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Abstract

Although Large Vision-Language Models (LVLMs) exhibit impressive multimodal
capabilities, their vulnerability to adversarial examples has raised serious security
concerns. Existing LVLM attackers simply optimize adversarial images that easily
overfit a certain model/prompt, making them ineffective once they are transferred
to attack a different model/prompt. Motivated by this research gap, this paper aims
to develop a more powerful attack that is transferable to black-box LVLM models
of different structures and task-aware prompts of different semantics. Specifi-
cally, we introduce a new perspective of information theory to investigate LVLMs’
transferable characteristics by exploring the relative dependence between outputs
of the LVLM model and input adversarial samples. Our empirical observations
suggest that enlarging/decreasing the mutual information between outputs and the
disentangled adversarial/benign patterns of input images helps to generate more
agnostic perturbations for misleading LVLMs’ perception with better transferability.
In particular, we formulate the complicated calculation of information gain as an
estimation problem and incorporate such informative constraints into the adver-
sarial learning process. Extensive experiments on various LVLM models/prompts
demonstrate our significant transfer-attack performance.

1 Introduction

Large Vision-Language Models (LVLMs) have garnered significant attention for their impressive
capabilities in both visual perception and language interaction. Unlike pure-text Large Language
Models, LVLMs incorporate visual encoders, enabling them to excel in a variety of multimodal tasks
such as text-to-image generation [, 2| 3], visual question-answering [4} |5} 6], and efc.. However,
since model complexity increases and their applications expand into real-world scenarios, security
concerns [7]] of LVLM models have become increasingly prominent.

Recent studies [7} 18,9, [10, [11} [12} [13]] have revealed that LVLMs are highly vulnerable to adversarial
attacks, which can significantly degrade performance and pose serious security risks. Specifically,
these works [[14} 1511161117, 1819120, 9] manipulate LVLMs by injecting imperceptible perturbations
into benign images, misleading the model to produce incorrect or jailbreak results. Despite the
progress in this area, existing attack methods face primary challenges. In particular, they are typically
optimized for specific LVLM architectures or fixed prompts, making the generated adversarial
examples difficult to transfer effectively across different models or downstream tasks. That is, they
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(c) Overall pipeline of our proposed LVLM attack

Figure 1: (a) Existing attacks may cause interference overfitting by implicitly restricting the mixed
output-input dependency via misleading loss functions. (b) In contrast, we aim to learn more harmful
perturbations via disentangled informative dependencies to control the LVLM reasoning trends
for improving transferability. (c) Overall pipeline of our proposed method: first, we theoretically
decompose the mixed MI information into benign MI and adversarial MI components. Then, we train
two MI estimators for separate MI calculations. Finally, we incorporate the benign and adversarial
MI constraints into the optimization strategy to generate transferable adversarial examples.

often fail to maintain effectiveness across diverse models and prompts simultaneously in practice,
requiring attackers to craft separate perturbations for each model and each prompt, resulting in
significant time and resource overhead. Although a few recent studies [8l, [10] have explored prompt-
agnostic attack strategies, they not only rely on complex multi-prompt joint training schemes, but
also fail to address the more challenging problem of cross-model transferability.

Therefore, in this paper, we make the first attempt to design a superior LVLM attacker that can achieve
both model- and prompt-transfer attacks within a single adversarial learning process. Unlike previous
2D/3D transfer works [21}, 22, 23] 24] that improve the generalization of adversarial perturbations
by resisting various distortions, we propose to investigate the agnostic/generalizable harmfulness
of perturbations from a new information theory perspective [25} 26| 27, 28]]. Our core idea is: the
informative dependence between the output of the LVLM model and the input images explicitly
reflects the LVLMSs’ decision trajectory to make the final predictions and, therefore, a generalizable
adversarial perturbation should have as more harmful effect as possible to control the flip of the
LVLMs’ prediction than the benign pattern in the image input. As in Figure [I](a)(b), the existing
LVLM attackers adversarially train the adversarial samples by implicitly restricting the mixed output-
input dependency via misleading loss functions, which may confuse the LVLM model to focus on the
joint distribution of benign and adversarial patterns of inputs, resulting in an interference overfitting.
Instead, once we explicitly adjust the LVLM’s focus solely on the adversarial noise to enhance the
corresponding adversarial harmfulness, the learned adversarial perturbation is able to jump out of
the mixed overfitting and contributes more attacker-chosen guidance effects than the benign one to
mislead the reasoning process even the sample is transferred to unknown LVLM models or prompts.

Based on the above observations, we propose a novel LVLM attack method to adversarially constrain
the informative dependence between the benign/adversarial pattern of the input and the LVLM’s
output for improving the model/prompt-aware transferability. In particular, we exploit mutual
information (MI) to explicitly measure such dependence via coefficient degrees, where a larger
MI degree indicates a stronger dependence between the two variables. Since the mixed MI of the
entire adversarial input cannot consider the dependence of the output on the different patterns, we



theoretically demonstrate that this mixed MI is closely related to the linear sum of benign MI (between
the output and the benign pattern) and adversarial MI (between the output and the adversarial pattern),
therefore, we can disentangle the adversarial input into benign and adversarial parts for separate
MI learning. We utilize lightweight neural networks to train with these two MI information as
effective MI estimators via maximization strategy [29} 27, [30]. During adversarial learning, we
dynamically enlarge the adversarial MI and decrease the benign MI of adversarial samples to force
reasoning process to focus more on perturbations to enhance harmfulness. Results show that our
adversarial samples containing larger adversarial MI achieve significant transfer-attack performance
across various LVLMs/prompts.

The key contributions of our work are outlined as follows:

» We propose to address a practical but challenging LVLM attack setting, i.e., model/prompt-
transfer attack. This new setting can efficiently generate effective adversarial examples
against different models/prompts compared to existing time/resource-consuming attacks.

» To obtain generalizable adversarial examples, we introduce to enhance the harmfulness of
perturbations from a novel information theory perspective to improve transferability. An
effective MI constraint for individual benign/adversarial patterns is devised to adjust the
focus of LVLM solely to the additive perturbations.

» Extensive experiments are conducted to verify the strong adversarial transferability of our
proposed attack on four prevalent LVLM models and three multimodal datasets with a
spectrum of task-aware prompts.

2 Related Work

LVLM Attackers. LVLMs generally combine the capabilities of processing visual information
with natural language understanding by using pre-trained vision encoders with language models
[31, 32]. Due to this multimodal nature [33} 134, 135} 136, 137, 138}, 139, 40}, 41}, 42} 43|, 44 45| |46],
LVLMs are particularly vulnerable as the multi-modal integration not only amplifies their vulnerable
utility but also introduces new attack vectors that are absent in unimodal systems [47} |48l 149, 150,
S11,152) 1531 1541 1551 156, 157, 1581 1591 160, 61}, 1621 163} 164, 165]. Most of the existing LVLM attackers
[114] [15) 166} 167, 168, [17, (19} 169, [7]] are inspired by the adversarial vulnerability observed in vision
tasks. To evaluate the adversarial robustness of LVLMs and generate adversarial examples, they
generally add and optimize imperceptible perturbations on the whole image to benign image inputs
via back-propagation. Although they can achieve significant attack performance in both targeted
and untargeted settings, they are easily limited by their perturbation-specific design that can solely
produce adversarial examples to deceive a particular LVLM model and prompt within a singular
process. That is, to compromise different LVLMs and prompts, they must generate distinct adversarial
perturbations, which incur significant time and resource expenditure. Some recent works [8} [10] try
to develop cross-prompt attack approaches, however, they require complicated multi-prompt joint
training and the challenging cross-model attack issue is still unexplored. Therefore, this paper aims
to develop a model/prompt-transferable attack method that can efficiently and effectively fool the
practical LVLM applications.

Adversarial Transferability. In the general 2D image and 3D point cloud fields, numerous works
[211 22 23| |24]] have been proposed to improve adversarial transferability. These methods claim
that the adversarial examples easily overfit the targeted model, therefore, they should generate
more generalizable and harmful perturbations. Most methods [124} [70} 23| |71} [72] exploit diverse
transformations to force the adversarial examples to resist them for improving the generalization,
leading to transferable perturbations with much more harmfulness. Advanced momentum-based
optimization strategies [73l [74} [70} [75, [76] are further introduced to stabilize the optimization
procedure and escape the local optima. There are also some ensemble attacks [[77) (78| [79] that
generate more transferable adversarial examples by attacking multiple models simultaneously. Several
works [80, [81]] also disrupt the feature space with model-agnostic designs to generate adversarial
examples. Since there is no related work that systematically analyzes the adversarial transferability
of LVLM attack methods across models/prompts, we follow previous works to generate as harmful
as possible adversarial perturbations to improve the transferability of LVLM attacks.



3 Methodology

3.1 Problem Definition and Notations

We generally define an LVLM model as F', which receives an image x,, and a task-specific prompt
x,, as the input pair to return a corresponding ground-truth answer y.

Threat Model. In this paper, we explore the setting of transferable LVLM attacks, where we assume
that the attacker solely has knowledge of a certain victim model, including its parameters, training
procedure, efc. The attackers are required to generate adversarial examples on this white-box victim
model, and feed them to attack other unknown black-box target LVLM models. This setting is more
challenging and practical as the attackers cannot always access the details of real-world LVLM
applications.

Attacker’s Goal. The objective of the attacker is to devise and add a harmful but imperceptible
perturbation A on x,,, to generate an adversarial image as £2%’ = x,, + A. This adversarial example,
upon application to any textual prompt across different LVLM models, is designed to compel the
model to output a target label predetermined by the attacker. Therefore, such perturbation needs to
exhibit persistence and robustness when deployed on unseen LVLM models, and to induce adversarial
semantic alterations across different task-aware prompts for the same image, rendering the attack
cross-model and cross-prompt applicable. In this paper, we mainly focus on targeted adversarial
attacks that aim to craft the adversarial image 2% to misguide the predicted answer of LVLM from
the ground-truth label y to the specific targeted label y,,,. The optimization goal is formulated as:

_wv”oo S €, (1)

where J(-) is the loss function, and we utilize /.-norm to regularize the adversarial perturbation to
the range €.

adv

min J(F(wgd”, :Ep), ytar)a S.t.”:ﬁv

3.2 Overview of Our Attack

Our Motivation. We consider improving attack transferability from the information theory per-
spective by separately increasing the harmful effect of adversarial perturbations while making the
LVLM less sensitive to the benign pattern of the perturbed image. Specifically, to generate more
harmful perturbations, we explicitly study the informative dependency between adversarial/benign
patterns of the input and the output of LVLMs. Our main goal is to enhance the dependence of the
output on the adversarial pattern, so that the learned perturbation can be more generalizable and
contribute more attacker-chosen guidance effects than the benign pattern, ensuring that the attack
remains effective when transferred to unknown models/prompts (more analysis is in Appendix [HJ.
As shown in Figure 2] empirical results prove that adversarial dependency plays an important role in
enhancing the harmful effect of adversarial examples for improving transferability.

In particu]ar, mutual information (MI) The MI of Non-Transferable Examples The MI of Transferable Examples
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outputs of LVLMs to measure the de-
pendency presents a limitation. This is
because adversarial images consist of
both benign and adversarial patterns,
and both of them have significant im-
pacts on the output results. Directly
maximizing the mixed MI between
the adversarial image and the output
may inadvertently increase the dependency of the output on the benign image, thereby hindering the
increase in perturbation harmfulness. To address this issue, this paper makes an in-depth investigation
on more fine-grained constraints of disentangled adversarial/benign MI information to achieve attacks.

Figure 2: Benign/adversarial MI values of non-transferable
and transferable adversarial examples of previous LVLM
attacks. The adversarial MI values of transferable exam-
ples are shown to be generally larger than their benign MI
values, demonstrating the correlation between adversarial
dependency and transferability.



Overall Pipeline. We present the overview of our proposed attack method in Figure[I](c). Specifically,
we first theoretically decompose the mixed MI information into benign MI (between the benign
image and the LVLM output) and adversarial MI (between the adversarial perturbation and the LVLM
output) components. Since the direct computation of MI is infeasible, we then train two MI estimators
for separate MI calculations. Finally, we incorporate the benign and adversarial MI constraints into
the optimization strategy to generate transferable adversarial examples.

3.3 How to Represent Adversarial/Benign MI?

We cannot simply utilize the separate benign image x,, and adversarial perturbation A to calculate
the two MI values with the LVLM output, as the adversarial impact is produced by the joint effects of
their combination 224V, Therefore, to specifically represent the separate adversarial MI and benign
MI, we need to disentangle them from the joint/mixed MI I(z2%; L), where L' = F(x™ x,) is
the logits of targeted output by the LVLM model.

Specifically, we define 4 as the adversarial MI between solely the additive adversarial perturbation
and the LVLM’s logit output, i.e., [4(A, L") or I4(A, L), where L = F(x,,x,) is the logits of
benign output. Benign MI I is also defined between solely the benign image pattern and the logit
output, i.e., [g(x,, L") or Ig(x,, L). We first provide Theorem 1 to illustrate the components and
their relationship [27] within the mixed MI I(z2%"; L').

Theorem 1. Let %%, x,,, A, L' represent four random variables, then the mixed MI I (z2%; L")
has the following expression (proofed in the Appendix [B):

H@y™; L) = I(@y; L) + I(A; L) + H(L' |2y, A) — H(L'|23%) — I(zo; A; L), (2)

v

where H(-|-) represents conditional entropy. In particular, H(L'|x,, A) and H(L'|z2%) can be
formulated as:

H(L |z, A) =~ Y p(L',zy, A)logp(L'|z,, A),
L' x,,A

H(L'|zs™) = - Y p(L/,zi")log p(L'|z4™), 3)
L/,m%dv

where p(L', z,, A), p(L’, £24) are the joint probability, p(L’|x,, A), p(L'|x2") are the condi-
tional probability.

Assumption 1. A, x2% are bijections of @, i.e., A, 224" are dependently and uniquely determined

by x,, and the decompositon of 224 is also unique (the theoretical basis of this assumption is detailed
in the Appendix [C).
adv

Based on this assumption, there exists p(x2®’) = p(x,,A). Substituting this relation into Equa-
tion , we can obtain H (L' |x,, A) ~ H(L'|22%) (proofed in the Appendix [DJE). Besides, since
the effects of benign and adversarial patterns on the output are mutually exclusive, thus I(x,; A; L)

is presented to be very small that can be ignored.

Therefore, according to the above derivations, now the mixed MI I(x2%%; I) can be linearly ex-
pressed as:

I L) ~ I(wo; L) + (A L) @

In this manner, we can approximately disentangle the mixed MI into the benign MI I (x,,; L') and
the adversarial MI I(A; L’) and calculate them separately. These two MIs can not only reflect the
dependency between the whole adversarial input and output like the mixed MI, but also provide
independent measurements for different patterns.

3.4 How to Calculate Adversarial/Benign MI?

Although we can approximately represent the adversarial/benign MI following the aforementioned
disentanglement, directly calculating MI is typically very challenging in high-dimensional spaces as it
is a relative value. Luckily, many methods have been proposed to estimate MI [82,29]. Among them,
the Deep InfoMax (DIM) estimation method has been shown to be more effective [29]]. Therefore,



we adopt local DIM (details in Appendix [F) and the Donsker-Varadhan representation [83] based on
the KL divergence to estimate the adversarial/benign MI in our scenarios as:

I(X;Y) = D (JIM) > I007(Cy (X); V) i= By T (Cy (), )] — log Bagle ()], (5)

where X is a random variable, which can be the representation of any visual input {z,, A, 2%} of
LVLM.Y is also the random variable, which is the representation of the LVLM’s output logits L or
L'. J is the joint probability distribution of X and Y. M is the product of the marginal probability
distributions of X and Y. We denote I ) as this MI estimation network based on the Donsker-
Varadhan mechanism, which consists of two sub-networks Cy, and T,,. Specifically, Cy, is an encoder
composed of a neural network with parameters v, which maps the image input to a local feature
map in the same latent space of Y. T, is a discriminator function modeled by a neural network with
parameters w to determine the relations between X and Y.

Therefore, we define two estimation networks f(DV) and f( ) to calculate adversarial and benign
M1, respectively. Due to the close relevance between the adversanal/benlgn patterns and the outputs
of the separate perturbation/benign pattern, we utilize adversarial perturbations and benign images
to train the 1 A‘;) and fb(fB) w)B For network f( V) , we maximize the adversarial MI between the

adversarial pattern of the perturbed image and the targeted output while minimizing the adversarial
MI between the adversarial pattern of the perturbed image and the benign output. For network
fo(g‘;)B, we maximize the benign MI between the benign pattern of the perturbed image and the

benign output while minimizing the benign MI between the benign pattern of the perturbed image
and the targeted output. The optimization objectives are formulated as follows:

R DV DV
(G, 0a) = arg max [IL770) (Cya (A); L) = IS7T) (Coa(A): D) (®)
N DV
(@5, p) = arg max (1770, (Cyp (@0): L) = I3, (Co (@0): L) ™
where fﬁ’j‘% (), ﬂD‘;) (+) are the estimated adversarial MI values and benign MI values.
&a, @B, YB

3.5 Improving Transferability with Informative Constraints of Adversarial/Benign MI

To guide the image contents focusing more on the adversarial impacts of perturbations for improving
the transferability, we develop an informative optimization strategy based on both adversarial and
benign MI constraints to generate more harmful and generalizable adversarial samples. Specifically,
by increasing the informative dependence between the adversarial perturbation of the input image
and the adversarial output of the LVLM, while decreasing the dependence between the benign image
pattern and the adversarial output of the LVLM, we can enhance the strength of the adversarial
perturbation and ensure that this perturbation contributes more guidance for the attacker’s choice
compared to the benign image pattern. In this manner, the perturbation can always have more effect
than the benign pattern, thus the adversarial example can still mislead the LVLM’s reasoning when it
is transferred to attack unknown models or prompts.
To achieve this goal, we utilized two MI evaluation networks trained by Section [3.4]to construct the
optimization objective for generating adversarial examples as follows:

arg max[f(Dv)

Al <e @arda (Cp, () Fl@o + Ayay) — 1Y) (O (@) Fla + Azl ®)

vaB

where Formula[8]is recorded as [,,,;. Besides, to better adjust the LVLM’s output towards the target
text Y4, we also utilize a cross-entropy C'E(+)loss to minimize the difference between the adversarial
output and the target text. The cross-entropy loss [ is as follows:

lee =CE(F(2y + A, xp), Ytar)- )
The overall loss for generating transferable adversarial examples is formulated as follows:
J = wy klee — wa * Ly, (10)

where w;, wo are weights to balance the loss. The algorithm of our attack is detailed in Appendix



Table 1: Performance comparisons on the adversarial transferability across different LVLM models.
The experimental results are calculated by the averaged semantic similarities (1) and attack success
rates (1) on three tasks. Target text: “T am sorry".

Source LLaVA-1.5 MiniGPT-4 BLIP-2 InstructBLIP
Dataset | yjoger | LVIMAtack | oo™y e | ss EM cc| ss EM cc| ss EM cC

PGD [67] |0.964 96.1 96.1|0.042 0.0 00 [0.094 03 03 ]0.137 12 1.6
CroPA [8] | 0.819 79.7 79.7|0.043 0.0 0.0 [0.093 00 0.0 |0.139 31 34

LLaVA-LS | niaa [10] | 0.842 80.6 88.3|0.186 12.5 17.9|0267 162 23.8|0.303 228 295
Ours | 0.813 804 804|0.661 614 66.7|0.693 63.5 66.9|0.724 637 70.2
PGD [67] |0.046 0.0 00 |0.823 797 79.7|0.103 28 89 |0.146 59 104
MiniGpra | CoPATEL 0051 00 00 (0955 948 9610125 90 111]0166 34 34

UniAtt [10] [0.298 154 22.7 (0.830 79.5 85.2|0.338 23.1 27.7|0.316 162 16.2
DALL-E Ours 0.650 57.3 64.9 | 0.860 84.2 84.5|0.716 63.4 68.5 | 0.698 58.3 64.1

PGD [67] 0.056 0.0 0.0 |0.053 0.0 0.0 |0.608 582 64.7|0.164 3.5 113
CroPA [8] [0.059 0.0 0.0 [0.057 0.7 2.0 [0610 288 935|0.199 8.1 172

BLIP-2 UniAtt [10] [0.397 24.8 31.2|0.359 22.6 29.4|0.817 77.9 85.1|0.275 134 158
Ours 0.695 52.4 60.3|0.657 52.7 58.5|0.755 75.1 81.4|0.506 41.2 43.1

PGD [67] [0.048 00 0.0 [0.047 0.0 0.0 [0.128 1.0 1.9 |0498 43.1 53.6

InstructBLIP CroPA 8] [0.048 00 0.0 [0.053 00 0.7 {0230 9.6 16.7|0842 81.7 82.3
) UniAtt [10] [0.173 85 14.6(0.269 214 2140421 30.8 37.3|0.854 79.6 83.7
Ours 0.448 40.2 459 |0.473 43.5 46.8 |0.539 46.9 54.6 | 0.689 689 79.0

PGD [67] [0.968 96.7 96.7|0.040 0.0 0.0 (0097 08 12 ]0.132 24 3.7

LLaVA-15 CroPA [8] [0.762 61.3 66.4(0.054 00 0.0 (0091 03 090125 15 1.9
' UniAtt [10] | 0.856 83.9 87.8|0.211 132 21.0[0.285 16.6 27.4|0.324 258 258

Ours 0.825 82.4 82.4]0.675 61.3 68.6 | 0.699 65.3 68.9|0.718 65.1 71.0

PGD [67] |0.049 0.0 0.0 |0.882 869 87.6|0.118 29 29 [0.140 7.8 93

MiniGPT-4 CroPA [8] |0.047 0.0 0.0 |0988 987 987(0.191 13.1 13.1|0.162 4.6 4.6

UniAtt [10] | 0315 16.8 24.2|0.849 84.4 8530352 24.7 30.3|0.428 30.0 32.3
SVIT Ours 0.647 62.3 66.0 | 0.904 89.2 89.5(0.745 66.9 73.1|0.785 724 724

PGD [67] |0.049 0.0 0.0 |0.056 0.0 09 |0642 614 68.0|0.172 6.4 10.8
CroPA [8] |0.051 0.0 0.0 0064 0.7 35 |0608 288 94.8|0.194 83 16.1

BLIP-2 UniAtt [10] | 0.375 26.1 33.70.392 23.8 31.4|0.797 783 8350257 12.5 18.6
Ours 0.657 55.8 63.4|0.685 56.7 60.5|0.754 75.0 82.5|0.489 42.5 46.3
PGD [67] 0.046 0.0 0.0 [0.037 0.0 0.0 |0.133 40 6.5 |0.529 47.7 60.1
CroPA [8] [0.049 0.0 0.0 [0.053 0.0 14 |0266 16.8 26.2|0.859 83.7 85.0
InstructBLIP

UniAtt [10] | 0.158 6.7 12.1]0.262 20.8 23.5|0.384 299 36.7|0.836 77.9 84.5
Ours 0.482 44.6 47.4|0.521 47.1 53.0 | 0.599 49.0 555|0.767 75.6 82.5

4 Experiments

4.1 Implementation Details

LVLM Models. In this paper, following existing LVLM attack methods [8} [10]], we conduct
experiments on the same open-source LVLM models, including LLaVA-1.5 (integrated with Vicuna-
7B) [84], MiniGPT-4 (integrated with Llama-2-7B-Chat) [85]], BLIP-2 (integrated with OPT-2.7b)
[5]], and InstructBLIP (integrated with Vicuna-7B) [86], for comparison.

LVLM Datasets and Tasks. We evaluate the adversarial robustness of three multi-modal datasets for
the image captioning, image classification, and VQA tasks. The datasets consist of both images and
prompts. The images are collected from DALL-E [87]], SVIT [88] and VQAv2 [89]. The prompts for
three tasks derive from the CroPA [8]].

Basic Setups. We consider two evaluation metrics: the semantic similarity (SS) utilizes the Sentence-
Transformer [90] to generate embeddings of both adversarial output and target text for calculating
their cosine similarity, and the success rates “ExactMatch" (EM) and “ConditionalContain" (CC) to
assess the word-level overlap between adversarial output and target text.

We utilize the same architectures to initialize the adversarial MI and benign MI estimation networks,
but they are trained separately. Specifically, Cy, is implemented as a light two-layer convolutional
neural network, while 7}, simply incorporates an attention mechanism, 1 x 1 convolutional blocks,
and residual connections. For training, we first use the selected adversarial examples generated
by PGD [67] attack with e = 16/255. We then feed the same prompt with benign image ., and



Table 2: Performance comparisons on the adversarial transferability across different numbers of
prompts. The experimental results are calculated by the averaged semantic similarities (1) on the
target text: “I am sorry". The prompts are randomly sampled from three tasks.

LLaVA-1.5 MiniGPT-4 BLIP-2
Num=20 Num=40 Num=60 | Num=20 Num=40 Num=60 | Num=20 Num=40 Num=60

InstructBLIP

LVLM Attack Num=20 Num=40 Num=60

Dataset

PGD [67] 0.435 0.431 0.421 0.692 0.693 0.689 0.578 0.517 0.523 0.297 0.295 0.289

DALL-E CroPA (8] 0.718 0.720 0.711 0.821 0.813 0.809 0.536 0.535 0.525 0.623 0.598 0.604
UniAtt [10] 0.732 0.716 0.714 0.776 0.782 0.780 0.627 0.609 0.602 0.665 0.659 0.659

Ours 0.743 0.736 0.730 0.825 0.828 0.820 0.693 0.689 0.682 0.672 0.664 0.663

PGD [67] 0.416 0.408 0.405 0.702 0.699 0.680 0.556 0.545 0.541 0.317 0.307 0.310

SVIT CroPA (8] 0.723 0.711 0.706 0.824 0.825 0.822 0.533 0.523 0.521 0.623 0.622 0.616
UniAtt [10] 0.729 0.727 0.724 0.801 0.797 0.793 0.608 0.584 0.573 0.694 0.678 0.671

Ours 0.754 0.738 0.734 0.835 0.836 0.830 0.655 0.653 0.650 0.735 0.729 0.732

PGD (671 0.422 0.414 0.411 0.756 0.758 0.755 0.514 0.502 0.500 0.325 0.316 0.318

VQAV2 CroPA 181 0.732 0.726 0.729 0.847 0.843 0.836 0.530 0.524 0.516 0.648 0.630 0.625
UniAtt [10 0.728 0.723 0.719 0.842 0.839 0.827 0.591 0.587 0.575 0.687 0.672 0.673

Ours 0.767 0.761 0.764 0.866 0.861 0.857 0.613 0.607 0.612 0.727 0.722 0.716

adversarial image % into the LVLM to obtain the corresponding logits outputs L and L'. The

tuple (z2% — x,, L, Ll) is used to train the adversarial MI estimation network following Equation
@ while the tuple (., L, L) is used as input to train the benign MI estimation network following
Equation[7] We train both networks using the Adam optimizer for 100 epochs, with an initial learning
rate of 0.01 that decays by a factor of 0.5 every 20 epochs. The number of channels of the encoded
image feature map is 2048. To generate transferable examples, the perturbation budget ¢ is also set
to 16/255. The epoch number is set to 1000. The momentum parameter i is set to 0.9 and the step
size is set as & = 16/epoch. Besides, the weights w; = wy = 1. All LVLM attack baselines are
re-implemented in the same setting for experimental comparison. All experiments are conducted on
the NVIDIA RTX 4090 GPUs with 24GB of memory.

4.2 Main Results

Transfer-Attack Performance across LVLMs. To investigate the transferability of our proposed
attack, we first provide the performance across different LVLM models in Table E} Here, we select
the target text “I am sorry", and all the performances are averagely evaluated on three tasks. We
can find that: (1) Our generated adversarial examples have competitive harmfulness compared to
existing attacks in the diagonal values. This demonstrates that our attack also contributes to improve
the harmful impact of the samples. (2) Our attacks achieve significant transfer-attack performance
compared to previous works, demonstrating the effectiveness of our designed informative constraints.
Furthermore, we transfer the adversarial examples generated on MiniGPT-4 model to realistic LVLM
applications GPT-40 (GPT-40-0513) [91] and Claude-3.5-Sonnet [92]]. As shown in TableE], our
attack still achieves better performance.

Transfer-Attack  Performance  across Typle 3: Transfer-attack performance on the gen-

Prompts. We then investigate the transfer- opyied adversarial examples from MiniGPT-4 to
attack performance across different numbers of  GpT.40 and Claude-3.5.

prompts in Table 2] Here, we directly transfer
the adversarial examples generated by a certain LVLM Attack
LVLM model and prompt to the same LVLM

mod@l with different prompts. We can find that ESEA[%J] gjggg 8:8 gjg gjggg 8:8 8:8
previous attacks achieve worse performance UniAw (0] | 0.142 41 75 0169 33 104
with the increase of the prompt numbers. Ours 0.608 447 513 | 0.620 48.6 565
Instead, our method achieves better attack performance across different prompts, demonstrating the
effectiveness of our developed informative constraints.

GPT-40 Claude-3.5
SS EM CC SS EM CC

Joint transferability across models and prompts. We further evaluate the joint transferability of
our proposed attack across both different models and prompts at the same time. As shown in Figure
[ the results still demonstrate that our method retains strong transferability even under this more
challenging setting.

We also provide experiments on more datasets and architecturally distinct LVLMs in Appendix
Justification of our transfer attack are in Appendix [[.3] To verify generality, we also evaluate
under a universal setting and on jailbreak/rewiring attacks, see Appendix [[.6|and [[.7}



Adversarial Ml Benign Ml

0.9] w= :o Defense 0.5 Benign Patter 0.7 ; s O;rFuII Attack
:Endm:r:at‘e?smn . Perturbation Pattern % / :Z :Z:?r:ah:‘a(\:zarl‘sc;;zt[amt
3 0.8 Ju-fstcon l:)esloratmn v P 80.6 / 7 ' ? Y
-r% 0.7 b g % o :r% 0.5 g % 7 7
F06 ? g é é 203 Eoa é g 7
Los{ 7 7 Y N c 7 7
'r% o g g /@ ﬁ 202 % 0.3 % g 2 /
E03l 7 N A £02 7 7
©0.3| 7 7 N\ A o % 2 7
11 1 1B Wl T
o2 i A\ A 2N g 7 R
N N A A 7 7 2 7
01 PGD CroPA UniAtt Ours 0 Naive Ours Naive Ours 0.0 JLto M MAto B éto | Iéto L MtolL
(a) (b) (c)

Figure 3: (a) Adversarial robustness against various defenses on BLIP-2 model with DALL-E dataset.
(b) Effectiveness of MI estimation networks on BLIP-2 model with DALL-E dataset. (c) Ablation on
different MI components on DALL-E dataset (LLaVA-1.5: L, MiniGPT-4: M, InstructBLIP: I).

Prompt: What would be the header for this image in a catalog?

S— Figure 5: The joint transferability performance across

samoannasaerarc]. diverse models and prompts. The experimental results
/A Boy Sits on a Bench with a Broken Le . . . e
» hoeer 1amsom o s aveyos| | are calculated by the averaged semantic similarities

an image as it is not provided.

Skateboarding (T) on three taSkS.
’ Image of a boy sitting on a
v Answer: | am sorry. skateboard with a helmet and knee pads, A "
|| MiniGPT-4 | surounded by people skateboarding in the Setting | CroPA | UniAtt | Ours

background.
LLaVA-1.5 to MiniGPT-4 (num=20) ‘ 0.042 ‘ 0.115 ‘ 0.627

Adv Answer: | am sorry.
; | e Satuing LLaVA-1.5 to MiniGPT-4 (num=60) | 0.039 | 0.101 | 0.608
Adversaril MI: 0. 575 Adv Answer: I am sorry. —

e MiniGPT-4 to LLaVA-1.5 (num=20) | 0.050 | 0.189 | 0.596

Raw Image

Adv Image
(by BLIP-2)

Figure 4: Visualizations of our transfer attack. ~_MiniGPT4 o LLaVA-1.5 (num=60) | 0.047 | 0.168 | 0.594

4.3 Attack Efficiency and Robustness

Complexity Analysis. To investigate the scalability and practicality of our transfer-attack method,
we provide the complexity analysis in Table d] which evaluates the usage of GPU time and memory
of a single adversarial sample generation on LLaVA-1.5 model. It indicates that our attack costs
relatively fewer GPU resources, as our informative constraints are easily achieved with solely loss
designs, while our samples can achieve better transfer-attack performance within a single generation
process.

Robustness to Defenses. To evaluate the robustness of Table 4: Complexity comparison on ad-
our attack against potential defense strategies, we conduct versarial sample generation.

experiments on three pre-processing defense methods, i.e,
Randomization [93| 94], JPEG Compression [95], and

LVLM Attack | GPU Time ({) | GPU Memory ({)

e - . e PGD [67 4 mi 16.7 GB
D1ffu519n Restoration [96] in E1gure |§| (a). Compared CmPA[ [8]] 12“;1; 204 GB
to previous attacks, our attack is relatively more robust UniAtt [T0] 294 min 57.5GB
to potential defenses because we explicitly constrain the Ours 9 min 182GB

adversarial perturbation to be as harmful as possible. This allows it to provide more guidance to the
LVLM’s reasoning than the benign pattern, having more opportunities to lead to wrong results. More
defense experiments can be found in Appendix [[.4]

4.4 Effectiveness of MI Estimation Networks

During the training process of each MI estimation network, directly maximizing positive MI with-
out minimizing negative MI may not clearly learn the accurate effect for adversarial perturbation

pattern or benign pattern (i.e., solely maximizing (W4, 4) = arg max, Aa WZ‘;)A (Cy,(A); L)

or (0p,¥p) = arg max,,,, R f((dg‘;)B (Cyy(2y); L)). Therefore, we design the joint maximization-

minimization optimization mechanism to train each MI estimation network via Equation (6) (7).
To demonstrate its effectiveness, we compare the MI estimation performance of these two training
strategies and compute the average MI value for all samples as shown in Figure 3] (b). The results
indicate that our optimization mechanism helps to better capture the inherent differences between
adversarial perturbation patterns and benign patterns in terms of adversarial MI and benign MI.



Table 5: The transfer-attack performance on complex target texts using adversarial examples generated
on LLaVA-1.5 with DALL-E dataset.

Target LLaVA-1.5 MiniGPT-4 BLIP-2
Text LVIM Attack | oo™ p0r “cc | s EM cC | SS EM cCC
A man holding PGD [67] |0916 912 91.2]0.054 00 00 |0.087 05 05

CroPA [8] [0.782 769 769 |0.040 0.0 0.0 |0.087 0.0 0.0
UniAtt [10] |0.821 80.1 85.5(0.204 17.8 21.7|0.291 18.9 28.3
Ours 0.796 79.9 80.2|0.662 60.5 64.8|0.714 62.4 68.6

a big doughnut
at a festival."

PGD [67] |0.903 89.8 91.2(0.048 0.0 0.0 |0.09% 09 1.1

CroPA [8] |0.786 78.2 782 (0.056 0.0 0.0 0.099 0.0 04

UniAtt [10] | 0.834 82.7 8590216 18.6 21.5|0.285 19.6 254
Ours 0.779 79.8 79.8|0.671 61.2 66.9 | 0.695 62.7 67.7

PGD [67] [0.907 90.1 90.1 0.065 00 00 |0.113 0.0 04
CroPA [8] |0.814 80.6 80.6(0.052 0.0 0.0 |0.091 04 0.8
UniAtt [10] | 0.843 81.6 86.3|0.229 183 23.1|0.287 20.7 29.6

Ours 0.815 80.9 82.2|0.676 61.5 68.2|0.729 60.9 68.4

"A photo of a teddy
bear on a skateboard
in Times Square."

"A beautiful bird
with a black and white
color in snow."

PGD [67] |0.876 883 883 |0.067 0.0 0.0 ]0.094 03 03

CroPA [8] |0.785 77.2 79.6{0.053 0.0 0.0 |0.104 02 0.5

UniAtt [10] | 0.806 78.9 82.6|0.214 16.7 22.3|0.274 20.1 26.8
Ours 0.799 795 81.2]0.621 57.4 63.5|0.645 584 65.0

"Bunk bed with a
narrow shelf sitting
underneath it."

PGD [67] ]0.929 924 9240056 00 0.0 |0.105 05 038

CroPA [8] |0.789 782 79.5(0.046 00 0.0 |0.08 00 0.3

UniAtt [10] | 0.831 82.0 85.9(0.219 184 20.8|0.293 224 30.5
Ours 0.816 81.3 81.3|0.631 56.9 62.1|0.658 59.4 66.1

"The people are
gathered at the
table for dinner."

4.5 Visualization

We provide the visualization example of our transfer-attack across different LVLMs in Figure[d] where
our generated adversarial examples can achieve the same harmful effect when transferred across
different LVLMs, demonstrating the transferability of our attack. More visualization results, including
MI values for transferable and non-transferable adversarial examples, as well as a comparison of
transfer-attack performance across various attack methods, can be found in Appendix [[.5]

4.6 Ablation Study

Ablation on Different Target Texts. To demonstrate that the effectiveness of our attack is not
constrained to the specific case of the target text “I am sorry", we extend our evaluation to more
complex and sophisticated target texts. As shown in Table[5] despite the increased difficulty and
complexity of these target texts, our attack strategy still demonstrates significant effectiveness and
consistently maintains high performance in transfer attacks.

Ablation on Different MI Components. To elucidate the role of each component of our method in
improving transferability, we conduct ablation studies: (1) removing the adversarial MI constraint,
and (2) removing the benign MI constraint. As shown in Figure [3|(c), the results demonstrate that
each component of our method contributes positively to improving transfer-attack performance.

5 Conclusion

This paper proposes a powerful LVLM attack method that is transferable across different LVLM
models and prompts. We introduce a new perspective of information theory to investigate LVLMs’
transferable characteristics by exploring the relative dependence between outputs of the LVLM
and input adversarial samples. With appropriate informative constraints between the disentangled
adversarial/benign patterns of the image input and output text, our generated adversarial examples are
proven to be more generalizable and harmful to unseen LVLMs and prompts. Extensive experiments
indicate the effectiveness of our proposed attack.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In this paper, we propose a novel LVLM attack method to adversarially
constrain the informative dependence between the benign/adversarial pattern of the input
and the LVLM’s output for improving the model/prompt-aware transferability.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the potential limitations in the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The theoretical results in this paper has a clear assumption and proof. The
assumption is explained in detail and the proof is provided in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We have provided them with the implementation details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will release the codes upon acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper have provided comprehensive experimental details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: NA.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have provided detailed information in the Experiments Section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Yes.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have discussed them in the Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: NA.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: NA.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: NA.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: NA.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: NA.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Preliminary of Mutual Information

Mutual Information (MI) is a measure of the dependency between two random variables, indicating
the amount of information one variable contains about the other. The larger the value, the stronger the
relationship between the two variables. If the value is zero, it means the two variables are independent.
The formula for MI is:

I(X;Y)=/Y/Xp(x7y)log (%) dady, (11

where X is a random variable, which is the representation of x,,, A or m%dv. Y is a random variable,
which is the representation of L or L’. p(z, y) is the joint probability density function of (X,Y"), and
p(x), p(y) are the marginal probability density functions of X and Y, respectively.

MI can also be expressed in terms of entropy. Its mathematical definition is as follows:
[(X;Y) = H(X) + H(Y) - H(X,Y)
=H(X)- H(X|Y)
= H(Y) - H(Y|X), (12)

where H(X), H(Y) are the entropy of the X and Y, representing the uncertainty of X and Y.
H(X,Y),H(Y|X) are the joint entropy and the conditional entropy, respectively.

The relationship between MI of three variables X, Y, Z is defined as [97]:
I(X,Y;2)=1(X;72)-I(X; Z]Y). (13)

B Proof of Theorem 1

Theorem 1. Let wgd”, x,, A, L' represent four random variables, then the mixed MI T (:cgd”; L)
has the following expression:

I(@y®™; L) = I(@y; L) + 1(A; L) + H(L' |2, A)
= H(L'|23") = I(xy; A; L), (14)
Proof. According to the relationship between information entropy and mutual information, we have:
I(@y; L) + 1(A; L) = H(L') — H(L'|wy) + H(L') — H(L'|A)
= 2H(L') = [H(L'|@,) + H(L'|A)]. (15)

According to the theorem of conditional mutual information in probability theory, we have:
H(L'|w,) + H(L'|A) = [H(L'|&y, A) + I(A; L'lay)] + [H(L |2y, A) + I(zy; L'|A)]
= [H(L|xy, A) + [(A; L|xy,) + I(xy; L'|A) + I(xy; A; L))
+ H(L|zy, A) — I(zy; A; L)
=H(L')+ H(L'|z,, A) — I(x,; A; L").
By combining the above two equations into a joint one, we have:
Ixy; L)+ I(A; L") =2H(L') — [H(L') + H(L'|zy, A) — I(zy; A; L)]
=H(L)— H(L|zy, A) + I(zy; A; L)
=I(zs™, L) + H({L'|z3%) — H(L' |2y, A) + I(z,; A; L), (16)

Finally, we have:
I(wy; L) + I(A; L) + H(L |@y, A) — H(L'[@3®) — I(@y; A; L)) = H(@i®; L), (A7)

which completes the proof.
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C Theoretical Basis of Assumption 1

Theorem 1. A, 229" are bijections of x,, i.e., A, %% are dependently and uniquely determined by
x,, and the decompositon of £ is also unique.

This assumption is based on: each x, generates a unique perturbation A determined by the attack
algorithm like PGD, where prompt-agnostic perturbation A is computed by visual-solely contexts
A = e-sign(Vg, L(f(%y), Ytar)). Therefore, A can be taken as a function of x,, denoted as
A = g(x,) that is uniquely determined by x,,. This leads to a unique adversarial image %’ =
x, + A =z, + g(x,) = h(x,), where 29" can also be taken as a function of x,. Conversely,

although 229* may exist other decompositions in a purely mathematical sense, in the adversarial

generation context, the uniqueness of this decomposition can be guaranteed by the above attack

protocol. Hence, we can assumpt that A, 224" are bijections of x,.

D Proof of Equal Probabilities

We assert that each x,,, A, w‘;d” is selected from a finite, countable set, making the selection process
discrete. Therefore, we utilize the probability mass function (PMF) in our specific case. For discrete
variables x,,, A, %%, the PMF of x, can denote as p, (v) = P(x, = ).

Based on Assumption 1, since A is a bijection of x,, there exists y = g(z) such that the joint PMF
Pz, A(z,y) = P(x, = x, A = y) can be written as:

Pz,.a(@,y) = P(xy = 2)P(A = yl@, = 2) = P(xy = 2). (18)

Similarly, since £ is a bijection of x,, there exists z = h(z) such that the PMF of 229" can be
derived as:

Paaar (2) = P(@l® = 2) = P(h(z) = z) = P(x, = x). (19)

v

Thus, we have pgadv (2) = pa, a(z,y), and for any y' # y, pz, a(z,y’) = 0, which leads to the
conclusion that:

p(xi™) = p(xy, A). (20)

E Proof of Approximate Equality of Conditional Entropies

We aim to demonstrate the approximate equality between the conditional entropies H (L'|x,, A) and
H(L'|z2%"). Now, let us expand the expression for H (L' |x.,,, A):

H(L'|xy,A) =~ Y pL' @y, A)logp(L|z,, A)
L'z, , A

== p®@e, A)> p(L'|y, A)log p(L'|m,, A)
A L’

Ty,

== Y p@,A)> p(L|xy, A)logp(L|@,, A)
L/

Ty, A=g(xy)

+l= Y pae, A p(L |y, A)log p(L [y, A)]
xy,AFg(xy) L

=0
==Y p(@y) > p(L|2y)logp(L|a,). @1)
Ty L’

Similarly, H(L'|€3%) = =", p(xy) >, p(L'|2,)log p(L'|2,). Therefore, H(L'|x3*) and
H(L'|x,, A) can be canceled out.
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F More Details of the Optimization Strategy of Local DIM

Here, we provide more details about how we utilize the Local DIM method to predict the MI values
in our specific scenarios. To tackle the image inputs, [29] points out that the presence of pixel-level
noise in the input data is often unhelpful for certain downstream tasks, therefore, the Local DIM
estimator is effective in handling this issue for estimating reliable MI values. Specifically, it divides
Ny MxM
the feature map into M x M feature blocks (i.e, Cy (x) = {C’f; ) }
i=1

w, 1 by estimating and maximizing the average MI between eachzblock features and global features.
The optimization formula is as follows:

), and then optimizes goal for

M2
. 1 i
(@) = argmax -5 > T07 (O (X):Y), (22)

i=1

where :ﬂDV

@,

)() is the estimated MI value.

G The Detailed Algorithm of Our Proposed Transfer-Attack Method

The training process to generate adversarial samples is shown in Algorithm |1} Specifically, the
perturbation is first initialized and then gradually optimized through multiple iterations. In each
iteration, by adding the perturbation to the raw image, the adversarial image is constructed and input
into the LVLM along with the prompt to obtain the logits. Next, the MI estimation networks are used
to compute the adversarial MI and benign MI, respectively. The MI loss is calculated by maximizing
the adversarial MI and minimizing the benign MI, and this is combined with the cross-entropy loss
based on the target answer to form the overall loss. Subsequently, the gradient is updated using the
momentum mechanism, and the perturbation is adjusted accordingly in both direction and magnitude,
while ensuring it stays within the predefined limit. This process is repeated multiple times, and finally
produce an adversarial image with strong transferability.

H More Discussions of Our Transferability on LVLMs and Prompts

To improve the transferability of LVLM attacks, we claim that: by increasing the informative
dependence between the adversarial perturbation of the input image and the incorrect output of
the LVLM, while decreasing the dependence between the benign image pattern and the incorrect
output of the LVLM, we can enhance the strength of the adversarial perturbation and ensure that
this perturbation contributes more guidance for the attacker’s choice compared to the benign image
pattern. In this manner, the perturbation can always have more effect than the benign pattern, thus the
adversarial example can still mislead the LVLM’s reasoning when it is transferred to attack unknown
models or prompts.

Here, we provide more discussions on why our proposed attack can separately enhance transferability
across LVLM models and prompts in the following:

(1) Transferability across LVLMs: the existing LVLM attackers adversarially train the adversarial
samples by implicitly restricting the mixed output-input dependency via misleading loss functions,
which may confuse the LVLM model to focus on optimizing the joint distribution of benign and
adversarial patterns of inputs. This may guide the target model in treating both adversarial and
benign patterns of the input image equally. Once the adversarial examples are transferred to an
unknown LVLM model, the benign pattern may contribute more output-aware dependency than the
adversarial pattern, thus weakening the harmful effect of perturbations and leading to clean results.
Instead, our proposed attack explicitly adjusts the LVLM’s focus solely on the adversarial noise to
enhance the corresponding adversarial harmfulness via the informative constraints. Even the sample
is transferred to attack unknown LVLM models, the learned adversarial perturbation is able to jump
out of the mixed overfitting and contributes more attacker-chosen guidance effects than the benign
one to mislead the reasoning process.

(2) Transferability across prompts: Overfitting to the joint distribution of multimodal inputs is also the
reason why previous LVLM attacks fail to achieve good prompt-transfer attack performance. However,
since our proposed attack method explicitly constrains the dependency between the adversarial
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Algorithm 1 Our Proposed Transfer-Attack based on Informative Constraints of Adversarial/Benign
MI
Input: The raw image x,, the textual prompt «, and the attacker-chosen target answer y,,; the

LVLM model F'; the adversarial MI estimation network ffﬁ ‘;)A and the benign MI estimation network
7(OV) '
wWB,YB
and the weights of loss wi, ws.
Output: Transferable adversarial image %%
1: Initialize gradient go = 0, perturbation A
2: fort =0tot,,q, —1do
3: Get adversarial sample z¢%" = Clip(x, + A¢,0,1)
4: Get the LVLM'’s output logits L = F(zl%, xp)
5: Calculate the estimated adversarial MI value:

; the number of iteration ¢,,,.; the decay factor p; the step size «; the perturbation budget ¢;

Madv = V) (CiﬁA (At)5L/)

@a,ha
6: Calculate the estimated benign MI value:
_ 7(DV) N .7/
Mpen = I@B;'(/;B (quB (w'u)7 L )
7: Calculate the MI 10ss 1,,,; = Mady — Moen
8: Calculate the cross-entropy loss:

lce = CE(L,, ytcw')

9: Get the overall 1oss J = wq * lee — Wo % 1yy;
10:  Update the momentum g; = ju % g, + ﬁ

11: Update perturbation:
A; = Clip(A; — - sign(gt), —¢, €)

12: end for
13: return adversarial image wgd” =x, + Ay

perturbations and the LVLM’s targeted output, the adversarial perturbations will be learned to be
agnostic to the prompt inputs as the perturbations already are trained to have harmful effects on
controlling the flip of the LVLMSs’ prediction (LVLM will ignore the effect of the prompt). Therefore,
once the adversarial images are transferred to attack unseen prompts, the LVLM’s reasoning will still
be influenced by the harmful impacts of perturbations with its large dependency guidance to output
attacker-chosen labels.

I More Experiments

I.1 Experiments on More Datasets

We first provide more performance comparisons on the adversarial transferability across different
LVLMs on VQAV2 datasets as shown in Table[6] From this table, we can also find that: (1) Our
generated adversarial examples have competitive harmfulness compared to existing attacks in the
diagonal values. This demonstrates that our attack also contributes to improve the harmful impact of
the samples. (2) Our attacks achieve better transfer-attack performance across four different LVLM
models compared to the previous three LVLM attackers, demonstrating the effectiveness of our
proposed informative constraints for improving transferability.

I.2 Experiments on More LVLM models
In addition to the LVLM models evaluated in Table|1|and [3| we also provide more detailed transfer-

attack experiments on architecturally distinct model families, i.e., MiniGPT-4 (EVA-CLIP-ViT-g-14),
Qwen2-VL (CLIP-ViT-bigG) [98], Intern-VL (InternViT-300M-448px-V2_5) [99] and Gemma-3

28



Table 6: Performance comparisons on the adversarial transferability across different LVLM models
(on VQAV?2 dataset). The experimental results are calculated by the averaged semantic similarities (1)
and attack success rates (1) on three tasks. Target text: “I am sorry".

) Source . LLaVA-1.5 MiniGPT-4 BLIP-2 InstructBLIP
Dataset | y\poger  [LVEMAtack | oo™ pyr e | s EM cc | ss EM cc| SS EM cC
PGD [67] |0.968 96.1 96.1|0.044 00 00 [009% 0.1 07 [0.135 09 1.9
CroPA [8] |0.797 652 6520023 00 00 [0084 00 08 0120 1.1 1.4

LLaVA-LS | Ghiaw [10] | 0.828 2.0 84.5|0.172 109 18.1|0253 22.1 22.1|0298 237 30.6
Ours | 0.833 83.7 83.7|0.645 65.6 65.6|0.706 632 69.9|0.723 642 72.5
PGD [67] [0.036 00 00 |0.866 850 85.0]0.139 44 59 [0.157 30 30
MiniGpra | COPAIEL 0037 00 00 [0.987 980 987|0.187 105 119]0.166 34 37

UniAtt [10] | 0.373 249 35.8|0.874 83.6 89.7|0.380 31.1 385]|0.309 224 27.6
VQAvV2 Ours 0.658 61.3 67.2|0.910 89.9 90.0|0.726 61.4 61.4|0.695 63.1 68.3

PGD [67] [0.047 0.0 0.0 |0.057 00 0.0 |0.649 614 70.6|0.199 6.5 6.5
CroPA [8] [0.046 0.0 0.0 |0.060 00 13 |0.619 281 96.1]0209 74 149

BLIP-2 UniAtt [10] | 0.406 27.9 35.3]0.385 23.8 32.0|0.836 793 86.2]0.284 157 20.1
Ours 0.613 58.5 62.0 | 0.602 558 58.3|0.744 736 82.9|0.492 37.5 39.6
PGD [67] 0.037 0.0 0.0 [0.049 0.0 0.0 |0.132 0.8 4.1 [0.532 444 62.7
CroPA [8] 0.039 0.0 0.0 [0.059 0.7 35 |0.265 13.1 23.5]0.869 85.0 87.6
InstructBLIP

UniAtt [10] [0.182 104 15.1]0.253 18.7 22.9|0.448 373 43.6|0.858 81.5 839
Ours 0.464 439 48.7|0.562 54.3 58.6 | 0.577 559 64.1|0.782 76.6 84.3

Table 7: The transfer-attack performance on more distinct models. The experimental results are
calculated by the averaged semantic similarities (1) on three tasks. Target text: “I am sorry".

Source Model | LVLM Attack | MiniGPT-4 Qwen2-VL Intern-VL ~ Gemma-3

PGD [67] 0.823 0.034 0.042 0.031

N CroPA [8] 0.955 0.042 0.051 0.045
MiniGPT-4 | (a4 [T0) 0.830 0.128 0.145 0.139
Ours 0.860 0.639 0.610 0.591

PGD [67) 0.054 0.712 0.069 0.051

Qwenz-vl | CroPA Sl 0.076 0.763 0.093 0.083
UniAtt [10] 0.199 0.820 0.224 0.241

Ours 0.622 0.792 0.691 0.612

PGD [67) 0.051 0.074 0811 0.043

eyl | CroPAIS] 0.085 0.108 0.823 0.079
UniAtt [10] 0212 0.207 0.829 0.224

Ours 0.683 0.676 0.847 0.627

PGD [67) 0.063 0.059 0.067 0.842

Gemmas | CroPA[S] 0.088 0.104 0.117 0.815
UniAtt [10] 0.237 0221 0.234 0.833

Ours 0.641 0.618 0.620 0.819

(SigLIP-ViT) [100]. As shown in Table [/} we can see that our attack is more generalizable to
architecturally distinct LVLMs compared to other attacks, demonstrating our great transferability.

1.3 Justification of Our Transfer Attack

The four major LVLMs model listed in Table E]-MiniGPT—4, LLaVA-1.5, BLIP-2 and InstructBLIP-are
all composed of a CLIP-VIT visual encoder, an LLM and a connector. Although their architectures
are similar, the specific versions and parameters of the CLIP-VIT encoder and LLM are different
as shown in Table[8] Besides, their differences also lie in how they bridge vision and language, and
how they’re optimized for downstream tasks. Therefore, the entire multimodal reasoning ability is
different among these LVLMs, while paper "Failures to Find Transferable Image Jailbreaks Between
Vision-Language Models" [101] further proves that transfer is not affected by whether the attacked
and target VLMs possess matching vision backbones or language models. That’s also the reason why
our compared baselines achieve poor transfer-attack performances among these four LVLMs in Table

of the paper.
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Table 8: The architecture and parameters of four LVLMs.

Model |  Visual Encoder | Version/Config | Input Resolution | LLM | Connector | Key Features
LLaVA-1.5 | CLIP-ViT-L/14  |clip-vit-large-patch14-336| ~ 336x336 |  Vicuna-7B |linear projection | High-resolution input
MiniGPT-4 | EVA-CLIP-ViT-g-14 | EVA-CLIP-g-14 | 224x224  |Llama-2-7B- Chat| linear projection | EVA architecture, self-supervised enhancement
BLIP-2 | CLIP-ViT-L/14 | clip-vit-large-patchl4 | = 224x224 | OPT-2.7b | Q-Former | cross-modal bridging
InstructBLIP | EVA-CLIP-ViT-g-14 | EVA-CLIP-g-14 | 224x224 | Vicuna-7B | Q-Former | Instruction tuning

Table 9: Transfer-attack performance comparisons on the adversarial transferability across LVLM
models with different visual encoders.

Source ‘ LVLM LLaVA-1.5 MiniGPT-4 BLIP-2 Qwen2-VL
Model Attack | (CLIP-ViT-L/14-336) | (EVA-CLIP-ViT-g-14) | (CLIP-ViT-L/14-224) | (CLIP-ViT-bigG)
LLaVA-1.5 (CLIP-ViT-L/14-336) | CroPA | 0.819 | 0.043 | 0.093 | 0.036
LLaVA-1.5 (CLIP-ViT-L/14-336) | UniAtt | 0.842 | 0.186 | 0.267 | 0.142
LLaVA-1.5 (CLIP-ViT-L/14-336) | Ours | 0.813 | 0.661 | 0.693 | 0.634
MiniGPT-4 (EVA-CLIP-ViT-g-14) | CroPA | 0.051 | 0.955 | 0.125 | 0.042
MiniGPT-4 (EVA-CLIP-ViT-g-14) | UniAtt | 0.298 | 0.830 | 0.338 | 0.128
MiniGPT-4 (EVA-CLIP-ViT-g-14) | Ours | 0.650 | 0.860 | 0.716 | 0.639
BLIP-2 (CLIP-ViT-L/14-224) | CroPA | 0.059 | 0.057 | 0.610 | 0.045
BLIP-2 (CLIP-ViT-L/14-224) | UniAtt| 0.397 | 0.359 | 0.817 | 0.140
BLIP-2 (CLIP-ViT-L/14-224) | Ours | 0.695 | 0.657 | 0.755 | 0.641
Qwen2-VL (CLIP-ViT-bigG) | CroPA | 0.059 | 0.076 | 0.107 | 0.763
Qwen2-VL (CLIP-ViT-bigG) | UniAtt| 0.098 | 0.199 | 0.214 | 0.820
Qwen2-VL (CLIP-ViT-bigG) | Ours | 0.633 | 0.662 | 0.674 | 0.792

Furthermore, considering that MiniGPT-4 and InstructBLIP share the same CLIP-ViT visual encoder,
we introduced the Qwen2-VL [98]] model—whose visual encoder (CLIP-ViT-bigG) differs from
that of LLaVA, MiniGPT-4, and BLIP-2—to eliminate the potential influence of visual encoders on
transferability. Under a strict black-box setting, we also evaluate the cross-model transferability of
our attack. As shown in Table[9} the inclusion of Qwen2-VL still validates the effectiveness of our
proposed transfer attack method.

In summary, our implemented transfer attack among these four LVLMs can be taken as a kind of
black-box transfer, which is worth studying for enhancing the transferability of existing LVLM
attackers.

1.4 Experiments on More Defenses

We provide a more detailed analysis of robustness against defenses in Table[TI0] where we show the
cross-model/prompt attacks’ performance under various defenses. In particular, we also introduce
two new defense mechanisms for defended target evaluation: one improves the CLIP component in
BLIP-2, LLaVA-1.5, MiniGPT-4 and InstructBLIP models with a defended FARE model [102]], and
the other uses a defended DPS model [[103]] to embed the input of the BLIP-2, LLaVA-1.5, MiniGPT-4
and InstructBLIP models. The experimental results demonstrate that our cross-model/prompt attack
still achieves better transferability compared to baselines under various defense methods, indicating
our robustness.

I.5 More Visualizations

We provide more visualization examples to investigate the effectiveness of our attack from three
aspects: (1) We provide visual examples of our transfer attack across different LVLM models
in Figure [6] It shows that our generated adversarial examples can effectively fool the unknown
LVLM models with attacker-chosen text labels, indicating the strong transferability of our proposed
attack method. (2) We evaluate the adversarial and benign MI values of both transferable and
non-transferable adversarial examples of LVLM attackers in Figure [/l It shows that transferable
adversarial examples generally have larger adversarial MI values than its benign ones, while the
non-transferable adversarial examples fail to distinguish the adversarial and benign patterns (i.e.,
having similar adversarial and benign MI values). This demonstrates that strong correlations exist
between adversarial dependency and transferability, indicating that a transferable adversarial example
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Prompt: If this image were a song title, what would it be?

Transfer
LLavA-15 mp|
MiniGPT-4 |

Raw Answer: Flower Power.

Adv Answer: | am sorry.

Raw Answer: The flowers
are in the vase.
Adv Answer: | am sorry.

Raw Answer: The image appears to be a
vase with white flowers in it, sitting on a
wooden table in a room with dark wood
furniture.

o &

24 Adv Answer: | am sorry.
i3

>

g § Raw Answer: Flower vase.

InstructBLIP M)

Adv Answer: | am sorry.

Transfer
LLavA-15 |

Raw Answer: Animals.

Adv Answer: I'm sorry, but | cannot
assign a relevant classification to this
image.

Raw Answer: Two cows
standing in a grassy field with:

Raw Answer: The image depicts a brown

trees in the backgrous i cow stf:jnfgng ir;‘ ﬁ fielg ?f greir;1 grass,
Adv Answer: | am sorry. | . surrounded by hills and trees. The cow
>~ - V1| MiniGPT-4 » appears to be looking at something in the
Lo 1 distance, possibly its calf.
%E_D‘ H Adv Answer: | am sorry.
T = H
ES :
> E : Raw Answer: Large CoW.
ZE | oBLP2 ) 9
| Adv Answer: | am sorry.

Adversaril MI: 0.684
Benign MI: 0.019

Transfer

Raw Answer: The image showcases a
baseball player in a red uniform, swinging a
bat at a baseball. The player is in the middle
of swing, with baseball in the air, and the
bat is positioned behind him.

Adv Answer: I’'m not sure.

Raw  Answer: The image depicts a
baseball player in a stance to swing a bat
at a ball. He is wearing a red jersey with
white pants and white gloves. The

Raw Image

——
Raw Answer: A baseball

Prompt: Illustrate the main theme of this image with words.
player swinging a bat at a
pitched ball.

LLavA-15 m|
Adv Answer: | am SOI?
MiniGPT-4 [

>~
=3 % background is gray.
:.j, @ Adv Answer: | am sorry.
ES -
= g Raw Answer: The baseball player is
2 2 BLIP-2 » swinging his bat at the ball.

Adv Answer: | am sorry.

Adversaril MI: 0.799
Benign MI: 0.027

Prompt: If this image could speak, what would it say?

@ Transfer

> -

g Raw Answer: | am a cat sleeping on a

; = LLaVA-L5 - desk, surrounded by a computer keyboard,
» aVvA-1. mouse, and monitor. | am enjoying a

T

o /”\’ﬁ peaceful nap in this cozy environment.

Adv Answer: | am sorry.
Raw Answer: I'm a cat. .

Raw Answer: If the cat could speak, it
might say something like: I'm just taking a

Adv Answer: | am sorry.
> little nap on top of this pile of work. It's

MiniGPT-4 |

o F}T been a long day at the office!.
s a Adv Answer: | am sorry.
EZ

>0 =

2 @ Raw Answer: Meow.

!

InstructBLIP EEp|

Adversaril MI: 0.449 i
Benign MI: 0.0334 ~~ T

Adv Answer: | am sorry.

Prompt: Offer the primary descriptor for the content of this image.

Transfer
LLavA-15 mp|
MiniGPT-4 EE|

=

Raw Answer: A man wearing a white and
orange jacket is snowboarding down a
snowy mountain.

Adv Answer: | am sorry.

Raw An: The primary descriptor for
the content of this image is a man wearing a
ski jacket and snowboarding gear standing
in the snow with his hands on his hips.

Adv Answer: I'm sorry, but | don't have the
ability to see images or give information on
any topic because I'm just an Al assistant.

riding a snowboard dowr
a snowy slope. *
Adv Answer: | am sorry.

¢

Raw Answer: The snowboarder is in the
mountains.
Adv Answer: | am sorry.

BLIP-2

Adv Image (by

Benign MI: 0.031

Prompt: Convey the content of this photograph in a single phrase.

Raw Answer: A cat

Transfer
LLavA-15 mp|
sitting in the middle of a
flock of pigeons.|
= MiniGPT-4 EEp|

Raw Answer: A cat sitting on a brick road
with birds around it.
Adv Answer: | am sorry.

Raw Image

Raw Answer: A cat sits on the ground in a
park surrounded by pigeons.
Adv Answer: | am sorry.

Adv Answer: | am sorry.

Raw Answer: A cat and pigeons in a city
park.
Adv Answer: | am sorry.

Adv Image (by

Benign MI: 0.028

Figure 6: Visualizations of our transferable attack across different LVLM models.

Non-Transferable

Adversarial MI: 0.124
Benign MI: 0.216

Adversarial MI: 0.275
Benign MI: 0.393

-

Transferable

i

Adversaﬁal MI: 0.603
Benign MI: 0.163

Adversarial MI: 0.610
Benign MI: 0.0534

Adversarial MI: 0.130
Benign MI: 0.227

Adversarial MI: 0.618
Benign MI: 0.165

Adversarial MI: 0.126 Adversarial MI:

Benign MI: 0.150

0.263
Benign MI: 0.162

T
Adversarial MI: 0.626
Benign MI: 0.144

Adversarial MI: 0.561
Benign MI: 0.080

Figure 7: Benign/adversarial MI values of non-transferable and transferable adversarial examples
of previous LVLM attacks. The adversarial MI values of transferable examples are shown to be
generally larger than their benign MI values, demonstrating the strong correlation between adversarial

dependency and transferability.
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If this image were a Provide a one-word Offer a one-word Offer a one-word If you were to label Select the keyword
chapter in a book, what description of this identifier for this identifier for this this image, what that best defines this
image’s theme.

would its title be? image's content. picture. picture. label would you give?
= -

g

InstructBLIP: | am sorry.

InstructBLIP: | am sorry. | am sorry. I’'m sorry. | am sorry. | am sorry. | am sorry.

Figure 8: Visualization comparison on targeted transfer attack of different attack methods. We ran-
domly select the above adversarial examples which are generated by the attack method to successfully
cause the source LVLM model BLIP-2 to output the attacker-chosen answer “I am sorry". The
text below each image represents the transfer-attack answer by attacking the victim LVLM model
InstructBLIP.

Table 10: Defense evaluation on cross-model and cross-prompt attacks.

Defense LVLM BLIP-2

Method ‘ Attack to BLIP-2 to LLaVA-1.5 to MiniGPT-4 to InstructBLIP \ Across Prompts(Num=20)

PGD [67] 0.213 0.014 0.019 0.042 0.169

Randomization CroPA (8] 0.281 0.046 0.041 0.062 0.188

UniAtt 0.489 0.156 0.121 0.096 0.336

Ours 0.510 0.466 0.439 0.254 0.463

PGD 0.348 0.023 0.018 0.046 0.340

JPEG Compression Crf)PA 0.476 0.054 0.051 0.051 0.411

UniAtt 0.653 0.251 0.213 0.135 0.474

Ours 0.676 0.613 0.560 0.429 0.618

PGD [67] 0.258 0.021 0.020 0.043 0.217

Diffusion Restoration Crf)PA [8] 0.349 0.044 0.046 0.048 0.275

UniAtt [10] 0.321 0.122 0.109 0.084 0.318

Ours 0.535 0.464 0.443 0.279 0.485

PGD 0.246 0.023 0.017 0.041 0.206

FARE CroPA 0.316 0.046 0.047 0.064 0.258

UniAtt [T0] 0.408 0.136 0.113 0.104 0.321

Ours 0.547 0.468 0.449 0.286 0.489

PGD 0.319 0.025 0.024 0.048 0.274

DPS CroPA [8] 0.382 0.051 0.046 0.069 0.293

UniAtt [10] 0.464 0.154 0.120 0.097 0.325

Ours 0.576 0.481 0.454 0.291 0.512

should have larger adversarial dependency and lower benign dependency to guide the LVLM model in
focusing more on the harmful perturbation pattern for reasoning. (3) We also provide transfer-attack
visualization comparison across different LVLLM models on PGD, CroPA, and our method as shown
in Figure[8] From this figure, we can find that our attack has better targeted-attack transferability,
leading the unknown LVLM model to output the same attacker-chosen answer.

1.6 Experiments under Universal Setting

We also extend our attack as a universal setting by optimizing the perturbation across images.
Specifically, we generate adversarial examples on MiniGPT-4 and then transfer them to GPT-40 (GPT-
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Table 11: Comparison of transfer-attack performance under the universal and non-universal setting.
The experimental results are calculated by the averaged semantic similarities (1) on three tasks.

MiniGPT-4
to GPT-40 | to Claude-3.5
universal 0.579 0.605
non-universal 0.608 0.620

Table 12: Jailbreak attack performance comparisons on the adversarial transferability across different
LVLM models.

Source Model | LVLM Attack | MiniGPT-4 | LLaVA-1.5 | InstructBLIP

VAIM [104]] 53.6 17.9 57.5

MiniGPT-4 UMK [105] 77.0 12.6 24.7
Ours 72.8 56.4 68.9

VAIM [104] 44.8 30.3 33.7

LLaVA-1.5 UMK [105] 19.1 62.2 17.4
Ours 59.6 68.5 54.3

VAIM [104] 37.2 20.6 63.2

InstructBLIP UMK [105] 15.0 13.9 81.6
Ours 60.2 57.5 76.8

40-0513) [91]] and Claude-3.5-Sonnet [92]]. As shown in Table [T} the results under the universal
setting demonstrate that our attack maintains strong transferability across different LVLM:s.

1.7 More Experiments on Bypassing Safety Mechanisms and Rewiring Entities

We also implement our attack setting into the jailbreak or rewiring attack by changing the targeted
attack condition of Equation [J]into corresponding objectives. As for the jailbreak setting, we
follow previous jailbreak works VAIM [104]] and UMK [105] to implement attacks and evaluate the
percentage of the generated texts that exhibit any of the 6 toxic attributes given by Perspective API. As
shown in Table our transfer attack among MiniGPT-4, LLaVA-1.5 and InstructBLIP also shows
strong applicability. As for the rewiring attack, we define the adversarial loss for maximizing the
probability of “cat” appearing anywhere in the answer text and the regularization loss for constraining
its total probability to be close to 1 to serve as rewiring constraint for LVLM’s output to produce texts
containing "cat" (Not a direct/simple "this is a cat" output), which achieves great ASR in Table

J Task-aware Prompts for Different Tasks

Prompt Examples for Image Captioning. Elaborate on the elements present in this image. In one
sentence, summarize the activity in this image. Relate the main components of this picture in words.
What narrative unfolds in this image? Break down the main subjects of this photo. Give an account
of the main scene in this image. In a few words, state what this image represents. Describe the setting
or location captured in this photograph. Provide an overview of the subjects or objects seen in this
picture. Identify the primary focus or point of interest in this image. What would be the perfect title
for this image? How would you introduce this image in a presentation? Present a quick rundown
of the image’s main subject. What'’s the key event or subject captured in this photograph? Relate
the actions or events taking place in this image. Convey the content of this photograph in a single
phrase. Offer a succinct description of this picture. Give a concise overview of this image. Translate
the contents of this picture into a sentence. Describe the characters or subjects seen in this image.
Capture the activities happening in this image with words. How would you introduce this image to an
audience? State the primary events or subjects in this picture. What are the main elements in this
photograph? Provide an interpretation of this image’s main event or subject. How would you title
this image for an art gallery? What scenario or setting is depicted in this image? Concisely state the
main actions occurring in this image. Offer a short summary of this photograph’s contents. How
would you annotate this image in an album? If you were to describe this image on the radio, how
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Table 13: Rewiring attack performance on the adversarial transferability.

ASR MiniGPT-4
to MiniGPT-4 | to LLaVA-1.5 | to InstructBLIP
Ours | 864% | 719% |  74.1%

would you do it? In your own words, narrate the main event in this image. What are the notable
features of this image? Break down the story this image is trying to tell. Describe the environment
or backdrop in this photograph. How would you label this image in a catalog? Convey the main
theme of this picture succinctly. Characterize the primary event or action in this image. Provide
a concise depiction of this photo’s content. Write a brief overview of what’s taking place in this
image. Illustrate the main theme of this image with words. How would you describe this image in a
gallery exhibit? Highlight the central subjects or actions in this image. Offer a brief narrative of the
events in this photograph. Translate the activities in this image into a brief sentence. Give a quick
rundown of the primary subjects in this image. Provide a quick summary of the scene captured in
this photo. How would you explain this image to a child? What are the dominant subjects or objects
in this photograph? Summarize the main events or actions in this image. Describe the context or
setting of this image briefly. Offer a short description of the subjects present in this image. Detail
the main scenario or setting seen in this picture. Describe the main activities or events unfolding
in this image. Provide a concise explanation of the content in this image. If this image were in a
textbook, how would it be captioned? Provide a summary of the primary focus of this image. State the
narrative or story portrayed in this picture. How would you introduce this image in a documentary?
Detail the subjects or events captured in this image. Offer a brief account of the scenario depicted in
this photograph. State the main elements present in this image concisely. Describe the actions or
events happening in this picture. Provide a snapshot description of this image’s content. How would
you briefly describe this image’s main subject or event? Describe the content of this image. What’s
happening in this image? Provide a brief caption for this image. Tell a story about this image in
one sentence. If this image could speak, what would it say? Summarize the scenario depicted in this
image. What is the central theme or event shown in the picture? Create a headline for this image.
Explain the scene captured in this image. If this were a postcard, what message would it convey?
Narrate the visual elements present in this image. Give a short title to this image. How would you
describe this image to someone who can’t see it? Detail the primary action or subject in the photo. If
this image were the cover of a book, what would its title be? Translate the emotion or event of this
image into words. Compose a one-liner describing this image’s content. Imagine this image in a
magazine. What caption would go with it? Capture the essence of this image in a brief description.
Narrate the visual story displayed in this photograph.

Prompt Examples for Image Classification. Identify the primary theme of this image in one word.
How would you label this image with a single descriptor? Determine the main category for this
image. Offer a one-word identifier for this picture. If this image were a file on your computer, what
would its name be? Tag this image with its most relevant keyword. Provide the primary classification
for this photograph. How would you succinctly categorize this image? Offer the primary descriptor
for the content of this image. If this image were a product, what label would you place on its box?
Choose a single word that encapsulates the image’s content. How would you classify this image in
a database? In one word, describe the essence of this image. Provide the most fitting category for
this image. What is the principal subject of this image? If this image were in a store, which aisle
would it belong to? Provide a singular term that characterizes this picture. How would you caption
this image in a photo contest? Select a label that fits the main theme of this image. Offer the most
appropriate tag for this image. Which keyword best summarizes this image? How would you title this
image in an exhibition? Provide a succinct identifier for the image’s content. Choose a word that
best groups this image with others like it. If this image were in a museum, how would it be labeled?
Assign a central theme to this image in one word. Tag this photograph with its primary descriptor.
What is the overriding theme of this picture? Provide a classification term for this image. How would
you sort this image in a collection? Identify the main subject of this image concisely. If this image
were a magazine cover, what would its title be? What term would you use to catalog this image?
Classify this picture with a singular term. If this image were a chapter in a book, what would its title
be? Select the most fitting classification for this image. Define the essence of this image in one word.
How would you label this image for easy retrieval? Determine the core theme of this photograph. In
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a word, encapsulate the main subject of this image. If this image were an art piece, how would it
be labeled in a gallery? Provide the most concise descriptor for this picture. How would you name
this image in a photo archive? Choose a word that defines the image’s main content. What would
be the header for this image in a catalog? Classify the primary essence of this picture. What label
would best fit this image in a slideshow? Determine the dominant category for this photograph. Offer
the core descriptor for this image. If this image were in a textbook, how would it be labeled in the
index? Select the keyword that best defines this image’s theme. Provide a classification label for
this image. If this image were a song title, what would it be? Identify the main genre of this picture.
Assign the most apt category to this image. Describe the overarching theme of this image in one word.
What descriptor would you use for this image in a portfolio? Summarize the image’s content with a
single identifier. Imagine you’re explaining this image to someone over the phone. Please describe
the image in one word? Perform the image classification task on this image. Give the label in one
word. Imagine a child is trying to identify the image. What might they excitedly point to and name? If
this image were turned into a jigsaw puzzle, what would the box label say to describe the picture
inside? Classify the content of this image. If you were to label this image, what label would you
give? What category best describes this image? Describe the central subject of this image in a single
word. Provide a classification for the object depicted in this image. If this image were in a photo
album, what would its label be? Categorize the content of the image. If you were to sort this image
into a category, which one would it be? What keyword would you associate with this image? Assign
a relevant classification to this image. If this image were in a gallery, under which section would
it belong? Describe the main theme of this image in one word. Under which category would this
image be cataloged in a library? What classification tag fits this image the best? Provide a one-word
description of this image’s content. If you were to archive this image, what descriptor would you use?

Prompt Examples for VQA. Any cutlery items visible in the image? Any bicycles visible in this
image? Any boats visible in the image? Any bottles present in the image? Are curtains noticeable in
the image? Are flags present in the image? Are flowers present in the image? Are fruits present in the
image? Are glasses discernible in the image? Are hills visible in the image? Are plates discernible in
the image? Are shoes visible in this image? Are there any insects in the image? Are there any ladders
in the image? Are there any man-made structures in the image? Are there any signs or markings
in the image? Are there any street signs in the image? Are there balloons in the image? Are there
bridges in the image? Are there musical notes in the image? Are there people sitting in the image?
Are there skyscrapers in the image? Are there toys in the image? Are toys present in this image? Are
umbrellas discernible in the image? Are windows visible in the image? Can birds be seen in this
image? Can stars be seen in this image? Can we find any bags in this image? Can you find a crowd
in the image? Can you find a hat in the image? Can you find any musical instruments in this image?
Can you identify a clock in this image? Can you identify a computer in this image? Can you see a
beach in the image? Can you see a bus in the image? Can you see a mailbox in the image? Can you
see a mountain in the image? Can you see a staircase in the image? Can you see a stove or oven in
the image? Can you see a sunset in the image? Can you see any cups or mugs in the image? Can
you see any jewelry in the image? Can you see shadows in the image? Can you see the sky in the
image? Can you spot a candle in this image? Can you spot a farm in this image? Can you spot a
pair of shoes in the image? Can you spot a rug or carpet in the image? Can you spot any dogs in
the image? Can you spot any snow in the image? Do you notice a bicycle in the image? Does a
ball feature in this image? Does a bridge appear in the image? Does a cat appear in the image?
Does a fence appear in the image? Does a fire feature in this image? Does a mirror feature in this
image? Does a table feature in this image? Does it appear to be nighttime in the image? Does it
look like an outdoor image? Does it seem to be countryside in the image? Does the image appear
to be a cartoon or comic strip? Does the image contain any books? Does the image contain any
electronic devices? Does the image depict a road? Does the image display a river? Does the image
display any towers? Does the image feature any art pieces? Does the image have a lamp? Does
the image have any pillows? Does the image have any vehicles? Does the image have furniture?
Does the image primarily display natural elements? Does the image seem like it was taken during
the day? Does the image seem to be taken indoors? Does the image show any airplanes? Does
the image show any benches? Does the image show any landscapes? Does the image show any
movement? Does the image show any sculptures? Does the image show any signs? Does the image
show food? Does the image showcase a building? How many animals are present in the image? How
many bikes are present in the image? How many birds are visible in the image? How many buildings
can be identified in the image? How many cars can be seen in the image? How many doors can
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you spot in the image? How many flowers can be identified in the image? How many trees feature
in the image? Is a chair noticeable in the image? Is a computer visible in the image? Is a forest
noticeable in the image? Is a painting visible in the image? Is a path or trail visible in the image? Is
a phone discernible in the image? Is a train noticeable in the image? Is sand visible in the image?
Is the image displaying any clouds? Is the image set in a city environment? Is there a plant in the
image? Is there a source of light visible in the image? Is there a television displayed in the image? Is
there grass in the image? Is there text in the image? Is water visible in the image, like a sea, lake,
or river? How many people are captured in the image? How many windows can you count in the
image? How many animals, other than birds, are present? How many statues or monuments stand
prominently in the scene? How many streetlights are visible? How many items of clothing can you
identify? How many shoes can be seen in the image? How many clouds appear in the sky? How many
pathways or trails are evident? How many bridges can you spot? How many boats are present, if it’s
a waterscape? How many pieces of fruit can you identify? How many hats are being worn by people?
How many different textures can you discern? How many signs or billboards are visible? How many
musical instruments can be seen? How many flags are present in the image? How many mountains
or hills can you identify? How many books are visible, if any? How many bodies of water, like ponds
or pools, are in the scene? How many shadows can you spot? How many handheld devices, like
phones, are present? How many pieces of jewelry can be identified? How many reflections, perhaps
in mirrors or water, are evident? How many pieces of artwork or sculptures can you see? How many
staircases or steps are in the image? How many archways or tunnels can be counted? How many
tools or equipment are visible? How many modes of transportation, other than cars and bikes, can
you spot? How many lamp posts or light sources are there? How many plants, other than trees and
flowers, feature in the scene? How many fences or barriers can be seen? How many chairs or seating
arrangements can you identify? How many different patterns or motifs are evident in clothing or
objects? How many dishes or food items are visible on a table setting? How many glasses or mugs
can you spot? How many pets or domestic animals are in the scene? How many electronic gadgets
can be counted? Where is the brightest point in the image? Where are the darkest areas located?
Where can one find leading lines directing the viewer’s eyes? Where is the visual center of gravity in
the image? Where are the primary and secondary subjects positioned? Where do the most vibrant
colors appear? Where is the most contrasting part of the image located? Where does the image
place emphasis through scale or size? Where do the textures in the image change or transition?
Where does the image break traditional compositional rules? Where do you see repetition or patterns
emerging? Where does the image exhibit depth or layers? Where are the boundary lines or borders in
the image? Where do different elements in the image intersect or overlap? Where does the image hint
at motion or movement? Where are the calm or restful areas of the image? Where does the image
become abstract or less defined? Where do you see reflections, be it in water, glass, or other surfaces?
Where does the image provide contextual clues about its setting? Where are the most detailed parts
of the image? Where do you see shadows, and how do they impact the composition? Where can you
identify different geometric shapes? Where does the image appear to have been cropped or framed
intentionally? Where do you see harmony or unity among the elements? Where are there disruptions
or interruptions in patterns? What is the spacing between objects or subjects in the image? What
foreground, mid-ground, and background elements can be differentiated? What type of energy or vibe
does the image exude? What might be the sound environment based on the image’s content? What
abstract ideas or concepts does the image seem to touch upon? What is the relationship between the
main subjects in the image? What items in the image could be considered rare or unique? What is
the gradient or transition of colors like in the image? What might be the smell or aroma based on
the image’s content? What type of textures can be felt if one could touch the image’s content? What
boundaries or limits are depicted in the image? What is the socioeconomic context implied by the
image? What might be the immediate aftermath of the scene in the image? What seems to be the
main source of tension or harmony in the image? What might be the narrative or backstory of the
main subject? What elements of the image give it its primary visual weight? Would you describe the
image as bright or dark? Would you describe the image as colorful or dull?

K Limitations and Broader Impacts

Limitations. Future research directions for evaluating the security of LVLMs should prioritize
physical-world adversarial attack scenarios, particularly in safety-critical deployments such as au-
tonomous driving or robotic control systems. In such applications, adversarial examples must be
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crafted under real-world constraints, where input images are captured by physical sensors (e.g.,
cameras or LiDAR) and subject to dynamic environmental interference (e.g., lighting variations,
motion blur, or sensor noise). Although our attack method is effective in theoretical settings, it
still requires further improvement to maintain attack effectiveness under such complex real-world
conditions.

Broader Impacts. This study presents a novel LVLM attack method for generating transferable
adversarial examples against different LVLM models and prompts. Despite the rising interest in
attacking LVLMs, our attack method shows that direct harm exists to LVLM applications. Our
research aims to deepen the understanding of LVLM robustness and enhance their safety, promoting
safer Al environments. However, we acknowledge the potential negative societal impact of our work
and the presence of potentially offensive and harmful adversarial examples in our paper. It is possible
that the developed attacking strategies could be misused to evade practically deployed systems and
cause potential negative societal impacts. Specifically, our threat model assumes real-world access
and targeted responses, which involves manipulating existing APIs such as GPT-4 (with visual
inputs) and/or Midjourney on purpose, thereby increasing the risk if these vision-language APIs are
implemented as plugins in other products. We believe the contributions in our work point out new
vulnerabilities in LVLMs, which could aid future research in making them more reliable and secure.
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