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Abstract

Bayesian deep learning and conformal prediction are two methods that have been used to
convey uncertainty and increase safety in machine learning systems. We focus on combining
Bayesian deep learning with split conformal prediction and how the addition of conformal
prediction affects out-of-distribution coverage that we would otherwise see; particularly
in the case of multiclass image classification. We suggest that if the model is generally
underconfident on the calibration dataset, then the resultant conformal sets may exhibit
worse out-of-distribution coverage compared to simple predictive credible sets (i.e. not using
conformal prediction). Conversely, if the model is overconfident on the calibration dataset,
the use of conformal prediction may improve out-of-distribution coverage. In particular,
we study the extent to which the addition of conformal prediction increases or decreases
out-of-distribution coverage for a variety of inference techniques. In particular, (i) stochastic
gradient descent, (ii) deep ensembles, (iii) mean-field variational inference, (iv) stochastic
gradient Hamiltonian Monte Carlo, and (v) Laplace approximation. Our results suggest that
the application of conformal prediction to different predictive deep learning methods can
have significantly different consequences.

1 Introduction

Bayesian deep learning and conformal prediction are two paradigms that have been used to represent
uncertainty and increase trust in machine learning systems. Bayesian deep learning attempts to endow
deep learning models with the ability to represent predictive uncertainty. These models often provide
more calibrated outputs on both in-distribution and out-of-distribution data by approximating epistemic
and aleatoric uncertainty. Conformal prediction is a method that takes (possibly uncalibrated) predicted
probabilities and produces prediction sets that follow attractive guarantees; namely marginal coverage for
exchangeable data (Vovk et al., 2005). On out-of-distribution data, however, this guarantee no longer holds
unless knowledge of the distribution shift is known a priori (Tibshirani et al., 2019; Barber et al., 2023). It
is natural then to consider combining conformal prediction with Bayesian deep learning models to try and
enjoy in-distribution guarantees and better calibration on out-of-distribution data. In fact, combination of
the two methods has been used to correct for misspecifications in the Bayesian modeling process (Dewolf
et al., 2023; Stanton et al., 2023), thereby improving coverage and thus trust in the broader machine learning
system. However, we suggest that application of both methods in certain scenarios may be counterproductive
and worsen performance on out-of-distribution examples (see Figure 1). To investigate this suggestion we
evaluate the combination of Bayesian deep learning models and split conformal prediction methods on image
classification tasks, where some of the test inputs are out-of-distribution. Our primary contributions are as
follows:
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Figure 1: A conceptual illustration of how conformal prediction can help or harm out-of-distribution coverage
for an error tolerance of 0.25. On the left is a conceptual illustration of how conformal prediction can make
the overall machine learning system less confident after conformalizing a model that is overly confident
on the calibration dataset. As a consequence, it gains coverage on out-of-distribution examples. The
right conceptualizes the opposite direction and illustrates how conformal prediction can reduce coverage on
out-of-distribution examples.

(i) Offer an explanation of how the under- or over-confidence of a model is tied to when conformal
prediction may worsen or improve out-of distribution coverage.

(ii) Evidence to support the explanation in (i) and further demonstration of the extent to which conformal
prediction affects out-of-distribution coverage in the form of two empirical evaluations focusing on
the out-of-distribution coverage of Bayesian deep learning combined with split conformal prediction.

(iii) Practical recommendations for those using Bayesian deep learning and conformal prediction to
increase the safety of their machine learning systems.

2 Preliminaries

2.1 Calibration

Modeling decisions factor into the calibration of the resultant predicted probabilities. Consider a vector of
predicted probabilities produced by our model for input x,

K
#(x) = (F1(x), ., AR (X)), Y Fr(x) =1 Vx€X
k=1

where X is the sample space for x and K is the number of possible labels y can assume (i.e. the labels that
can be assigned to x). For a model to be well-calibrated (Zadrozny and Elkan, 2002; Vasilev and D’yakonov,
2023) the following must hold,

P(y = i|fti(x) =p) =p, Vi Y,Vpe0,1],

where the probability is taken over the joint data distribution p(x,y) and Y is the sample space for labels
y. This says that on average over p(x,y), the predicted probability assigned to each class (not just the one
assigned highest probability) represents the true probability of that class being the true label. If a model is
well-calibrated, then we should be able to create prediction sets that achieve marginal coverage for an error
tolerance a by creating a predictive credible set which we later abbreviate as cred. To do so, for each model
output 7(x), we order the probabilities therein from greatest to least and continue adding the corresponding
labels until the cumulative probability mass just exceeds 1 — a.
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2.2 Bayesian Deep Learning

One important reason for miscalibration is the abstention of representing epistemic uncertainty (Wilson and
Izmailov, 2020). In order to create more calibrated predicted probabilities for neural networks, a popular
approach is Bayesian deep learning, where a major goal is to faithfully represent parameter uncertainty (a
type of epistemic uncertainty). Parameter uncertainty' arises due to many different configurations of the
model weights that can explain the training data, which happens especially in deep learning where we have
highly expressive models (Wilson, 2020). Hence, Bayesian deep learning is an attractive approach to helping
achieve calibration in practice, even on out-of-distribution examples. However, in order for the Bayesian
approach to perform well a few important assumptions are required:

o Our observation model relating weights w and inputs x to labels y, p(y|x, w), is well-specified. This
means that our observation model has the ability to produce the true data generating function.

o Our prior over weights p(w) is well-specified. This means that when it is paired with the observation
model, we induce a distribution over functions p(f) that places sufficient probability on the true data
generating function (MacKay, 2003).

o We often need to approximate the posterior distribution of the weights with respect to the training
dataset, p(w|D), for many interesting observation models, including neural networks. It is required
that this approximation to the true posterior is acceptable in the sense that both yield similar results
for the task at hand. For example, in the predictive modeling scenario, the approximated and true
posterior predictive should be nearly identical at the inputs that we will realistically encounter.

In this study we use a class of observation models (convolutional neural networks) and priors (zero-mean
Gaussians) that have been shown to produce good inductive biases for image classification tasks (Wilson and
Izmailov, 2020; Izmailov et al., 2021); and focus on varying the method of approximating the posterior over
parameters.

2.3 Conformal Prediction

We restrict our attention to a subset of conformal prediction methods: split (or inductive) conformal prediction
(Vovk, 2012). Split conformal prediction requires an extra held-out calibration dataset (which we denote D))
to be used during a “calibration step”. Importantly, split conformal prediction assumes exchangeability of the
calibration and test set data. By allowing our final output to be a prediction set Y C (1, ..., K), conformal
prediction guarantees the true class y to be included on average with probability (confidence) 1 — «:

PriyeY)>1-q, (3)

where « is a user-chosen error tolerance and Pr reads “probability that”. This guarantee is marginal in the
sense that it is guaranteed on average with respect to the data distribution p(x,y) as well as the distribution
over possible calibration datasets we could have selected. Not only does split conformal prediction guarantee
the inequality in (3) but also upper bounds the coverage given that the scores s; have a continuous joint
distribution. In particular, let n., be the number of data pairs in the calibration dataset, then

Pr(ye¥) <1-a+-—— (4)
which is proved in Lei et al. (2018). Split conformal prediction methods work by first defining a score function
that measures the disagreement between output probabilities #(x) of a model and a label y. We denote a
general score function as s(x,y), but it should be noted that the outputted scores depend on the underlying
fitted model through the #(x) it produces. The conformal method computes the scores on the held-out
calibration dataset and then takes the

1 .
[(1—a)(1+ m)]—quantlle

1 Parameter is a loaded term, and context is needed to precisely understand what it means. In this case, we mean the weights
of the neural network; not the parameters that may govern the distribution over such weights.
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of those scores which we denote 7. Then, during test time, prediction sets are constructed by computing
the score for each possible y;, and including y; into the prediction set if its score is less than or equal to 7.
Informally, if the candidate label y; produces a score that conforms to what we have seen on the calibration
dataset, it is included.

3 Motivation

We focus on the setting, as is often the case, where we expect to encounter out-of-distribution examples
when we deploy our predictive systems in the real world. We are faced with the following binary choice:
to either apply split conformal prediction to our model or to instead use non-conformal predictive credible
sets. This choice will of course depend on our preferences. For instance, consider the scenario in which we
want guaranteed marginal coverage on in-distribution inputs and additionally we would like to maximize
the chance that our prediction sets cover the true labels for out-of-distribution inputs. What, then, are the
benefits and risks associated with applying split conformal prediction? In beginning to answer this question,
we provide an empirical evaluation alongside an explanation as to when applying split conformal prediction is
expected to increase or decrease out-of-distribution coverage. The empirical evidence suggests that conformal
prediction can significantly impact the out-of-distribution coverage one would otherwise see with predictive
credible sets. And hence, understanding the interaction between certain predictive models and conformal
prediction is important for the safe deployment of machine learning, especially in safety-critical scenarios.

While conformal prediction guarantees marginal coverage when the calibration data and test data are
exchangeable, it loses its guarantees when encountering out-of-distribution data at test time?. Bayesian
deep learning, on the other hand, has no such guarantees but has been shown to improve calibration (and
thus coverage) on out-of-distribution inputs; a symptom of trying to quantify epistemic uncertainty. A
natural desire, then, is to combine conformal prediction with Bayesian deep learning models in order to
enjoy in-distribution guarantees while reaping the benefits of out-of-distribution calibration. To be clear, the
main question this study intends to address is not how particular conformal prediction methods perform
on out-of-distribution data. Instead, we address a more specific question: what are the benefits and risks
associated with either applying split conformal prediction to our predictive model or passing up on using
conformal prediction and simply using predictive credible sets when the predictive model is designed to be
uncertainty-aware? In answering this question, we first discuss when, for a fixed predictive model, conformal
prediction is expected to increase or decrease out-of-distribution coverage based on only on the calibration
dataset. Afterward, we examine the extent to which the addition of conformal prediction increases or decreases
the out-of-distribution coverage on real-world settings. As we will see, this depends on the behavior of the
predictive uncertainty of the underlying model, particularly on out-of-distribution inputs.

The context is that we have a fixed predictive model and a split conformal prediction method. We would
like to know whether this split conformal prediction method will increase (or decrease) marginal coverage on
out-of-distribution data as compared to using credible sets. Conformal prediction does whatever it needs
to guarantee the desired coverage on the calibration dataset; meaning it provides a lower bound (3) and an
upper-bound (4) (see Figure 1). It does this by creating a threshold 7 such that the routine “allow candidate
label y; into the prediction set if the score s(x,y;) < 7”7 produces sets that attain the desired marginal
coverage on the calibration dataset. We say a predictive model is overconfident if its credible sets do not reach
the desired coverage on the calibration dataset. The conformal method will then, by definition, create a 7
such that more labels are allowed into the prediction sets in order to achieve the lower bound (3). And so on
the calibration dataset, the conformal prediction sets will exhibit larger average set size than the credible sets.
This will have the affect that, on any given future data, we can expect the average set size of the conformal
sets to be larger than that of the credible sets. And hence, the conformal prediction sets will have a higher
chance of achieving better marginal coverage. Conversely, we say the predictive model is underconfident if its
credible sets exceed the desired coverage on the calibration dataset. The conformal method will then, by
definition, create a 7 such that less labels are allowed into the prediction sets in order to achieve the upper
bound (4). And so on the calibration dataset, conformal prediction sets will exhibit smaller average set size
than the credible sets. This will have the affect that, on any given future data, we can expect the average set

2This is true, unless, as mentioned before, there is a priori knowledge about the out-of-distribution data (Tibshirani et al.,
2019; Barber et al., 2023)
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size of credible sets to be larger than conformal prediction sets. And thus, credible sets will have a higher
chance of achieving better marginal coverage.

It follows from this discussion that, for a fixed model, the prediction set method we expect to have the
greatest out-of-distribution coverage will have largest average set size on the calibration dataset. Put another
way, increasing the chance of out-of-distribution coverage without any knowledge of the test distribution will
be at the expense of larger average set size on in-distribution data. We have just proposed an explanation as
to when conformal prediction will likely increase (or decrease) marginal coverage on out-of-distribution data
in the context of a fixed predictive model. In Section 6 we empirically examine the extent to which conformal
prediction can either help or harm out-of-distribution coverage as compared to credible sets. Furthermore,
we examine this extent across many different predictive models that exhibit different behavior with respect to
predictive uncertainty on out-of-distribution data.

4 Related Work

The analysis of combining more traditional Bayesian models with conformal prediction has been studied
in Wasserman (2011) and Hoff (2021). Combining full (not split) Bayesian deep learning with conformal
regression has been studied in the context of efficient computation of conformal Bayesian sets and Bayesian
optimization (Fong and Holmes, 2021; Stanton et al., 2023). Both of these works consider settings with
non-exchangeable data but assume a priori knowledge on the type of distribution shift.

Theoretical foundations of using conformal prediction with non-exchangeable data can admit very powerful
guarantees but have thus far assumed a priori knowledge about the distribution shift (Tibshirani et al.,
2019; Angelopoulos et al., 2022; Fannjiang et al., 2022; Barber et al., 2023). Additionally, other powerful
conformal algorithms have been posed to deal with out-of-distribution examples but require an additional
model to detect those out-of-distribution examples (Angelopoulos et al., 2021). Dewolf et al. (2023) evaluate
conformal prediction combined with Bayesian deep learning models but for regression tasks and with relatively
low-dimensional inputs (no greater than 280 features). Additionally, Kompa et al. (2021) look at the coverage
of prediction sets from various Bayesian deep learning methods and mention conformal prediction but do not
include conformal prediction in their empirical analysis. We are not aware of a study examining the interaction
between conformal prediction and Bayesian deep learning methods as it relates to the coverage of unknown,
out-of-distribution examples for a task that deep learning models have excelled—image classification. We not
only evaluate the combination of Bayesian deep learning and conformal prediction on image classification but
also provide an intuitive explanation as to why, in certain scenarios, conformal prediction can actually harm
out-of-distribution coverage we would otherwise see with non-conformal predictive sets.

5 Evaluation & Method Details

5.1 Predictive Modeling Methods

Consider a probabilistic conditional model p(y, w|x) = p(y|x, w)p(w) where w are the weights, p(w) is a
prior distribution, and p(y|x,w) is the probability of y given our weights w and fixed inputs x. Denote the
training dataset as D. Then the posterior predictive distribution can be written as

p(olx.D) = [yl wip(w|D)dw. (5)
We implement three methods for approximating (5), which is sometimes referred to as the Bayesian model
average (Wilson and Izmailov, 2020).

Stochastic Gradient Descent (SGD) typically involves finding the maximum a posteriori (MAP) estimate
for w. In the context of (1), this means we approximate p(w|D) a §(w — Wyap) where

wamap = argmax {log p(w|D)} = argmax {(log p(D|w) + log p(w) + constant)} .

Neural networks trained via stochastic gradient descent have been found to often be uncalibrated by being
overly confident in their predictions, especially on out-of-distribution examples (Guo et al., 2017).
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Deep ensembles (ENS) works by combining the outputs of multiple neural networks with different
initializations (Lakshminarayanan et al., 2017). The idea is that the variation in their respective outputs can
represent epistemic uncertainty. In this case, we implicitly approximate the posterior and simply average the
hypotheses generated by each model in the ensemble:

J
1 .
p(yx,D) = i Zp(y|X»WMAPj)
j=1
where Wyiap; is the stochastic gradient solution for model j in the ensemble of J models. Deep ensembles
can be viewed as an approximation to the Bayesian model average (5) (Wilson and Izmailov, 2020).

Mean-field Variational Inference (MFV) seeks to approximate the posterior with a variational distribution
(Blei et al., 2017):

p(w|D) ~ q(w|0) = HQ(wi‘éi) (6)

which comes from the mean-field assumption, and ¢ is usually a simple distribution (e.g. a Gaussian) ®. To
make the approximation in (6), we maximize with respect to 8 a function equivalent to the KL divergence
between p(w|D) and ¢(w|@) up to a constant. It is usually termed the evidence lower bound (ELBO). We
can write the objective as

KL between variational posterior and prior

A

0= argmax {ELBO(6,D)} = argmax Eqwie)llog p(D|w)]  + KL[g(w]0) || p(w)]

Expected log likelihood of data

The ELBO objective is a tradeoff between two terms. The expected log likelihood of the data prefers ¢(-)
place its mass on the maximum likelihood estimate while the KL divergence term prefers ¢(-) stay close to
the prior (Blei et al., 2017). Bayesian neural networks for classification have been shown to be generally
underconfident by overestimating aleatoric uncertainty (Kapoor et al., 2022). Indeed, we find this is the case
for both our experiments (see Figure 5).

Stochastic Gradient Hamiltonian Monte Carlo (SGMHC) is a Markov Chain Monte Carlo (MCMC)
method. In the context of inferring the posterior over parameters w, the basic premise of MCMC is to
construct a Markov chain on the parameter space YW whose stationary distribution is the posterior of interest
p(w|D). Hamiltonian Monte Carlo (HMC) is a popular MCMC technique that uses gradient information
and auxiliary variables to better perform in high-dimensional spaces (see 12.4 and 12.5 of Murphy (2023)).
SGHMC attempts to unify the efficient exploration of HMC and the computational feasibility of stochastic
gradients (Chen et al., 2014). To this end, it follows stochastic gradient HMC sampling with an added friction
term that counters the effects of the (noisy) stochastic gradients. This results in a second-order Langevin
dynamical system, which is closely related to stochastic gradient Langevin dynamics (SGLD) (Welling and
Teh, 2011). SGLD uses first-order dynamics, and can be viewed as a limiting case of the second-order
dynamics of SGHMC.

Laplace Approximation (LAPLACE) provides a Gaussian approximation to p(6|D) by casting the posterior
in terms of an energy function F(w) = —logp(w, D) and then Taylor approximating this energy function
around the MAP solution wyap. The result is a multivariate Gaussian approximation of the posterior with
its mean as wyap and its covariance matrix as the inverse Hessian of the energy function E taken with
respect to w and evaluated at wyiap. That is, we approximate the posterior as

p(w|D) =~ N (w|wyap, Hfl).

See 7.4.3 in Murphy (2023) for a derivation of the Laplace approximation. There are many different variants
of the Laplace approximation for deep learning. These variants usually stem from how one approximates

3Note that we are considering only global variable models, not local. Local variables, often denoted as z;, each only affect a
corresponding data point. As such, the number of z; scales linearly with the size of the dataset. Meanwhile, global variables
affect each data point in the same way.
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. Credible Set Coverage On The Calibration Dataset
Method Accuracies (Test Sets)
SGD | ENS | MFV | SGHMC | LAPLACE
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4= T T T : T
0 0 1 2 3 4 5 thr 4.10 3.32 3.30 3.02 4.41
Corruption Intensity aps 412 3.25 3.58 3.44 4.96

(b) CIFARI10: The first table displays the credible set
coverage on the calibration dataset to indicate over- and
under-confident predictive methods. The second table
displays the average set sizes on the calibration dataset.
For each predictive model method, the prediction set
method with highest average set size is bolded.

(a) CIFAR10 accuracy plot. The accuracy plot shows,
for each corruption intensity, the average accuracy over
all corrupted datasets at that intensity.

Figure 2: The accuracy plot and calibration dataset results for the CIFAR10 experiment.

H due to its infeasible computational requirements for large models as well as the form of the posterior
predictive distribution (Daxberger et al., 2021). A popular variant is determined by only considering the
last layer weights, Kronecker factorizing the Hessian (Ritter et al., 2018), and using a linearized predictive
distribution (Immer et al., 2021). We implement this Laplace variant for our experiments in Section 6.1.

5.2 Conformal Prediction Methods

We implement two common split conformal prediction methods.

Threshold prediction sets (thr) uses the following score function (Sadinle et al., 2019):

s(x,y) =1 — 7y(x).

That is, the score for an input x with true label y is one minus the probability mass the model assigns to the
true label y. This procedure only takes into account the probability mass assigned to the correct label.

Adaptive prediction sets (aps) uses the following score function (Romano et al., 2020):
s(,y) =i (2) + -+ Ulty(),

where 71 (z) > -+ > @, (x) and U is a uniform random variable in [0, 1] to break ties. That is, we order the
probabilities in 7r(x) from greatest to least and continue adding the probabilities, stopping after we reach the
probability associated with the correct label y.

5.3 Evaluation Measures

A prediction set is any subset of possible labels. We would like a collection of prediction sets to have certain
minimal properties. We would first like the collection to be marginally covered: given a user-specified error
tolerance «, the average probability that the true class y is contained in the given prediction sets is 1 — a.
We would also like each prediction set in the collection to be small: the prediction sets should contain as few
labels as possible without losing coverage. Hence, we evaluate on the basis of the marginal coverage and
average size of a collection of prediction sets emitted by applying split conformal prediction to Bayesian deep
learning model outputs.
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Figure 3: CIFAR10 and CIFARI10-Corrupted results at the 0.05 error tolerance. Row 1 and Row 3
illustrate the average coverage and average set size (respectively) of each prediction set method (thr, ap,
simple predictive (cred)) for each predictive modeling method. To explicitly indicate the extent to which
conformal prediction effects simple predictive sets, Row 1 shows the average coverage difference between
conformal prediction methods (thr, ap) and simple predictive credible sets (cred).

Measuring marginal coverage: for a given test set Diesy = { (X3, ¥:) }its* and prediction set function Y(x)
that maps inputs to a prediction set, we measure marginal coverage as

1 Ntest
Z 1 {yl € Y(Xl)}7
Ntest =1

where 1 denotes the indicator function. This is just the fraction (percent) of prediction sets that covered the
corresponding true label ;.

Measuring set size: for a collection of prediction sets {Y(x;)};st, we measure the set size as simply the
average size of the prediction sets:

1 Ntest

Y (xi)]-

Ttest i

6 Experiments

6.1 CIFAR10-Corrupted

Our first experiment loosely follows the setup of Izmailov et al. (2021) and Ovadia et al. (2019). We train an
AlexNet inspired model on CIFAR10 by means of stochastic gradient descent, deep ensembles, and mean-field
variational inference (Krizhevsky et al., 2009; 2012). We then take 1000 examples (without replacement)
from the CIFARIO0 test set for a calibration dataset. We use this calibration dataset to determine thresholds
7 that we use for conformal methods thr and aps, respectively. We then evaluate the marginal coverage and
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Figure 4: CIFAR10: CIFAR10 and CIFAR10-Corrupted results at the 0.01 error tolerance. Row 1 and
Row 3 illustrate the average coverage and average set size (respectively) of each prediction set method
(thr, ap, simple predictive) for each predictive modeling method. To explicitly indicate the extent to which
conformal prediction effects simple predictive sets, Row 2 shows the average coverage difference between
conformal prediction methods (thr, ap) and simple predictive credible sets.

average size of the predictive credible sets (cred), thr sets, and aps sets that were produced for every single
CIFAR10-Corruped dataset (Hendrycks and Dietterich, 2019) at every intensity?.

We first look at the credible set coverage of each predictive model method on the calibration dataset, which is
shown in Figure 2b. Recall from Section 3 that we say a predictive model is overconfident if the coverage
of its credible sets on the calibration dataset are less than the desired coverage, and underconfident if they
exceed the desired coverage. In Figure 2b we see that SGD is overconfident at both error tolerances, ENS is
overconfident at the 0.01 error tolerance and neither overconfident or underconfident at the 0.05 error tolerance,
and MFV, SGHMC, and LAPLACE are all underconfident. We expect then that conformal prediction set
methods will increase out-of-distribution coverage for SGD (and ENS at the 0.01 error tolerance), while
decrease out-of-distribution coverage for MFV, SGHMC, and LAPLACE. However, to what extent is this
the case? To analyze this empirically, we show the average® marginal coverage, the average difference in
marginal coverage between conformal prediction methods and simple predictive credible sets, and average set
size across datasets at each intensity in Figures 3 and 4. The average accuracies for each predictive modeling
method are shown in Figure 2a.

Remarks:

e In the context of the methods evaluated, if a top priority is to capture true labels even on unknown
out-of-distribution inputs, one is generally better off using “uncertainty-aware“ methods such as
MFV, SGHMC, and LAPLACE without conformal prediction. However, these three methods vary
widely in how large their average set size is in order to achieve good out-of-distribution coverage.

4We take out those semantically similar images from the corrupted test set that we used for the calibration dataset to ensure
no data leakage.

5We take the average across different calibration and test set splits as well as different datasets that comprise the CIFAR10-
Corrupted dataset. To see both specific results on each of the different datasets (types of corruptions) and plots with error bars,
see the Appendix.
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Credible Set Coverage On The Calibration Dataset
. SGD ENS MFV SGHMC
Method Accuracies (Test Sets)
0.05 Error 94% 96% 99% 99%
0.9+ %\ =e— SGD 0.01 Error 97% 98% 100% 100%
S
[ —o= ENS
|\
AN —e— MFV X —
0.8 SGHMC Average Set Sizes On The Calibration Dataset
>
S 0.05 Error SGD ENS MFV SGHMC
—_
3 cred 1.20 1.34 2.97 1.87
© 0.7
< thr 1.33 1.22 1.18 1.15
g’ aps 1.59 1.58 1.95 1.57
0.6 0.01 Exrror SGD ENS MFV SGHMC
X
W™ cred 1.65 1.94 5.68 2.96
b
051 §‘i thr 3.46 3.02 2.94 1.88
T - — aps 4.96 5.32 4.85 2.87
organCmnist organSmnist

Test Set

(a) MedMNIST accuracy plot. It is evaluated for (b) MedMNIST: The first table displays the credible set
the in-distribution organCmnist dataset and the out- coverage on the calibration dataset to indicate over- and
of-distribution organSmnist dataset. under-confident predictive methods. The second table

displays the average set sizes on the calibration dataset.
For each predictive model method, the prediction set
method with highest average set size is bolded.

Figure 5: The accuracy plot and calibration dataset results for the MedMNIST experiment.

For a fixed predictive model, the prediction set method with greatest out-of-distribution coverage is
that with the largest average set size on those out-of-distribution inputs as well as on the calibration
dataset (see Figure 2b for average set size on the calibration dataset).

Across all predictive models, larger average set size of a prediction set method paired with a predictive
model will usually mean better out-of-distribution coverage, but there can be exceptions arising from
how different predictive models exhibit uncertainty on out-of-distribution inputs. For example, MFV
credible sets are smaller on out-of-distribution inputs than SGHMC credible sets, but MFV credible
sets achieve better coverage.

A small change in set size on in-distribution data can have drastic effects on the out-of-distribution
coverage, especially on inputs that are far from the training distribution. For example (see Figure 3)
an = 1 decrease in average set size due to performing thr conformal prediction results in an ~ 20%
drop in out-of-distribution coverage as compared to SGHMC credible sets and an = 10% drop in
out-of-distribution coverage as compared MFV credible sets.

Being more robust to the corruptions in terms of accuracy (see Figure 2a) does not immediately
translate to better coverage on out-of-distribution examples (see Figures 3 and 4). For instance,
both MFV and SGHMC perform the worst in terms of accuracy on the out-of-distribution test sets,
however they perform better than SGD and ENS in terms of out-of-distribution coverage. And
importantly, this is not due to being trivially underconfident, i.e. producing sets of all possible labels
for each input.

A majority of the time, thr and aps behave similarly in terms of average set size and out-of-distribution
coverage. However, there are notable exceptions where thr produces smaller sets on out-of-distribution

inputs which in turn more negatively impacts out-of-distribution coverage (see, for example, Figure
3, SGHMC and MFV).

We do not argue that any method (or combination thereof) is always preferred over another. Indeed, what
one decides upon will depend on many factors. Two important factors (that this study highlights) is both the
frequency of out-of-distribution data encountered by a deployed model as well as how far these data may be
from the training distribution. It is straightforward why the former is important, and the latter is important
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(a) Error tolerance of 0.05 (i.e. 0.95 desired coverage) (b) Error tolerance of 0.01 (i.e. 0.99 desired coverage)
which is denoted by the dashed horizontal red line. which is denoted by the dashed horizontal red line.

Figure 6: MedMNIST: Average marginal coverage and average set size for the in-distribution organCmnist
dataset (denoted in on the plot) and for the out-of-distribution organSmnist dataset (denoted out on the
plot.)

because we see a large disparity between the type of coverage we would see with conformal prediction as
opposed to without it on data that is far from the training distribution (e.g. see Figure 3, SGHMC). We also
illustrate that the error tolerance we choose does not represent our true desires if we believe out-of-distribution
data will be encountered. While this is to be expected since our conformal prediction methods contain no
guarantees for out-of-distribution data, we demonstrate the extent to which this error tolerance is violated,
and how in some cases it can be mitigated by foregoing the use of conformal prediction.

6.2 MedMNIST

Our second experiment provides a more realistic safety-critical scenario: 11-class classification of radiology
scans. We train a ResNet18 model on the organCmnist dataset of MedMNIST with the same three modeling
methods (He et al., 2016; Yang et al., 2023). Conformal calibration is done using the first 500 examples from
the test set of organCmnist. We then evaluate the coverage and size on the remaining examples from the test
set of organCmnist for all three prediction set methods. The organSmnist dataset has the same classes but
is the result of different views of the subject of interest in the radiology scan. Thus, it is from a different
distribution, and so we also evaluate the coverage and size on the test set of organSmnist to see how the
combination of conformal methods and Bayesian deep learning affects out-of-distribution coverage.

As in the previous experiment, we first note the credible set coverage of each predictive model method on
the calibration dataset (shown in Figure 5b). Similar to the CIFARI0 experiment, SGD is overconfident and
MFV and SGHMC are underconfident. ENS is underconfident at the 0.05 error tolerance but overconfident at
the 0.01 error tolerance. We expect then that, in terms of out-of-distribution coverage, conformal prediction
set methods will most likely help SGD, most likely harm MFV and SGHMC, and most likely harm ENS
at the 0.05 error tolerance but help ENS at the 0.01 error tolerance. And again we ask, to what extent
is this the case? In answering this, the average marginal coverage and average set size for each dataset is
shown in Figure 6a for the 0.05 error tolerance and Figure 6b for the 0.01 error tolerance. The accuracies
of the deep learning methods are shown in Figure 5a. The in-distribution dataset is organCmnist and the
out-of-distribution dataset is organSmnist.
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Remarks:

e In the context of the methods evaluated, if a top priority is to capture true labels even on unknown
out-of-distribution inputs, one is generally better off using “uncertainty-aware” methods such as
MFV and SGHMC without conformal prediction. An exception is at the 0.01 error tolerance where
ENS aps sets and SGD aps sets attain slightly better coverage than SGHMC, although at the cost of
significantly larger average set size.

e For a fixed predictive model, the prediction set method with greatest out-of-distribution coverage is
that with the largest average set size on those out-of-distribution inputs as well as on the calibration
dataset.

e Across all predictive models, larger average set size of a prediction set method paired with a predictive
model will usually mean better out-of-distribution coverage, but there can be exceptions arising from
how different predictive models exhibit uncertainty on out-of-distribution inputs. For example at the
0.01 error tolerance, MFV aps sets are smaller on out-of-distribution inputs than ENS aps sets but
achieve better coverage.

e A small change in average set size on in-distribution data can have drastic effects on the out-of-
distribution coverage. For example, an &~ 1 decrease in average set size due to thr with SGHMC
results in ~ 21% drop in out-of-distribution coverage (Figure 6a). On the flip side, an ~ .3 increase
in average set size due to aps with SGD results in ~ 10% increase in out-of-distribution coverage
(Figure 6a).

7 Discussion

Limitations and Future Work: We recognize that we evaluated and compared only a few of the many
conformal and Bayesian methods. Furthermore, although the results presented here add an important
dimension to the practical considerations of combining conformal and Bayesian deep learning methods, there
are many other questions that remain to be answered (e.g. adaptivity gains from using Bayesian deep learning
with conformal prediction). We developed experiments that provide evidence for the explanation offered in
Section 3 (see also Figure 1) which consequently demonstrated that certain modeling and data scenarios
can seriously impact the benefit of conformal prediction. Future work may include developing diagnostics
or practical checks that suggest one is in a particular scenario in which the utility of conformal prediction
can be predicted. Future work might also include further evaluations with additional measures such as
size-stratified coverage (Angelopoulos et al., 2020), and further mathematical analysis. Such analysis might
provide additional insights into when and how to combine certain conformal prediction and Bayesian deep
learning methods.

Conclusion: We demonstrated important scenarios in which conformal prediction can decrease the out-
of-distribution coverage one would otherwise see with simple predictive credible sets. Importantly, we also
demonstrate the extent to which conformal prediction does so. We also saw that in some cases it is not
realistic to think that the error tolerance we select will be honored. We hope that this study motivates the
need for better evaluation strategies for Bayesian deep learning models. Echoing some of the arguments made
in Kompa et al. (2021), frequentist coverage of both in-distribution and out-of- distribution examples for
Bayesian deep learning models provides a nuanced and practical representation of both the calibration of
the models and the benefits of using conformal prediction in realistic settings. These are all of immediate
practical importance for a wide range of application areas, particularly in those where unsafe mistakes can
incur a large cost. If strong guarantees of coverage are desired, then one may consider Bayesian deep learning,
conformal prediction, or both, in an effort to provide those guarantees. Knowledge of the scope of application,
an assessment to identify breaking important assumptions (e.g. out-of-distribution data), and expected use
may help decide the methods that should be applied. Being aware of these results and using the conclusions
will better equip engineers in creating safer machine learning systems.

Disclosure of Funding: This research was funded by MITRE’s Independent Research and Development
Program
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APPENDIX

A TRAINING DETAILS

For both experiments we train SGD and MFV for 5 different seeds. ENS is the result of combining 5 stochastic
gradient descent model states from the different 5 seeds. Due to the computational cost of running SGHMC,
we only trained it for a single seed. We measure the validation accuracy (or in the case of SGHMC collect a
sample) every 10 epochs. For the CIFAR10 experiment we run SGHMC for 1000 burnin epochs and then
9000 epochs therafter resulting in 900 total samples. For the MedMNIST experiment we run SGHMC for
1000 burnin epochs and then 10000 epochs thereafter resulting in 1000 total samples.

For evaluation of SGD and MFV we select the model state that attains the best validation accuracy. If the
best validation accuracy is shared between multiple checkpoints, we use the model state from the earliest
checkpoint amongst those that are tied.

LAPLACE is a result starting with one of our pretrained SGD solutions and then conducting the laplace
approximation with the package from Daxberger et al. (2021). In particular, we compute a laplace approxi-
mation for the last-layer with the kron approximation to the Hessian. Furthermore, we use the glm alongside
the probit approximation for the posterior predictive. See Daxberger et al. (2021) for more details. We only
use the LAPLACE method in the CIFAR10 experiment.

A.1 CIFAR10

Dataset: The CIFARI0 dataset contains 60,000 32 x 32 x 3 RGB images in 10 classes, where each class
contains 6,000 images each. There are 50,000 training images (5,000 images per class) and 10,000 test images
(1,000 images per class). We take 5% of the original training dataset (0.05 x 50,000 = 2,500) examples
as a validation set, and leave the remaining 95% (50,000 — 2,500 = 47,500) examples for training. For
preprocessing, we normalize the images with mean (0.49,0.48,0.44) and standard deviation (0.2,0.2,0.2) for
each of the 3 channels. This is taken from the code repository of (Izmailov et al., 2021). We performed no
data augmentation.

Base Model: We use an AlexNet inspired convolutional neural network as a base model, which is taken
from the code repository of (Izmailov et al., 2021).

Training Hyperparameters: The following tables illustrate the training hyperparameters for the CIFAR10
experiment.

Table 1: Hyperparameters for SGD and MFV. The initial ¢ is the initial value of the standard deviation of
the per-parameter Gaussians for mean-field variational inference.

b) MFV Training H ters.
(a) SGD Training Hyperparameters (b) V Training Hyperparameters

Name Value Na?e { 1va1ue5}
seeds R
seeds' {1,...,5} batch size 80
batch size 80 epochs 100
epochs 100 weight decay 5.0
weight decay 5.0 temperature 1.0
‘Femperature 1'.0 learning rate schedule cosine
learning rate schedule cosine checkpoint frequency 10
checkpoint frequency 10 initial step size de-4
initial step size 8e-7 optimizer Adam
optimizer sgd initial o 0.01
momentum decay 0.9 .
# samples 1
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Table 2: Hyperparameters for SGHMC

Name Value
seeds 1
batch size 80
epochs 10000
weight decay 5.0
temperature 1.0
learning rate schedule | cyclical
cycle epochs 75
checkpoint frequency 10
initial step size 3e-6
momentum decay 0.9
preconditioner RMSprop

A.2 MedMNIST

Dataset: MedMNIST contains many standardized datasets of biomedical images (Yang et al., 2023). We
train on one of these datasets: organCmnist. This dataset is part of a larger cohort of three datasets which
are based on the 3D CT images from the Liver Tumor Segmentation Benchmark (Bilic et al., 2023). The
larger cohort is {organ Amnist, organCmnist, organSmnist }, where A,C, and S are short for Axial, Coronal,
and Sagittal. These describe different views of the CT scan (see Figure 7). We use the pre-specified training
and validation sets provided by MedMNIST. These contain 13,000 training examples and 2,392 validation
examples. Each image is grayscale. For preprocessing, we normalize the images with mean 0.49 and standard
deviation 0.2 for the single channel. We performed no data augmentation.

Sagittal Coronal
plane u } u plane

Axial
plane

—n

Figure 7: An illustration describing the axial, coronal, and sagittal views. https://anatomytool.org/
content/lecturio-drawing-sagittal-coronal-and-transverse-plane-english-labels

Base Model: We use a ResNet18 neural network as a base model (He et al., 2016), which is a built-in
model in the Haiku library (Hennigan et al., 2020).

Training Hyperparameters: The following tables illustrate the training hyperparameters for the MedM-
NIST experiment.
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Table 3: Hyperparameters for SGD and MFV. The initial ¢ is the initial value of the standard deviation of
the per-parameter Gaussians for mean-field variational inference.

b) MFV Training H ters.
(a) SGD Training Hyperparameters (b) aining Lyperparameters

— Vil Nar(gle {lValue5 }
seeds RERD)
seeds' {1,...,5} batch size 80
batch size 80 epochs 100
h. 1
epochs 00 weight decay 10.0
weight decay 10.0 temperature 1.0
1. .
'Femperature '0 learning rate schedule cosine
learning rate schedule cosine checkpoint frequency 10
checkpoint frequency 10 initial step size le-4
initial step size 6e-6 optimizer Adam
optimizer sgd initial o 0.01
momentum decay 0.9 # samples .1

Table 4: Hyperparameters for SGHMC

Name Value
seeds 1
batch size 80
epochs 11000
weight decay 5.0
temperature 1.0
learning rate schedule cyclical
cycle epochs 75
checkpoint frequency 10
initial step size le-5
momentum decay 0.9
preconditioner RMSprop

B EVALUATION DETAILS

We first note that we use 30 samples to approximate the posterior predictive density when using mean-field
variational inference. For both experiments, we create prediction sets in the same way. Given an error
tolerance «, for each method (stochastic gradient descent, deep ensembles, and mean-field variational inference)
and each evaluation dataset, we produce predicted probabilities #(x) and then create...

Predictive Credible Sets: We order the probabilities 7;(x) € #(x) from greatest to least and continue
adding the corresponding labels until the cumulative probability mass just exceeds 1 — a. We sometimes
abbreviate this method as cred.

Threshold Prediction Sets: Using a calibration dataset D, taken from the in-distribution test set, we
compute scores for each example using the score function (Sadinle et al., 2019):

s(x,y) =1 — @y(x).
Then we take the
1
1 — o)(1 + ——)]-quantile
(- o)1+ 5 —la

of these scores which we call 7. Then for each input we want to evaluate for, we create prediction sets as
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Y(x):={y € Y|s(x,y) <7}

where Y is the sample space for labels y. We sometimes abbreviate this method as thr.

Adaptive Prediction Sets: Using a calibration dataset D.,) taken from the in-distribution test set, we
compute scores for each example using the score function

s(,y) =i (2) + -+ Ulty(2),

where 7y (z) > -+ > @y(x) and U is a uniform random variable in [0, 1] to break ties (Romano et al., 2020).
As in the case of threshold prediction, we take the

1 .
[(1—a)(1+ @)]-quan‘clle

of these scores which we call 7. Then for each input we want to evaluate for, we create prediction sets as

Y(x):={y € ¥ |s(x,y) <7}
where Y is the sample space for labels y. We sometimes abbreviate this method as aps.

Remark on Adaptive Prediction Sets: It is useful to note that for coverage to be tight (i.e. having
the upper bound in equation (4) of the paper), adaptive prediction sets requires distinct conformity scores.
To handle this, an additional standard uniform random variable is used. During the calibration phase, we
take |Deal| random samples from this variable and subtract it from the scores before computing the quantile
7. And during the prediction phase, we take |Diest| random samples and subtract it from the scores before
checking if they are less than or equal to 7, where Dy is the test set. We use the implementation from Stutz
et al. (2021), which allows one to input a random seed to do the above procedure.

B.1 CIFAR10 and CIFAR10-Corrupted

In the CIFAR10 experiment we evaluate the prediction sets on (i) the CIFARI10 test set (Krizhevsky et al.,
2009), and (ii) all CIFAR10-Corrupted test sets (Hendrycks and Dietterich, 2019). The CIFAR10-Corrupted
test sets contain 19 different corruptions, each with intensities ranging from 1 to 5.

The 5 x 19 = 95 CIFAR10-Corrupted test sets are all corrupted versions of the original CIFAR10 test set.
Thus, when we take the 1,000 examples from the original CIFARI0 test set to use as a calibration dataset
for our conformal methods, we also take the 1,000 corresponding (semantically similar) examples from all the
CIFAR10-Corrupted test sets. We evaluate the three prediction set methods on the remaining 9,000 examples
from the original CIFAR10 test set, and then all the trimmed CIFAR10-Corrupted test sets (which each
contain 9,000 examples). We run the procedure of taking a calibration dataset, finding 7, and computing
prediction sets on all the test sets with three different seeds {1,2,3}. Then we take the average accuracy,
marginal coverage, and set size across these three seeds. The accuracy results are presented in the main
paper. The accuracy, marginal coverage, and set size results for each dataset are presented in section F.2. In
the main paper we go further and take the average marginal coverage and average set size across data sets at
each intensity and report those summarized results.
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Table 5: Different type of corruptions in CIFAR10-

Corrupted.

B.2 MedMNIST: organCmnist And organSmnist

Corruption Type

00 3 O Ut = W N

brightness
contrast
defocus blur
elastic
fog
frost
frosted glass blur
gaussian blur
gaussian noise
impulse noise
jpeg compression
motion blur
pixelate
saturate
shot noise
Snow
spatter
speckle noise
zoom blur

Figure 8: An example of the spatter corruption
at intensity level 4. https://www.tensorflow.
org/datasets/catalog/cifar10_corrupted

In the MedMNIST experiment we only have two test sets. The organCmnist test set (containing 8,268
examples) and the organSmnist test set (containing 8,829 examples). The C in organCmnist standards
for coronal and the S in organSmnist stands for sagittal (see Figure 7). We take 500 examples from the
organCmnist test set to use as a calibration dataset for our conformal methods. We then evaluate the
three prediction set methods on the remaining examples from the organCmnist test set as well as on the
organSmnist test set, the latter serving as our out-of-distribution test set. We run the procedure of taking a
calibration dataset, finding 7, and computing prediction sets on all the test sets with three different seeds
{1,2,3}. Then we take the average accuracy, marginal coverage, and set size across these three seeds. The
results are presented in the main paper. The class proportions for all splits of both organCmnist and
organSmnist are shown in Figure 9.

20



Published in Transactions on Machine Learning Research (02/2024)

02 organC train organC val organC test
C
=}
£
o
Q.
o
-
o
%]
%)
©
o

0.00 -

0123456780910 0123456780910 0123456780910
Class

025 organs train organs val organs test
C
=}
£
o
Q.
o
-
o
%]
%)
©
o

0.00 -
012345678910 012345678910 012345678910

Class

Figure 9: Class propotions for both the organCmnist datasets and the organSmnist datasets.

Class0 Class1l Class2 Class3 Class4 Class5

Figure 10: An example image from each of the 11 classes in the organCmnist dataset.

Class0 Classl Class2 Class3 Class4 Class5

Figure 11: An example image from each of the 11 classes in the organSmnist dataset.

C SPACE & COMPLEXITY

Space: If n is the number of learnable parameters for SGD, then MFV requires 2n learnable parameters.
This is due to treating each weight as a random variable from a Gaussian distribution, and instead having
to fit the two parameters governing that distribution. If k is the number of models in the ensemble, then
ENS requires kn learnable parameters. We use k = 5. If ¢ is the number of samples collected, then SGHMC
requires gn parameters to be kept in order to run inferences.

Runtime: If m is the number of forward passes needed to predict using SGD, then MFV inference requires
pm forward passes where p is the number of samples to construct a Monte Carlo approximation for the
Bayesian model average. During training we have p = 1 and during evaluation we have p = 30. If k is the
number of models in the ensemble, then deep ensembles requires kn forward passes. We use k = 5. If ¢ is the
number of samples collected for SGHMC then inference requires ¢gm forward passes.
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The Laplace approximation we use is post-hoc and needs to be “fit” to the training data (i.e. the Hessian
factors need to be computed which require the data). We defer to Appendix B of Daxberger et al. (2021) for
space and runtime details.

D SOFTWARE PACKAGES
o Python 3, PSF License Agreement (Van Rossum and Drake, 2009).
« Matplotlib, Matplotlib License Agreement (Hunter, 2007).
o Seaborn, BSD License (Waskom, 2021).
o Numpy, BSD License (Harris et al., 2020).
o JAX, Apache 2.0 License (Bradbury et al., 2018).
o Haiku, Apache 2.0 License (Hennigan et al., 2020).
o Tensorflow Datasets, Apache 2.0 License (TFD).
o google-research/bnn_hme, Apache 2.0 License (Izmailov et al., 2021).
o google-deepmind/conformal training, Apache 2.0 License (Stutz et al., 2021).

o aleximmer /Laplace, MIT License (Daxberger et al., 2021).

E COMPUTE

We ran our experiments on an Ubuntu 18.04.6 system with a dual core 2.10GHz processor and 754 GiB of
RAM. We also used a single Tesla V100-SXM2 GPU with 32 GiB of RAM.

CIFAR10 Experiment For training, SGD takes ~ 3.6 minutes per seed, MFV takes ~ 4.6 minutes per
seed, SGHMC takes =~ 4 hours, and LAPLACE takes ~ 5 minutes. For evaluation, SGD takes ~ .3 minutes
per seed, MFV takes =~ .3 minutes per seed, ENS takes ~ .4 minutes per seed, SGHMC takes ~ 20 minutes
per seed, and LAPLACE takes ~ 5 minutes per seed. Assuming (i) you train SGD and MFV with 5 different
seeds, (ii) you evaluate using 3 seeds: the approximate time to run the CIFAR10 experiment is

(3.6 +4.6) x5+2404+5)+ ((0.3+0.3+04+20+5) x3x 96 )~ 129.5 hours

7# datasets

training evaluation

MedMNIST Experiment For training, SGD takes ~ 2.6 minutes per seed, MFV takes ~ 5 minutes per
seed, and SGHMC takes ~ 5 hours. For evaluation, SGD takes =~ .4 minutes per seed, MFV takes =~ .8
minutes per seed, ENS takes ~ .7 minutes per seed, SGHMC takes ~ 30 minutes per seed, and LAPLACE
takes ~ 5 minutes per seed. Assuming (i) you train SGD and MFV with 5 different seeds, (ii) you evaluate
using 3 seeds: the approximate time to run the MedMNIST experiment is

((2.6 +5) x 5+300) + ((0.4+ 0.8 +0.7+30) x 3x 2 )=~ 7.25hours

training evaluation # datasets
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F ADDITIONAL EXPERIMENTAL RESULTS

F.1 CIFAR10-Corrupted Box Plot Results
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Figure 12: Box plot results for the CIFAR10 experiment with an error tolerance of 0.05. Note that some
outliers occur that are not shown for coverage for ease of visualization.
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Figure 13: Box plot results for the CIFAR10 experiment with an error tolerance of 0.05. Note that some
outliers occur that are not shown for coverage for ease of visualization.
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F.2 CIFAR10-Corrupted Per-Dataset Results
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Figure 15: CIFAR10-Corrupted per-dataset

26

results at the 0.05 Error Tolerance.



Published in Transactions on Machine Learning Research (02/2024)
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Figure 16: CIFAR10-Corrupted per-dataset
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results at the 0.05 Error Tolerance.
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Figure 17: CIFAR10-Corrupted per-dataset results at the 0.05 Error Tolerance.
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Figure 18: CIFAR10-Corrupted per-dataset results at the 0.01 Error Tolerance.

29



Published in Transactions on Machine Learning Research (02/2024)

0.01 Error Tolerance

Frosted Glass Blur

Gaussian Blur

SGHMC LAPLACE MFV LAPLACE
o7 o ¥ EY 080 030
/ o ’ .
Il 2 os o N
g" gorl g ;) g g z g g IR
4 g Sow + gost Eoro ge 8" g oo EN
g g EAL Zow 2 H Fow Ei H 3
g g goupe \ Lo Lo o E 2 £ o6l A
o on e Ve pt S et e 3 A Y
éu E E \ ,I z Zoso Zoss N 2o Zos ES \
¥ N \| e \
e
3 ) ) Sede s ) ) s s %
& 50 g g g g g o g g g g
g g § w g £ o § § w § § § w0
g g g g g g g g g g
H H H H H 4 H H H H
8 8 8 8 8 S 8 S 8 8
g S asf mom cred S asf mom cred S us| mom cred D us| o cred g S asf mom cred 2 oof m0m cred ° 9 o5| w0 cres
< < - thr < “ thr < o thr < " thr < o] < o thr < o thr < < " thr
¥ aps =+ aps =+ aps ¥ aps =+ aps =+ aps i aps
e e e e I I e e e e e S T e S
e cred e cred [P ——
8 8 8 - thr A o A 5 - thr o
o + s | o * s o o o 9 s | o o
: FASIE § § : PO § § § 8 o
5 5 5 5 [ ——— s . . -
5 - H | 3 a3 5 AN 3 i 3 5 PRIPE T T
& 8 b & | I8 -3 I & & & o & & ok
2" EX Y e g g g ERior 1 i E) g X
< < < 2| o crea 2 | o cren < 2 o < < 2 | o cres
{S—B—p=—E) 2 2l the 2 2 '
¥ aps “ aps
v v % i i % T
Corruption Intensity Corruption Intensity Corruption Intensity Corruption Intensity Corruption Intensity Corruption Intensity Corruption Intensity Corruption Intensity
Gaussian Noise Impulse Noise
SGD MFV SGHMC LAPLACE SGD ENS MFV LAPLACE
X ol . o
o400 RS ol iy o7 o
o
3 A 3o 3N, ook 3 goe 3 o
g \ Lo gosti N, 8 sl | A Bom g N 8us g
Gomm \ S orns Goso 3 \ . Sos N Sous 8°
< o615 L3 < Lo <0y < < N < Loss
) N\ goro ) Sours| -y oo Y \ Sose s
Zo N2 0o Zow H H 2 N2 Zo
N aasof | o650 X o2
o62s) N 06507 0% ~ 03] ~ 045,
¥ 0301 o) o6 | oo
B R T — ——— T & ——
w0 " oo
e N
=X g . g g g g g 2 g e ™
B E o5 '.\.V 25 ) 2 2 Z o Z o) 2 o)
s . 3 s o 3 s s o .
g 8 3 g g 8 s g g 8
g %) e 4 4 e 2 e e e 4
g 2w g g 2 2 g g o g =
g g H H H H § H H H
8w 8 S, . 8 8§ 8 8 § 8 El
2 o = cred 1 - cred b T 2 2 2 2 2 2 - cred o e cred
g S g 4 T g ¢ e e P g
2 o |- e 2 |- e 2 < 2 < < - e - e
 aps S0 o aps B k aps F aps w aps
s s % s e S S S T
o= cred = cred T |o—e—a—a—s|
o o - e . “ thr o B o . B o o
Q g =k aps g wh aps g e 9 g =k aps g g M g
@ @ s o5 B @6 @5 > @ s @6 @6 @6 Loy o
Pt 3 3 5 ¥ RV T PRI Y ol i B Pt Pt 3 st =¥
¥ 3 3 gt 8 § ek 3 b 3 ¥ 3 e
54 ¢ PRI AT L3 5 54 G s 54 54 g
g g g g g g g g g g
< < | < T | - cred L | —m cred < < < 2L | cred < | mom cred
? ? ? 7. the [ the B B [ thr - the
+ s -+ s . aps + s
A B s s s s oo e S won e e e L s e e s e e e L s e S
Corruption Intensity Corruption Intensity Corruption Intensity Corruption Intensity Corruption Intensity Corruption Intensity Corruption Intensity’ Corruption Intensity Corruption Intensity Corruption Intensity
Jpeg Compression Motion Blur
ENS MFV SGHMC LAPLACE ENS MFV SGHMC LAPLACE
o7s0) X e o750 R 070 Y 050
anef Y, ol -, N, s
507 o > U S S ol oo > S
g g Gormo Fonl i\, Gomsl % Goro g X g gow g
3" ol Sores Fom Foml S G osrs goms N g E oo
Lo Lo oo <on < X Lo Lomo : < < L
s ) s Sor go 5 2 Foos S M Fos g
Eom Fom Fors o Z Soe g N |[Eo Z Zoas
07ss| 0795 o ool arss os00 \| e 050 os00]
- A oo
- - e
T - [T o
- - N - - - N R PRI B
Ew Ew 8w g Eu Ew gw 8w g
s s s s s s s s s
H & H g g 2 o= cred | © g g
§ oot § § o g T g % gl I § g o
g 2 2 g g 2 2 g g
2 2 8 2 ] ] =k aps 2 2 2
8 8 S S 8 8 S S §
9 5| mm cred D 5| =S cred D 5| o cred 9 os| == cred S us| =S cred 9 os 9 o] =S creg D 5| =Om cred D gs| =S cred
< - thr < - thr A - thr x “ thr < % thr < < - thr x “* thr < % thr
o, s . s * ops + s o, s + s -+ s s
% v T T s % T T s %
=S cred e cred - cred - cred - cred - cred == cred S cred
s % thr o % thr o " thr s " thr o N thr o " thr of W8 thr o thr o
g ~ aps g ~ aps g = aps g 4 aps 9 s ~ aps g = aps 9 ~ aps 9 % aps g
@ 6 @ 6 @6 @5 @ s @ 6 e A n 5 n g @ 6 TR
8 lwromnre & ] - e & hodgdcy 3 3 H £ogeed & s 'S ol
N R S'pdidkd o= - N R S a\‘*_‘-* o =W S I
g Slpa ot S g e 2 g g g g g
2 2 H H H 2 H H H 2
i cred e cred
: B B } 2w ? : T
+ s - s
IS T T s T T T s s RS
Corruption Intensity Corruption Intensity Corruption Intensity Corruption Intensity Corruption Intensity Corruption Intensity Corruption Intensity Corruption Intensity Corruption Intensity Corruption Intensity

Figure 19: CIFAR10-Corrupted per-dataset
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results at the 0.01 Error Tolerance.
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Figure 20: CIFAR10-Corrupted per-dataset
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results at the 0.01 Error Tolerance.
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Figure 21: CIFAR10-Corrupted per-dataset results at the 0.01 Error Tolerance.
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F.3 MedMNIST Results With Variance Over Calibration / Test Splits

Train Method
Error Dataset Pred- SGD ENS MFV SGHMC
Set Method
Credible (cred) 94.98 £+ 0.0005 | 97.02 £ 0.0005 99.21 £0.0 98.92 £ 0.0
organCmnist | Threshold (¢thr) 95.37 £ 0.011 | 95.41 +0.0076 | 94.64 £ 0.0068 94.85 £ 0.0
0.05 Adaptive (aps) 95.67 £0.011 | 95.77+£0.0124 | 94.61 +0.0038 | 95.00 & 0.0083
) Credible (cred) 68.44 £ 0.0 76.52 £ 0.0 92.16 £0.0 86.27 £ 0.0
organSmnist | Threshold (thr) 69.65 £ 0.052 | 64.86 £0.035 | 66.46 &+ 0.024 64.70 £0.0
Adaptive (aps) 77.63£0.026 | 80.10+0.0329 | 84.21 £0.006 | 80.14 & 0.004
Credible (cred) 97.46 £+ 0.0004 | 98.85 £ 0.0005 | 99.85 % 0.0003 99.59 4+ 0.0
organCmnist | Threshold (thr) 99.06 £0.004 | 99.13 £0.0073 | 98.93 &+ 0.0068 98.88 £ 0.0
0.01 Adaptive (aps) 99.43 +0.002 | 99.37 4 0.0052 | 99.41 £ 0.0020 | 99.15 £ 0.0024
) Credible (cred) 81.64 £ 0.0 88.48 £ 0.0 98.61 £0.0 94.00 £0.0
organSmnist | Threshold (thr) 91.54 £+ 0.03 91.52 £0.05 89.94 £ 0.05 86.84 £ 0.0
Adaptive (aps) 95.86 £+ 0.01 95.07 £0.037 | 96.42 £ 0.008 92.10 £0.01
Table 6: MedMNIST Coverage with Variances
Train Method
Error Dataset Pred- SGD ENS MFV SGHMC
Set Method
Credible (cred) 1.274+0.002 | 1.4140.002 | 2.90 %+ 0.0038 1.87+0.0
organCmnist | Threshold (thr) 1.314+£0.132 | 1.18 £0.066 | 1.2140.0501 1.13+0.0
0.05 Adaptive (aps) 1.63 £0.155 1.56+£0.15 | 1.97 £0.0354 | 1.56 +£0.031
) Credible (cred) 215+£0.0 2.57£0.0 4.79 £0.0 3.13£0.0
organSmnist | Threshold (thr) 2.244+0.589 | 1.59+0.212 | 1.50£0.122 1.37£0.0
Adaptive (aps) 3.57£0.48 3.23£0.513 | 3.26£0.073 | 2.59+£0.053
Credible (cred) 1.83 £0.0052 | 2.13 +0.0047 | 5.44 £ 0.0093 2.91+£0.0
organCmnist | Threshold (¢thr) 3.05+0.6439 | 2.754+0.854 | 2.61 4 0.6606 1.91£0.0
0.01 Adaptive (aps) 4.38 £0.9158 | 3.82£1.6073 | 4.26 £0.3742 | 2.61 = 0.2080
) Credible (cred) 4.24£0.0 5.06 £0.0 8.07£0.0 4.83£0.0
organSmnist | Threshold (thr) 7.14+1.05 6.55 + 2.30 4.21+1.15 3.15+£0.0
Adaptive (aps) 8.13 £0.58 7.72 £1.56 6.70 £0.45 4.39 £+ 0.30

Table 7: MedMNIST Set Size with Variances
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