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ABSTRACT

Various works have aimed at combining the inference efficiency of recurrent mod-
els and training parallelism of MHA for sequence modeling. However, most of
these works focus on tasks with fixed-dimension observation spaces, such as in-
dividual tokens in language modeling or pixels in image completion. Variably
sized, irregular observation spaces are relatively under-represented, yet they occur
frequently in multi-agent domains such as autonomous driving and human-robot
interaction. To handle an observation space of varying size, we propose a novel
algorithm that alternates between cross-attention between a 2D latent state and
observation, and a discounted cumulative sum over the sequence dimension to
efficiently accumulate historical information. We find this resampling cycle is
critical for performance. To evaluate efficient sequence modeling in this domain,
we introduce two multi-agent intention tasks: simulated agents chasing bounc-
ing particles and micromanagement analysis in professional StarCraft II games.
Our algorithm achieves comparable accuracy with a lower parameter count, faster
training and inference compared to existing methods.

1 INTRODUCTION

Spatio-temporal modeling tasks with complex unstructured or semi-structured state and observa-
tion spaces can be identified in a variety of domains. Designing deep learning algorithms to excel
at these tasks requires deliberate handling of both the accumulation of knowledge from historical
observations, and the summarization of current observations, which can be computationally expen-
sive. This is a particular concern in multi-agent domains such as motion prediction and behavior
modeling, which have real-time requirements and often need to be performed using relatively low
compute resources available on an edge devices. Recurrency is a popular paradigm in deep learn-
ing as it naturally maps onto problems which are sequential and causal in nature (Werbos, 1990).
While iterative processing of data with recursion can be efficiently performed in O(1) with respect
to sequence length L, transformer (Vaswani et al., 2017) and convolution (CNN) methods introduce
compute and memory complexity O(L2) and O(L) respectively. However, transformer and CNN
algorithms are parallelizable at training time, efficiently utilizing hardware and invoking backward
propagation paths uncorrelated with sequence length. This leads to a trade-off between compute
efficiency at training or inference time.

Proposals to address this trade-off can be grouped into various categories that aim to take advantage
of inference efficiency of recurrence and parallelization at training time. One avenue is to address
the O(L2) complexity of multi-head attention (MHA) by introducing variations with linearized,
amortized attention or windowed attention with recurrence (Sun et al., 2023; Peng et al., 2023;
Katharopoulos et al., 2020; Hutchins et al., 2022; Zhai et al., 2021; Didolkar et al., 2022). State space
models (SSMs) (Dao & Gu, 2024; Gu et al., 2022; Fu et al., 2023; Gu et al., 2020) are presented as a
compelling alternative to transformers, demonstrating efficacy in a variety of long-range dependency
tasks and language modeling. SSMs can be formulated as a convolution for training parallelism or
as a recurrent model for inference over long sequences. In each case, these methods are evaluated
on sequences with a fixed dimensional observation space O ∈ Rd, such as tokenized text, image
pixels, audio spectrogram data and time-series data (Tay et al., 2021; Wu et al., 2021). Focusing on
these sequences leaves a blind-spot in tasks with an irregular observation spaces O ∈ Rd(t) such
those in as multi-agent interactions, where the number of agents and links between these may vary
over time (Ettinger et al., 2021; Vinyals et al., 2017).
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In this work, we investigate a range of encoding and state space modeling approaches to handle
irregular observation settings to provide clarity around the most efficient and best performing ap-
proaches. We propose a novel and efficient algorithm that utilizes a 2D latent state and alternates
between input sampling, and accumulating historical information as a weighted sum (inclusive scan).
This weighted sum can be performed efficiently in parallel on a GPU with an inclusive-scan Merrill
& Garland (2016) during training, and incrementally during inference. We show that the resampling
cycle is more effective than a continued self-attention block, or not alternating between accumula-
tion and processing. This method natively supports a two dimensional latent state. We benchmark
against a range of baselines including transformers (Vaswani et al., 2017; Sun et al., 2023), recur-
rent neural networks (RNNs) (Chung et al., 2014; Hochreiter, 1997; Martin & Cundy, 2018), and a
State-Space Model (SSM) (Dao & Gu, 2024).

To test the efficacy of these training and inference efficient algorithms on tasks with more complex
observation spaces, we use two multi-agent interaction benchmarks. The first is a “gymnasium”
style simulation that involves agents chasing randomly assigned particles1. The second benchmark
is based on StarCraft II (SC2), a real-time strategy video game, where we extract instances of
players in combat. Each of these tasks involves a multidimensional time-varying observation space.
In summary our contributions are as follows:

• The introduction of two multi-agent interaction challenges to better evaluate sequence mod-
eling algorithms with irregular observation spaces.

• A novel algorithm to efficiently address sequence modeling tasks with irregular observation
spaces. We find that this algorithm achieves comparable accuracy to alternatives with a
lower parameter count and improved throughput in training and inference regimes.

• Empirically comparing a combination of two encoders and three algorithms to reduce an
irregular observation space to a fixed-size amenable for sequence modeling.

2 BACKGROUND

Efficient and parallelizable sequence modeling is of great interest to the research community, as
attaining efficient utilization of parallel computation at training time while performing inference
efficiently are desirable attributes of sequence modeling algorithms. Previously, a trade-off had to
be considered between using a model that is more efficient to train, or run inference. Practitioners
could choose between O(1) inference efficiency with an RNN, or training parallelism with a CNN
or Transformer. With the introduction of SSMs that can be formulated as either a convolution or
recurrency, practitioners can take advantage of both efficient incremental inference, and training time
parallelism, while also avoiding the O(L2) complexity of transformers. While transformers have
demonstrated effective adaptability to variety of domains of varying dimensionality and sparsity
(Vaswani et al., 2017; Dosovitskiy et al., 2021; Zhu et al., 2022; Yuan et al., 2021), efficient sequence
modeling is often evaluated with a fixed dimensional observation space O ∈ Rd (Tay et al., 2021).

Spatio-temporal tasks can be modeled as a state space S with an observation space O that evolves
over time according to dynamics model D. In some domains, O is a variably-sized set, Ot, that
changes between environment instances, or over the duration of the sequence. This creates chal-
lenges in both concisely and effectively compressing a sequence of variably sized observations into
some fixed dimensional latent representation of the state of the system S ′

t := O0...T . This can be
exacerbated if the temporal duration of this task is indefinite as T ∈ N+.

As an example of this class of problem, StarCraft II (SC2) is a real-time strategy game where play-
ers build an economy and military in order to defeat the opposing team. Players are given imperfect
information, they cannot view parts of the map outside of a line-of-sight dictated by their unit po-
sitions. Hence, the observation space of SC2 includes a variably sized set of units and buildings
that enter and exit the player line-of-sight as the are built or destroyed. SC2 follows a typical rock-
paper-scissors approach where there are counter-strategies that can be employed against a given
player. Micromanagement in SC2 games plays an important role in the performance of a player,
and analysis of this can give significant insight into strategy. Novices typically perform a few dozen
actions per minute, whereas professional perform hundreds of actions per minute. These actions are
typically taken on variably sized sets of units, buildings, targets or objectives.

1Environment and path-planning algorithm derived from here.
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(a) Chasing-Targets gymnasium environment. Robots
(marked with a trajectory trail) are randomly allocated
targets (blue dots) to chase. When targets are reached
(Green dots), robots are randomly assigned new targets.

(b) StarCraft II observation data. Blue circles
are player units, red circles are enemy units,
green arrows are unit-target assignments and
the grayscale background is the height-map.

Figure 1: Visualisation of multi-agent environments used for benchmarking.

3 ENVIRONMENTS

Given the absence of suitable public time series datasets with irregular observations, we introduce
a new set of intent recognition (Felip et al., 2022; Ahmad et al., 2016) benchmarks for evaluation.
We describe these first, to provide context for the design motivations in Section 4. Each consists of
two sets of agents which interact with one another with some objective. We use these environments
to test whether models are capable of capturing relevant information from irregular observations of
a complex environment, in order to infer some properties from it.

The chasing targets environment (Figure 1a) involves an arbitrary number of two-wheeled robots
that chase an arbitrary number of particles bouncing around the environment, while trying to avoid
colliding with one another. Each robot is randomly assigned a target particle at the beginning of
the simulation and initialized in a random stationary pose. When the robot reaches the particle, it
is randomly assigned to a new particle to chase. Robots are controlled with a simple cost function
to select the best control inputs that minimizes the robot’s distance to the target’s projected position
and a penalty term if a collision is forecast to occur with another robot. Particles are initialized at
random positions and velocities. Here, the goal is to predict which target an agent is chasing, given
observations of agent and particle positions and velocities. As a second, more challenging task, the
observation space only includes the robots and the model must also predict where chased particles
are located in the scene. This is challenging as not only the position of the particles are unknown,
but the cardinality must also be estimated. This task is formulated as an occupancy problem, the
model needs to estimate the likelihood that a position in the environment is occupied by a particle.

The StarCraft II data used is sampled from tournaments hosted between 2019 and 20232 and
requires that we predict unit assignment actions based on prior observations of player and enemy
units. To focus on battle sequences where players are micro-managing their units in combat, we
target parts of the game when damage dealt or received by a player exceeds a threshold. Non-
overlapping sequences of a fixed size are created at these instances. We note that observation data
is irregularly sampled, hence the time duration of each sequence will vary. This domain has some
subtleties compared to Chasing-Targets as units are not always assigned to an enemy unit. They
can either be idle, or assigned to a position to move to. Hence, we introduce null option for the
assignment problem. As a second more challenging task, we also consider the case where we are
required to estimate if a unit has been given a target position command and the location of that
target position. The assignment and the position estimation problem need to be jointly learned and
performed by each model. The observation space for StarCraft II includes a terrain height-map and
the position and properties (health, damage, etc.) of player and enemy units. The observation space
is restricted to a region-of-interest (ROI) of a fixed size, see Appendix A.7 for detail on how the
ROI is calculated. An example of an extracted ROI with unit data and their assignments is depicted
in Figure 1b. Units outside of the ROI are truncated, resulting in a time-varying set of units in the

2Replays are sourced from https://lotv.spawningtool.com/replaypacks/
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environment as they enter, exit or die in combat. The observability rules of the game apply from a
player’s point-of-view. Enemy units will be hidden in the fog of war or when an obfuscation ability
is used, for example Zerg players can “burrow” units into the ground.

Both environments above are good examples of sequential modeling and prediction problems in-
volving irregular, multidimensional time varying observation spaces. Below, we describe a set of
efficient sequential encoding and dynamics modeling strategies suitable for these tasks.

4 METHOD

We evaluate several methods to encode spatio-temporal features into a series of latent states. The
decoder for each of the tasks is fixed in order to isolate the contribution of the encoding methodology.
Details on decoding methodologies is provided in the supplementary material (Appendix A.5).

4.1 SPATIAL ENCODING

This section outlines how the latent representation of the scene is constructed, using the StarCraft
task above as an example. The scene observation is tokenized identically for each of these encoders.
First, the (x, y, θ) pose of agents are sinusoidally encoded. Units from StarCraft II have additional
information such as health, max health and a learned embedding representing the unit type. From
this variably sized set of tokens, O = {o}no

,o ∈ Rdo , where no is the number of observed units,
and do is the feature dimension, we must summarize a fixed set L = {l}nl

, l ∈ Rdl suitable for
latent dynamics modeling.

L

O

Transform
er

E
ncoder

L′

(a) BERT Encoder

L MHA
Q

O

K,V

L′

(b) X-Attn Encoder

Figure 2: Encoders summarize an ir-
regular set of tokens from the observa-
tion O, to a fixed size L, for the spatio-
temporal encoder.

We use two methods for summarizing O into L′ (as illus-
trated in Figure 2), each of which involves MHA between
O and L. The first is a BERT-style (Devlin, 2018) trans-
former encoder. Latents L are concatenated to O , and act
as the “[CLS]” tokens of the BERT encoder. The encoded
“[CLS]” tokens, L′, are used as a fixed-size representa-
tion of the variably sized observation data. The second
method uses a block of cross-attention layers (X-Attn),
L to query key-value pairs generated from O to transfer
relevant information. We denote these encoders as Enc.

Without loss of generality, consider the case where we
have two observation sources. In the tasks above, these
correspond to the two teams of agents. Since there are
two distinct observation sources, Op and Oe, we test a
variety of methods to determine an effective method for
combining both into L′. The “Fused” method, Figure 3a,
adds a learned embedding per source and then concate-
nates the sources together for encoding. This method has
fewer parameters than the alternative methods as there is
only one Enc. This also enables flexibility in gathering
the optimal amount of information from each type of source. However, this comes at the cost of
a larger attention matrix inside Enc with O((Np + Ne)

2). The “Piece-wise” method, Figure 3b,
encodes Op and Oe separately with half of the latent state L used for each observation source. This
method has the benefit of a smaller attention matrix O(N2

p+N2
e ), but enforces an equal weighting of

information between the two sources, which is potentially sub-optimal. “Sequential” processes Op

then Oe, as depicted in Figure 3c. This renders a smaller attention matrix, but reduces parallelism
and increases the depth of the model.

The height-map is additional context provided in the SC2 task. ResNet-18 is used as the feature
extractor, however we replace the final 1× 1 adaptive-average-pool and fully-connected layers with
a 4× 4 adaptive-average-pool layer to create a grid of features. Sinusoidal position embeddings are
added to the feature grid and then flattened, creating the set of contextual tokens. These tokens are
appended to the extracted spatio-temporal features before being passed to the task decoder.
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OpEp
+

OeEe
+

concat.

L ∈ Rn×d Enc

L′ ∈ Rn×d

(a) Fused Encoding

Op

Lp ∈ Rn
2 ×d

Encp

Ence

Le ∈ Rn
2 ×d Oe

concat.

L′ ∈ Rn×d

(b) Piece-wise Encoding

L ∈ Rn×d Encp

Op

Ence

Oe

L′ ∈ Rn×d

(c) Sequential Encoding

Figure 3: Several methods of encoding player (Op) and enemy (Oe) observations to a fixed dimen-
sion L ∈ Rn×d. Process together with an embedding to distinguish Op from Oe (Fig. 3a), process
separately (Fig. 3b) or process sequentially (Fig. 3c).

4.2 BASELINE SPATIO-TEMPORAL ENCODERS

We empirically evaluate a variety of models from categories mentioned in the Related Work (Section
7). As each of these models work on a 1D sequence, individual models process each token from
the 2D latent state, with the exception of the spatio-temporal transformer (STT). We evaluate
each of the recurrent neural networks included in PyTorch: RNN, GRU and LSTM. We find
that a learned initial hidden state performs better than zero initialization (Appendix A.4). Hence,
recurrent models use a learned initial state unless otherwise specified. We use Mamba2 (Dao & Gu,
2024) to represent modern SSMs. For Mamba2 specific parameters, we use a state dimension of 64,
convolution dimension of 4 and an expansion factor of 2.

We consider three transformer variants for temporal aggregation. The spatio-temporal transformer
(STT) processes all the tokens from each time-step in one model. This method is similar to Agent-
Former (Yuan et al., 2021), albeit without masking for “agent-aware attention”. The temporal-only
transformer (TT) uses individual transformers to process each latent. A learned embedding of the
absolute time-step is added to the input tokens of the aforementioned transformers. We use Ret-
Net (Sun et al., 2023) as a temporal encoder (no learned time-step embeddings) to represent the
sub-quadratic family of transformers.

4.3 SCAN ENCODER

The key design objective of this spatio-temporal encoder is to efficiently aggregate historical infor-
mation with a parallel algorithm, and to use that accumulated knowledge to resample the current
observation. Furthermore, we use a set of tokens to represent our hidden state, rather than a single
vector that is common to most algorithms. The motivation behind this is that attention mechanisms
can be then utilized effectively with this hidden state, to either inject or extract information from
this state. To achieve this, we use a weighted sum of an initially encoded input data from previous
steps in the sequence. The accumulation can be performed efficiently in parallel over the sequence
dimension with an inclusive scan operation (Merrill & Garland, 2016).

The proposed inclusive-scan algorithm uses the sequential algorithm (Fig. 3c) with X-Attn (Fig.
2b) as a recursive query driven sequential modeling approach. Inclusive-scan is performed on the
updated variables to accumulate temporal information. When the observation is re-queried in the
next layer, it is conditioned on an accumulated history. This process is depicted in Figure 4. For
inference, we can calculate the next latent encoding with a scaled copy of the previous time-step
L′
xt =

1
γL

′
x(t−1)+Lxt, resulting in O(1) memory and compute complexity with respect to sequence

length. We show in Section 5 that cycling between cross-attention and inclusive-scan is superior to
a block of cross-attention layers with an inclusive-scan at the end or sampling the input once, and
cycling between inclusive-scan and self-attention. We include the number of layers as nomenclature
for the scan encoder, for example Scan 4× is a scan encoder with four cycles.

5
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L0

Ot

L1t = Enc1(L0,Ot) L′
1t =

∑t
i=0(

1
γ )

t−iL1i

L2t = Enc2(L′
1t,Ot) L′

2t =
∑t

i=0(
1
γ )

t−iL2i . . .

Figure 4: The inclusive-scan encoder alternates between sampling the observation based on some
latent variable Lxt and accumulating a weighted sum L′

xt, where x and t are the model layer and
input sequence index respectively. L0 is an initial set of learned parameters and γ ≥ 1.

An important subtlety is that the inclusive-scan is weighted so the historical contribution decays
with γ ≥ 1. This ensures that the accumulation does not diverge in magnitude over a long sequence.
We show in Section 5 that the scan with γ = 2 outperforms γ = 1 (a simple cumulative sum). A Py-
Torch extension was written to efficiently perform the forward and backward method of discounted
inclusive-scan on CPU and GPU with C++/CUDA3.

5 RESULTS

We used PyTorch to train our models. Unless otherwise specified, experiments used a batch size of
64, AdamW optimizer with a learning rate of 1e−3 for Chasing-Targets and 1e−4 for StarCraft II,
a polynomial schedule with power 0.9 and gradient clipping of 0.14. A two layer block of MHA is
used for X-Attn and BERT encoders. Baseline temporal encoders also consist of two layers.

5.1 CHASING TARGETS

Each environment instance is randomly generated, sampling the number of robots and targets from
a uniform distribution, randomly placing them on the field. The field is a 4 × 4m grid and the
maximum velocity of the agents is 0.5m/s. The first 10 iterations of the simulation are skipped to
remove the domain gap between the behavior of the robots after random stationary initialization,
and the steady state chasing and switching targets. The duration of the simulation is 41 iterations.

5.1.1 TARGET ASSIGNMENT

We train the target assignment challenge for ≈ 47k iterations and use a latent state L ∈ R8×128. The
number of robots in each simulation is sampled from U(8, 15) and the number of targets U(3, 6).
We perform an ablation study on each of the encoding methodologies with the temporal transformer
and find that the Sequential X-Attn performs the best (Figure 5). We include detailed results of the
training cost and further discussion in Appendix A.1. From here on, Sequential X-Attn is used for
comparing temporal encoders. We also find that a learned initial state for recurrent models generally
performs better than states initialized as zero (Appendix A.4).

5 10 15 20 25 30 35
0.7

0.8

0.9

To
p1

X-Attn BERT
Sequential
Fused
Piecewise

Figure 5: Encoding algorithm comparison with Temporal-Only Transformer (TT).

Figure 6 shows a mostly linear correlation between the accuracy and training cost (throughput,
memory usage and parameter count) of each model. While Scan2× is the cheapest encoder to

3Link to source included upon acceptance, currently blinded for anonymity
4Link to source and model configurations will be provided upon acceptance
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train, it has the poorest accuracy at 65% compared to the next model which is GRU at 73%. The
most accurate encoder, temporal transformer (TT), outperforms second place by +6.5%. While it
has the highest memory consumption and parameter count, the training step time is closer to the
median. RetNet has a lower parameter count and memory usage compared to TT, however it is
less accurate and its implementation is significantly slower. Scan 4× doubles the number of layers,
hence overall cost, however only observes a modest increase in performance +2.8%. This suggests
stacking more layers suffers from diminishing returns. To attain better results, other modification
should be performed. In 5.1.2, a self-attention layer is added after X-Attn to improve performance.

1 2 3

0.7

0.8

GPU Mem (GB)

To
p

1

0 5 10

0.7

0.8

Param # (M)
20 40

0.7

0.8

Step Time (ms)

Scan 2× Scan 4× Mamba STT TT RetNet GRU

Figure 6: Average Top 1 assignment accuracy over the simulation sequence with training cost. The
top left corner is ideal in each scenario.

We notice a trend of assignment accuracy decay after a peak earlier in the sequence in Figure 7. This
is more pronounced in the better performing models and is correlated with the end of the sequence,
rather than time of the sequence (Appendix A.1.4).

5 10 15 20 25 30 35
0.6

0.7

0.8

0.9

To
p1

TT
STT
Mamba2
RetNet
GRU
Scan 4×
Scan 2×

Figure 7: Assignment accuracy comparison over a sequence.

To understand the design contributions, we remove individual components from a Scan 4× base-
line (Figure 8). If a cumulative sum is performed without weighting, accuracy decays over time
significantly after about 16 steps. Reducing the size of the latent state to R1×128 has significant
performance consequences as not enough historical information is retained over the sequence. This
performs almost as poorly as not performing a scan at all, the worst performing variant. We evalu-
ated more latent state sizes using the temporal transformer in Appendix A.1.

5 10 15 20 25 30 35

0.55
0.6
0.65
0.7

To
p1

Baseline
γ = 1

L ∈ R1×128

No Scan

Figure 8: Contribution ablation for a Scan 4× encoder over a sequence.

5.1.2 HIDDEN TARGET ESTIMATION

We trained the hidden target estimation challenge for ≈ 94k iterations with a batch size of 32 and
latent state L ∈ R16×128. The number of robots in each simulation is sampled from U(4, 12) and the

7
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number of targets from U(2, 5). Figure 9 shows that the Scan and Mamba encoders perform equiv-
alently, whereas the transformer encoder fails on this task. Although AUC scores are numerically
low, the models are often correctly able to infer target locations in the scene, as shown in Figure 10.
While STT performed well in target assignment, it struggled with hidden target estimation.

5 10 15 20 25 30 35

0.05
0.1

0.15
0.2

A
U

C
Mamba2
TT

Scan 4×1

Scan 4×
STT

Figure 9: Model prediction AUC over the hidden target estimation sequence.

(a) t=0 (b) t=20 (c) t=40

Figure 10: Rendered hidden target estimation over a 40 frame sequence where the left of each frame
is the observable robots and the right is the hidden targets and model prediction. In the right frames,
blue is the prediction and its intensity represents confidence, red pixels are the robots and targets.

5.2 REPLACING SCAN WITH GATING

We evaluated replacing the weighted sum operation in Scan 4× with gating mechanisms, GRU and
Gated Impulse Linear Recurrent (GILR) (Martin & Cundy, 2018). Our weighted sum is equivalent
to a GILR that evenly weights the last hidden state and present value. Table 1 shows that accuracy is
positively correlated with model sophistication at the expense of training cost. Unlike GRU, GILR
can be parallelized over the sequence like our algorithm. While in theory GILR should have a lower
cost than GRU, we expressed GILR as native PyTorch code. A CUDA implementation could fuse
operations into a single kernel to improve throughput and reduce memory. We observed decaying
accuracy at the end of the sequence, similar to Section 5.1.1. This decay is not correlated with
sequence duration, as shown by evaluations on an 81 step sequence (Appendix A.1.4). Figures 13
and 14 show this phenomenon is related to the end of a sequence, not sequence length.

Encoder Top1 # M Mem. Train Infer.
Acc. params GB it/sec it/sec

Scan 0.680 0.912 3.16 22.6 23.3
GILR 0.714 1.97 4.490 13.9 17.2
GRU 0.734 4.082 3.85 20.2 20.9

Table 1: Replacing the weighted sum of Scan 4× with gating mechanisms on a 81 step sequence.

5.3 STARCRAFT II

We train each model for ≈ 205k iterations with a sequence length of 30 and latent state L ∈ R16×256.
StarCraft II is more challenging than Chasing-Targets, evidenced by the significantly lower top-1
assignment score for non-null assignments in Table 2. There are substantially more units on the field
which vary in cardinality as they enter, exit and die in combat. Furthermore, in dense combat sce-
narios it is potentially more challenging to precisely assign targets. We find that a relative cartesian
categorical representation of position performs the best (Appendix A.6) and is used hereafter.

While TT still performs the best across the board, its accuracy advantage over other models has
diminished. Since the number of units is significantly greater in SC2 than Chasing-Targets, the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

observation step becomes a greater component of the sequence processing cost. Furthermore, the
sequence length of SC2 is ≈ 25% shorter than Chasing-Targets. The greater training cost bias
towards the observation stage reduces the proportional cost reduction using the Scan encoder. As
the benefit of using a simpler encoder is diminished on a short sequence with complex observation
space, taking advantage of a more complex encoder would likely be beneficial. Mamba2, LSTM
and TT have greater accuracy than Scan3× at similar training cost. Importantly, all models are able
to exploit the information provided by sequentially encoding irregular observations with X-Attn.

Encoder Top1 Top1 Top5 MSE F1 # M Mem Train
+null Param. GB it/sec

LSTM 0.216 0.905 0.637 0.190 0.811 32.1 9.59 14.6
TT 0.258 0.918 0.647 0.169 0.844 57.4 10.6 14.7

RetNet 0.156 0.916 0.622 0.178 0.834 32.1 10.0 9.8
Mamba2 0.238 0.913 0.643 0.180 0.832 29.1 9.59 14.3
Scan 3× 0.209 0.892 0.632 0.202 0.796 14.5 9.91 15.1

Table 2: Average performance over the SC2 battle sequence and training cost.

6 LIMITATIONS

Our benchmark sequences are performed over relatively short time-spans compared to other se-
quence modeling benchmarks (Tay et al., 2021). Chasing-Targets accuracy saturates early in the
sequence, however we note accuracy decay in some encoders (Fig. 7). SC2 accuracy increases
throughout the sequence. Micromanagement tasks may not elicit long range dependencies to the ex-
tent of short term ones, with players performing hundreds of actions per minute. There are a number
of multi-agent interaction environments based on real-world observation data of vehicles (Ettinger
et al., 2021; Wilson et al., 2021) and pedestrians (Robicquet et al., 2016). These benchmarks utilize
shorter term prediction, often less than 10 seconds and ≤ 10Hz resolution. Furthermore, they often
only contain random short sequences (as opposed to a long sequence that is sub-divided for training
and evaluating) or are limited in size as motion datasets require costly annotation of agents and their
tracks. There may be additional value in the development and benchmarking of the models above on
tasks with longer term temporal dependencies and irregular and complex observation spaces. How-
ever, we note that Auto-regressive SSM and RNNs are known to perform worse than Transformer
and Linear models on long term forecasting benchmarks (Das et al., 2023). Assuming findings in
Section 5.2 generalize to long-term forecasting, the Scan Encoder will likely perform similarly.

7 RELATED WORK

State Space Models (SSMs) like our approach are ubiquitous in sequential modeling tasks requir-
ing efficiency. In control and dynamics modeling, they have been applied to learn locally linear
latent dynamics models conditioned on exogenous inputs (Watter et al., 2015; Banijamali et al.,
2018; Jaques et al., 2021; Levine et al., 2019; Karl et al., 2022; Han et al., 2020). More recently,
these models have become popular with endogenous inputs. Here, SSMs parameterize a sequential
process with endogenous input u(t) to model the output process y(t) with hidden state x(t),

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t).

Parameters (A,B, . . . ) can be approximated in a discrete form (Ā, B̄, . . . ), appropriate for a
sequence-to-sequence mapping, such that they can be learned with gradient descent. However, these
matrices must be deliberately structured for effectiveness, usually guided by HiPPO theory (Gu
et al., 2020). The key desirability of SSMs is re-parameterization as a convolution to enable parallel
computation for training, y = K̄ ∗u+ D̄u, where K = (C̄ĀiB̄)i=0...L−1 for sequence length L.
Rather than learning the SSM matrices, Fu et al. (2023) propose learning K̄ directly with various
regularization techniques and an efficient long convolution implementation to enable feasibility. Gu
& Dao (2023) introduce the notion of time-dependent SSM matrices, similar to an LSTM, adding
mechanisms for selectively propagating or forgetting state information dependent on the current to-
ken. This is also accompanied by a specialized implementation for performance. In follow up work,
Dao & Gu (2024) decompose the SSM into diagonal and low-rank blocks for further efficiency.

9
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Sub-quadratic Transformer Attention has been proposed with various techniques. Linearized
Attention is one of the paradigms used to achieve this. Katharopoulos et al. (2020) re-parameterize
multi-head self-attention with a non-negative feature map (i.e. elu(x) + 1) applied to K,Q sepa-
rately to attain linear time and memory complexity, and enable incremental processing in scenarios
with causal masking. RWKV (Peng et al., 2023) utilizes learned position biases, similar to (Zhai
et al., 2021), rather than queries from that position. Sun et al. (2023) follows a similar mechanism
to our proposed method where a hidden state S is propagated with a decay factor γ and updated
with the current input, Sn = γSn−1 + Xn. However, our cyclic scanning and updating conditions
the input on the accumulated history, before adding to the time-decaying latent state, as illustrated
in Figure 4. Blocked Attention is another proposed method for avoiding O(L2) complexity. How-
ever, a pure application of blocked attention would omit longer-term dependencies. To address this,
Hutchins et al. (2022) introduce a set of recurrent states for long term context. Two components
of the model run in parallel, one that leans how to gather context temporally (“horizontally”), and
another than leans to extract long term information for the current decoding task (“vertically”). Di-
dolkar et al. (2022) takes a similar approach, however interleaves long- and short-term information
in their “Perceptual Module”, the output of which updates the recurrent information.

Irregular Spatio-Temporal Tasks can be found in many domains, but there has been little to no
focus on efficient temporal modeling with neural networks for this class of problems. Perhaps most
relevant is multi-object tracking, which aims to associate detected objects between frames. Recur-
sive processing is popular in end-to-end learning of the multi-object tracking problem (Meinhardt
et al., 2022; Zhang et al., 2023; Zhu et al., 2022), but this is only suitable when training short-term
tracking algorithms on benchmarks with much shorter timescales (Dendorfer, 2020; Dave et al.,
2020) than those proposed above. Over a longer horizon, for example in long-term Re-identification
tasks, these recursive methods scale poorly, hence further innovation is required. Longer horizon
methods (Qin et al., 2023) are typically are not trained end-to-end for this reason. Graph neural
networks (GNNs) (Battaglia et al., 2018) are popular architectures for variable dimensional or irreg-
ularly structured data due to their permutation invariance. However, these models generally rely on
fixed graph structures for global context, although some approaches attempt to model graph evolu-
tion graph over time (Pareja et al., 2020; Manessi et al., 2020). This lacks the scalability of state
space models and GNNs are difficult to frame in an incremental manner for inference, typically pro-
cessing the full sequence. For example, Gao et al. (2020) repeatedly construct a graph representation
of traffic scenes with agent tracklets and environment context to produce future trajectory estimates.

8 CONCLUSION

This work introduces a sequential modeling approach for irregular observation sources of varying
dimensionality and cardinality. We investigate the use of various encoders to pack these observations
into a fixed dimensional latent, and corresponding sequence modeling approaches. We propose a
novel algorithm that alternates between cross attention and a weighted inclusive scan to accumulate
context over time and show that this performs on par with existing sequence modeling approaches
on two new challenging benchmarks, with comparably higher training and inference speeds and a
lower parameter count. A key benefit of the proposed approach is that it can naturally be tweaked
to allow a broad range of performance/compute trade-offs (see Appendix A.3 for more extensive
experiments in this vein) as required for a given application.

9 REPRODUCIBILITY

The dataset, simulation, source code and experiment configuration files are publicly available, but
currently not linked for anonymity.
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A APPENDIX

A.1 ENCODER ABLATIONS

A.1.1 SPATIAL ENCODER RESULTS

We evaluate the performance characteristics of each encoding method using the temporal-only trans-
former on the Chasing-Targets assignment task. From Table 3, we find the following orders of
accuracy holds, sequential > fused > piecewise, and X-Attn > BERT. In this case, X-Attn demon-
strates to be a clear winner over BERT, with using less memory, faster inference time and greater
accuracy. Hence, empirically, we find that a sequential encoding with X-Attn is the best performing
algorithm in terms of accuracy. While the BERT fused method produces a larger attention matrix

Encoder Algorithm Top1 # M Mem. Train Infer.
Acc. params GB it/sec it/sec

BERT piecewise 0.769 10.4 2.88 38.8 62.7
BERT fused 0.789 9.99 2.98 44.4 66.5
BERT sequential 0.809 10.4 3.64 35.5 59.3
X-Attn piecewise 0.805 10.4 2.44 41.7 58.5
X-Attn fused 0.820 9.99 2.19 46.2 71.3
X-Attn sequential 0.838 10.4 2.90 39.4 53.3

Table 3: Accuracy and cost of spatial encoders for Chasing-Targets with Temporal Transformer.

O((NL +Na +Nt)
2) compared to the sequential method O((NL +Na)

2 + (NL +Nt)
2), where

NL, Na, Nt are the number of latent variables, agents and targets respectively, we find the fused
method uses considerably less memory. The additional parameters and doubling of layers associ-
ated with the sequential algorithms seem to outweigh the larger attention matrix of the fused method.
Furthermore, the fused method is consistently faster. This is expected compared to the sequential
model, however not for the piecewise which can independently process the target and agent branches
in parallel. This is likely due to PyTorch not actually processing the piecewise operations in paral-
lel. To enable processing of piecewise operations, new CUDA streams need to be manually invoked
and correctly managed5. The piecewise algorithm is consistently inferior to the other methods in
accuracy, indicating that enforcing an even weighting between information from agent and target
observations is suboptimal.

A.1.2 LATENT STATE DIMENSIONS

We performed an ablation on the latent state size of the X-Attn sequential temporal-only transformer
(Figure 11). We find that the optimal size is 8× 128, more tokens has diminishing returns, and less
tokens or dimension has reduced accuracy.
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1 × 128

Figure 11: Top1 Accuracy of X-Attn Sequential Temporal-Only Transformer on Chasing-Targets

A.1.3 GAMMA ABLATION

We briefly evaluate a range of γ factors to validate that γ = 2 performs the best (Figure 12). γ = 1
is a simple unweighted cumulative sum, results in severe accuracy degradation over time. The other

5https://pytorch.org/docs/stable/notes/cuda.html#cuda-streams
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two tested factors γ = 1.5, 3 are slightly worse thanγ = 2, however we would expect values > 3 to
further perform poorly.
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Figure 12: Top1 Accuracy of Scan Encoder with different γ factors

A.1.4 REPLACING SCAN WITH GATING

We observed that the accuracy of the gated models decayed towards the end of the sequence (Figure
13). We believe that this phenomenon is correlated with it being the end of the sequence, not
correlated to the length of the sequence itself. We confirmed this by running an experiment with a
longer duration in Figure 14, also showing the same accuracy decay phenomenon, invariant of the
actual duration of the sequence. The GILR implementation was based on Heinsen (2023).
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Figure 13: Comparison between weighted sum, MinGRU and GRU.
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Figure 14: Comparison between weighted sum, MinGRU and GRU over an extended sequence.

A.2 OCCUPANCY ESTIMATION TRAINING COST

Table 4 shows the occupancy decoder uses substantially more memory due to rendering a dense
64 × 64 occupancy map, rather than correlating at most 15 robots to 6 targets. We improve the
representation capability of Scan 4× by introducing an additional self-attention layer after the X-
Attn. This results in Scan 4× approaching the accuracy of the STT and Mamba2 encoders, while
still using significantly fewer parameters with similar memory and compute.

A.3 CHASING TARGETS DETAILED RESULTS

Table 5 provides a larger set of results including various encoder (BERT, X-Attn) and encoding al-
gorithm (Fused, Piece-wise) variants for the S.T, Recurrent and Mamba2 encoders. We also include
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Encoder AUC Soft # M Mem. Train Infer.
IoU param. GB it/sec it/sec

STT 0.031 0.008 1.702 13.1 11.9 12.6
Mamba2 0.122 0.031 4.284 11.0 12.0 12.2

TT 0.116 0.028 19.49 13.1 13.0 14.2
Scan 4× 0.063 0.014 0.514 10.9 15.1 15.1
Scan 4×1 0.106 0.026 0.912 12.3 13.0 13.0

Table 4: Accuracy and training cost of each temporal encoder. 1 notes an additional self-attention
layer in the model.

Encoder Top1 Accuracy # M Mem. Train Infer.
0 5 10 40 param. GB it/sec it/sec

RNN-L,Fuse,BERT 0.359 0.529 0.592 0.633 0.76 1.82 60.7 89.4
GRU-L,Fuse,BERT 0.372 0.652 0.706 0.711 1.29 1.88 58.8 86.6

LSTM-L,Fuse,BERT 0.375 0.646 0.703 0.703 1.56 1.89 56.4 81.4
STT,PW,BERT 0.377 0.688 0.739 0.719 2.10 2.81 35.3 55.2
STT,PW,X-Attn 0.374 0.692 0.745 0.716 2.10 1.86 42.7 52.1
STT,Seq,X-Attn 0.374 0.692 0.745 0.716 2.10 1.86 42.7 52.1

Mamba2,PW,X-Attn 0.381 0.673 0.724 0.703 2.79 1.04 30.9 31.6
Mamba2,Fuse,BERT 0.386 0.667 0.719 0.713 2.79 1.95 35.4 61.0

Mamba2,Seq,Attn 0.366 0.726 0.783 0.736 2.79 1.39 33.3 49.0
Scan 1× 0.354 0.479 0.521 0.576 0.313 0.61 104.0 125.6
Scan 2× 0.346 0.609 0.649 0.682 0.512 0.90 68.9 79.1
Scan 4× 0.360 0.659 0.688 0.697 0.912 1.86 41.4 43.8
Scan 6× 0.392 0.657 0.696 0.690 1.311 2.05 30.2 31.6

Table 5: Algorithm performance, training and evaluation cost of tested algorithms on Chasing-
Targets.

slight variations of the Scan encoder with removed self-attention layers to trade accuracy and effi-
ciency (indicated by 1) or replace cross-attention with the observation in the repeat layers, with self
attention blocks (indicated by 2).

A.4 RECURRENT MODEL COMPARISON

We evaluated all the available recurrent neural network modules available in PyTorch, comparing
an initial hidden state which is a learned parameter or zeros. Each of these models use the X-
Attn encoder with sequential encoding algorithm. We plot the accuracy of each model over time
in Figure 15 and summarize the average accuracy and the training cost in Table 6. The standard
RNN performs poorly whilst the LSTM and GRU are similar. While there is only small difference
between the learned and zero initial hidden state for each model, the learned initial state has a slight
advantage for both the RNN and GRU. From these results, the GRU stands out as a compelling
choice since its accuracy exceeds the more complex LSTM, while costing closer to the RNN in
training throughput and memory. However we observe a strange outlier in memory consumption of
the GRU with zero initialization.
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Figure 15: Comparison between recurrent models and hidden state initialization.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Encoder Init. Top1 # M Mem. Train Infer
Acc. Param. GB it/sec it/sec

RNN Zero 0.569 1.44 1.31 62.2 69.1
RNN Learn 0.571 1.44 1.33 62.1 69.1
GRU Zero 0.720 2.49 1.54 59.5 64.9
GRU Learn 0.726 2.49 1.38 60.6 65.7

LSTM Zero 0.715 3.02 1.46 55.5 62.1
LSTM Learn 0.707 3.02 1.49 55.5 61.4

Table 6: Average Top1 Accuracy and Cost of Recurrent Models on Chasing-Targets

A.5 TASK DECODING

In this section, we detail the decoding strategy used for each benchmark task. The foundation of
each task decoder is a cross-attention operation between the ego-agents and latent state to gather the
temporally aggregated observation information,

O′
p = X-Attn(Linear(Op),L′),

where the query for MHA is derived from the first argument of X-Attn, and the key-value from the
second argument. We note that X-Attn and Linear are learned for each task.

Goal Assignment aims to find the correlation between agents and targets. We achieve this by
learning a projection of the targets which can be correlated with the agent features,

O′
e = Linear(Oe), A = CosineSimilarity(O′

p,O′
e).

For the StarCraft II challenge, a learned null token is appended to the set of projected targets. Finally,
the correlation between agents and targets is determined using a dot-product. Soft-max is applied
along the target dimension to calculate the final assignment score from agent to target. We note that
this is a one-to-many problem, many agents can have the same target, but each agent only has one
target, including a null assignment.

Negative log likelihood (NLL) is used as a categorical loss between the predicted and the ground
truth assignment. However, there are some complications due to the variable agents and targets in
the scene. Invalid agents can simply be omitted from the loss function with a mask. To handle
invalid targets, we group agents with the same number of targets in the scene and truncate the tensor
to this number. This allows us to apply NLL loss while avoiding gradients from invalid targets and
agents. In the StarCraft II task, there is a significant imbalance between agents with a target and
those without. A weighting factor of 0.05 is applied to emphasize non-null assignment losses.

A Movement Target Assignment task completes the motion action space that units in StarCraft II
can take. Here, the objective is to estimate the coordinates on the map where the unit is moving to.
This plays an important part of the game as maneuvering units into advantageous positions such as
the high ground or choke-points is an important strategy in game-play. We evaluate several methods
of estimating the target position with both regression and categorical techniques including: global
cartesian, relative cartesian and relative polar. The difference between these methods is the number
of channels of the final linear layer and the loss used for training. Furthermore, a logit is emitted to
estimate the likelihood that the unit is following a position command and position estimate is valid.

L2 loss is used for regression-based position estimation and HL-Gauss (Imani & White, 2018) is
used for categorical-based position estimation. We include additional logic in the HL-Gauss loss to
correct angle wrapping for polar coordinate estimation (Appendix A.6). Binary cross-entropy loss is
used for the valid position command logit. Position commands are under-represented in the dataset
compared to target commands. To increase the amount of position data, we create pseudo-position
commands from target unit coordinates while treating the position logit as false.

Hidden Target Estimation in Chasing-Targets is formulated as an occupancy prediction problem.
An array of coordinates are sinusoidally encoded, P(.), to query the temporal encoding,

O(x, y) = Linear(X-Attn(concat.(P(x),P(y)),L′)),

to yield likelihood of hidden target occupancy O at the position (x, y). Focal loss (Lin et al., 2020) is
used to address class imbalance between unoccupied and occupied pixels. Although position queries
are continuous, for simplicity we use a fixed grid.
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A.6 STARCRAFT II UNIT TARGET POSITION REPRESENTATION

HL-Gauss (Imani & White, 2018) loss is used for categorical position encoding. Instead of a one-hot
encoding label, a gaussian kernel is used as the categorical target with µ equal to the position and
σ, which we set to 0.2. The appropriate number of bins used for the prediction is correlated to the
σ chosen (Farebrother et al., 2024), we use 20. We decode the categorical output of the model by
integrating over the product of the soft-max output and the value each bin represents. We perform an
ablation study with the large Scan 6× encoder, shown in Table 7, to determine the best performing
position learning schema. Based on these results, we use a relative cartesian coordinate system for
unit position estimation, encoded with a categorical distribution.

Rep. Frame Encoding MSE
0 5 15 25

Cart. Rel. Scalar 0.300 0.258 0.253 0.251
Cart. Glbl. Scalar 0.299 0.259 0.254 0.241
Polar Rel. Cat. 0.258 0.221 0.216 0.216
Cart. Rel. Cat. 0.248 0.211 0.207 0.206
Cart. Glbl. Cat. 0.254 0.220 0.218 0.219

Table 7: Position representation ablation performed with Scan 6× encoder. Here Cart. is cartesian,
Rel. is relative position from the unit, Glbl. is global position in the ROI and Cat. is categorical
position encoding.

Using a polar coordinate system requires consideration for correct behavior of wrapping θ, espe-
cially for a categorical representation. To create the categorical target, we double the template range
to [−4π, 4π]. Once the kernel is projected onto the template, we add the reflection of the additional
range to the opposite side in the normal range, i.e. we reflect and add the bins from [−4π,−2π]
to [0, 2π], and repeat for the the opposite tail. To handle angle wrapping for decoding, we find the
argmax category and rotate the categories to center on the argmax. With this new categorical range,
the value that each bin represents is recalculated to the new range. The standard decoding algorithm
is used to yield the final result. We test this algorithm by encoding and decoding a uniform range of
targets [−2π, 2π] and checking the original target is reconstructed.

A.7 STARCRAFT II ROI CALCULATION

The objective of the ROI is to contain the main action happening on the screen, namely the units in
combat. To achieve this, we gather the coordinates of all the units with target or motion commands
over the sequence. K-Means clustering is performed on the positions and sorted by the number of
members in the clusters. If the limits centroids of the K-means clusters can fit within the desired
ROI size, then the mean of the centroids is used for the center of the ROI. If this condition is not
fulfilled, the smallest cluster is removed. This is done iteratively until the condition is satisfied. This
calculation can be performed live in the dataloader during training, or calculated once and saved a
key associated with the sample to be re-indexed during training.
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