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ABSTRACT

Visual Speech Recognition (VSR) aims to infer what was said by analyzing the
speaker’s facial dynamics. However, is reliance solely on visual information suffi-
cient in challenging real-world scenarios? In human visual perception, peripheral
vision refers to non-central areas of the visual field, crucial for providing over-
all awareness and detailed perception of central objects. Similarly, human lip-
readers do not rely exclusively on lip movements but integrate contextual cues
and prior knowledge to achieve more accurate transcribing. For the first time in
machine lip-reading, we frame these non-lip-movement factors into a new concept
of semantic-level peripheral information, Specifically, we select three representa-
tive types varying in relevance to the spoken content: (1) Contextual peripheral
information, such as the general topic or some basic knowledge of the speech, can
significantly narrow the range of potential recognition hypotheses. (2) Experien-
tial peripheral information emerges from the recognition process itself. The very
act of recognizing speech in a specific language provides implicit knowledge of
grammar, word collocations, and related linguistic aspects, thereby guiding the
recognition effectively. (3) Perturbative peripheral information introduces distur-
bance factors into the recognition process, analogous to noise injection in visual
tasks. Semantic-level peripheral information is indirectly linked to transcripts;
thus fusing it into VSR necessitates strong contextual understanding and inference
capabilities. Here, we propose a multimodal learning framework built on a large
language model (LLM), leveraging its powerful contextual modeling capabilities
to take advantage of peripheral information. Our method’s efficacy is demon-
strated on two popular datasets. On the widely-used LRS3 dataset, we achieved a
Word Error Rate (WER) of 24.5% with readily available peripheral information,
leading to an impressive 14.3% relative improvement over the model without such
information. To the best of our knowledge, our work sets a new state-of-the-art
when utilizing similar hours of lip-reading videos. We further reported the evalu-
ation on the more challenging AVSpeech dataset. Results across both datasets and
various experimental settings demonstrate the promising potential of the proposed
semantic-level peripheral information for VSR.

1 INTRODUCTION

Visual Speech Recognition (VSR) analyzes the visual dynamics of lip movements during speech
to infer spoken content. It has gained wide attention due to its important applications, including
assisting speech interpretation in noisy environments(Sumby & Pollack, 1954), and offering a com-
munication method for patients with speech disabilities (McGurk & MacDonald, 1976). However,
VSR still faces significant challenges due to the scarcity of labeled video data and the complexity of
real-world scenarios.

Existing methods primarily focus on enhancing the utilization of visual information from the lip
region. Approaches involving constructing and utilizing larger lip-reading datasets(Afouras et al.,
2018a; Serdyuk et al., 2022; Chang et al., 2024), or employing self-supervised pre-training tech-
niques(Shi et al., 2022; Haliassos et al., 2022; Zhu et al., 2023; Zhang et al., 2024), have achieved
significant improvements in VSR. However, is optimizing visual information processing the only
path towards robust VSR in complex real-world scenarios? Lip-reading is also a challenging task
even for human lip-reading experts. Observations of human lip-reading suggest that the process
involves more than just visual dynamics.
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Figure 1: Example of peripheral vision.

Drawing inspiration from peripheral vision in the field
of human visual perception, we introduce the concept of
Peripheral Information to reduce the gap between ma-
chine and human lip-reading capabilities. The human
visual system comprises both central and peripheral vi-
sion. Peripheral vision, the visual field beyond our cur-
rent point of gaze (Vater et al., 2022), plays a critical role
in providing an overall awareness and detailed perception
of central objects by capturing the broader context(Larson
& Loschky, 2009). For instance, as illustrated in the Fig-
ure 1, when focusing on the central vision area, it’s chal-
lenging to identify the object. However, with information
from peripheral vision, we are sure that it is a window on
an old building.

Similarly, human lip-readers intuitively utilize what we
term as peripheral information to facilitate recognition.
Peripheral information includes various aspects, such as
a rough estimation of the potential content, awareness of
the scenarios, and their own expertise. For instance, having a general idea about the topic being
discussed can help lip-readers predict likely words and phrases, reducing ambiguity. Moreover,
experienced lip-readers possess a keen awareness of potential errors and actively engage in self-
correction. They leverage available cues about the speaker or the context to rectify misinterpretations
critically. This cognitive awareness helps them identify and refine potential errors more effectively.

We identify three representative and easily accessible types of peripheral information in semantic
level based on the relevance to the speech content: contextual, experiential, and perturbative. And
we systematically explore their contribution to VSR. Given that these information sources often
have indirect correlations with the content to be recognized, effectively utilizing them poses a sig-
nificant challenge for traditional VSR methods. Large Language Models (LLMs) have demonstrated
remarkable capabilities in contextual understanding and reasoning across diverse domains. Given
these powerful abilities, we propose a framework built on a LLM, harnessing its powerful contex-
tual modeling and reasoning abilities to incorporate these peripheral information sources into the
recognition process.

We evaluated the effectiveness of our proposed approach on two widely recognized datasets: the
LRS3 TED dataset(Afouras et al., 2018b) and the AVSpeech dataset(Ephrat et al., 2018) derived
from YouTube content. Our experiments on the LRS3 dataset showed impressive improvement,
with the best Word Error Rate (WER) of 24.5% when incorporating readily accessible peripheral
information. This represents a substantial 14.3% relative improvement compared to the baseline
model without such information. Notably, even in scenarios where only limited contextual periph-
eral information, e.g. the scenario information of the speech, was utilized, we still observed a sig-
nificant performance boost, achieving 9.1% relative WER reduce. To our knowledge, these results
establish a new benchmark for VSR performance when considering similar amounts of training lip-
reading videos. Furthermore, our evaluation extends to the more complex AVSpeech dataset, where
we observed consistent improvements across configurations. These comprehensive findings across
both datasets underscore the potential of semantic-level peripheral information in enhancing visual
speech recognition performance.

2 RELATED WORK

2.1 VISUAL SPEECH RECOGNITION

VSR has evolved significantly driven by advancements in computer vision and machine learning
techniques. Traditional VSR approaches relied heavily on hand-crafted features and statistical
models (Petajan et al., 1988; Goldschen et al., 1997; Luettin & Thacker, 1997). The advent of
deep learning marked a paradigm shift in VSR technology in recent years. Convolutional Neural
Networks (CNNs)(LeCun et al., 1995) and Recurrent Neural Networks (RNNs)(Hochreiter, 1997;

2
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Figure 2: Proposed framework for integrating peripheral information into visual speech recognition.
Visual speech representations from encoder are pooled and mapped to the embedding space of LLM.
The encoder and LLM are kept frozen while projecotr and LoRA are learnable.

Chung et al., 2014) have been widely adopted to capture both spatial and temporal aspects of lip
movements (Assael et al., 2016; Chung & Zisserman, 2017; Petridis et al., 2017; 2018; Yang et al.,
2019). The transformer (Vaswani, 2017) has further advanced the field by effectively capturing
long-range dependencies in lip movement sequences (Afouras et al., 2018a; Ma et al., 2021b; 2023).
Self-supervised methods(Shi et al., 2022; Haliassos et al., 2022) have learned robust speech rep-
resentations. These deep learning models have shown remarkable improvements in recognition
accuracy compared to traditional methods.

VSR still remains challenging due to the inherent ambiguity in lip movements despite these ad-
vancements. This ambiguity frequently leads to recognition errors, especially for words with similar
pronunciations. Relying solely on lip dynamics is exceedingly difficult to overcome such ambigu-
ity. Consequently, the integration of contextual information becomes not just beneficial, but crucial
for achieving more accurate and reliable recognition. Previous VSR research has made impressive
advancements in processing visual dynamics of lip region. However, while the importance of con-
textual information is recognized, its integration into VSR systems remains limited. In this study, we
introduce the concept of peripheral information, which encompasses a broader scope than traditional
contextual information, and systematically investigates the contribution of it.

2.2 CONTEXT-AWARE SPEECH RECOGNITION

In the field of auditory speech recognition (ASR), researchers have investigated various methods to
incorporate contextual information into ASR systems. Several works(Chan et al., 2016; He et al.,
2017; Jain et al., 2020; Huber et al., 2021; Sathyendra et al., 2022) introduce extra context biasing
module into end to end ASR system to process phrase-level contextual information. More recent ap-
proaches(Radford et al., 2023; Lai et al., 2023; Lakomkin et al., 2024; Nozawa et al., 2024) directly
incorporate broader contextual information, such as previous utterances or keywords, into ASR sys-
tems without specialized biasing modules. However, in the field of VSR, related work is neglected
to the best of our knowledge.

The concept of peripheral information in VSR that we propose extends existing approaches. While
previous methods primarily focus on integrating content-related contextual information, our study
goes beyond these conventional cues. We explore a more comprehensive set of elements from
various aspects, ranging from contextual ones to experiential information from human-lip-reading
process and disturbance factors, aiming to provide a broader perspective for improving VSR.

3
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3 METHOD

Our study seeks to enhance VSR by introducing information beyond visual dynamics, which we
term as peripheral information in this paper. It encompasses a wider range of information sur-
rounding VSR more than content-related contextual cues. We take three representative types of
easily accessible semantic peripheral information and explore their contribution to VSR, We seam-
lessly incorporate them into the process of VSR by leveraging the contextual modeling abilities of
the LLM. Figure 2 illustrates the overall framework of our method, which achieves our core idea
through the following two key aspects:

• VSR-adapted LLM commits to enable a LLM with the ability to process visual speech
representations and generate transcripts in a certain format, which is achieved by modality
adaptation and LLM specialization.

• Peripheral Information Fusion aims to achieve jointly inference for the target transcripts
using visual speech features together with the semantic peripheral information via the VSR-
adapted LLM. We explore a simple manner of structured prompt and guided generation to
evaluate the role of semantic peripheral information for VSR.

3.1 VSR-ADAPTED LLM

3.1.1 MODALITY ADAPTATION

We transform the input visual sequence to enable processing by the LLM, which is pretrained on
textual data. Visual sequences differ from LLMs’ representation space in temporal, spatial, and
semantic dimensions. Visual sequences have a significantly higher temporal resolution compared to
the token-based representations used in LLMs. Furthermore, visual data is inherently different from
that of textual data in dimension and semantics. Therefore, for the combination of semantic-level
peripheral information and visual dynamics in a unified framework, appropriate modality adaptation
is necessary.

To be specific, given an input video sequence of lip region Xv = {xi}Ti=1 with T frames at 25
fps. We utilize the widely used AV-HuBERT(Shi et al., 2022), a self-supervised pre-trained model
for speech representations, as visual encoder to obtain robust visual speech representations. The
encoder AV-HuBERT (E) extracts initial visual speech features as:

Fv = {fi}Ti=1 = E(Xv) ∈ RT×DE ,

where DE = 1024 is the feature dimension of the encoder. The initial visual speech representations
are at 25 fps, which is considerably higher than the token rate of corresponding transcript. This
high temporal resolution significantly increases computational demands. To balance temporal in-
formation preservation and computational efficiency, we apply a 2× average pooling operation for
temporal down-sampling to obtain the zipped visual features Zv .

Zv = {zi}
⌊T

2 ⌋
i=1 = AvgPool(Fv, k = 2, s = 2).

To bridge both semantic and dimensional gap between visual and textual representations, we employ
a simple linear projector, mapping Zv to the LLM’s embedding space:

Ev = ZvW ∈ R⌊T
2 ⌋×DL ,

where DL = 4096 is the dimensionality of the LLM’s embeddings and W ∈ RDE×DL is the weight
matrix of the linear projector. By employing this simple modality adaptation, we enable LLM to
process visual speech inputs.

3.1.2 LLM SPECIALIZATION

To adapt LLM’s linguistic modeling capabilities to the specialized task of VSR, we employ Low-
Rank Adaptation (LoRA) (Hu et al., 2022) to efficiently fine-tune the LLM. By introducing learn-
able rank decomposition matrices together with a cross-modal alignment objective to the original
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backbone network weights, specific adaptation to the target task is allowed with few additional
parameters. We apply LoRA to the query and value weight matrices in the self-attention layers
of the LLM. For each weight matrix WAttn., LoRA introduces a low-rank update which leads to
W ′

Attn. = WAttn. +∆WAttn. = WAttn. + BA, where B and A are small learnable matrices. The
original LLM parameters are all kept frozen and only LoRA matrices are learnable.

To guide the LLM to process visual speech features and generate textual transcript. We introduce a
conditioned cross-entropy loss for the probability distribution output by the LLM. Let I denote the
instruction Transcribe the speech, and Y = {yi}ni=1 the transcript of n words. The instrcution and
visual features are concatenated as the input of the LLM: H = [I;Ev]. The loss is calculated as:

L = −
n∑

i=2

logP (yi|I, Ev, {yj}i−1
j=1).

where P (yi|I, Ev, {yj}i−1
j=1) is the conditional probability distribution from the LLM’s output layer.

3.2 PERIPHERAL INFORMATION FUSION

This paper introduces a new framework for Visual Speech Recognition (VSR) that goes beyond
traditional lip-movement analysis. Inspired by peripheral vision in human visual systems, we pro-
pose the concept of peripheral information in VSR, which includes a wider range of information
We identify three types of peripheral information: contextual, experiential, and perturbative. While
contextual information has been used in speech recognition, our approach expands its application in
VSR. Importantly, we introduce experiential and perturbative information as new categories, which
differ from existing concepts in the field. These information types have distinct sources and roles
in VSR, requiring specific integration strategies. This framework aims to provide a new perspective
on visual speech recognition. In the following subsections, we will introduce the three types of
peripheral information and present our methods for integrating them into our VSR-Adapted LLM.

3.2.1 CONTEXTUAL PERIPHERAL INFORMATION

Contextual Peripheral Information (CPI) denotes a wide range of background factors that can pro-
vide relevant context, helping to infer the speech content. This information consists of elements such
as the scenario, title or an overview of the target talk or video, or a brief introduction of the speaker.
Take LRS3 as an example, table 1 presents the available CPI types for it, along with their availabil-
ity ratios, and examples. The availability ratio represents the percentage of samples in the dataset
containing each type of information. It’s important to note that all CPI types provide information
about the video as a whole, rather than a specific utterance within it.

Table 1: Overview of Contextual Peripheral Information (CPI) of LRS3.

Type Availability Example(Proportion of samples)

Scenario 100% A speech from TED talk
Speaker name 30% Niels Diffrient
Speaker description 30% Designer
Talk title 73% Rethinking the way we sit down
Talk description 73% Design legend Niels Diffrient talks about his life in industrial design...

Emulating the human ability to grasp the overall context of a speech and so to infer the content
more accurately, we structured available CPI in form of natural language into the input of LLM.
This approach unifies various types of CPI and harnesses the semantic understanding capabilities of
the LLM to effectively utilize this contextual information. For instance, The following is {scenario}
named {title}. The description of the talk is {description} naturally combines scenario and descrip-
tive information of the speech. If certain CPI is missing for a certain sample, we use The following
is {scenario} as default. To enable the model to consider and utilize this information, we modified
the above loss function. Let C denote the structured contextual peripheral information. The input
to the LLM is the concatenation of CPI, the instruction I , and the visual embedding Ev , denoted

5
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as H = [C; I;Ev]. We modify the learning objective to predict accurate transcripts conditioned on
CPI, which means minimizing the following loss function:

Lc = −
n∑

i=2

logP (yi|C, I, Ev, {yj}i−1
j=1).

3.2.2 EXPERIENTIAL PERIPHERAL INFORMATION

Experiential Peripheral Information (EPI) complements our approach by incorporating higher-level
information related to the speech recognition process. While CPI provides valuable content-related
context, EPI focuses on aspects of the recognition task itself. Emulating the human ability to self-
reflect during speech recognition, we introduce a dual-component mechanism that encourages the
model to engage in self-correction. The first component is an active prompt that guides the model’s
generation process. We implement this by modifying the instruction I to Î: Transcribe the speech
and then correct possible errors. This prompts the model to engage in self-correction when gener-
ating transcript. The second component introduces a constraint on the model’s output. We prefix
the objective transcript Y with Transcript after correction, resulting in Ŷ = {ŷi}mi=1 of length m.
By calculating loss on all content of the prefixed transcript Ŷ , we explicitly constrain the model
to generate self-corrected transcripts. The input for LLM is reformulated as H = [C; Î;Ev]. To
formalize this approach, we refine the loss function to include CPI and EPI as follows:

Lc,e = −
m∑
i=2

logP (ŷi|C, Î, Ev, {ŷj}i−1
j=1),

By minimizing Lc,e, we train the model to further incorporate EPI, encouraging itself to explicitly
acknowledge its correction step and ultimately produce more accurate transcripts.

3.2.3 PERTURBATIVE PERIPHERAL INFORMATION

Perturbative Peripheral Information (PPI) represents disturbance factors in the speech recognition
process. Analogous to noise injection in visual tasks, we explore PPI as a form of semantic pertur-
bation to enhance of the model’s robustness. In contrast to contextual and experiential peripheral
information, PPI introduces semantic disturbances unrelated to speech content, allowing us to inves-
tigate their impact on recognition performance.

To operationalize this concept, we incorporate token-level perturbations into the input sequence. To
maintain the integrity of the original input H for LLM when introducing disturbance, we prefix
the input with random tokens. This approach allows us to inject noise without directly altering or
disrupting the meaning of the subsequent sentences. Specifically, we prefix the input with a random
number of random tokens. Let R = {r}ki=1 denote a sequence of k random tokens, where k itself
is a random variable determining the perturbation length. The modified input sequence becomes
H = [R;C; Î;Ev]. To condition the model’s output alongside CPI, EPI and PPI, we adjust the loss
funcition to:

Lc, e, p = −
m∑
i=2

logP (ŷi|R,C, Î, Ev, {ŷj}i−1
j=1).

4 EXPERIMENTS

4.1 SETUP

Our experiments were primarily conducted on LRS3(Afouras et al., 2018b), a widely-used bench-
mark for visual speech recognition. To further validate our approach in more complex real-world
scenarios, we also present results on the AVSpeech(Ephrat et al., 2018) dataset. LRS3 comprises
thousands of spoken sentences from TED and TEDx videos providing both visual and audio compo-
nents, along with corresponding transcripts. AVSpeech is a large-scale audio-visual dataset extracted
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Table 2: Results on LRS3. We compare the WER of our method with prior works. When utilizing
similar hours of unlabelled (Unlab.) and labelled (Lab.) hours of data, our method with peripheral
information (PI) outperforms prior methods.

Method Unlabelled Hours Labelled Hours WER (%)

Fully Supervised Models
Zhang et al. (2019) - 863 60.1
Ma et al. (2021b) - 595 43.3
Prajwal et al. (2022) - 698 40.6
Ma et al. (2022) - 1,459 31.5
Ma et al. (2023) - 3,448 19.1

Self-supervised Pre-training & Supervised Fine-tuning
Ma et al. (2021a) 1,759 433 38.8
Shi et al. (2022) 1,759 433 28.6
Zhu et al. (2023) 1,7591 433 28.4
Haliassos et al. (2022) 1,759 433 27.8
Yeo et al. (2024b) 1,759 433 27.6
Yeo et al. (2024a) 1,759 433 26.7(25.42)
A: B - LoRA3 1,759 433 27.4
B: Ours 1,759 433 26.6
C: B + EPI 1,759 433 26.2
D: C + PPI 1,759 433 26.0
E: D + Limited CPI4 1,759 433 25.6
F: C + Rich CPI5 1,759 433 24.5

Trained using non-publicly available datasets
Afouras et al. (2018a) - 1,519 58.9
Shillingford et al. (2018) - 3,886 55.1
Serdyuk et al. (2022) - 90,000 17.0
Liu et al. (2023) 3,652 3,068 16.9
Chang et al. (2024) - 100,000 12.8

1 Uses additional 3846h unpaired audio, 452h audio-text and 600M unpaired text data.
2 Includes additional fine-tuning of the encoder.
3 Is the model with projector layer trainable only, and without any peripheral information.
4 Only provides scenario information.
5 Does not use PPI for it decrease performance when using rich CPI, see Section 4.3 PPI.

from YouTube, representing a broader range of real-world speaking scenarios. We utilized the En-
glish portion of it to test the robustness of our method. As AVSpeech originally lacked transcrip-
tions, we employ Whisper(Radford et al., 2023) for automatic annotation. To maintain consistency
in evaluation, we trimmed the test set of AVSpeech to match the duration of the LRS3 test set.

Contextual peripheral information is collected from readily available sources. For LRS3, we used a
pre-collected dataset from Kaggle 1. It contains information about all talks including descriptions,
speakers and titles and is originally collected for visually exploring TED Talks statistics. However,
as this dataset only covered 30% of the samples in LRS3, we collected additional data from available
YouTube links. The data statistics are presented in Table 1. For AVSpeech, we collected video title
and description for approximately 97% of the samples directly from YouTube links. To minimize
computational burden, we limited descriptions within three sentences or 100 words (whichever came
first) and replaced website links with a generic url to avoid extremely long ones.

In the implementation of our framework, a lip-centered 96x96 pixel region of interest (ROI) of each
video frame was taken as the raw input, and the output of the final layer of the AV-HuBERT was
utilized as the initial visual speech representations. We adopt the pre-trained LLaMA-2 7B(Touvron
et al., 2023) as the backbone of VSR-Adapted LLM. For LLM specialization, we used LoRA with

1https://www.kaggle.com/datasets/thegupta/ted-talk/data

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

a rank of 256 (see Appendix A.2 for comparison), alpha of 512, and dropout of 0.1. The model was
trained for 16 epochs using an AdamW optimizer under default settings and a reciprocal learning
rate scheduler. During inference on the test set, we employed beam search with a width of 8. For
evaluation, we use word error rate (WER) as the evaluation metric. All training and evaluation were
conducted on 8 NVIDIA A100 40GB GPUs.

4.2 MAIN RESULTS

Table 2 presents comparisons of our method with previous works on the LRS3 test set. Compared
to AV-HuBERT(Shi et al., 2022), which is used as our encoder, our VSR-adapted LLM reduced the
WER from 28.6% to 26.6% (A), demonstrating the effectiveness of modality adaptation and LLM
specialization.

Then we fuse three types of peripheral information, each contributing to improved performance. Ex-
periential peripheral information (EPI), emulating human self-correction through a dual-component
mechanism, yielded a 0.4% (from B to C) absolute reduction in WER.This improvement suggests
that human experiential cognition in lip reading, when utilized as peripheral information, can also
benefit machine-based approach.

Perturbative peripheral information (PPI) introduces disturbance factors as a form of peripheral in-
formation into the VSR task. Building upon the EPI, the additional incorporation of PPI yielded a
slight improvement (from C to D). Although modest, this improvement demonstrates that semantic-
level PPI can enhance the robustness of VSR.

We progressively incorporating contextual peripheral information (CPI). Even limited CPI, provid-
ing only scene information, reduced the WER to 25.6% (E). The richer variant, including titles and
descriptions of TED talks, achieves our best result of 24.5% WER (F), surpassing previous meth-
ods using similar hours of data. These results strongly demonstrate the advantage of leveraging
peripheral information in machine lip reading.

Table 3: WER on the AVSpeech under different PI configurations. In this table, S. stands for Sce-
nario CPI, T. for video title, and D. for video description.

PI Config w\o EPI & PPI S. & T. S. & T. & EPI S. & T. & PPI S. & T. & EPI & PPI S. & T. & D.

WER (%) 49.4 49.0 47.8 47.7 46.9 46.8 47.7

Results on AVSpeech are shown in Table 3. These experiments extend our evaluation to a more
challenging and realistic environment, further validating the effectiveness of our proposed Peripheral
Information integration approach.

4.3 CONTRIBUTION OF PERIPHERAL INFORMATION

To gain a more comprehensive understanding of our approach, we further evaluated the contribution
of the three types of semantic-level peripheral information to VSR.

Table 4: WER on the LRS3 test set using different CPI types. In this table, S.N. stands for speaker
name, S.D. for speaker description, T.T. for talk title, and T.D. for talk description. 100 and unltd
refer to 100-word-limited and unlimited talk description, respectively. ASP stands for availability
sample proportion. Row A includes results without EPI and PPI, B includes results with both.

CPI type w\o Scenario S. N. S. D. T. T. T. T. T. D. (100) T. D. (100) T. D. (unltd)

ASP (%) - 100 30 30 30 73 30 73 73

A 26.6 26.7 25.9 26.5 26.4 26.3 25.2 24.7 25.6
B 26.0 25.6 25.8 25.9 25.8 25.4 25.5 24.9 26.3

Contextual Peripheral Information (CPI) encompasses a diverse range of auxiliary data. We
evaluated the contribution of each available CPI type in our framework, with results shown in Table
4 row A. Simple CPI types, such as speaker names, descriptions and talk titles, provide concise
identifying information, offering modest improvements in VSR accuracy. Among these, speaker
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names show a more significant performance boost. Speakers in TED are often well-known figures,
and their names help pinpoint their areas of expertise, thereby narrowing down potential vocabulary
associated with each speaker’s field. This focused CPI allows the model to achieve lower WER.

More complex CPI type, the talk descriptions, demonstrate stronger performance gains. The 100-
word limited description achieved the best performance with a WER of 24.7%. Unlimited-length
descriptions, while still beneficial, showed a slight decrease in performance. Longer descriptions
often contained promotional content, less relevant to speech recognition. This finding highlights the
importance of concise, targeted contextual peripheral information in enhancing VSR performance.

Adding scene information slightly decreased performance here. This concise, high-level information
seems challenging for the model to effectively utilize, possibly introducing noise rather than valuable
context. The performance decrease observed when using talk descriptions will be further analyzed
in the sections discussing EPI and PPI.

In summary, these findings underscore the crucial role of CPI in VSR. Different types of CPI con-
tribute to performance improvements in varying degrees, with more focused and relevant informa-
tion generally yielding better results.

Experiential Peripheral Information (EPI) is implemented through a dual-component mechanism
to stimulate the model’s self-correction capability. The effects of EPI under varying CPI conditions
are summarized in the corresponding columns of Table 5. It consistently improves performance
across all levels of CPI, with WER reductions ranging from 0.2% to 0.6% demonstrating its effec-
tiveness and robustness in enhancing VSR.

The most substantial gains are observed when only limited CPI with only the scenario provided,
where EPI significantly reduces WER from 26.7% to 26.1%, surpassing the setting without CPI
(26.2%). This result demonstrates that EPI it helps the model overcome the difficulties in interpret-
ing abstract, high-level context through proposed self-correction mechanism.

As more detailed CPI is integrated, the relative impact of EPI diminishes, but it continues to con-
tribute to performance improvements. The best overall performance at a WER of 24.5% is achieved
when EPI is combined with rich CPI, including scenario, title and description.

These findings highlight the unique advantages of our proposed EPI approach. Unlike traditional
methods that rely solely on external context, EPI leverages the model’s own predictions to enhance
performance. This self-correcting mechanism proves particularly effective in scenarios with limited
or inconsistent CPI, demonstrating EPI’s robustness and adaptability.

Table 5: WER under different CPI configurations with EPI and PPI. The numbers under PPI indicate
the random token length range. The values in the table represent WER (%).

CPI EPI PPI (w\EPI)

Scenario Title Description w\o w\ 1-5 3-9 6-18 10-50

◦ ◦ ◦ 26.6 26.2 26.0 26.0 26.1 26.0

✓ ◦ ◦ 26.7 26.1 25.6 25.7 25.7 27.7

✓ ✓ ◦ 26.3 25.8 25.7 25.7 25.4 25.6

✓ ✓ ✓ 24.7 24.5 25.3 25.3 25.2 25.7

Perturbative Peripheral Information (PPI) introduces semantic disturbance into the VSR process.
We investigated the impact of perturbative non-lip-movement factors on the model’s robustness,
implementing by prefixing random tokens to the input. We investigated its impact across various
mean lengths, building upon previous results incorporating CPI and EPI. The effects of PPI under
different CPI configurations, are summarized in the PPI-related columns of Table 5.

The setting with only of EPI combined with PPI yields marginal WER improvement. However,
when limited CPI providing only scene information is introduced, PPI demonstrates more substantial
gains. Notably, when random tokens with a length range of 1-5 are added, a significant WER
improvement of 0.5% is achieved. And as comparison between row A and B in Table 1 demonstrate,
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integrating with EPI and PPI makes scene information contributes positively to performance. This
suggests PPI’s effectiveness, as well as its combination with EPI.

Conversely, when scenario, title, and description are provided, the introduction of PPI leads to per-
formance degradation. Results from Table 4 also show the same phenomenon. This suggests that
when effective contextual information is both sufficient and diverse, additional perturbation becomes
superfluous. To gain more insight into this phenomenon, we conducted experiments with scenario
and talk description CPI, results are shown in Table 6.

Table 6: Effect of Talk Description (T.D.) length and PPI on WER. (100) and (unltd) refer to 100-
word-limited and unlimited talk description. PPI (6-18) means prefixing random tokens with lengths
ranging from 6 to 18.

Config T.D. (unltd), w\o PPI T.D. (100), w\o PPI T.D. (100), w\ PPI (6-18)

WER (%) 24.9 24.7 24.9

The performance achieved unlimited-length description was comparable to that obtained using a
description limited to 100words supplemented with PPI. This observation implies that excessively
lengthy contextual information may be unnecessary. PPI can compensate for insufficient contextual
information, while becoming redundant when peripheral information is adequate. Furthermore, for
extensive contextual information, methods for selective filtering should be explored.

To conclude, PPI effectively increases model robustness by introducing random tokens, demonstrat-
ing its value in enhancing adaptability to diverse input conditions, especially when dealing with
limited or abstract contextual information.

Table 7: Comparison of different EPI variants. Constrain-only EPI includes instruction I in model
input H , while the left use Î . Gray words does not contribute to loss calculation.

EPI Variant Output Constrain (Loss Scope) WER (%)

Complete EPI Transcript after correction: {transcript} 26.2
No-Loss Constrain EPI Transcript after correction: {transcript} 27.0
Implicit Constrain EPI The transcript should be: {transcript} 26.3
Prompt-only EPI #transcript# 27.1
Constrain-only EPI Transcript after correction: {transcript} 27.2

Components in EPI To analyze the role of the two components in EPI, we conducted comparative
experiments with five configurations with results shown in Table 7. The results reveal that both
the instructive prompts and generative constraints are crucial elements of the EPI framework. This
approach leverages the strengths of large language models, which often perform better when guided
to think step-by-step through complex tasks, thus improving the overall performance of the model.

5 CONCLUSION

We introduce Peripheral Information (PI), a novel concept in visual speech recognition that leverages
non-lip-movement information, and propose an LLM-based multimodal learning framework that
integrates three representative types into the recognition process. Our experiments on the widely
used lip-reading dataset LRS3 and the more complex real-world dataset AVSpeech demonstrate the
effectiveness of PI. Notably, we achieved state-of-the-art performance on LRS3 using comparible
hours of lip-reading video. We conducted detailed experiments on different PIs to explore their
contributions to VSR, elucidating the contribution of and the fusion strategies for different types of
PI. We hope our study inspires future research in and beyond visual speech recognition.
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A APPENDIX

A.1 DATA

Table 8: Statistical summary of CPI used in LRS3. (100) refers to limmit talk description in 100
words or three sentences (which comes first).

Type of CPI Length

25% Quantile Mean 75% Quantile

Talk Name 4 6.2 8
Talk Description 58 127.4 182
Talk Description (100) 34 45.5 56
Speaker Name 2 2.2 2
Speaker Description 1 2.1 3

Table 9: Statistical summary of CPI used in AVSpeech.

Type of CPI Length

25% Quantile Mean 75% Quantile

Title 6 8.4 11
Description 33 115.2 140

Table 8 and Table 9 summarize the length statistics of various types of Contextual Peripheral Infor-
mation (CPI) used in the LRS3 and AVSpeech dataset. They provides the 25th percentile, mean,
and 75th percentile lengths for each CPI type, offering an overview of the contextual information
available for our VSR experiments.
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A.2 LORA RANK
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Figure 3: WER under different LoRA rank settings

While previous works applying large language models to speech recognition have utilized LoRA
with predetermined ranks, we conducted a systematic exploration of different LoRA ranks for opti-
mizing the trade-off between model capacity and computational efficiency.

Figure A.2 presents the WER for different LoRA ranks, with and without contextual PI. Without pe-
ripheral information, WER initially increases with LoRA rank, then decreases, reaching a minimum
around rank 128. This suggests an optimal point for effective VSR task learning without overfitting.

When fusing TED talk abstracts as contextual PI, WER increases at rank 128 compared to the no-PI
scenario. However, at ranks 256 and 512, WER decreases and stabilizes, outperforming the no-PI
condition. This indicates that rank 256 provides sufficient capacity to handle both the VSR task and
additional information effectively.

Based on these findings, we chose a LoRA rank of 256 for subsequent experiments, offering the best
performance-efficiency trade-off in our multimodal VSR framework.

A.3 DOWNSAMPLING STRATEGY

Table 10: WER results for different downsampling rates and methods.
Downsampling Rate Method WER (%)

- - 27.6
2× Concatenation 28.5
2× Average Pooling 27.4
3× Average Pooling 29.9

We employed downsampling strategy to address the computational challenges and temporal dis-
crepancy with text arising from the high frame rate of visual features. Experiments are conducted
without LoRA or peripheral information, revealing that average pooling with a 2× average pooling
provides the optimal balance between performance and computational efficiency. As shown in Ta-
ble 10, it slightly outperforms the baseline (WER 27.4% vs. 27.6%) while significantly reducing
computational costs. Higher downsampling rates or alternative methods like simple concatenation
led to performance degradation, indicating the importance of preserving fine-grained temporal in-
formation.
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A.4 PROMPT EXAMPLES

Table 11: Prompt examples for integrating CPI and EPI

LRS3: w\o CPI, w\o EPI

Transcribe the speech.

LRS3: w\ scenario CPI, w\o EPI

A speech from TED talk. Transcribe the speech.

LRS3: w\ scenario, talk name CPI, w\o EPI

A speech from TED talk named Rethinking the way we sit down. Transcribe the speech.

LRS3: w\ scenario, talk name CPI, w\o EPI

A speech from TED talk named Rethinking the way we sit down. The description of the talk is
“Design legend Niels Diffrient talks about his life in industrial design (and the reason he became a
designer instead of a jet pilot). He details his quest to completely rethink the office chair starting
from one fundamental data set: the human body.” Transcribe the speech.

LRS3: w\o CPI, w\ EPI

Transcribe the speech and then correct possible errors.

LRS3: w\ scenario CPI, w\ EPI

A speech from TED talk. Transcribe the speech and then correct possible errors.

AVSpeech: w\ scenario CPI, w\ EPI

A speech from a YouTube video titled Great Lesson Ideas: The Iditarod & Math. Transcribe the
speech and then correct possible errors.

Table 11 shows example prompts used in our example.
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