
Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

EFFICIENT FOURIER NEURAL OPERATORS BY GROUP
CONVOLUTION AND CHANNEL SHUFFLING

Myungjoon Kim∗, Junhyung Park∗, Jonghwa Shin
Department of Materials Science and Engineering
KAIST
Daejeon, Republic of Korea
{vcxzx, ekdldkqkr, qubit}@kaist.ac.kr

ABSTRACT

Fourier neural operators (FNOs) have emerged as data-driven alternatives to con-
ventional numerical simulators for solving partial differential equations (PDEs).
However, these models typically require a substantial number of learnable param-
eters. In this study, we explore parameter-efficient FNO architectures through
modifications in their width, depth, and applications of group convolutiopn and
channel shuffling. We perform benchmark on different problems on learning the
operator of Maxwell’s equations and Darcy flow equations. Our approach leads
to significant improvement in prediction accuracy for both small and large FNO
models. The proposed methods are widely adaptable across various problem types
and neural operator architectures, aiming to boost prediction accuracy.

1 INTRODUCTION

Science and engineering problems are often characterized by partial differential equations (PDEs).
To solve these complex PDEs, numerical simulations, such as the finite difference method (FDM) or
the finite element method (FEM), are employed. These traditional approaches solve PDEs through
particular algorithms that discretize space and time, often requiring substantial computational re-
sources. Such a computationally demanding part is a bottleneck, hindering the rapid calculation and
analysis of the system.

Recently, the advancement of deep neural networks has made data-driven models a promising ap-
proach for solving PDEs. While convolutional neural networks (CNNs) have been applied to these
challenges, they often fall short for PDE problems due to their inherent design for mapping between
Euclidean spaces. A new class of neural PDE solvers, known as neural operators, has emerged
to address these limitations. Among various methods, Fourier neural operators (FNOs) stand out
as a solution for solving complex PDEs, offering high accuracy and rapid prediction capabilities.
Numerous research aimed at exploring diverse applications and enhancing functionalities of FNOs.

In this work, we implement an architectural modification to FNOs aimed at increasing both effi-
ciency and accuracy. Through modifications in width, depth, and applying group convolution and
channel shuffling, inspired by the traditional CNN architectures, we can find the optimal architecture
with best performance. The main contribution of our works are summarized as follows:

• We present an adjustment to the architecture of the Fourier layer, modifying its width and
depth, incorporate group convolution along with channel shuffling to improve performance,
and show our approach is memory and computation efficient way to improve large FNO
models.

• Thorough benchmarking and detailed analysis show that modifications to the architecture
significantly boost model performance. The benchmark results highlight the importance of
selecting the appropriate model for accurately predicting the solution field across different
PDE problems.

∗equal contribution

1



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

2 RELATED WORKS

Parameter efficient architectures in convolutional neural networks Since the introduction of
the ResNet architecture (He et al., 2016), numerous modifications have been proposed to enhance its
representational capacity while maintaining the complexity of neural networks. Zagoruyko & Ko-
modakis (2016) suggested WideResNet and explored how increasing the width of the network could
contribute to higher accuracy in image classification tasks. The ResNeXt architecture employs group
convolution to enhance the cardinality of its layers, contributing to its effectiveness and efficiency
(Xie et al., 2017). ShuffleNet extends the application of group convolution to include pointwise op-
erations and incorporates channel shuffling to optimize performance and efficiency (Zhang et al.,
2018).

Fourier neural operators FNOs are advanced computational models that efficiently solve PDEs
by leveraging Fast Fourier transforms to parameterize and predict complex dynamics. FNOs learn
mapping between infinite-dimensional function spaces (Li et al., 2020), thus they are well-suited
as surrogate models for conventional PDE simulators. Recently, numerous variants of the FNO
have been proposed to enhance data and memory efficiency (Rahman et al., 2022; Li et al., 2022;
2021; Helwig et al., 2023). Notably, Factorized Fourier Neural Operator (F-FNO) introduces a
dimension-wise factorization approach (Tran et al., 2022). This was achieved by representing 2D
Fourier domains through the summation of two orthogonal 1D Fourier transforms.

Surrogate models for numerical simulations Numerous neural network-based methods have
been developed to solve PDEs (Kovachki et al., 2023). In the field of optics, researchers have
tackled the problem of field distribution prediction using CNNs (Wiecha & Muskens, 2019; Chen
et al., 2022; Lim & Psaltis, 2022). More recently, specialized variants of FNOs designed to solve
Maxwell’s equations have shown superior performance over traditional CNNs (Gu et al., 2022; Au-
genstein et al., 2023).

3 METHODS

3.1 PARAMETER-EFFICIENT FOURIER NEURAL OPERATORS

The Fourier integral operator in the original Fourier neural operator (Li et al., 2020) is defined as

L(l)
(
v(l)

)
= σ

(
W (l)z(l) +K(l)(z(l))

)
(1)

where K(l) represents the learnable kernel integral operator using the Fourier transform F and in-
verse Fourier transform F−1, defined as

K(l) = F−1(R(l) · F) (2)

The parameter numbers in FNO is O
(
LH2MD

)
, where L, H , and M represents the number of

Fourier layer, the channel, the Fourier modes being kept, respectively. D denotes the dimension of
the problem.

In our proposal, we apply modifications to FNO models to enhance its parameter efficiency. Initially,
we tune the depth (the number of Fourier layers) and the width (the number of channels) of the
model. Specifically, we incorporate pointwise group convolution and channel shuffling into the
architecture. The design of our modified version of the architecture is depicted in Figure 1. Within
each Fourier layer, we implement group convolution in both the frequency and spatial domains. This
technique reduces the number of parameters to O

(
LH2MD

g

)
, where g represents the group number.

By doing so, we decrease the model’s complexity by a factor of g, enhancing its parameter efficiency.
Moreover, we utilize channel shuffle operations at every Fourier layer to boost the representation
capability by enabling effective crosstalk among features. These operations involve reshaping the
feature dimension into (g,m), transposing it, and then flattening it back to the input format for the
subsequent layer.
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Figure 1: The architecture of the efficient Fourier neural operator. F and F−1 represents fast Fourier
transform and inverse fast Fourier transform, respectively. The linear transformations both in spatial
and frequency domain are done using pointwise group convolution. The channels are shuffled after
the nonlinear activation.

4 EXPERIMENT

4.1 DATASET

Periodic metagrating In nanophotonics, periodic nanostructures with the size comparable to
wavelength can be used for diffraction control devices. These have been implemented to steer light
beams (Sell et al., 2017) in specific directions, and phase masks for photolithographic process (Nam
et al., 2022). The optical responses are governed by Maxwell’s equations.

Figure 2: A metagrating structure and corresponding magnetic field distribution.

We use a metasurface dataset originally provided by Chen et al. (2022), available in the online
database (Jiang et al., 2020). We sampled 12,000 and 1,500 data for training and validation, respec-
tively. Figure 2 illustrates an example of the metagrating structure along with the fields computed
by the FDM solver. The system comprises periodic boundaries along the x direction and perfectly
matched layers, which are artificial layers designed to absorb all radiated fields, along the y direction.

These structures are converted to [1, 64, 256] image format, where each pixel corresponds to a mesh
size of 6.25nm × 6.25nm. The incident light has a wavelength of 1050 nm and is polarized in
the transverse magnetic (TM) mode. The relative permittivity of the materials ranges from 6.12 to
11.90, and there is a substrate with a permittivity of 2.10.

Darcy Flow We demonstrate an additional examples using parameter-efficient FNO to solve dif-
ferent type of PDE. Darcy flow equations describe the movement of fluids through porous media,
relating fluid velocity to the pressure gradient, permeability of the medium, and fluid viscosity. We
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use standard two-dimensional Darcy Flow equation on the unit box. The dataset consists of 1000
training samples and 200 validation samples, all arranged in a uniform grid of 241× 241.

4.2 RESULTS

Training We use F-FNO for all experiments. For training, we use AdamW optimizer (Loshchilov
& Hutter, 2017) with an initial learning rate of 0.001 and a batch size of 32. For all models, we
use exponential learning rate scheduling and the total number of epochs is set to 200. GeLU serves
as the activation function, and we maintain [12, 12] Fourier modes for all experiments. For the loss
function and the prediction accuracy metric, we use the normalized mean absolute error (NMAE)
defined as:

NMAE =
1

N

N∑
i=1

∥ŷ − y∥1
∥y∥1

(3)

where y and ŷ are the predicted field values and ground truth, respectively, and ∥y∥1 is the L1 norm
of the field distribution.

Depth vs. Width In our initial experiment,
we evaluated the impact of depth and width
while maintaining a fixed number of param-
eter of small (0.56M) and large (2.2M) mod-
els. We tested configurations with 5, 10, 15,
and 20 Fourier layers, adjusting the number
of channels for each layer accordingly. The
results showed that a setup with 15 layers
and 27 channels for the small model, and 10
layers with 64 channels for the large model,
exhibits the best performance. From these
findings, we conclude that there are specific
optimal values for the number of layers and
channels that produce the highest efficiency
within a given parameter budget.

Table 1: The effect of depth and width on F-FNO
and its variants. The total parameter numbers are
maintained at 0.56M and 2.2M.

Model Layers Channels Params. NMAE

F-FNO 5 46 0.56M 0.054
F-FNO 10 32 0.56M 0.036
F-FNO 15 27 0.56M 0.041
F-FNO 20 23 0.56M 0.044

F-FNO 5 92 2.2M 0.041
F-FNO 10 64 2.2M 0.028
F-FNO 15 54 2.2M 0.035
F-FNO 20 46 2.2M 0.038

Group convolution and channel shuffling
We explore the impact of group convolution
and channel shuffling on model performance.
As in the earlier experiment, we performed
benchmarks with both small and large mod-
els. We kept the number of parameters con-
stant, increasing the number of groups and
channels simultaneously (Table 2). In both
cases, the models achieved their best perfor-
mance when the group number is set to 8. As
the number of groups increases, it enhances
the feature representation capability, which
in turn improves the overall performance of
the model.

Table 2: Application of group convolution in F-
FNO models, where g denotes the number of
groups. Each model consists of 10 Fourier layers.

Model Channels Param. NMAE

F-FNO 32 0.56M 0.036
F-FNO (g = 2) 44 0.56M 0.033
F-FNO (g = 4) 56 0.56M 0.032
F-FNO (g = 8) 72 0.56M 0.030

F-FNO 64 2.2M 0.028
F-FNO (g = 2) 88 2.2M 0.025
F-FNO (g = 4) 116 2.2M 0.023
F-FNO (g = 8) 144 2.2M 0.022

Overall, it is evident that neural operators perform best when their width, depth, and group numbers
are set optimally within the given parameter budget constraints. Prediction accuracy increases by
33% and 31% through the appropriate selection of width/depth ratios, and further improvements
of 16% and 21% are achieved by incorporating group convolution and channel shuffling in small
(0.56M) and large (2.2M) models, respectively. These results highlight the importance of the selec-
tion of architectures to maximize model performance.

We also evaluated the impact of group convolution on FNO models while keeping the number of
channels (Table 3). In small FNO models, we observed a performance decline as the number of
parameters was reduced by increasing the number of groups. On the other hand, in large models,
performance enhanced with the addition of group convolutions These suggest that for large models,

4



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

sparse connection may enhance generalization capability. We anticipate that by integrating memory-
efficient models (Rahman et al., 2022), we can develop more efficient FNO models.

Table 3: Impact of pointwise group convolution on small and large F-FNO models with identical
channel numbers. Each model has 10 Fourier layers.

Model Channels groups Param. NMAE

1 0.55M 0.036
F-FNO 32 2 0.30M 0.044

4 0.17M 0.045
8 0.11M 0.055

1 11M 0.027
F-FNO 144 2 5.9M 0.024

4 3.4M 0.023
8 2.1M 0.022

Darcy flow The effects of group convolutions and channel shuffling on the Darcy flow dataset are
reported in Table 4. The prediction accuracy improves with an increase in the number of groups.
Similar trends suggest that our method could be broadly applicable to various differential equations.

Table 4: Impact of pointwise group convolution on Darcy Flow equation

Model Channels groups Param. NMAE

32 1 0.55M 0.083
F-FNO 44 2 0.56M 0.036

56 4 0.52M 0.029

5 CONSLUSION

In this study, we introduce parameter-efficient FNOs, modified neural operator achitectures capable
of solving PDE problems. Leveraging previous development in conventional CNNs, we investigated
the effectiveness of changing width, depth, and group convolutions and channel shuffling in FNOs.
Our proposed methods achieve superior representational capabilities by increasing the number of
channels while maintaining the overall parameter count. We conducted two benchmark problems,
Maxwell’s equations and Darcy flow equation. The architectural modifications significantly improve
prediction accuracy. Moving forward, we aim to tackle a wider array of PDE systems, including
diffusion processes, and Navier-Stokes equations.
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A ADDITIONAL EXPERIMENTS

Table A1: The effect of pointwise group convolution on FNO models with same channels. All
models have 10 Fourier layers.

Model Channels groups Param. NMAE

1 6.0M 0.048
FNO 32 2 3.0M 0.050

4 1.5M 0.055
8 0.78M 0.071

1 30M 0.038
FNO 72 2 15M 0.038

4 7.7M 0.036
8 4.0M 0.039

1 120M 0.031
FNO 144 2 5.9M 0.031

4 0.14M 0.025
8 0.07M 0.024

Generalization with FNO We examined the effect of pointwise group convolution and channel
shuffling on the original FNO architectures. Within the constraints of parameter number budgets or
with the same number of channels for large models, pointwise group convolution and channel shuf-
fling enhance FNO models. Therefore, our approach appears to consistently boost the performance
of various FNO models.
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