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ABSTRACT

Finding deletion-correcting codes of maximum size has been an open problem
for over 70 years, even for a single deletion. In this paper, we propose a novel
approach for constructing deletion-correcting codes. A code is a set of sequences
satisfying certain constraints, and we construct it by greedily adding the highest-
priority sequence according to a priority function. To find good priority func-
tions, we leverage FunSearch, a large language model (LLM)-guided evolutionary
search proposed by Romera et al., 2024. FunSearch iteratively generates, evalu-
ates, and refines priority functions to construct large deletion-correcting codes.
For a single deletion, our evolutionary search finds functions that construct codes
which match known maximum sizes, reach the size of the largest (conjectured
optimal) Varshamov-Tenengolts codes where the maximum is unknown, and in-
dependently rediscover them in equivalent form. For two deletions, we find func-
tions that construct codes with new best-known sizes for code lengths n = 12, 13,
and 16, establishing improved lower bounds. These results demonstrate the poten-
tial of LLM-guided search for information theory and code design and represent
the first application of such methods for constructing error-correcting codes.

1 INTRODUCTION

Error-correcting codes enable reliable communication and data recovery from storage media (such as
HDDs and SSDs), even in the presence of errors and defects. In a typical coding scheme, an encoder
maps information to a codeword, which is corrupted by errors during transmission, and a decoder
attempts to recover the original message. While substitutions and erasures are well understood
with optimal encoding and decoding algorithms approaching known theoretical limits, deletions
are significantly more challenging. Deletions shift subsequent symbols, disrupting the memoryless
property typically assumed in coding theory.

Correcting deletions is of theoretical and practical interest. In theoretical computer science, prob-
lems related to deletions include determining whether edit distance between two strings can be com-
puted in strongly sub-quadratic time (Backurs & Indyk, 2015). Deletions are practically relevant
in cryptography (Mihaljević et al., 2022), multiple sequence alignment in computational biology
(Carrillo & Lipman, 1988), document exchange (Cheng et al., 2018), traditional storage technolo-
gies such as racetrack memories (Parkin et al., 2008) and bit-patterned magnetic recording (Albrecht
et al., 2015), as well as emerging technologies such as DNA data storage (Gimpel et al., 2024).

For a fixed number of correctable errors, better codes have larger code sizes. Despite significant
effort, determining the maximum code size for a fixed number of adversarial deletions has proven
difficult using traditional hand-crafted, human-driven approaches to information theory. A class of
codes known as Varshamov-Tenengolts (VT) codes (Varshamov & Tenengolts, 1965) achieves the
maximum possible size for correcting a single deletion as the code length goes to infinity (Leven-
shtein, 1966). However, for finite code lengths, the gap to the best-known upper bound is large even
at moderate code lengths (Kulkarni & Kiyavash, 2013). Although VT codes are conjectured to be
largest for all code lengths and a single deletion, their optimality has only been proven for lengths
up to 11 (Butenko et al., 2002; Nakasho et al., 2023; Sloane, 2002).

In this paper, we propose a novel approach to constructing error-correcting codes using large lan-
guage models (LLMs) and evolutionary search. While our framework is general, we focus on codes
that correct a fixed number of adversarial deletions in a sequence of bits, as many fundamental
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Figure 1: FunSearch for finding deletion-correcting codes iteratively refines a priority function
through evolutionary search guided by a pretrained LLM. In each iteration, a few-shot prompt is
constructed by sampling from the program database. The LLM generates a new priority function,
which is evaluated by greedily constructing deletion-correcting codes for different code lengths and
numbers of deletions. If executable and not a duplicate, the function is added to the database.

questions remain open in this setting, even for a single deletion (Sloane, 2002). We find explicit
algorithms that construct deletion-correcting codes by assigning priorities to sequences. These al-
gorithms build the code greedily by iteratively adding the highest-priority sequence while ensuring
that deletion-correcting constraints are satisfied.

LLMs are successful for challenging tasks such as mathematical reasoning and coding (Chen et al.,
2021; Cobbe et al., 2021; Lewkowycz et al., 2022; Li et al., 2022), but are often limited to their
training data and existing knowledge (Bender et al., 2021; Mahowald et al., 2024). Recently,
Romera-Paredes et al. (2024) showed that combining LLMs with evolutionary search and an ex-
ternal evaluator can overcome this limitation for problems that are difficult to solve but easy to
evaluate. Their method, FunSearch (Function Space Search), represents combinatorial problems as
code and searches for algorithmic solutions, improving on best-known results for problems such as
the cap set problem and the online bin-packing problem.

We adapt FunSearch Romera-Paredes et al. (2024) to find large deletion-correcting codes. To im-
prove sample efficiency, we introduce a deduplication step that removes priority functions that differ
only in syntax. Previously generated priority functions are used as candidates in few-shot prompts
for the LLM to generate new, improved functions. Removing duplicate functions makes the prompt
more effective at discovering new logic rather than repeating minor syntactic variations.

Our main contributions are:

• We propose an LLM-guided evolutionary search to find deletion-correcting codes based on
FunSearch.

• Our search discovers functions that construct previously unknown maximum-size codes for
a single deletion and small code lengths (n ≤ 11), and match the size of the conjectured-
optimal VT codes for larger code lengths (verified up to n = 25), including one that inde-
pendently rediscovers them. For two deletions, we find improved lower bounds for code
lengths n = 12, 13 and 16.

• We provide an efficient, parallel implementation of the LLM-guided evolutionary search
and release our code alongside the paper to facilitate future research.

Our results demonstrate the potential of LLM-guided search for information and coding theory.
However, our current approach does not scale well to long codes, a limitation we discuss in more
detail later.

2 RELATED WORK

We review related work on LLM-guided search and deletion-correcting codes.
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2.1 RELATED WORK ON LLM-GUIDED SEARCH

As mentioned, our work builds on FunSearch Romera-Paredes et al. (2024). Other approaches
also integrate LLMs in evolutionary search. Lehman et al. (2023) first demonstrate a synergy be-
tween LLMs and evolutionary search, using the LLM as an intelligent mutator for automatic data
generation (see also (Xu et al., 2023)). Other applications of LLM-guided search are in machine
learning (Chen et al., 2023; Fernando et al., 2024; Hazra et al., 2024; Lee et al., 2025; Lu et al.,
2024; Ma et al., 2023; Nasir et al., 2024; Shojaee et al., 2024; Yang et al., 2023; Zheng et al., 2023),
black-box optimization (Aglietti et al., 2024; Brahmachary et al., 2025; Lange et al., 2024), and
automatic heuristic design.

The most relevant application to finding deletion-correcting codes is automatic heuristic design for
combinatorial problems. Liu et al. (2024) propose EoH, which improves performance and sample
efficiency over FunSearch by evolving both natural language and algorithmic components. Ye et al.
(2024) introduce ReEvo, which incorporates reflection into the search by prompting the LLM to an-
alyze and revise previously generated solutions. ReEvo improves sample efficiency over FunSearch
at the cost of increased inference per iteration. Dat et al. (2024) propose two diversity metrics and
find that FunSearch and ReEvo stagnate in local optima due to low diversity, while EoH trades
off diversity for performance. To address the tradeoff, they tune function parameters via harmony
search (Shi et al., 2012), though this approach is impractical for problems with more costly evalua-
tions like ours.

None of the methods building on FunSearch (Chen et al., 2024; Dat et al., 2024; Liu et al., 2024;
Ye et al., 2024; Zheng et al., 2025) outperform the results discovered by FunSearch on large-scale
instances of the cap set problem. This suggests that scaling LLM-based evolutionary search in a
distributed system is important to solve certain combinatorial problems. We provide a suitable,
scalable implementation.

2.2 RELATED WORK ON DELETION-CORRECTING CODES

Levenshtein (1966) proves that VT codes (Varshamov & Tenengolts, 1965) are asymptotically op-
timal for correcting a single deletion and proposes a linear-time decoding algorithm. VT codes are
also conjectured to be largest for finite code lengths n, but this has only been proven for n ≤ 11 (for
n ≤ 8 (Sloane, 2002); for n ≤ 10 in (Butenko et al., 2002); for n ≤ 11 in (Nakasho et al., 2023)).

Levenshtein (2002) derives non-asymptotic upper and lower bounds for single-deletion-correcting
codes. Later work (Cullina & Kiyavash, 2016; Fazeli et al., 2015; Kulkarni & Kiyavash, 2013)
refines his upper bound by formulating the problem as a linear program and considering its dual
relaxation. The optimal solution to the relaxation equals the relaxation of the original problem and
provides an upper bound on the maximum code size. However, exhaustive search by Kulkarni &
Kiyavash (2013) for short code lengths shows a gap between the best relaxed solution and the largest
VT codes.

Regarding known constructions for multiple deletions, Helberg & Ferreira (2002) extend VT codes
and propose the first explicit construction, but the resulting code sizes remain limited for longer
lengths. Swart & Ferreira (2003) find larger code sizes for two deletions and code lengths n ≤ 12 by
using a run-length representation of sequences in a greedy search over 5×104 random permutations.
Similarly, Landjev & Haralambiev (2007) use heuristics and search to construct deletion-correcting
codes for code lengths n ≤ 30 and deletions s = 2, 3, 4, 5.

3 PROBLEM STATEMENT

We consider the problem of constructing deletion-correcting codes with a large number of code-
words for finite code lengths n that can correct a fixed number s of adversarial bit deletions.

A deletion-correcting code is a set of sequences such that, even if an adversary deletes s bits from
a codeword, the original codeword can still be uniquely recovered. Unique recovery is not possible
if two codewords share a common subsequence of length n − s. A subsequence is any sequence
of length n − s obtained by deleting s bits from a codeword while preserving the order of the
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"""
Finds large independent set in graph G where vertices are binary strings of length n.
Vertices in G are connected if they share a subsequence of length at least n − s.
Improve f1 over its previous versions below.
Keep the code short and comment for easy understanding.
"""
import numpy as np
import networkx as nx

def f0(v, G):
"""Returns the priority with which we want to add vertex v."""
return 0.0

def f1(v, G):
"""Improved version of f0"""

Figure 2: Initial prompt.

remaining bits. Thus, an n-bit, s-deletion-correcting code is a set C ⊆ {0, 1}n such that the sets of
length-(n− s) subsequences obtained from any two distinct codewords c, c′ ∈ C are disjoint.

The problem of constructing large n-bit, s-deletion-correcting codes can be reduced to finding an
independent set I in a graph G defined as follows. Let G be an undirected graph where each vertex
is one of the 2n binary sequences of length n, and we have an edge between two vertices if and only
if the binary sequences they represent share a common subsequence of length at least n − s. An
independent set in the graph G is a subset of vertices I such that no two vertices are connected by
an edge. An n-bit, s-deletion-correcting code is an independent set in the graph G.

To construct deletion-correcting codes, we greedily build independent sets I in the graph G by
iteratively adding vertices v with the highest priority to an initially empty set and removing their
neighbors. Let f(v, G) be a priority function that assigns a real-valued priority to each vertex v
in the graph G. At each step, we select the vertex with the highest priority f(v, G), add it to the
independent set I, and remove the vertex and its neighbors from G. If two or more vertices have the
same priority, we break the tie by selecting the lexicographically smallest vertex (with 0 considered
smaller than 1). The size of the resulting independent set I depends on the choice of the priority
function f , which determines which vertices are added.

In this formulation, constructing large n-bit, s-deletion-correcting codes reduces to designing a pri-
ority function f that maximizes the independent set size I in the graph G.

4 METHOD

We adapt FunSearch, originally proposed by Romera-Paredes et al. (2024), and augment it with a
deduplication step to optimize the priority function f to construct large deletion-correcting codes.
FunSearch consists of four steps, explained below.

Step 1: Sampling from the program database. The program database is divided into islands that
evolve independently to promote diversity. Each island groups priority functions into clusters based
on the independent set sizes they achieve on evaluation inputs. Each cluster is assigned a score,
which is explained in Step 3.

We sample a priority function from the program database as follows. First, we randomly sample
an island j. Then, from island j, we sample a cluster i with probability pi, given by a softmax
distribution over the scores of all clusters on island j

pi =
escorei /Tj∑
i′ e

scorei′ /Tj
, where Tj = T

(
1− nj mod P

P

)
.

Here, scorei is the score of cluster i, and Tj is the temperature for island j.

The temperature Tj depends on an initial temperature T , the number of priority functions nj stored
on island j, and a sampling period P . As the number of stored priority functions nj increases, the
temperature for island j decreases to shift the focus from exploration (sampling closer to uniform)
to exploitation (favoring clusters with higher evaluation scores). The temperature resets after every
P stored priority functions to reintroduce exploration and avoid suboptimal convergence.
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We sample a priority function f from cluster i on island j favoring shorter functions based on their
lengths relative to the minimum and maximum function lengths in that cluster. The preference is
based on the assumption, under Kolmogorov complexity (Kolmogorov, 1965; Li et al., 2008), that
shorter functions often have lower computational complexity and are more efficient to evaluate,
though this is not always the case in practice.

Step 2: Prompt construction and LLM inference. We construct a few-shot prompt by repeating
the sampling from Step 1 twice to obtain two priority functions. Sampling is done without replace-
ment for diverse few-shot examples. The initial prompt is shown in Figure 2.

The sampled priority functions are sorted by their cluster score, with the lower-scoring function first
and the higher-scoring function as an example for improvement. The prompt is framed as a code
completion task and ends with the header of a new priority function for the LLM to improve the
higher-scoring example.

The prompt is passed through a pretrained LLM to generate a new priority function. We use
StarCoder2-15B (Lozhkov et al., 2024), an open-access model with 15 billion parameters trained on
The Stack v2 dataset (775B tokens from 600+ programming languages) and additional tokens from
sources like pull requests, issues, Jupyter notebooks, and StackOverflow, totaling 913B tokens.

Step 3: Evaluating the new priority function on graphs. We evaluate the new priority function as
follows. For each evaluation input consisting of a code length n and a deletion correction parameter
s, we construct an independent set I in the graph G using the new priority function, as described in
Section 3. If the function is not executable (e.g., due to syntax errors), it is discarded.

The evaluator assigns a score to the priority function using the scoring function score(f). We use
the independent set size obtained for the longest code length n in the evaluation input as the score,
as we found this to outperform aggregate metrics such as averaging independent set sizes across all
evaluation inputs (see Appendix E).

Step 4: Deduplication and storing the new priority function. The evaluated priority function is
stored on the same island j from which the few-shot examples in Step 1 are sampled. Each island
serves as an independent program database to promote diversity. The independent set sizes achieved
by the priority function over the evaluation inputs are compared to existing clusters on island j. If no
cluster exists with priority functions that achieve the same independent set sizes, the function forms
a new cluster and is assigned score(f).

If a matching cluster exists, we apply our deduplication step to improve exploration and encourage
the LLM to generate priority functions with distinct logic rather than minor syntactic variations.
Two functions are considered duplicates if they produce the same hash value, computed from the
priority scores they assign to each sequence. If the function is not a duplicate, it is assigned to the
matching cluster, where all functions share the same score(f), denoted as scorei in Step 1. If it is a
duplicate, it is discarded.

Our deduplication step allows finding good priority functions with fewer functions processed (gen-
erated, evaluated, and stored) by avoiding prompts that include functionally identical examples dif-
fering only in syntax (see Appendix D).

Each island in the program database is initialized with the same trivial priority function shown in Fig-
ure 2, which assigns equal priority to all sequences. To allow information exchange between islands,
we periodically reset them. During a reset, the stored priority functions in the worst-performing half
of the islands are discarded. Each island is then re-initialized with the priority function that initial-
ized the highest-scoring cluster from a randomly sampled surviving island. Romera-Paredes et al.
(2024) reset islands after a fixed time interval. In our implementation, we reset islands after a fixed
number R of stored priority functions to decouple the reset logic from the rate at which functions
are processed (which depends on available resources).

5 EXPERIMENTS

We run 20 evolutionary search experiments, varying the initial temperature T , sampling period P ,
and the number of functions R stored before an island reset. Each experiment runs with or without
dynamically decreasing the LLM sampling temperature to balance exploration and exploitation.
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Table 1: Code sizes for single-deletion correction. Each row corresponds to a run configuration:
trivial initialization (fT ); first successful function after 120K processed (f120K); best function from
standard runs with varying hyperparameters (f ); using weighted scoring (fW ); prompts 3 and 4
with StarCoder2 (f3,4) and GPT-4o mini (f3,4/GPT, see Figures 18 and 20 for prompt details). Bold
indicates the VT0(n) bound, which is optimal for n ≤ 11.

Priority function n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 n = 13 n = 14 n = 15 n = 16

fT 8 14 25 42 71 125 224 406 737 1345 2468
f∗ 10 16 30 52 94 172 316 586 1054 2000 3389

f120K 10 16 30 52 94 172 316 449 794 1386 2515
fW∗

10 16 30 52 94 172 316 564 1096 1364 2493
f3,4&3/GPT 10 16 30 52 94 172 316 586 1096 2048 3856
f4/GPT 10 16 30 52 94 172 316 586 1083 2025 3696

∗Reported code sizes are not constructed by a single priority function. For each code length n, we report the maximum size achieved across all successful functions
discovered with the run configuration.

Our main finding is that FunSearch discovers priority functions that construct maximum-size single-
deletion-correcting codes for lengths 6 ≤ n ≤ 11, including previously unknown constructions. For
longer code lengths (n > 11), where VT codes are conjectured to be optimal, FunSearch rediscovers
them within our greedy framework and also finds alternative constructions of the same size (verified
up to length n = 25). For two deletions, we discover larger codes than previously known for code
lengths n = 12, 13 and 16.

5.1 EXPERIMENTAL SETUP

We score the generated priority functions on code sizes achieved for a single deletion (s = 1) and
lengths n ∈ [6, 11], where the maximum independent set sizes are known. The evaluation range
balances computational feasibility and problem difficulty. Smaller code lengths n make the problem
trivial, while larger n result in prohibitive computational and memory costs.

Each evolutionary search processes (generates, evaluates, and stores) up to 400K priority functions,
which takes about 350 GPU hours. Performance is measured as a binary outcome: success or failure.
A function is said to be successful if it constructs maximum independent sets on all evaluation inputs.
A configuration is successful if it discovers at least one successful function during the search. If a
run succeeds before 400K functions, we stop early. We then process an additional 20K functions to
find other successful functions that may generalize better to longer code lengths.

For error-correcting codes to be practical, they should work for arbitrary sequence lengths. However,
testing our priority functions on larger code lengths is expensive, as the number of sequences they
must evaluate grows exponentially with sequence length. Evaluating functions on inputs where the
optimum is known provides a practical way to judge their quality. Functions that fail to achieve
optimality on the evaluation inputs are not promising candidates to test on larger code lengths.
Therefore, we only analyze successful functions at the end of each search.

We use the LLM hyperparameters listed in Table 7c in Appendix B, which we find to perform best
in smaller-scale experiments.

In all experiments, we use the independent set size for code length n = 11 as the scoring function for
the generated priority functions, as we find it discovers successful functions with fewer processed
programs than aggregate scoring functions (see Appendix E).

5.2 UNDERLYING LOGIC OF PRIORITY FUNCTIONS

We first identify common logical structures in the discovered priority functions and then discuss
their relation to the best known VT codes. We categorize the discovered priority functions into
graph-based and number-theoretic functions.

Graph-based priority functions assign priority based on local graph connectivity and sequence char-
acteristics, considering both the degree of a vertex and the bit patterns of its neighbors. An example
is in Figure 10 in Appendix C.
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Figure 3: Sequence overlap between discovered priority functions and the largest VT0(n) codes for
n ∈ [6, 16]. Color denotes overlap bin and bar height the number of functions.

Number-theoretic priority functions assign priority based on the integer representations of neighbor-
ing sequences and their bit patterns. An example is in Figure 11 in Appendix C.

The best-known single-deletion-correcting codes are the VT codes (Varshamov & Tenengolts,
1965). For a given parameter a ∈ Z, the VT code of length n, denoted VTa(n), is defined as
the set of binary sequences v = (v1, v2, . . . , vn) ∈ {0, 1}n satisfying

n∑
i=1

ivi = a+ (n+ 1)k, k ∈ Z, (1)

where a is the remainder and k the quotient when dividing
∑n

i=1 ivi by n+1.

The VT0(n) code has maximum code size as n → ∞ and is conjectured to have maximum code size
for all code lengths n. In our framework, VT0(n) codes can be represented by a priority function
that assigns a high priority (e.g., +∞) to sequences satisfying Equation 1 with a = 0, and a low
priority (e.g., 0) to those that do not.

Figure 3 shows the sequence overlap between the codes constructed by our discovered priority func-
tions and the largest VT0(n) codes for tested code lengths n ∈ [6, 16]. Many of our discovered
priority functions recover the largest VT0(n) codes with 100% sequence overlap and follow simi-
lar logic, as both graph-based and number-theoretic functions assign weights to bits based on their
position in the sequence. However, priority functions that use graph structure alongside sequence
information discover previously unknown codes. For example, the graph-based priority function in
Figure 10 (Appendix C) constructs codes that share no sequences with the largest VT0(n) codes for
n = 7, 9, 11, and 13, while achieving the same size.

5.3 GENERALIZATION TO LONGER CODE LENGTHS AND MULTIPLE DELETIONS

A key strength of our approach is that we search for priority functions that construct deletion-
correcting codes, rather than searching for the codes directly. This allows us to construct longer
and multiple deletion-correcting codes with the priority functions found for short code lengths and
a single deletion.

Table 1 shows that priority functions optimized for code lengths n ∈ [6, 11] also achieve the conjec-
tured largest VT0(n) code sizes for n = 12, 13 and remain close for n ∈ [14, 16]. For two deletions,
the priority functions construct codes whose sizes are close to the best known over the tested lengths
n ∈ [7, 16], and improve on them for n = 13, where our search discovers a two-deletion-correcting
code of size 50, larger than the previous best known size of 49. The corresponding priority function
is shown in Figure 9, and detailed results are given in Table 4, both in Appendix I.

Compared to previous search-based methods that search the full space of 2n binary sequences (Land-
jev & Haralambiev, 2007; Swart & Ferreira, 2003), our search finds functions that construct larger
two-deletion-correcting codes for lengths n ∈ [12, 16]. Searching the sequence space becomes ex-
ponentially harder with the code length, making it increasingly difficult to discover large codes. In
contrast, our approach searches in the space of priority functions, independent of the code length.
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def f(v, G, n, s):
# The condition ord(a) > 125 has no effect, as the ASCII values of ’0’ and ’1’ are always below 125.
v = ’’.join([’-’ * (ord(a) > 125) + a for a in list(v)])
onepositions = [c for c, d in reversed(list(enumerate(v, start=-len(v)))) if d == ’1’]
negonesum = sum([-c for c in onepositions])
# Maximum of negonesum is (n-1)/2 for n odd and n/2 for n even, which is always < n, so taking mod n does
not change the priority

finalans = (⌊negonesum/((n + s) · 1)⌋ % n)
return finalans

Figure 4: Priority function generated by StarCoder2 using Prompt 4, with comments added for
clarity (see Figure 20 for prompt details). For s = 1, the function constructs the VT0 code when
used to iteratively select sequences in order of priority and lexicographic tie-breaking.

These results show that priority functions optimized for single-deletion correction can, to some
extent, generalize beyond their evaluation range. However, we did not find priority functions that
construct maximum single-deletion-correcting codes where known and match or exceed the best-
known sizes for two deletions over all tested code lengths.

5.4 PROMPT ENGINEERING AND GENERAL-PURPOSE LLMS

To assess whether prompt engineering improves generalization to longer code lengths or sample ef-
ficiency (fewer functions processed before success), we modify the baseline prompt in Figure 2. We
also test GPT-4o mini, an instruction-tuned model trained on diverse tasks beyond code generation,
which may better interpret the task than code-only models.

We find that prompt engineering improves generalization for both StarCoder2 and GPT-4o mini and
improves sample efficiency for GPT-4o mini. Explicitly instructing StarCoder2 to consider binary
string properties leads to rediscovering the largest VT0(n) codes in an alternative form.

5.4.1 PROMPT ENGINEERING

We test five prompts. Prompt 1 explicitly states that we are considering the single deletion case
(s = 1) and that the priority function determines the importance of each vertex for inclusion in
the independent set. Prompt 2 includes the evaluation script to provide context on how the priority
function determines independent set size through greedy selection. Prompt 3 removes the graph G
as an input to the priority function and excludes the networkx package to bias the LLM toward
computing priority based on sequence structure only. Prompt 4 explicitly instructs the LLM to
consider sequence structure. Prompt 5 combines modifications from prompts 1 and 4. The prompts
are shown in Appendix G.1.

Table 1 shows that the priority functions discovered using StarCoder2 with prompts 3 and 4 gener-
alize better to longer code lengths. Figures 19 and 21 in Appendix G.1 show examples of priority
functions found with prompts 3 and 4, respectively, that achieve VT0(n) code sizes for all tested
code lengths n ∈ [6, 25], but follow a different logic. The function in Figure 21 constructs new
codes for odd lengths that have zero sequence overlap with the largest VT0(n) codes in this range.
Figure 4 shows the priority function found with prompt 4, which is equivalent to the largest VT0(n)
codes for all code lengths, as explained in Appendix H.

The other prompts fail to find successful priority functions within 400K processed. With prompt en-
gineering (prompt 3), the first successful function is discovered after approximately 300K functions,
compared to 120K in the best run without prompt engineering. This suggests that, for StarCoder2,
the prompts considered here do not improve sample efficiency.

5.4.2 GPT-4O MINI FOR GENERATING PRIORITY FUNCTIONS

Figure 5 shows that GPT-4o mini finds a successful priority function with fewer candidates than
StarCoder2 (69K vs. 120K) and generates a larger fraction of executable functions (43.7% vs.
16.2%). However, without prompt engineering, GPT-4o mini fails to find successful functions within
400K processed. Successful solutions are only found with prompts 3 and 4.
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(b) Search trajectory with StarCoder2.

Figure 5: GPT-4o mini finds successful priority functions with fewer processed and generates more
executable functions than StarCoder2, but requires prompt engineering.

Figures 23 and 24 in Appendix G.2 show examples of priority functions discovered with GPT-4o
mini using prompt 3 and prompt 4, respectively. Functions generated with prompt 3 achieve 100%
sequence overlap with the largest VT0(n) codes for lengths n ∈ [6, 25], while functions generated
with prompt 4 achieve VT0(n) code sizes for n ∈ [6, 13] and are close to VT0(n) code sizes for
larger lengths n ∈ [14, 16].

5.5 SEARCH FOR MULTIPLE DELETION-CORRECTING CODES

We now conduct evolutionary searches for two-deletion-correcting codes. Since optimal code sizes
are unknown in this regime, we process all 400K functions without early stopping and analyze all
functions in the program database that achieve a larger average size on the evaluation inputs than the
trivial initialization.

We consider two additional evaluation sets for the search. The first scores functions on two-deletion-
correcting code sizes for n ∈ [7, 12]. The second jointly scores single- and two-deletion correction,
using n ∈ [9, 11] for s = 1 and n ∈ [10, 12] for s = 2. Each set runs with the default configuration
from Section 5.1, as well as weighted scoring and prompt 4, totaling six additional runs.

Searches targeting two-deletion correction discover a new lower bound at n = 12, improving from
32 to 34 (e.g., Figure 28). The joint search finds a new bound at n = 16, improving from 201 to
204 and functions achieving VT0(n) sizes for single deletion with n ∈ [6, 13] that closely match
best-known sizes for two and three deletions over n ∈ [7, 16] (e.g., Figure 33). Appendix I provides
details, Table 4 summarizes achieved sizes, and Figure 26 shows differences from best-known sizes.

6 CONCLUSION AND LIMITATIONS

In this work, we found new error-correcting codes and re-discovered existing ones using LLMs and
evolutionary search. Our method applies to any error type or combination thereof, as long as the
distinguishability constraint is well-defined (e.g., for deletions ensuring no common subsequences).

A key limitation of our approach is the poor scalability of the evaluator, which makes evolutionary
search infeasible for moderate to large code lengths. The evaluator must compute priorities for
exponentially many sequences as code length increases. For graph-based priority functions, the
evaluator must also construct or load the full graph storing all sequences and pairwise edges, which
quickly becomes memory-prohibitive

Nonetheless, searching in function space generalizes better than previous approaches (Landjev &
Haralambiev, 2007; Swart & Ferreira, 2003) that search all binary sequences directly. Priority func-
tions found for shorter codes can construct larger codes and, as we have seen, generalize to some
extent. Moreover, these functions can be mathematically analyzed to potentially determine code
sizes without explicit construction, as demonstrated by the priority function that rediscovered VT
codes.

9
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LLM USAGE

Large language models were used as writing assistance tools for editing and polishing the text for
this submission.
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Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 2022.

Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large
Language Model. In Proceedings of the 41st International Conference on Machine Learning,
2024.
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Figure 6: Rate at which functions are processed for different LLM-to-evaluator ratios in our dis-
tributed implementation of FunSearch.

A IMPLEMENTATION DETAILS

We implement FunSearch using RabbitMQ (Pivotal Software) for parallelization via asynchronous
message passing. The system consists of multiple LLMs and evaluators, and a single program
database, each running as an independent worker. Workers communicate through RabbitMQ queues
using the Advanced Message Queuing Protocol (AMQP) 0-9-1, which runs over the Transmission
Control Protocol (TCP). Each worker consumes and publishes messages to their designated queues.

The program database constructs prompts and sends them to the LLM queue. The LLMs process
these prompts to generate new priority functions, which are published to the evaluator queue. The
evaluators compute evaluation scores and return the results to the program database queue.

The number of functions that can be processed within a fixed time interval is determined by the
number of LLMs and evaluators. We run our implementation of FunSearch with different LLM-
to-evaluator ratios to understand how resource allocation affects throughput. Each LLM runs on
a single GPU (NVIDIA A100 (80GB) or H100 (94GB)), while each evaluator processes inputs in
parallel using two CPU cores. Evaluators execute functions with a 5-minute timeout; if execution
exceeds this limit, the function is considered non-executable.

Figure 6 shows the throughput in functions per hour (higher is better) for different LLM-to-evaluator
ratios. We achieve the highest throughput at the largest tested ratio of 20 evaluators per LLM. We
expect that increasing the number of evaluators further would increase throughput, but we could
not test this due to infrastructure constraints. The reported results correspond to a suboptimal setup
where evaluators construct the graph from scratch rather than loading a precomputed file, which
increases evaluation time. Using precomputed graphs increases throughput further, but does not
change the conclusion that evaluators are the limiting factor, and increasing their number relative to
LLMs increases throughput up to a point.

If processing rates between LLMs and evaluators are imbalanced during execution, our imple-
mentation also supports dynamically scaling their number (within available resources) to optimize
throughput.
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Figure 7: Results of LLM hyperparameter optimization from smaller-scale experiments.

B LLM HYPERPARAMETER OPTIMIZATION

We conduct two independent grid searches for the LLM hyperparameters, varying maximum new
tokens and repetition penalty while keeping temperature and top-p fixed, and vice versa.

We measure performance as the average improvement in the independent set sizes constructed by
the best priority functions across all islands for all code lengths n ∈ [6, 11] with deletion parameter
s = 1, relative to the trivial initialization. Each grid search run is evaluated after one hour using one
GPU and 40 CPUs to balance search depth with computational feasibility.

For the grid search over maximum new tokens, we consider values in the range [60, 300], and for
repetition penalty, values in [1.0, 2.0], both divided into 10 equally spaced grid points. Temperature
and top-p are fixed at 0.2 and 0.95, respectively, as in Section 7.1.3 of Lozhkov et al. (2024). The
results are shown in Figure 7a. Low repetition penalties combined with high maximum new tokens
often result in the LLM repeating the code completion task, generating multiple function headers
with minor variations or trivial return statements instead of a single, improved function. Repetition
penalties above 1.22 fail to generate executable functions. While competitive results are achieved
with maximum new tokens between 60 and 140 and repetition penalties between 1.05 and 1.11, the
highest performance is observed with 246 maximum new tokens and a repetition penalty of 1.22.
As discovering new maximum code sizes requires only a single priority function, we proceed with
these hyperparameters.

For the grid search over temperature and top-p, we consider values in [0.5, 1.5] and [0.6, 1.0], re-
spectively, with 10 equally spaced grid points, while keeping maximum new tokens fixed at 246 and
the repetition penalty at 1.22. The results are shown in Figure 7b. Higher variability in token sam-
pling (larger temperature and top-p values) increases fluctuations in the performance metric but also
improves performance. More deterministic sampling results in more syntactically correct functions
but does not lead to better performance.

These findings align with the hypothesis of Romera-Paredes et al. (2024) that the LLM contributes
by exploring diverse function solutions, occasionally generating good executable functions but often
producing unusable outputs. The best performance is achieved at a temperature of 0.9444 and a top-
p of 0.7778.
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Table 2: Results for different evolutionary search hyperparameter configurations. A check mark (
√

)
indicates that the configuration discovered a priority function achieving the maximum code size; a
cross (×) indicates it did not.

(a) Results for initial temperature T , with P = 30K
and R = 1.2K fixed.

T n = 6 n = 7 n = 8 n = 9 n = 10 n = 11

0.05 × √ × × × ×
0.1

√ √ √ √ √ √
0.3

√ √ × × √ ×
0.5 × × √ × × ×
1

√ √ × × × ×

(b) Results for period P , with T = 0.1 and R =
1.2K fixed.

P n = 6 n = 7 n = 8 n = 9 n = 10 n = 11

5,000
√ √ √ √ √ √

10,000
√ √ √ × × ×

30,000
√ √ √ √ √ √

50,000
√ √ √ √ √ √

100,000
√ √ √ × × ×

(c) Results for the number of functions R stored be-
fore an island reset, with T = 0.1 and P = 30K
fixed.

R n = 6 n = 7 n = 8 n = 9 n = 10 n = 11

300
√ √ √ √ √ √

600
√ √ √ √ √ √

1200
√ √ √ √ √ √

2400 × √ × × × ×
5000

√ √ × √ × ×

(d) Results for dynamically decreasing the LLM tem-
perature to greedy decoding after storing D func-
tions.

D n = 6 n = 7 n = 8 n = 9 n = 10 n = 11

5,000
√ √ √ √ √ √

10,000 × √ × √ × ×
20,000

√ √ √ √ √ ×
50,000

√ √ × × √ √

C EVOLUTIONARY SEARCH HYPERPARAMETER OPTIMIZATION

We perform independent grid searches over the evolutionary search hyperparameters initial temper-
ature T , sampling period P and the number of functions R stored before an island reset, using the
best-performing LLM hyperparameters from Table 7c. Performance is measured as a binary out-
come: success or failure in finding a priority function that constructs a maximum independent set
for all evaluation inputs n ∈ [6, 11] with s = 1, where the maximum is known. Each evolutionary
search run is evaluated after generating 400K priority functions or stops early if a successful function
is found and 20K additional ones are generated. Examples for graph-based and number-theoretic
functions are given in Figures 10 and 11, respectively.

Table 2a summarizes the results for initial temperatures T ∈ {0.05, 0.1, 0.3, 0.5, 1} with a fixed
sampling period of P = 30K and R = 1.2K functions stored before a reset. A successful priority
function is found only when the temperature is set to T = 0.1. Figure 8a shows the evolutionary
search trajectories, plotting the highest score assigned to priority functions across all clusters and
islands as new functions are processed. With T = 0.1, a successful function (shown in Figure 9) is
found after approximately 115,850 processed functions, with 20.7% of generated functions stored
at the end of the search. When the temperature is set to T = 0.05, 0.3, 0.5, or 1, the percentages of
stored functions are 18.6%, 19.3%, 12.0%, and 10.0%, respectively. Across all configurations, only
a small fraction of the generated functions are stored, with many failed executions.

Table 2b summarizes the results for sampling periods P ∈ {5K, 10K, 30K, 50K, 100K}, with a
fixed temperature of T = 0.1 and R = 1.2K functions stored before a reset. Adjusting the sampling
period does not improve performance beyond the configuration with P = 30K in the grid search
over temperature. Figure 8b shows the evolutionary trajectories for different sampling periods. With
P = 5K, a successful priority function is found after 193,815 processed functions, with 18.1%
stored at termination. With P = 50K, a successful function is found after 132,499 processed
functions, with 23.0% stored. When the sampling period is set to P = 10K or P = 100K, no
successful function is found after 400K processed functions, and the fractions of stored functions
are 13.0% and 19.8%, respectively.

Table 2c summarizes the results for numbers of functions R ∈ {300, 600, 1.2K, 2.4K, 5K} stored
before an island reset, with a fixed temperature of T = 0.1 and a sampling period of P = 30K.
Varying R does not improve performance beyond the configuration with R = 1.2K in the grid
search over temperature. Figure 8c shows the evolutionary trajectories for different values of R.
With R = 300, a successful priority function is found after 251,359 processed functions, with
18.2% stored at termination. With R = 600, a successful function is found after 196,756 processed
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(a) Varying initial temperature T ∈ {0.05, 0.1, 0.3,
0.5, 1} with fixed P = 30K and R = 1.2K.
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(b) Varying P ∈ {5K, 10K, 30K, 50K, 100K}
with fixed T = 0.1 and R = 1.2K.
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(c) Varying number of functions R ∈ {300, 600,
1.2K, 2.4K, 5K} stored before an island reset, with
fixed T = 0.1 and P = 30K.
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(d) Dynamically decreasing LLM temperature,
reaching greedy decoding at D ∈ {5K, 10K, 20K,
50K} functions.

Figure 8: Trajectories for varying evolutionary search hyperparameters.

functions, with 19.9% stored. When R = 2, 400 or R = 5K, no successful function is found within
400K processed, and the fractions of stored functions are 19.2% and 19.6% , respectively.

We also experiment with dynamically decreasing the LLM sampling temperature to balance explo-
ration and exploitation. The temperature is initialized at 0.94 and decreases as more functions are
stored on the island from which the prompt is sampled, reaching zero at D ∈ {5K, 10K, 20K, 50K}
stored functions. Similar to reducing the temperature for sampling clusters as more functions are
stored, decreasing the LLM sampling temperature makes token sampling more deterministic over
time, promoting the exploitation of higher-scoring function examples in prompts.

Table 2d summarizes the results for dynamically decreasing the LLM sampling temperature for
different values of D. While this approach slightly increases the number of executable functions,
it does not improve search efficiency in finding a successful priority function with fewer functions
processed compared to a fixed temperature. Figure 8d shows the evolutionary trajectories. With
D = 5K, a successful priority function is found after 246,639 processed functions, with 22.6%
stored at termination. When D = 10K, 20K, or 50K, no successful function is found within 400K
processed, with 21.1%, 17.2%, and 21.4% stored, respectively.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 3: Evolutionary search configurations that find successful priority functions with 400K pro-
cessed.

Initial T Period P Reset R Dynamic D

0.1 30,000 1,200 w/o
0.1 30,000 1,200 5,000
0.1 30,000 300 w/o
0.1 30,000 600 w/o
0.1 5,000 1,200 w/o
0.1 50,000 1,200 w/o

def f(v, G, n, s):
neighbours = []
for neighbor in G[v]:

p = np.log(int(neighbor[:-s], 2) + 1) * \
(2 ** (((len(neighbor) - s) - neighbor[:(-s)].count(’0’)) +

((neighbor[-s:] != ’0’) * len([i for i in range(0, len(neighbor), 8)])))) / \
np.exp(sum([(i == "1") * len([j for j in ["1"] * 3]) for i in neighbor]))

neighbours.append((p, neighbor))
if not neighbours:

return 0
return sorted(neighbours, key=lambda x: x[0], reverse=True)[0][0]

Figure 9: Successful priority function f120K found after about 120K processed with T = 0.1,
P = 30K and R = 1.2K.

def f(v, G, n, s):
position = [(j + 1) · (n − j)/(6 · s) for j, value in enumerate v if int(value) == 1]
total_position = np.sum(position)
degree = G.degree(v)/ float(n)
return 4 · total position + 5 · degree

Figure 10: Graph-based priority function that constructs codes with zero sequence overlap with the
largest VT0(n) codes for lengths n = 7, 9, 11, 13 while achieving the same code size.

def f(v, G, n, s):
def _find_matches(vertex, n, s):

counter = 0

counter = sum ([int(c) · (2i − 1) for i, c in enumerate(reversed(list(vertex)))])
return (bin(counter)).count("1")

def _count_ones(vertex):
counter=0
counter=sum([int(_)for _ in list(vertex)])
return counter

weights=[(_find_matches(vertex_,n, s)/(s+0.5)*np.exp(-(_count_ones(vertex_))),vertex_) for vertex_ in G[
v]]

return sorted(weights)[-1]

Figure 11: Number-theoretic priority function that constructs the same codes as the largest VT0(n)
codes for lengths n ∈ [6, 11], but follows a different logic.
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(b) Best score trajectory without (left) and with (right) deduplication.

Figure 12: Results of the evolutionary search experiments with and without function deduplication.

D EFFECTIVENESS OF DEDUPLICATION

We assess the effectiveness of our function deduplication step by running an evolutionary search
without it. For this search, we use an initial temperature T = 0.1, a sampling period P = 30K,
store R = 1.2K functions before an island reset, and use the best-performing LLM hyperparameters
listed in Table 7c.

Figure 12a shows the mean duplicate ratio, defined as the number of duplicate functions divided
by the total number of stored functions. It is computed every 200 stored functions per island and
averaged across all islands. Without deduplication, approximately 20% of stored functions are du-
plicates, either exact copies of previously seen priority functions or syntactically modified versions
with unchanged logic.

Figure 13 shows a prompt with duplicate few-shot examples and the corresponding function out-
put generated by the LLM. Duplicate examples often result in the LLM generating functions with
identical logic or minor syntactic changes, which fail to construct larger independent sets.

Figure 12b compares the run without deduplication to the run with deduplication that uses the same
run configurations. The search with deduplication processes fewer functions before finding a suc-
cessful one, suggesting that deduplication improves sample efficiency by filtering out prompts with
duplicate examples.
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import numpy as np
import networkx as nx

def f0(v, G, n, s):
"""Returns the priority with which we want to add vertex v."""
vertex = str(v)
count = 0
for j in range(3, n + 1):

for k in range(n - (j - 1)):
ones = []
zeros = []
if vertex[k] == ’1’ or vertex[k] == ’0’:

for l in range(k, k + j):
if vertex[l] == ’1’:

ones.append("1")
elif vertex[l] == ’0’:

zeros.append("0")
if len(ones) > len(zeros):

count += len(ones)
ones = []

elif len(zeros) > len(ones):
count -= len(zeros)
zeros = []

else:
pass

return count

def f1(v, G, n, s):
""" Improved version of f0."""
vertex = str(v)
count = 0
for i in range(3, n + 2):

# print("i is ")
# print(i)
if i <= n + 1:

for j in range(n - (i - 1)):
ones = []
zeros = []
for k in range(j, j + i):

if vertex[k] == ’1’:
ones.append("1")

elif vertex[k] == ’0’:
zeros.append(’0’)

if len(ones) > len(zeros):
count += len(ones)

elif len(ones) < len(zeros):
count -= len(zeros)

return count

def f2(v, G, n, s):
"""Improved version of f1."""
vertex = str(v);
count = 0;
ones = list();
zeros = list ();
for i in range((n)):

if vertex[i] == ’0’:
zeros.append("0");

if vertex[i] == ’1’:
ones.append ("1")

if (len(ones)-len(zeros)) >= 1 :
count+= len(ones);
while len(ones)!=0:

ones.pop(-1)
zeros=[]

elif (-len(ones)+len(zeros))>= 1:
count-= len(zeros);
while len(zeros)!=0:

zeros.pop(-1)
# ones=[];

return int(count /4 )

Figure 13: Prompt with duplicate few-shot examples f0 and f1 and the function f2 generated by the
LLM.
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Figure 14: Results of evolutionary searches with different scoring functions.

def f(v, G, n, s):
return -np.average([float(((int(y[:n-(s+1)].count(’1’))*( int((y[-1:( -(n-s)):(-1)]).count (’1’) )))**2/
len(list(G.neighbors(y))))) for y in [ v ]+(list(G.neighbors(v)))])

Figure 15: Priority function fW found using weighted scoring.

E EFFECT OF THE SCORING FUNCTION ON PERFORMANCE AND
GENERALIZATION

The experiments in Section 5.2 of the main paper show that the priority functions discovered using
the baseline prompt generalize to code lengths n = 12, 13, beyond the evaluation range n ∈ [6, 11],
but remain only close to the largest VT0(n) code sizes for larger code lengths n.

To improve generalization to longer code lengths, we explore aggregate scoring functions that eval-
uate priority functions based on their performance across all code lengths in the evaluation range,
rather than only on the largest length. We compare two aggregate scoring strategies against the
baseline, which uses the independent set size at length n = 11. The first is a simple average of
independent set sizes over all evaluated lengths (n ∈ [6, 11]). The second is a weighted average
over the same range, with weights proportional to n. All runs use an initial temperature T = 0.1,
sampling period P = 30K, number of functions R = 1.2K stored before an island reset, and the
best-performing LLM hyperparameters listed in Table 7c.

Perhaps surprisingly, Figure 14a shows that the baseline scoring function achieves better general-
ization than the two aggregate alternatives. While the weighted scoring function discovers a priority
function that achieves the largest VT0(n) code size at n = 14, the baseline consistently finds func-
tions that construct larger code sizes for all other tested lengths (n ∈ [12, 16] \ {14}). Figure 14b
further shows that evaluating only on the largest code length finds a successful priority function with
fewer processed than the weighted scoring function. In contrast, the average scoring function fails to
find a successful function within 400K processed. These results suggest that focusing on the largest
evaluated length is both more efficient and more effective for discovering functions that generalize
to longer code lengths when searching for large single-deletion-correcting codes.

Given these findings, we also run an evolutionary search using only the largest code size n = 11
(and s = 1) to reduce computational overhead. However, evaluating priority functions on a single
code length biases the search toward functions that are hardcoded for n = 11 and fail to execute for
other lengths. Additionally, this setup affects clustering. Functions are now clustered based on their
score (their performance on the largest code length n = 11) rather than their independent set sizes
across all evaluated code lengths (n ∈ [6, 11]). This results in fewer, larger clusters (and thus fewer
distinct function length ranges). As a result, shorter functions are sampled more frequently, and the
few-shot prompts become less diverse compared to clustering based on multiple evaluation inputs.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 1 2 3 4

Total Functions Processed ×105

140

160

180

200

O
ve

ra
ll

B
es

t
S

co
re

Run 1
Run 2

Run 3
Optimal

Figure 16: Trajectories for multiple runs with the same configuration using an initial temperature
T = 0.1, sampling period P = 30K, and number of functions R = 1.2K stored before an island
reset. Two out of the three runs find a successful priority function within 400K processed.

F VARIATION ACROSS EVOLUTIONARY RUNS

The performance of FunSearch depends on two main factors: the quality of the LLM output and
the functions sampled as examples for the few-shot prompt. These factors introduce inherent ran-
domness into the method. To evaluate how FunSearch’s performance varies across runs, we conduct
two additional evolutionary search experiments with initial temperature T = 0.1, sampling period
P = 30K, and R = 1.2K functions stored before an island reset as well as the best performing
LLM hyperparameters listed in Table 7c. This configuration previously found a successful function
with the fewest processed.

Figure 16 shows the evolutionary search trajectories, plotting the maximum score (independent set
size for the largest code length n = 11) as new functions are processed. Out of the three runs with
the same configuration, two find a maximum independent set for all code lengths n ∈ [6, 11] within
the limit of 400K processed.
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"""
Finds large independent set in graph G where vertices are binary strings of length n.
Vertices in G are connected if they share a subsequence of length at least n − s, where s = 1.

The functions f assign a priority to each vertex, indicating its importance for inclusion in the independent
set.

Improve f1 over its previous versions below.
Keep the code short and comment for easy understanding.
"""
import numpy as np
import networkx as nx

def f0(v, G):
"""Returns the priority with which we want to add vertex v."""
return 0.0

def f1(v, G):
"""Improved version of f0"""

Figure 17: Prompt 1 specifies the single-deletion case and explains that the priority function reflects
the importance of each vertex for inclusion in the independent set.

"""
Finds large independent set in graph G where vertices are binary strings of length n.
Vertices in G are connected if they share a subsequence of length at least n − s.

Improve f1 over its previous versions below.
Keep the code short and comment for easy understanding.
"""
import numpy as np

def f0(v, G):
"""Returns the priority with which we want to add vertex v."""
return 0.0

def f1(v, G):
"""Improved version of f0"""

Figure 18: Prompt 3 omits the graph G as input to the priority function and removes the import
networkx as nx line to bias the LLM toward computing priority based only on sequence struc-
ture.

G DETAILS ON PROMPT ENGINEERING AND GENERAL-PURPOSE LLMS

In this section, we provide additional details on prompt engineering and replacing StarCoder2 with
GPT-4o Mini. For all runs, we use the configuration with an initial temperature T = 0.1, sampling
period P = 30K, and number of functions R = 1.2K stored before an island reset, as well as the
best performing LLM hyperparameters as listed in Table 7c.

G.1 PROMPT ENGINEERING

Here we describe our modifications to the baseline prompt in Figure 2. For prompts 3 and 4, which
discover priority functions that achieve maximum code sizes where known, we further analyze their
logic, with prompt 4 rediscovering the VT0(n) code.

Prompt 1 in Figure 17 specifies that we consider the single-deletion case and that priority reflects a
vertex’s importance for inclusion in the independent set. The rest remains identical to the baseline
prompt.

We introduce prompt 1 after observing that many generated functions include redundant conditions
when s = 1, such as s > n, which is always false. While explicitly stating s = 1 reduces such
redundancies, it does not improve performance in constructing maximum independent sets.

Prompt 2 in Figure 25 includes the entire evaluation script to give context on how the priority
function is used to construct the independent set. The rest remains identical to the baseline prompt.
Within the 400K processed functions, prompt 2 does not find a successful one. This may be because
the additional context distracts from the main task of improving the priority function to construct
larger independent sets.
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def f(v, n, s):
lst=[]
for p in range ((n-2)) :

for q in range (((p+2)),(n)) :
string=""
for r in range (p,q+1) :

string+=v[r]
lst.append(string)

clist=[*map(lambda w:(w).count(’1’),lst)]
averageofobservations=(np.mean(clist));
deviationfromaverage=(np.var(clist)**.65);
priortiyvalue= -(averageofobservations/3+.3)*(deviationfromaverage**.65*(.7))+ (.8)+(1/(len(v)*2.5 ));
return round(priortiyvalue,10)

Figure 19: Priority function found using prompt 3 that achieves largest VT0(n) code sizes for all
evaluated lengths n ∈ [6, 25] with 100% sequence overlap.

"""
Finds large independent set in graph G where vertices are binary strings of length n.
Vertices in G are connected if they share a subsequence of length at least n − s.

Improve f1 over its previous versions below.
Keep the code short and comment for easy understanding.

Consider properties of the binary string v, such as specific patterns, the number of ones/zeros.
"""
import numpy as np
import networkx as nx

def f0(v, G):
"""Returns the priority with which we want to add vertex v."""
return 0.0

def f1(v, G):
"""Improved version of f0"""

Figure 20: Prompt 4 explicitly instructs the LLM to consider properties of the binary string, such as
the number of zeros and ones.

Prompt 3 in Figure 18 removes the graph G as input to the priority function and the network pack-
age from the import statements to bias the LLM to generate functions that rely only on sequence-
specific information. The rest remains identical to the baseline prompt.

The priority functions discovered using evolutionary search with prompt 3 follow a common struc-
ture. Most functions assign priority based on statistics of the number of 1-bits in an increasing
sliding window over the sequence, with either a fixed minimum length (e.g., 2) or one determined
by the deletion correction parameter s. The functions differ in which statistics of the 1-bit count
they use (e.g., mean, variance, maximum) and how they transform the statistic(s) (e.g., scaling fac-
tors or number of unique sliding windows). These variations affect how well the priority function
generalizes to longer code lengths. The function achieving the largest VT0(n) code sizes for lengths
n ≤ 25 is given in Figure 19, with 100% sequence overlap.

Prompt 4 in Figure 20 explicitly instructs the LLM to focus on bit patterns in the sequence when
assigning priority. The rest remains identical to the baseline prompt. As a result, StarCoder2 redis-
covers the largest VT0(n) codes for all n. Beyond the VT formulation (discussed in Appendix H),
the other discovered priority functions can be grouped into two main categories.

The first consists of functions that compute statistical properties of the sequence: the count of 1-bits,
the product of their positions, and the sum of cumulative sums of 0-bit positions. The priority score
is determined by applying bitwise operations (XOR, AND, OR, shifts) and logical conditions on
these statistics, as illustrated in Figure 21. Interestingly, both categories have 100% overlap with the
largest VT0(n) codes when n is even and 0% overlap when n is odd.

The second consists of a single function that assigns priority based on:

−
n∑

i=1

xi · (n− i+ 1) mod (n+ 1) − b mod n,

where b = 1.5. We find that this function appears multiple times with different values of b but
achieves maximum code sizes on the evaluation inputs only when b = 1.5. This suggests that the
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def f(v, G, n, s):
count_ones = np.array([int(char) for char in v]).sum()
product_positions = abs((np.arange(n) * np.array([int(char) for char in v])).prod())
sum_cumsum_zeros = ((˜np.array([int(char) for char in v]).astype(bool)).cumsum().sum()) % (n + 1)
c = [count_ones, product_positions, sum_cumsum_zeros]
priority_score = min([

((c[-1] ** 4) & c[-2]) + (((c[-1] * 9) < c[-2])),
˜((((-c[-1]) << c[-2]) ˆ ˜c[-1]) & ˜c[-2]),
((˜(˜c[-2] | ˜(c[-1])))) ˆ (˜c[-1]) ˆ ((-(˜(c[-1] | c[-2]))) ˆ (c[-1] > 1)),
˜(˜c[-1] & ˜c[-2]),
(c[-1] + 1) == c[-2]

])
return priority_score

Figure 21: Example of a priority function found using prompt 4 that achieves the largest VT0(n)
code sizes for all evaluated code lengths n ∈ [6, 20], based on statistical properties of the sequence.
It has 100% sequence overlap for even n and zero overlap for odd n.

LLM explores both globally and locally within the function space, even without being explicitly
instructed to do so.

Prompt 5 in Figure 22 combines the modifications of prompts 1 and 4. However, it does not find a
successful priority function within 400K processed, even though prompt 4 rediscovers VT0 codes.
The rest remains identical to the baseline prompt.

"""
Finds large independent set in graph G where vertices are binary strings of length n.
Vertices in G are connected if they share a subsequence of length at least n − s.

The functions f assign a priority to each vertex v indicating its importance for inclusion in the independent
set.

Desired properties of the function f:
- **Efficiency**: The function should be computationally efficient.
- **Avoid Redundant Computations**: Do not perform unnecessary calculations or repeat work.
- **Clarity**: The code should be easy to understand, with appropriate comments.
- **Innovation**: Explore different strategies for calculating the priority. Consider specific characteristics

of the binary strings, such as:
- Patterns in the binary string.
- The number of ones or zeros (Hamming weight).
- Distribution of bits (e.g., runs of ones or zeros).

Improve f1 over its previous versions below.
Keep the code short and comment for easy understanding.
"""
import numpy as np
import networkx as nx

def f0(v, G):
"""Returns the priority with which we want to add vertex v."""
return 0.0

def f1(v, G):
"""Improved version of f0"""

Figure 22: Prompt 5 provides more detailed instructions, emphasizing efficiency, clarity, and inno-
vation. It explains that priority reflects a vertex’s importance for inclusion in the independent set,
and prompts the LLM to consider binary string properties such as the number and distribution of
zeros and ones.

G.2 PRIORITY FUNCTIONS DISCOVERED WITH GPT-4O MINI

Here, we discuss the logic used by the priority functions discovered with GPT-4o Mini.

Using Prompt 3. The priority functions discovered with prompt 3 and GPT-4o mini follow a similar
logic. They compute priority based on the counts of 1- and 0-bits, the number of 0-bits appearing
after the last 1-bit, and the sum of 1-bits within certain sliding windows. Each function combines
or weights these counts differently. An example is shown in Figure 23. These functions achieve the
largest VT0(n) code sizes for all evaluated code lengths n ≤ 25, with 100% sequence overlap.

Using Prompt 4. The priority functions discovered with prompt 4 and GPT-4o mini compute prior-
ity based on the number of 1- and 0-bits in a sequence, the count of 1-bits within sliding windows,
and the number of neighbors each sequence has in the graph G. They differ primarily in how the
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def f(v, n, s):
ones_count = v.count(’1’)
zero_count = v[:n - s].count(’0’)
efficient_zero_contributions = sum(1 for i in range(n) if v[i] == ’0’ and ’1’ in v[:i])
overlap_ones = sum(v[i:i + n - s].count(’1’) for i in range(n - s + 1))
overlap_count = (overlap_ones + zero_count) // (n - s + 1)
return ones_count + zero_count * (n - s + 2) + efficient_zero_contributions - overlap_count + ones_count *

efficient_zero_contributions // (n - s + 1)

Figure 23: Example of a priority function found using prompt 3 and GPT-4o mini that achieves the
largest VT0(n) code sizes for all lengths n ∈ [6, 25], with 100% sequence overlap.

def f(v, G, n, s):
num_ones = v.count(’1’)
num_zeros = n - num_ones
total_neighbors = len(list(G.neighbors(v)))
balance = abs(num_ones - num_zeros) / n
pattern_score = sum((v[i:i+b].count(’1’)) for b in range(1, n - s + 1) for i in range(n - b + 1))
uniqueness_score = len(set(v)) / n
redundancy_score = total_neighbors / (n + 1e-6)
density = num_ones / n
return (num_ones * redundancy_score + pattern_score + uniqueness_score - density - balance)

Figure 24: Example of a priority function found using prompt 4 and GPT-4o mini that achieves the
largest VT0(n) code sizes for all lengths n ∈ [6, 13], with 100% sequence overlap for even n and
0% overlap for odd n.

counts are weighted or combined. An example is shown in Figure 24. All functions achieve the
largest VT0(n) code sizes for lengths n ∈ [6, 13], with 100% sequence overlap for even n and 0%
overlap for odd n.
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"""
Finds large independent set in graph G where vertices are binary strings of length n.
Vertices in G are connected if they share a subsequence of length at least n − s.

Improve f1 over its previous versions below.
Keep the code short and comment for easy understanding.
"""
import numpy as np
import networkx as nx
import itertools

def generate_graph(n, s):
G = nx.Graph()
sequences = [’’.join(seq) for seq in itertools.product(’01’, repeat=n)]
for seq in sequences:

G.add_node(seq)
for i in range(len(sequences)):

for j in range(i + 1, len(sequences)):
if has_common_subsequence(sequences[i], sequences[j], n, s):

G.add_edge(sequences[i], sequences[j])
return G

def has_common_subsequence(seq1, seq2, n, s):
threshold = n - s
if threshold <= 0:

return True
prev = [0] * (n + 1)
current = [0] * (n + 1)
for i in range(1, n + 1):

for j in range(1, n + 1):
if seq1[i - 1] == seq2[j - 1]:

current[j] = prev[j - 1] + 1
else:

current[j] = max(prev[j], current[j - 1])
if current[j] >= threshold:

return True
prev, current = current, prev

return False

def evaluate(params):
n, s = params
independent_set = solve(n, s)
return len(independent_set)

def solve(n, s):
G_original = generate_graph(n, s)
G_for_priority = G_original.copy()
priorities = {v: f1(v,G_for_priority, n, s) for v in G_original.nodes}
vertices_sorted = sorted(G_original.nodes, key=lambda v: (-priorities[v], v))
independent_set = set()
for v in vertices_sorted:

if v not in G_original:
continue

independent_set.add(v)
neighbors = list(G_original.neighbors(v))
G_original.remove_node(v)
G_original.remove_nodes_from(neighbors)

return independent_set

def f0(v, G):
"""Returns the priority with which we want to add vertex v."""
return 0.0

def f1(v, G):
"""Improved version of f0"""

Figure 25: Prompt 2 includes the evaluation script, which provides context on how the priority
function is used to construct the independent set.
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H EQUIVALENCE BETWEEN THE DISCOVERED PRIORITY FUNCTION AND
THE LARGEST VT CODE

In this section, we show that our priority function f in Figure 4, found with prompt 4, rediscovers
the largest VT0(n) codes in an alternative form. That is, the priority function selects codewords that
match the largest VT0(n) codes for all code lengths n within our greedy construction algorithm.

For a single deletion (s = 1), the priority function f assigns priority to a binary sequence v of
length n as follows

f(v, n, s = 1) =

⌊
W (v)

n+ 1

⌋
where W (v) =

n∑
i=1

(n− i+ 1) · vi. (2)

Let q(v) and r(v) be defined as

q(v) =

⌊
W (v)

n+ 1

⌋
and r(v) = W (v) mod (n+ 1),

such that the weighted sum can be decomposed as W (v) = q(v)(n + 1) + r(v). Expanding the
remainder, we obtain

r(v) ≡
n∑

i=1

(n+ 1) · vi −
n∑

i=1

i · vi ≡ −
n∑

i=1

i · vi ≡ n+ 1−
n∑

i=1

i · vi (mod n+ 1).

Thus, a sequence v with remainder r satisfies VT Equation 1 with parameter a = n+ 1− r(v).

In our greedy construction, sequences are considered in descending order of their priority (i.e., their
quotient q). Among sequences with the same priority q, we sort them in ascending lexicographic
order, with 0 smaller than 1. A binary sequence v precedes (i.e., is considered before) binary
sequence w if, at the first position j where they differ, vj = 0 and wj = 1.

The most significant bits (i.e., leftmost bits) contribute the most to the weighted sum W , so se-
quences with fewer leading 1-bits (and thus smaller W ) appear earlier in lexicographic order. Thus,
for each priority q, sequences with the smallest remainder r = 0, which correspond to the codewords
in the largest VT0(n) code, are considered first for inclusion in the independent set.

To establish equivalence, it remains to show that, once all sequences v with r(v) = 0 have been
included, no additional sequence with equal priority can be added to the independent set without
violating the independence property.

Claim 1. For any binary sequence w of length n with priority q(w), there exists a sequence v in
the largest VT0(n) code that shares a common subsequence with w and has priority q(v) ≥ q(w)
(for all n).

The remainder of this section establishes this claim.

VT codes partition the space of all binary sequences of length n into n+1 deletion-correcting codes
VTa(n) (see Equation 1). Each VTa(n) code forms a maximal independent set, meaning that no
additional sequence can be added without violating independence. This follows, for example, from
the result by Cullina et al. (2012), which proves that VT codes optimally solve the coloring problem.
Since each independent set is maximal, for any binary sequence w ∈ {0, 1}n \VTa(n), there must
exist at least one binary sequence v ∈ VTa(n) that shares a common subsequence of length n − 1
with w. Otherwise, w could be added to VTa(n), contradicting maximality.

To show that the sequence v that shares a common subsequence with w has priority q(v) ≥ q(w),
we use the following property of VT codes.

Property 1 (Used in the decoding algorithm by Levenshtein (1966); see also (Sloane, 2002)). If
two binary sequences v ∈ VTa(n) and w ∈ VTa′(n) with a ̸= a′ share a common subsequence of
length n− 1, their VT-weighted sum difference satisfies

1 ≤
∣∣∣∣∣

n∑
i=1

i · vi −
n∑

i=1

i · wi

∣∣∣∣∣ ≤ n.
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Below, we show that our weighted sum W in Equation 2 also satisfies Property 1. Thus, the se-
quences have equal priority, q(v) = q(w) and we have established Claim 1.

We consider all three cases in which the sequences v and w can be obtained from their common
subsequence z of length n− 1.

Case 1: Inserting a 0-bit. The sequences v and w are obtained from their common subsequence z

by inserting a 0-bit at different positions, denoted by Ij0(z), where j is the position of the insertion.
All three sequences have m 1-bits. The weighted sum W (Ij0(z)) can change by at most

W (I00 (z)) =

n∑
i=1

((n− 1) + 1− (i+ 1) + 1) · zi = W (z)

≤ W (Ij0(z)) ≤ W (In0 (z)) =

n∑
i=1

((n− 1) + 1− i+ 1) · zi = W (z) +m.

The lower bound follows from inserting the 0-bit before the first 1-bit, e.g., at position j = 0,
shifting all subsequent bits by one, and the upper bound from inserting it after the last 1-bit, e.g., at
j = n.

Then it holds that
1 ≤ |W (v)−W (w)| ≤ m.

Case 2: Inserting a 1-bit. The sequences v and w are obtained from their common subsequence z

by inserting a 1-bit at different positions, denoted by Ij1(z), where j is the position of the insertion.
Sequences v and w have m 1-bits and z has m− 1 1-bits. The weighted sum W (Ij1(z)) can change
by at most

W (z) +m ≤ W (Ij1(z)) ≤ W (z) + n.

The lower bound follows from inserting the 1-bit at the end, contributing 1 to the new weighted sum.
The upper bound follows from inserting it at the beginning, contributing n to the weighted sum and
all subsequent positions shifted by one. Then it holds that

1 ≤ |W (v)−W (w)| ≤ n−m.

Case 3: Inserting Different Bits. Sequence v is obtained from common subsequence z by inserting
a 1-bit, while sequence w is obtained by inserting a 0-bit. The sequence v has m 1-bits, whereas w
and z have m− 1 1-bits.

If we delete a 1-bit from v, denoted by Dj
1(v), its weighted sum can change by at most

W (v)− n ≤ W (Dj
1(v)) = W (z) ≤ W (v)−m,

where the upper bound follows from deleting a 1-bit at the end (when the sequence has a 0-bit in the
(n− 1)th position) and the lower bound from deleting a 1-bit at the beginning.

Similarly, if we delete a 0-bit from sequence w, denoted by Dj
0(w), its weighted sum can change

by at most
W (w)−m+ 1 ≤ W (Dj

0(w)) = W (z) ≤ W (w),

where the upper bound follows from deleting a 0-bit at the beginning and the lower bound from
deleting a 0-bit at the end.

By interchanging the upper bounds, we obtain a lower bound on the weighted sum difference:

W (w)− (m− 1) ≤ W (v)−m ⇒ 1 ≤ W (v)−W (w).

For the upper bound, we get:

W (v)− n ≤ W (w) ⇒ W (v)−W (w) ≤ n.

This shows that Property 1 also holds if the weighted sum for a sequence is defined as in our priority
function in Equation 2 and concludes our proof of equivalence.
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Figure 26: Gap to best-known code sizes (log scale) across all runs, varying evaluation inputs (single,
two, joint deletions) and configurations (default, weighted and prompt 4).

I DETAILS ON SEARCH FOR MULTIPLE DELETION CORRECTING CODES

In this section, we detail results from our searches for two-deletion-correcting codes, as well as joint
searches for single- and two-deletion-correcting codes. We analyze both performance on evaluation
inputs (i.e., the deletion parameters and code lengths used to evaluate the new functions during the
search) and generalization to unseen deletion parameters and code lengths.

We consider three sets of evaluation inputs, defined by the number of deletions s and the code length
n: (i) s = 1, n ∈ [6, 11]; (ii) s = 2, n ∈ [7, 12]; and (iii) s = 1, 2, with n ∈ [9, 11] for s = 1,
and n ∈ [10, 12] for s = 2. For each set, we report results using the default configuration, weighted
scoring, and prompt 4.

Table 4 summarizes the code sizes achieved for single, two, and three deletions across lengths n ∈
[6, 16]. For two deletions, the search finds priority functions that match or nearly match the best-
known code sizes across all tested lengths. For n = 12, it discovers a function (Figure 28) that
constructs a code of size 34, improving upon the previous best of 32. For n = 16, the search for
single- and two-deletion-correcting codes yields a new lower bound of 204 (e.g., achieved by the
function in Figure 32), exceeding the previous best of 201.

Figure 26 shows the difference from the best-known code sizes for the functions with the small-
est total difference to best-known across all deletion parameters (single, two, and three) and lengths
n ∈ [6, 16]. Among all functions scored on two-deletion-correcting code sizes, the best one achieves
a total difference of 2957 (normalized: 4.03). In contrast, scoring on both single- and two-deletion-
correcting code sizes results in a much lower total difference of 30 (normalized: 1.75). The normal-
ized score divides each difference by the corresponding best-known code size, ensuring that large
absolute differences for single-deletion cases (where code sizes are larger) do not dominate the total.
The lower scores in the joint case (both normalized and unnormalized) suggest better generalization
across deletion counts and code lengths.
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Table 4: Code sizes achieved for single, two, and three deletions by priority functions from runs
evaluated on s = 1, s = 2, and s = 1, 2. Each entry is the maximum across all best-performing
functions∗. Best-performing functions are selected based on exact matches (when s = 1), or the
smallest total difference from best-known sizes over the run’s evaluation inputs (when s > 1).
The final columns report the sizes achieved by the trivial lexicographic baseline, prior search re-
sults (Landjev & Haralambiev, 2007), and best-known VT0(n) code sizes (Varshamov & Tenen-
golts, 1965) or minimum-degree heuristics code sizes (Khajouei et al., 2011) for comparison. Bold
values indicate known maxima. Superscripts link to figures showing the function that achieves the
reported code size.

(n, s) Scored on s = 1∗∗ Scored on s = 2 Scored on s = 1, 2 Trivial Search-based Best known

(7,1) 16 15 1633 14 - 16
(8,1) 30 27 3033 25 - 30
(9,1) 52 44 5233 42 - 52
(10,1) 94 80 9433 71 - 94
(11,1) 172 131 17233 125 - 172
(12,1) 3164,19,23 227 31633 224 - 316
(13,1) 5864,19,23 409 58633 406 - 586
(14,1) 10964,19,23 743 109633 737 - 1096
(15,1) 20484,19,23 1342 204833 1345 - 2048
(16,1) 38564,19,23 2467 385633 2468 - 3856

(7,2) 59,19 527 529 5 5 5
(8,2) 79,15 727 733 6 7 7
(9,2) 9 10 10 9 11 11
(10,2) 13 1628 15 13 16 16
(11,2) 21 22 21 20 21 24
(12,2) 3215 3428 33 29 31 32
(13,2) 509 48 5031 46 49 49
(14,2) 7819 77 7833 72 75 78
(15,2) 125 123 124 114 109 126
(16,2) 2019 200 20432 189 176 201

(7,3) 24,19,21,23 227,28 229 2 2 2
(8,3) 44,19 427,28 429 4 4 4
(9,3) 54 527,28 4 5 5 5
(10,3) 5 627,28 630 5 6 6
(11,3) 7 827,28 7 6 7 8
(12,3) 11 11 10 10 10 12
(13,3) 13 14 14 13 12 15
(14,3) 19 2027 18 18 15 20
(15,3) 26 26 26 24 24 28
(16,3) 37 37 38 34 31 40

∗If the maximum is taken over all priority functions in the database at the end of the search, the constructed code sizes match (or exceed, for n = 13) the best known
sizes on all evaluation inputs.
∗∗For computational reasons, we did not construct code sizes for all of the 170 successful priority functions discovered during the searches for single-deletion-
correcting codes. Instead, the maximum is taken over the subset of functions shown in Figures 10, 9, 15, 19, 4, 21, 23 and 24.
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def f(v, G, n, s):
"""Returns the priority with which we want to add ‘v‘ to the independent set."""
nodeInt= int(v,base=2); #convert to decimal
bitwiseXORArray= [int(i,2)ˆnodeInt

for i in list(set(G[v]))];#create array that shows what value is different between this
and each neighbour

numOfOnes= [(lambda x : sum(map(int, bin(x).replace(’0b’,’’)[::-1])))(bitValue)#how many ones in the
difference

for bitValue
in bitwiseXORArray ];

distBetweenBitAndNode= [(lambda x: n - abs(n // 2 - x))(onesCount) for onesCount in numOfOnes];
avgOfDifferenceInBitsFromMedian= sum(distBetweenBitAndNode)/(max(1,(len(numOfOnes)-1)));
score= (.9**(avgOfDifferenceInBitsFromMedian)) * ((float)(bin(nodeInt).count(’1’)))**(7/(1+(abs(6-n))));
return round(score,3)

Figure 27: Example of a priority function found using default configuration, scored on two-deletion-
correcting code sizes.

def f(v, G, n, s):
"""Returns the priority with which we want to add ‘v‘ to the independent set."""
hamming_dist = [ ]
for v in list(G.adj[v]):

difference = [(i!= j)for (i,j) in zip(v,v )]
dist= sum([(i ==True )for i in difference ])
hamming_dist+= [ int(dist)]

avg = np.array(hamming_dist).mean()
one_count = sum([char == "1" for char in v])
percen_one =(one_count / len(v))
priority =.8*(avg)+ -.7* abs (((percen_one)-.5 ))
return -round(priority,4)

Figure 28: Example of a priority function found using prompt 4, scored on two-deletion-correcting
code sizes.

def f(v, G, n, s):
"""Returns the priority with which we want to add ‘v‘ to the independent set."""
maxseqLenght= min((n*.7),(7.+s));
kmrsLengh= max((round(np.mean ([2,maxseqLenght])) ), 3.);
numberKmers= n-(kmrsLengh)+(1);
kmscrLst=[]
for stidx in range(numberKmers):

numOfonesinNd= sum([(c=="1") *1for c in v[stidx : (stidx+(kmrsLengh))]]);
OneWtgh= (numOfonesinNd/kmrsLengh)**.5;
Kmrcr= (1./(OneWtgh +.000001 ))**((kmrsLengh )/2) * (numberKmers/.1)*(kmrsLengh)** -.45;
kmscrLst.append(Kmrcr );

Ttlscr= (np. log(((1.*numberKmers )*np. mean(kmscrLst)))).__abs__();
return -Ttlscr

Figure 29: Example of a priority function found using prompt 3, scored on single- and two-deletion-
correcting code sizes.

def f(v, G, n, s):
"""Returns the priority with which we want to add ‘v‘ to the independent set."""
total=0
d=[ (int(bit)) for bit in list(v)]
degree=len(list(filter( lambda x :(int(x)==1 ),[ (int(bit)) for bit in list(v)])))
adj = len(list(nx.neighbors(G, v)))
if(degree<=1 and adj <7):

return (.9/(1.+float(degree))) *( pow((((deg+7)/2.* float(total))+0.01),(.9/.9+(1/deg)))) * pow(1./
adj,-(.15))

else:
for k in range(n//2 + n %2):

total += sum([(int)(d[i])for i in range(k,(n)-k)])
deg=(max(degree,.1))/1.
return ((1./(float(deg)+1))* ( (deg +1.)**deg )*total+0.01)*( pow( ( 1.-(1.-1./float(adj)) ),(-.3)))

Figure 30: Example of a priority function found using default configuration, scored on single- and
two-deletion-correcting code sizes.
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def f(v, G, n, s):
"""Returns the priority with which we want to add ‘v‘ to the independent set."""
def findNumberOfOnesForEveryPossibleSubstring():

def numberOfOnesInNode(i,k):
substr = v[i:(i + k)]
return sum([int (val == ’1’)for val in substr]);

possibleLengths=[x for x in range(1,(n-s))]
onelist=[]
for index,elemt in enumerate(possibleLengths):

startindex= 0
while True:
numofOne=numberOfOnesInNode(startindex, elemt);
onelist.append({’onenum’:numofOne,’startingIndex’:startindex});
startindex += 1

if ((startindex+ elemt)>n):
break

return onelist
onelist=findNumberOfOnesForEveryPossibleSubstring()

score=lambda x:-(x[’onenum’] * x[’onenum’]) *(max(1,abs(((x[’startingIndex’]/float(n)))-(s/(float(n))))))
finalScore=map(score,onelist)
return sum(finalScore)

Figure 31: Example of a priority function found using prompt 3, scored on single- and two-deletion-
correcting code sizes. It achieves a new lower bound for s = 2 and n = 16, with size 202, compared
to the previously best known size of 201.

def f(v, G, n, s):
"""Returns the priority with which we want to add ‘v‘ to the independent set."""
weight= []
for k in range ((n)+1):

cnt=0
for p in range(((n)- (k))+1):

substring=""
for r in range(p,(p)+(k)):

characTer=str( int(v[r]))
substring+=characTer

numZeROES=substring.count("0")
NUMONES=substring.count("1")
if numZeROES>=NUMONES:

Weight=-( numZeROES*2*(k+1))
else :

Weight =(NUMONES*.8*(k+1))
weight.append(Weight)

averagE=np.mean(weight )
return averagE

Figure 32: Example of a priority function found using prompt 4, scored on one and two-deletion
correcting code sizes. It achieves a new lower bound for s = 2 and n = 16, with size 204 compared
to the previously best known size of 201.

def f(v, G, n, s):
"""Returns the priority with which we want to add ‘v‘ to the independent set."""
wt=[]
for q in range ((n)+1):

counter=0
for w in range(((n)-q )+1) :

substring=""
for e in range(w, (w +(q))):

character= str( int(v[e]))
substring+= character

NumberofZeroes=substring.count("0")
NumbersOfOnes=substring.count("1")
if NumbersOfOnes>=NumberofZeroes :

weight= -(NumbersOfOnes )*(q*6+.89)
else :

weight= (NumberofZeroes )*.5 * (q *3 )
wt.append(weight)

if len(wt)!=0 :
Average=sum(wt)/len(wt)**.7*3

return Average

Figure 33: Example of a priority function found using prompt 4, evaluated on one and two-deletion-
correcting code sizes.
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Figure 34: Distribution of independent set sizes when sequences are iteratively added in order over
105 permutations of all 2n sequences.

J COMPUTATIONAL DIFFICULTY OF FINDING A MAXIMUM INDEPENDENT SET
IN OUR GRAPHS

Finding a maximum independent set in a general graph is NP-complete (Lovász & Plummer, 2009).
Even if the optimal size is known, evaluating all subsets of that size requires

(
2n

optimal size

)
evaluations.

For example, for n = 6, s = 1 and maximum size 10, this already exceeds 151 billion evaluations.
Without knowing the exact optimal size, all possible subsets of varying sizes must be considered,
leading to a worst-case complexity of 22

n

. Moreover, verifying whether a subset forms a valid
deletion-correcting code is expensive and requires checking that no two sequences share a common
subsequence of length n − s. This check can be done in O(n2) time using dynamic programming
for fixed s, so verifying a subset requires O(k2n2) time (Cormen et al., 2022).

However, if many maximum independent sets exist in the graph, a simple greedy search can quickly
find one, significantly reducing the problem’s difficulty. To get an idea of whether our graphs con-
tain many maximum independent sets, we iteratively add sequences in order over 105 random per-
mutations of all 2n sequences to determine how often a random construction finds a maximum
independent set for code lengths n ∈ [6, 11] and a single deletion s = 1.

Figure 34 shows the distribution of independent set sizes for each code length n ∈ [6, 11]. For the
smallest code length (n = 6), the random search finds a maximum independent set in 118, and
for n = 7 in 8 out of 105 attempts. For larger code lengths, the random search does not find a
maximum independent set in any of the 105 attempts. Moreover, as the code length increases, the
distribution of independent set sizes shifts further from the maximum set size, indicating that the
problem becomes more difficult.
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