 3), resulting in worse perfor-
mance compared to the baseline models without engression
in Experiment Setup II. The increased number of unlabeled
samples in DC diminishes the effects of engression, where
labeled samples are leveraged for tasks in the extrapolative
region D+

C . This calls for developing engression technique
for unlabeled samples.

4. Discussion
In this paper, we introduce engression for distributional ex-
trapolation in the conditional molecular generation setup
and present algorithms to integrate engression into con-
ditional molecule generation using classifier-free guided
equivariant diffusion models and large language models via
pre-ANMs. We demonstrate that when there are few labeled
and unlabeled samples around the target property values
for generating molecules, engression can significantly en-
hance the performance of baseline conditional generative
models in tail extrapolation tasks, particularly in terms of
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Table 2. CFG equivariant diffusion models with engression outperform the models without regression under Experiment Setup I in
stability, diversity, and uniqueness metric evaluation, but underperform under Experiment Setup II when there are substantially
more unlabeled samples in the region DC . The underlined values indicate better comparison performance between the generative
models with and without engression.

Experiment Setup I. Around 1000 labeled samples within the property range DC = [1.857, 2.385].

Metric Method Target property value

1.91 2.14 2.37 2.60 2.83 3.06 3.29

Molecule Stability w/o engression 98.40 98.70 98.65 98.75 98.75 98.85 98.80
w engression 97.25 98.30 97.55 96.90 87.25 86.35 80.35

Vendi Score w/o engression 402.86 371.95 322.97 309.62 290.27 302.77 313.24
w engression 520.44 469.35 375.54 299.04 216.28 179.95 168.31

Uniqueness w/o engression 64.75 62.40 57.15 56.60 52.60 54.15 55.80
w engression 89.45 84.30 75.25 66.10 52.70 48.30 42.30

Experiment Setup II. Around 9000 unlabeled samples within the property range DC = [1.857, 2.385].

Metric Method Target property value

1.91 2.14 2.37 2.60 2.83 3.06 3.29

Molecule Stability w/o engression 98.25 98.10 98.55 98.40 98.75 98.45 98.25
w engression 97.50 97.45 97.95 97.10 96.40 93.80 91.80

Vendi Score w/o engression 554.58 517.40 472.07 425.95 386.78 342.32 295.83
w engression 518.95 473.14 391.09 320.61 265.57 245.29 238.14

Uniqueness w/o engression 90.55 88.25 83.80 78.15 72.40 66.40 61.05
w engression 89.55 85.20 75.65 66.95 59.75 55.40 52.50

property value accuracy, diversity, and uniqueness. Note
that the performance of engression can be influenced by
hyperparameters such as the number of injected noise vari-
ables m and the standard deviation of these noise variables
η. Therefore, experiments should be conducted to under-
stand the sensitivity of engression’s performance to these
hyperparameters.

Empirical studies also show that as the number of unlabeled
samples in the neighborhood increases, baseline conditional
generative models with engression do not benefit as much
as those without engression. This highlights the need for
developing “engression for unlabeled samples”. This obser-
vation is consistent across both diffusion-based models and
large language models. Future work will focus on two key
areas: developing the engression technique for unlabeled
samples and integrating engression with a broader range of
generative models, such as flow matching-based approaches
for molecule generation. This will further demonstrate the
effectiveness of the engression concept across various con-
ditional generative models.

The current empirical studies rely on a pretrained property
predictor to create pseudo-label (property) datasets and eval-
uate the generated molecules. The next step is to conduct
experiments on real data. Evaluations should be performed

using more accurate quantum mechanical approaches, such
as density functional theory (DFT).
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A. Pseudo-label QM9 data distribution

4.4
85

3.9
56

3.4
28

2.9
00

2.3
71

1.8
43

1.3
14

0.7
86

0.2
57
0.2

71
0.8

00
1.3

28
1.8

57
2.3

85
2.9

14
3.4

42
3.9

71
4.4

99
5.0

27

Property value

0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
eq

ue
nc

y

Data distribution
Train Unlabeled
Train Labeled
Test

4.4
85

3.9
56

3.4
28

2.9
00

2.3
71

1.8
43

1.3
14

0.7
86

0.2
57
0.2

71
0.8

00
1.3

28
1.8

57
2.3

85
2.9

14
3.4

42
3.9

71
4.4

99
5.0

27

Property value

0

1000

2000

3000

4000

5000

6000

7000

Fr
eq

ue
nc

y

Data distribution
Train Unlabeled
Train Labeled
Test

Figure 2. Data distribution for the designed Experiment Setup I (Left) and Experiment Setup II (Right).

B. Algorithms to implement CFD equivariant diffusion models via pre-ANMs

Algorithm 1 Training classifier-free guided equivariant diffusion models via pre-ANMs
input N molecules with target property values (xi,vi, yi)

N
i=1, a neural network εθ, noise standard deviation ξ.

1: repeat
2: Sample t ∼ U(0, 1, . . . , T ), ε ∼ N (0, I).
3: Sample {x,v, y} ∼ {xi,vi, yi}Ni=1

4: Subtract center of mass from ε(x) in ε = [ε(x), ε(h)].
5: Compute zt = αt[x, v] + σtε
6: if y == ∅ then
7: y ← ȳ {Impute the unknown property value}
8: δ ← 1 {Unknown property value indicator set to True}
9: ℓθ ← ∥εθ(zt, y, δ)− ε∥

10: else
11: Sample noise variables η1, η2 ∼ N (0, ξ).
12: ỹ1, ỹ2 ← y + η1, y + η2 {Create two noised copies}
13: δ1, δ2 ← 0, 0 {Unknown property value indicator set to False}
14: ℓθ ← 1

2

∑
j ∥εθ(zt, ỹj , δj)− ε∥ −

1
2∥εθ(zt, ỹ1, δj)− εθ(zt, ỹ2, δj)∥ {Engression training loss}

15: end if
16: Minimize ℓθ and update θ.
17: until converged

11
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Algorithm 2 Sampling from classifier-free guided equivariant diffusion models via pre-ANMs
input Target value y∗, learned model εθ, guidance strength ω, number of noised copies m, noise standard deviation ξ.
output Generated molecular (x,v).

1: Sample zT ∼ N (0, I).
2: for t in T, . . . , 2, 1 do
3: Sample ε ∼ N (0, I)
4: Subtract center of mass from ϵ(x) in ε = [ε(x), ε(h)].
5: Sample m noise variables ηj ∼ N (0, ξ), j = 1, . . . ,m.
6: for j in 1 · · · ,m do
7: ỹj ← y∗ + ηj {Create m noised copies}
8: end for
9: ε̃t = (1 + ω) 1

m

∑
j εθ(zt, ỹj , δ = 0)− ω εθ(zt, ȳ, δ = 1) {Classifier free sampling}

10: z̃t = (zt − σtε̃t) /αt

11: if t > 1 then
12: zt−1 = µ̃t−1|t(zt, z̃t) + (σ̃t−1|t)

1−ν(σt|t−1)
ν ε

13: else
14: zt−1 = z̃t
15: end if
16: end for
17: return [x,v] ∼ p([x,v] | z0).

C. Algorithms to implement conditional large language models via pre-ANMs

Algorithm 3 Training large language models via pre-ANMs
input N molecule strings with target property values (si, yi)Ni=1, transformer ϕθ and property encoder ψθ, noise standard

deviation ξ, strength of unlabeled samples κ.
1: repeat
2: Sample {s, y} ∼ {si, yi}Ni=1

3: Convert s into token embeddings es.
4: if y == ∅ then
5: u← ϕθ(es) {Compute logits for next token prediction via transformers}
6: ℓθ ← κCrossEntropy(u[: −1], s[1 :]) {Next token prediction loss}
7: else
8: Sample noise variables η1, η2 ∼ N (0, ξ).
9: for j in 1, 2 do

10: ỹj ← y + ηj {Create noised copy}
11: ey,j ← ψθ(yj) {Construct property embeddings}
12: es,j ← [es; ey,j ] {Concatenate property embedding with the string embedding}
13: pj ← softmax(ϕθ(es,j)) {Compute probabilities for next token prediction via transformers}
14: end for
15: p = 1

2 (p1 + p2)

16: ℓθ ← NLL(p[: −1], s[1 :]) + 1
2

∑2
j=1 ∥ψ̃θ(ỹj)− y∥ − 1

2∥ψ̃θ(ỹ1)− ψ̃θ(ỹ2)∥ {Next token prediction loss}
17: end if
18: Minimize ℓθ and update θ.
19: until converged

12
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Algorithm 4 Sampling from large language models (LLM) via pre-ANMs
input Target value y∗, learned transformer ϕθ and property encoder ψθ, temperature T , number of noised copies m, noise

standard deviation ξ, max length L.
output Generated molecular string s.

1: Sample m noise variables ηj ∼ N (0, ξ), j = 1, . . . ,m.
2: for j in 1, · · · ,m do
3: ỹj ← y∗ + ηj {Create m noised copies}
4: estart,j ← ψθ(ỹj) {Construct property embeddings}
5: end for
6: Set token s0 to be CLS token.
7: s← [s0] {Start generating strings}
8: for t in 1, · · · , L do
9: if s0 is EOS token then

10: break {Signal to end generation}
11: end if
12: Convert s0 into token embedding enext.
13: for j in 1, · · · ,m do
14: estart,j ← [estart,j ; enext]
15: uj ← ϕθ(estart,j) {Predicted logits for next token}
16: pj ← softmax(

uj

T ) {Convert to probabilities with temperature scaling}
17: end for
18: p← 1

m

∑
j pj

19: Sample the next token s0 from the probability distribution p.
20: s← [s, s0]
21: end for
22: return s.
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