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Abstract

Low-field (LF) MRI scanners (<1T) are still prevalent in settings with limited
resources or unreliable power supply. However, they often yield images with lower
spatial resolution and contrast than high-field (HF) scanners. This quality disparity
can result in inaccurate clinician interpretations. Image Quality Transfer (IQT) has
been developed to enhance the quality of images by learning a mapping function
between low and high-quality images. Existing IQT models often fail to restore
high-frequency features, leading to blurry output. In this paper, we propose a
3D conditional diffusion model to improve 3D volumetric data, specifically LF
MR images. Additionally, we incorporate a cross-batch mechanism into the self-
attention and padding of our network, ensuring broader contextual awareness even
under small 3D patches. Experiments on the publicly available Human Connectome
Project (HCP) dataset for IQT and brain parcellation demonstrate that our model
outperforms existing methods both quantitatively and qualitatively. The code is
publicly available at https://github.com/edshkim98/DiffusionIQT.

1 Introduction

Magnetic Resonance Imaging (MRI) offers detailed, non-invasive medical diagnostics of human
anatomy. However, the quality can vary across different scanners, mainly due to the strength of the
magnetic field. In resource-limited settings, MRI with lower-strength fields is still common, leading
to reduced tissue contrast and signal-to-noise ratio (SNR). To mitigate these challenges, practitioners
often acquire images with thick slices, resulting in a reduction in spatial resolution.

Alexander et al. (2017) have introduced a machine learning technique, called image quality transfer
(IQT), which aims to enhance the resolution and contrast of low-quality clinical data using rich
information in high-quality images. IQT learns a mapping between low and high-quality paired data.
Early frameworks (Alexander et al., 2017; Blumberg et al., 2019; Tanno et al., 2020) demonstrated
the effectiveness in enhancing the spatial resolution and information content of diffusion MRI.
Subsequent studies (Lin et al., 2023; Ronan and Alexander, 2022) proposed decimation simulators to
generate low-field MR images to train deep neural networks, aiming to improve contrast and spatial
resolution. More recently, to tackle a domain-shift problem in IQT, Iglesias et al. (2023) developed a
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domain and resolution agnostic model by mapping any input to high-resolution T1-weighted MR
images. Despite the progress in IQT, significant limitations persist. Current models, especially with
large downsampling factors (e.g. x8), tend to produce blurred outputs. Moreover, while patch-based
methods have shown satisfactory performance in IQT, as shown by Huang et al. (2018), they tend
to create artifacts stemming from limited contextual information and error propagation from the
boundaries of patches.

Recently, Generative Adversarial Networks (GANs) have gained popularity in image synthesis
tasks, including super-resolution (Ledig et al., 2017; Wang et al., 2018; Zhang et al., 2021), and
segmentation (Kim and Alexander, 2021). Despite their ability to generate realistic images, GANs are
difficult to train due to problems, such as mode collapse and training instability. As an alternative to
GANs, diffusion models have recently been developed. They iteratively denoise an image, enabling
them to generate high-quality images that surpass GANs in Fréchet inception distance (FID) for
image synthesis, as shown in Dhariwal and Nichol (2021). However, most studies have focused on
unconditional settings (Ho et al., 2020; Song et al., 2021), and natural/medical 2D images (Li et al.,
2022; Wu et al., 2022). There have been few studies in 3D domains, especially for volumetric medical
data (Chung et al., 2023; Bieder et al., 2023). Chung et al. (2023) adopted diffusion models to solve
inverse problems in 3D medical images, but their work was limited to constructing 3D volumes from
2D slices. Bieder et al. (2023) proposed PatchDDPM for 3D medical image segmentation, utilizing
patches during training to reduce memory requirements. However, their approach is constrained by
the need for very large patches (e.g., 1283 ), which entail significant computational costs.

In this work, we extend the 2D unconditional diffusion model by Kingma et al. (2021) to a 3D
conditional model, abbreviated as DiffusionIQT, to enhance 3D volumetric data, such as low-field
MR images. To the best of our knowledge, this is the first work to apply a diffusion model for
3D medical image enhancement. Our proposed network is a 3D neural network, featuring an
encoder equipped with transformer and convolution blocks, to capture local and global information.
The decoder uses channel-shuffle and convolution blocks to restore fine-detail textures through
efficient upsampling. Additionally, we introduce a novel cross-batch mechanism, which aims to
share information across patches in a mini-batch through self-attention and padding. This mechanism
provides non-local information, leading to improved global consistency and less artifact. Evaluation
on the HCP dataset (Sotiropoulos et al., 2013) for IQT and brain parcellation demonstrates superior
performance compared to other existing methods. This highlights the significance of the proposed
approach for medical image enhancement.

2 Methods

2.1 Diffusion Process

Our diffusion process is inspired by Kingma et al. (2021), and is composed of a forward process
and a reverse process. Assume that we have a clean image x, whose noisy version at an arbitrary
time step t is xt, with 0 ≤ t ≤ 1. In the forward process, Gaussian noise is gradually added to a
high-quality image until it becomes an isotropic Gaussian noise at t = 1, where the noise scale is
modulated with the cosine scheduler by Nichol and Dhariwal (2021).

In the reverse process, the model gradually denoises a high-quality image starting from an isotropic
Gaussian noise (t = 1) until we get a clean high-quality image x. However, without an additional
prior, it is difficult to control the generation process and predict a target image faithfully. To mitigate
this, we add the corresponding low-quality image at each time step as a condition to our network as
an input during the reverse process. The variational lower bound (vlb) derivation (Ho et al., 2020)
identifies multiple parameterizations of diffusion models, including ε (noise), x-parametrization,
and ν (interpolation between ε and x) by Salimans and Ho (2022). Empirically, we found that
x-parameterization shows superior performance over the others. It comes from the easiness of
predicting a deterministic parameter x (target image) compared to the other parametrizations that are
non-deterministic. Furthermore, this increases the capacity to model complex transitions, requiring
fewer time steps to sample high-quality images. If we denote x̂θ as a neural network, it takes a noisy
image xt with a condition, low-quality image xc, as inputs to predict a target image x. Hence, the
loss function L can then be simply constructed as a difference between x and the output of x̂θ:

L = Ex,t,ε[||x− x̂θ(αtx+ σtε, xc, t)||]. (1)
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where αt and σt are strictly positive scalar-valued functions of t, determined by a pre-defined noise
scheduler, and ε is a Gaussian noise.

2.2 Network Architecture

As shown in Figure 1, our novel 3D network, DiffusionIQT, is composed of an encoder and a decoder.
It takes concatenated low-field and noisy images as input to predict a target image at each time step.
The time embedding is also conditioned on each residual block, in the same manner as Dhariwal
and Nichol (2022). The encoder consists of transformers, a 3D extension of Shen et al. (2021),
and convolution blocks to introduce long-range dependencies and extract local features. A skip
connection is added after the transformer block for an effective fusion of local and global features,
and enables vital local spatial information to be preserved, especially crucial in IQT.

Figure 1: Proposed network architecture (C: number of filters, TB: Transformers block, Res: ResNet
block, CSD: Channel-shuffle for downsampling, CSU: Channel-shuffle for upsampling). The numbers
in parentheses denote downsampling factor in each dimension.

With a small input patch size, however, this tends to create boundary artifacts and limits the ef-
fectiveness of self-attention. To address these limitations, we introduce a cross-batch mechanism,
designed to share information between patches within a mini-batch for self-attention and padding.
The mini-batch of 3D patches is constructed from patches that are adjacent and non-overlapping to
each other. The key and value in self-attention are computed including the adjacent patches rather
than a single patch, mimicking cross-attention. This allows computing attention beyond each patch,
enabling features to fuse across the patches. Additionally, we pad patch boundaries with actual values
from the adjacent patches before each convolution. These approaches enable each small patch to
access broader contextual information, which aids in preserving structural consistency and preventing
boundary artifact. Please refer to Appendix A.1 for more details. A deep feature extraction module is
also added at the bottleneck. This extracts more abstract and high-level features from the input, and it
serves to extract a richer representation that compensates for any loss of spatial information.

The decoder consists of an upsampling operation followed by residual blocks. For both downsampling
and upsampling feature maps within the network, we employ a 3D channel-shuffle operation, an
extension of Shi et al. (2016). This method is parameter-free and makes spatial information to be
preserved more faithfully than conventional pooling operations. In contrast to the encoder, the decoder
does not incorporate transformers. Empirically, we found that transformers can actually deteriorate
the model’s performance. This may be due to the fact that the long-range dependencies are not pivotal
in the decoder, when it comes to reconstructing local fine details and generating high-quality images.

3 Experiments

3.1 Data

An evaluation was done using the HCP dataset (Sotiropoulos et al., 2013). Synthetic low-field MR
volumes akin to those obtained using a real scanner were generated using the decimation simulator by
Lin et al. (2023), with a downsampling factor of 8 in the slice direction, mimicking a 4.2mm/1.4mm
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Table 1: Quantitative comparison results for IQT and brain parcellation. An upward arrow indicates
that a higher value is better, and vice versa.

- Interpolation 3D U-Net 3D ResU-Net 3D ESRGAN DiffusionIQT

PSNR (↑) 22.4±0.32 26.2±1.21 26.1±1.45 29.7±1.23 33.7±0.80
MSSIM (↑) 0.805±0.06 0.907±0.03 0.871±0.07 0.940±0.02 0.968±0.02
LPIPS (↓) 0.293 ±0.018 0.232±0.02 0.181±0.02 0.134±0.01 0.094±0.02

Seg mIoU (↑) 0.488±0.05 0.670±0.01 0.751±0.008 0.749±0.01 0.858±0.01
Num. Params (↓) - 48.8M 37.2M 28.7M 15.2M

slice thickness/gap. Of 80 subjects curated randomly, 48 were used for training, 12 for validation,
and 20 for testing.

3.2 Results

Table 1 presents quantitative comparisons between DiffusionIQT and the four baselines: Interpolation
(Alexander et al., 2017), 3D U-Net (Lin et al., 2023), ResU-Net (Lin et al., 2023), and 3D extension of
ESRGAN (Wang et al., 2018) in IQT and brain parcellation tasks. Brain parcellation was performed
using a pre-trained network from Henschel et al. (2020). The model was trained using MR images
that have same resolution as our evaluated data, which predicts 95 different classes and their statistics
in each brain volume. To compare the models quantitatively, we used peak signal-to-noise ratio
(PSNR), multi-scale structural similarity index measure (MSSIM), and learned perceptual image
patch similarity (LPIPS) for IQT, and mean intersection over union (mIoU) for brain parcellation by
using the predicted classes for each voxel. The results demonstrate that DiffusionIQT surpasses all
other models by large margins in both tasks. In particular, considerable improvements are observed
in the PSNR and LPIPS metrics. This suggests that DiffusionIQT predicts overall voxel intensities
and restores high-frequency textures more accurately than the other models. In brain parcellation, our
approach outperformed other models by more than 0.1 in mIoU. We can also observe that our model
surpasses the performance of other models while having the smallest number of parameters — nearly
half the size of 3D ESRGAN. This clearly underscores the effectiveness of the diffusion process and
our proposed network architecture.

Figure 2 offers qualitative comparisons between the models, illustrating the ability of DiffusionIQT
to restore high-frequency textures and accurately delineate tissue structures. As emphasized in the
figure, DiffusionIQT more precisely restored the morphology of the sulcus and the lateral ventricle
volume compared to other models. While ESRGAN also seemed effective in restoring high-frequency
textures, a visible distortion in the size of the restored tissues was observed.

Figure 2: Qualitative comparison on IQT (top) and brain parcellation (bottom)
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Table 2: Comparative analysis of the proposed modules (x: non-utilized, o: utilized)

Deep feature Cross-batch PSNR MSSIM LPIPS Num. Params

x x 26.4±1.41 0.848±0.06 0.188±0.01 9.9M
o x 31.5±1.13 0.948±0.04 0.116±0.01 13.6M
o o 33.7±0.80 0.968±0.02 0.094±0.02 15.2M

3.3 Module Component Analysis

In Table 2, we present ablation studies to demonstrate the effectiveness of our proposed modules.
The results indicate that the addition of each module significantly enhances overall performance
across various image quality metrics. Notably, the deep feature extraction module contributes the
most substantial improvement, yielding more than a 10% increase in all three metrics. While the
deep feature extraction module shows much larger gains compared to the cross-batch mechanism, the
latter is designed to reduce patch artifacts and enhance structural and contrast consistency, which are
subtleties not fully captured by current metrics. Moreover, we achieved this improvement with only a
marginal increase in the number of parameters relative to the deep feature extraction module.

4 Discussion

Previous work in IQT demonstrated the effective performance with modest downsampling factors.
However, these methods often failed to restore high-frequency textures, resulting in blurry predictions.
In order to address this limitation, we introduced a 3D conditional diffusion model for IQT to enhance
low-field MRI. Our DiffusionIQT is a pioneering work to harness a generative model and 3D vision
transformers in tackling IQT challenges. We also proposed cross-batch mechanisms, sidestepping
the limitations of learning from small patches. The proposed approach was evaluated using a low-
field MRI application in order to recover contrast enhanced images as similar to high field scanners.
Comparative experiments using the HCP dataset for IQT and brain parcellation showed that our model
consistently outperformed the baseline models, particularly excelling in restoring high-frequency
textures and tissue volumes accurately.

Despite the superior performance in IQT, our work is limited due to the use of synthetic MR images
and only healthy subjects. This leaves a future exploration of our model’s generalizability to out-of-
distribution data and real low-field MR images.

Nevertheless, we can conclude that leveraging diffusion models signals immense potential in IQT,
possibly revolutionizing the medical imaging domain in various clinical scenarios, where diagnostic
precision and enhanced image quality are essential.
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Edward John Behrens. Advances in diffusion mri acquisition and processing in the human
connectome project. NeuroImage, 80:125–143, 2013.

Ryutaro Tanno, Daniel E. Worrall, Enrico Kaden, and Daniel C. Alexander. Uncertainty modelling in
deep learning for safer neuroimage enhancement: Demonstration in diffusion mri. NeuroImage,
225, 2020.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change
Loy. Esrgan: Enhanced super-resolution generative adversarial networks. In ECCV WorkShop,
page 63–79, 2018. ISBN 978-3-030-11020-8. doi: 10.1007/978-3-030-11021-5_5.

Junde Wu, Huihui Fang, Yu Zhang, Yehui Yang, and Yanwu Xu. Medsegdiff: Medical image
segmentation with diffusion probabilistic model. arXiv preprint arXiv:2211.00611, 2022.

Kuan Zhang, Haoji Hu, Kenneth A. Philbrick, Gian Marco Conte, Joseph D. Sobek, Pouria Rouzrokh,
and Bradley James Erickson. Soup-gan: Super-resolution mri using generative adversarial networks.
Tomography, 8:905 – 919, 2021.

7



A Appendix

A.1 Network Architecture Details

In this section, we detail our proposed network architecture, especially the transformers block.

Our transformers are inspired by Shen et al. (2021). We extend their work to process 3D volumetric
data and apply several modifications to effectively capture spatial features. In particular, instead of
the traditional method of tokenizing input into non-overlapping patches and then flattening them into
1D, we maintain the 3D shape by tokenizing patches using a 3D depth-wise convolution with both a
kernel size and a stride equivalent to the transformer’s patch size. Furthermore, we utilize additional
depth-wise convolutions for the computation of the query, key, and value.

As shown in Figure 3, the self-attention relies on our novel cross-batch mechanism. Unlike conven-
tional vision transformers (Dosovitskiy et al., 2021), we first perform a dot-product between the key
and value. As proposed by Shen et al. (2021), this approach allows for a more efficient operation, as
the complexity does not increase with the number of patches. Furthermore, we derive the key and
value from adjacent patches, which offers broader contextual information and maximizes the efficacy
of self-attention.

Figure 3: Cross-batch mechanism for self-attention. N and C denote the number of patches for
self-attention and the number of channels, respectively.

Network Architecture

• Input size: 32× 32× 32

• Learning rate: 1e−4

• Number of filters: [64,128,256]

• Loss function: Mean Squared Error (MSE)

• Activation function: Mish (Misra, 2020)

• Skip-connection scale: 1√
2

• Number of multi-head self-attention (MHSA): 8

• Embedding size (C): 512

• Number of patches (N): 216

Diffusion Process

• Number of time steps: 20

• Parametrization method: x (target image)

• Noise scheduler: Cosine (Nichol and Dhariwal, 2021)
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A.2 Diffusion Process in DiffusionIQT

In this section, we provide mathematical detail of our diffusion process inspired from Kingma et al.
(2021).

A.2.1 Forward Process

As illustrated in Section 2.1, our diffusion process is mainly composed of a forward process and
a reverse process. In the forward process, it involves gradually adding noise to a clean image x to
transform it into a noisy image xt, where t is an arbitrary time step value 0 ≤ t ≤ 1. Formally, the
probability distribution of xt given any arbitrary previous time step xs is defined as:

q(xt|xs) = N (αt|sxs, σ
2
t|sI)

where αt|s = αt/αs, and σ2
t|s = σ2

t − α2
t|sσ

2
s ,

(2)

where αt and σ2
t denote the diffusion coefficient and noise level at time step t, respectively. These

parameters are strictly positives and determined by cosine scheduler (Nichol and Dhariwal, 2021).
Kingma et al. (2021) chose variance preserving diffusion process, by setting αt =

√
1− σ2

t . To
sample an arbitrary noisy image xt conditioned on x, we sample using xt = αtx+ σtε where ε is a
Gaussian noise.

A.2.2 Reverse Process

In the reverse process, our goal is to iteratively remove the noise from the isotropic Gaussian noise we
sampled at time t = 1, until we obtain a clean image, which is achieved by maximizing the likelihood
of p(x). For a finite number of T time steps, by defining s(i) = (i− 1)/T and t(i) = i/T , the data
x can be represented through our generative model as:

p(x) =

∫
p(x1)p(x|x0, xc)

T∏
i=1

p(xs(i)|xt(i), xc)dx0:1, (3)

where p(x1) = N (x1; 0, I) and xc is a conditioned low-quality MR image. To maximize the
likelihood, the neural network is trained to approximate q(xs|xt, x) with pθ(xs|xt, xc), where θ is
learnable parameters. Given that both q(xt|x) and q(xs|x) are Gaussian distributions:

q(xs|xt, x) =
q(xs, xt|x)
q(xt|x)

=
q(xs|x)q(xt|xs)

q(xt|x)
, (4)

we leverage the conjugate prior property in Bayes’ theorem, which ensures that q(xs|xt, x) is a
Gaussian. Consequently, we model pθ(xs|xt, xc) ∼ N (xs; µ̂θ(xt; t, xc), σ

2
t I), where µ̂θ represents

predicted µ by a neural network.

Being a Gaussian, this formulation aligns with the derivation of the variational lower bound as defined
in (Ho et al., 2020) for the continuous-time diffusion process. This simplifies our learning objective
to computing the mean-squared error as follows:

Lt = Ex,t[||µ(xt, x; t)− µ̂θ(xt, xθ; t, xc)||2]
= Ex,t[||x− x̂θ||2]
= Eε[||ε− ε̂θ||2].

(5)

Following (Kingma et al., 2021), the model is parameterized to predict the noise, building upon the
approach in (Ho et al., 2020). However, in our approach, we parameterize the model to predict the
target image x at each time step, which has demonstrated faster convergence in our experiments.

During training, we randomly sample a time step t from 0 ≤ t < 1, to sample a noisy image xt. Then,
we predict a target image using our neural network x̂θ given xt, xc and t. This prediction is then
compared with the target image using the reconstruction loss (e.g. L1 or L2) as shown in Equation 5.
Once the training is finished, during sampling, given a finite T , we discretize time uniformly into T
timesteps (segments) and scale them into [0, 1]. We start from t = 1 by sampling isotropic Gaussian
noise. After predicting the target image x at time step t given the LF image, we then sample our
prediction x̂ to obtain the noisy image xt−1. This process is iterated until t = 0. Algorithm 1 and
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2 show the complete training procedure with the simplified objective and sampling procedure after
training.

Algorithm 1 Training
1: repeat
2: Sample t ∼ Uniform(0, 1)
3: xt = αt · x+ σt · ε
4: Take gradient descent on ∇θ||x− x̂θ(xt, xc, t)||2
5: until converged

Algorithm 2 Inference (Sampling)
1: Scale the timesteps from the range [0, T ] to the normalized range [0, 1]
2: x1 ∼ N(0, I)
3: for t = 1, ..., 0 do
4: ε ∼ N (0, I) if t > 0, else ε = 0
5: xt−1 = αt−1x̂θ(xt, xc, t) + σt−1ε
6: xt = xt−1

7: end for
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