
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LLM-GUIDED SEARCH FOR DELETION-CORRECTING
CODES

Anonymous authors
Paper under double-blind review

ABSTRACT

Finding deletion-correcting codes of maximum size has been an open problem
for over 70 years, even for a single deletion. In this paper, we propose a novel
approach for constructing deletion-correcting codes. A code is a set of sequences
satisfying certain constraints, and we construct it by greedily adding the highest-
priority sequence according to a priority function. To find good priority func-
tions, we leverage FunSearch, a large language model (LLM)-guided evolutionary
search proposed by Romera et al., 2024. FunSearch iteratively generates, evalu-
ates, and refines priority functions to construct large deletion-correcting codes.
For a single deletion, our evolutionary search finds functions that construct codes
which match known maximum sizes, reach the size of the largest (conjectured
optimal) Varshamov-Tenengolts codes where the maximum is unknown, and in-
dependently rediscover them in equivalent form. For two deletions, we find func-
tions that construct codes with new best-known sizes for code lengths n = 12, 13,
and 16, establishing improved lower bounds. These results demonstrate the poten-
tial of LLM-guided search for information theory and code design and represent
the first application of such methods for constructing error-correcting codes.

1 INTRODUCTION

Error-correcting codes enable reliable communication and data recovery from storage media (such as
HDDs and SSDs), even in the presence of errors and defects. In a typical coding scheme, an encoder
maps information to a codeword, which is corrupted by errors during transmission, and a decoder
attempts to recover the original message. While substitutions and erasures are well understood
with optimal encoding and decoding algorithms approaching known theoretical limits, deletions
are significantly more challenging. Deletions shift subsequent symbols, disrupting the memoryless
property typically assumed in coding theory.

Correcting deletions is of theoretical and practical interest. In theoretical computer science, prob-
lems related to deletions include determining whether edit distance between two strings can be com-
puted in strongly sub-quadratic time (Backurs & Indyk, 2015). Deletions are practically relevant
in cryptography (Mihaljević et al., 2022), multiple sequence alignment in computational biology
(Carrillo & Lipman, 1988), document exchange (Cheng et al., 2018), traditional storage technolo-
gies such as racetrack memories (Parkin et al., 2008) and bit-patterned magnetic recording (Albrecht
et al., 2015), as well as emerging technologies such as DNA data storage (Gimpel et al., 2024).

For a fixed number of correctable errors, better codes have larger code sizes. Despite significant
effort, determining the maximum code size for a fixed number of adversarial deletions has proven
difficult using traditional hand-crafted, human-driven approaches to information theory. A class of
codes known as Varshamov-Tenengolts (VT) codes (Varshamov & Tenengolts, 1965) achieves the
maximum possible size for correcting a single deletion as the code length goes to infinity (Leven-
shtein, 1966). However, for finite code lengths, the gap to the best-known upper bound is large even
at moderate code lengths (Kulkarni & Kiyavash, 2013). Although VT codes are conjectured to be
largest for all code lengths and a single deletion, their optimality has only been proven for lengths
up to 11 (Butenko et al., 2002; Nakasho et al., 2023; Sloane, 2002).

In this paper, we propose a novel approach to constructing error-correcting codes using large lan-
guage models (LLMs) and evolutionary search. While our framework is general, we focus on codes
that correct a fixed number of adversarial deletions in a sequence of bits, as many fundamental

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Step 4: Deduplication 
and storing the new 
priority function

Improve f2 over i t s prev ious
v e r s i on s f1(v, G) and f0(v, G) .

1

Step 2: Prompt construction and LLM 
inference

Step 1: Sampling from the 
program database

  score( f2 ) = s1
Step 3: Evaluating the new 
priority function on graphs

f2( ) =

f2

Island 1

Island 2Island 3

Island 4

Island 5
Cluster s1

Cluster s2

… 

{ f1,1
m }

{ f 2,1
m }

LLM

Figure 1: FunSearch for finding deletion-correcting codes iteratively refines a priority function
through evolutionary search guided by a pretrained LLM. In each iteration, a few-shot prompt is
constructed by sampling from the program database. The LLM generates a new priority function,
which is evaluated by greedily constructing deletion-correcting codes for different code lengths and
numbers of deletions. If executable and not a duplicate, the function is added to the database.

questions remain open in this setting, even for a single deletion (Sloane, 2002). We find explicit
algorithms that construct deletion-correcting codes by assigning priorities to sequences. These al-
gorithms build the code greedily by iteratively adding the highest-priority sequence while ensuring
that deletion-correcting constraints are satisfied.

LLMs are successful for challenging tasks such as mathematical reasoning and coding (Chen et al.,
2021; Cobbe et al., 2021; Lewkowycz et al., 2022; Li et al., 2022), but are often limited to their
training data and existing knowledge (Bender et al., 2021; Mahowald et al., 2024). Recently,
Romera-Paredes et al. (2024) showed that combining LLMs with evolutionary search and an ex-
ternal evaluator can overcome this limitation for problems that are difficult to solve but easy to
evaluate. Their method, FunSearch (Function Space Search), represents combinatorial problems as
code and searches for algorithmic solutions, improving on best-known results for problems such as
the cap set problem and the online bin-packing problem.

We adapt FunSearch Romera-Paredes et al. (2024) to find large deletion-correcting codes. To im-
prove sample efficiency, we introduce a deduplication step that removes priority functions that differ
only in syntax. Previously generated priority functions are used as candidates in few-shot prompts
for the LLM to generate new, improved functions. Removing duplicate functions makes the prompt
more effective at discovering new logic rather than repeating minor syntactic variations.

Our main contributions are:

• We propose an LLM-guided evolutionary search to find deletion-correcting codes based on
FunSearch.

• Our search discovers functions that construct previously unknown maximum-size codes for
a single deletion and small code lengths (n ≤ 11), and match the size of the conjectured-
optimal VT codes for larger code lengths (verified up to n = 25), including one that inde-
pendently rediscovers them. For two deletions, we find improved lower bounds for code
lengths n = 12, 13 and 16.

• We provide an efficient, parallel implementation of the LLM-guided evolutionary search
and release our code alongside the paper to facilitate future research.

Our results demonstrate the potential of LLM-guided search for information and coding theory.
However, our current approach does not scale well to long codes, a limitation we discuss in more
detail later.

2 RELATED WORK

We review related work on LLM-guided search and deletion-correcting codes.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 RELATED WORK ON LLM-GUIDED SEARCH

As mentioned, our work builds on FunSearch Romera-Paredes et al. (2024). Other approaches
also integrate LLMs in evolutionary search. Lehman et al. (2023) first demonstrate a synergy be-
tween LLMs and evolutionary search, using the LLM as an intelligent mutator for automatic data
generation (see also (Xu et al., 2023)). Other applications of LLM-guided search are in machine
learning (Chen et al., 2023; Fernando et al., 2024; Hazra et al., 2024; Lee et al., 2025; Lu et al.,
2024; Ma et al., 2023; Nasir et al., 2024; Shojaee et al., 2024; Yang et al., 2023; Zheng et al., 2023),
black-box optimization (Aglietti et al., 2024; Brahmachary et al., 2025; Lange et al., 2024), and
automatic heuristic design.

The most relevant application to finding deletion-correcting codes is automatic heuristic design for
combinatorial problems. Liu et al. (2024) propose EoH, which improves performance and sample
efficiency over FunSearch by evolving both natural language and algorithmic components. Ye et al.
(2024) introduce ReEvo, which incorporates reflection into the search by prompting the LLM to an-
alyze and revise previously generated solutions. ReEvo improves sample efficiency over FunSearch
at the cost of increased inference per iteration. Dat et al. (2024) propose two diversity metrics and
find that FunSearch and ReEvo stagnate in local optima due to low diversity, while EoH trades
off diversity for performance. To address the tradeoff, they tune function parameters via harmony
search (Shi et al., 2012), though this approach is impractical for problems with more costly evalua-
tions like ours.

None of the methods building on FunSearch (Chen et al., 2024; Dat et al., 2024; Liu et al., 2024;
Ye et al., 2024; Zheng et al., 2025) outperform the results discovered by FunSearch on large-scale
instances of the cap set problem. This suggests that scaling LLM-based evolutionary search in a
distributed system is important to solve certain combinatorial problems. We provide a suitable,
scalable implementation.

2.2 RELATED WORK ON DELETION-CORRECTING CODES

Levenshtein (1966) proves that VT codes (Varshamov & Tenengolts, 1965) are asymptotically op-
timal for correcting a single deletion and proposes a linear-time decoding algorithm. VT codes are
also conjectured to be largest for finite code lengths n, but this has only been proven for n ≤ 11 (for
n ≤ 8 (Sloane, 2002); for n ≤ 10 in (Butenko et al., 2002); for n ≤ 11 in (Nakasho et al., 2023)).

Levenshtein (2002) derives non-asymptotic upper and lower bounds for single-deletion-correcting
codes. Later work (Cullina & Kiyavash, 2016; Fazeli et al., 2015; Kulkarni & Kiyavash, 2013)
refines his upper bound by formulating the problem as a linear program and considering its dual
relaxation. The optimal solution to the relaxation equals the relaxation of the original problem and
provides an upper bound on the maximum code size. However, exhaustive search by Kulkarni &
Kiyavash (2013) for short code lengths shows a gap between the best relaxed solution and the largest
VT codes.

Regarding known constructions for multiple deletions, Helberg & Ferreira (2002) extend VT codes
and propose the first explicit construction, but the resulting code sizes remain limited for longer
lengths. Swart & Ferreira (2003) find larger code sizes for two deletions and code lengths n ≤ 12 by
using a run-length representation of sequences in a greedy search over 5×104 random permutations.
Similarly, Landjev & Haralambiev (2007) use heuristics and search to construct deletion-correcting
codes for code lengths n ≤ 30 and deletions s = 2, 3, 4, 5.

3 PROBLEM STATEMENT

We consider the problem of constructing deletion-correcting codes with a large number of code-
words for finite code lengths n that can correct a fixed number s of adversarial bit deletions.

A deletion-correcting code is a set of sequences such that, even if an adversary deletes s bits from
a codeword, the original codeword can still be uniquely recovered. Unique recovery is not possible
if two codewords share a common subsequence of length n − s. A subsequence is any sequence
of length n − s obtained by deleting s bits from a codeword while preserving the order of the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

"""
Finds large independent set in graph G where vertices are binary strings of length n.
Vertices in G are connected if they share a subsequence of length at least n − s.
Improve f1 over its previous versions below.
Keep the code short and comment for easy understanding.
"""
import numpy as np
import networkx as nx

def f0(v, G):
"""Returns the priority with which we want to add vertex v."""
return 0.0

def f1(v, G):
"""Improved version of f0"""

Figure 2: Initial prompt.

remaining bits. Thus, an n-bit, s-deletion-correcting code is a set C ⊆ {0, 1}n such that the sets of
length-(n− s) subsequences obtained from any two distinct codewords c, c′ ∈ C are disjoint.

The problem of constructing large n-bit, s-deletion-correcting codes can be reduced to finding an
independent set I in a graph G defined as follows. Let G be an undirected graph where each vertex
is one of the 2n binary sequences of length n, and we have an edge between two vertices if and only
if the binary sequences they represent share a common subsequence of length at least n − s. An
independent set in the graph G is a subset of vertices I such that no two vertices are connected by
an edge. An n-bit, s-deletion-correcting code is an independent set in the graph G.

To construct deletion-correcting codes, we greedily build independent sets I in the graph G by
iteratively adding vertices v with the highest priority to an initially empty set and removing their
neighbors. Let f(v, G) be a priority function that assigns a real-valued priority to each vertex v
in the graph G. At each step, we select the vertex with the highest priority f(v, G), add it to the
independent set I, and remove the vertex and its neighbors from G. If two or more vertices have the
same priority, we break the tie by selecting the lexicographically smallest vertex (with 0 considered
smaller than 1). The size of the resulting independent set I depends on the choice of the priority
function f , which determines which vertices are added.

In this formulation, constructing large n-bit, s-deletion-correcting codes reduces to designing a pri-
ority function f that maximizes the independent set size I in the graph G.

4 METHOD

We adapt FunSearch, originally proposed by Romera-Paredes et al. (2024), and augment it with a
deduplication step to optimize the priority function f to construct large deletion-correcting codes.
FunSearch consists of four steps, explained below.

Step 1: Sampling from the program database. The program database is divided into islands that
evolve independently to promote diversity. Each island groups priority functions into clusters based
on the independent set sizes they achieve on evaluation inputs. Each cluster is assigned a score,
which is explained in Step 3.

We sample a priority function from the program database as follows. First, we randomly sample
an island j. Then, from island j, we sample a cluster i with probability pi, given by a softmax
distribution over the scores of all clusters on island j

pi =
escorei /Tj∑
i′ e

scorei′ /Tj
, where Tj = T

(
1− nj mod P

P

)
.

Here, scorei is the score of cluster i, and Tj is the temperature for island j.

The temperature Tj depends on an initial temperature T , the number of priority functions nj stored
on island j, and a sampling period P . As the number of stored priority functions nj increases, the
temperature for island j decreases to shift the focus from exploration (sampling closer to uniform)
to exploitation (favoring clusters with higher evaluation scores). The temperature resets after every
P stored priority functions to reintroduce exploration and avoid suboptimal convergence.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We sample a priority function f from cluster i on island j favoring shorter functions based on their
lengths relative to the minimum and maximum function lengths in that cluster. The preference is
based on the assumption, under Kolmogorov complexity (Kolmogorov, 1965; Li et al., 2008), that
shorter functions often have lower computational complexity and are more efficient to evaluate,
though this is not always the case in practice.

Step 2: Prompt construction and LLM inference. We construct a few-shot prompt by repeating
the sampling from Step 1 twice to obtain two priority functions. Sampling is done without replace-
ment for diverse few-shot examples. The initial prompt is shown in Figure 2.

The sampled priority functions are sorted by their cluster score, with the lower-scoring function first
and the higher-scoring function as an example for improvement. The prompt is framed as a code
completion task and ends with the header of a new priority function for the LLM to improve the
higher-scoring example.

The prompt is passed through a pretrained LLM to generate a new priority function. We use
StarCoder2-15B (Lozhkov et al., 2024), an open-access model with 15 billion parameters trained on
The Stack v2 dataset (775B tokens from 600+ programming languages) and additional tokens from
sources like pull requests, issues, Jupyter notebooks, and StackOverflow, totaling 913B tokens.

Step 3: Evaluating the new priority function on graphs. We evaluate the new priority function as
follows. For each evaluation input consisting of a code length n and a deletion correction parameter
s, we construct an independent set I in the graph G using the new priority function, as described in
Section 3. If the function is not executable (e.g., due to syntax errors), it is discarded.

The evaluator assigns a score to the priority function using the scoring function score(f). We use
the independent set size obtained for the longest code length n in the evaluation input as the score,
as we found this to outperform aggregate metrics such as averaging independent set sizes across all
evaluation inputs (see Appendix E).

Step 4: Deduplication and storing the new priority function. The evaluated priority function is
stored on the same island j from which the few-shot examples in Step 1 are sampled. Each island
serves as an independent program database to promote diversity. The independent set sizes achieved
by the priority function over the evaluation inputs are compared to existing clusters on island j. If no
cluster exists with priority functions that achieve the same independent set sizes, the function forms
a new cluster and is assigned score(f).

If a matching cluster exists, we apply our deduplication step to improve exploration and encourage
the LLM to generate priority functions with distinct logic rather than minor syntactic variations.
Two functions are considered duplicates if they produce the same hash value, computed from the
priority scores they assign to each sequence. If the function is not a duplicate, it is assigned to the
matching cluster, where all functions share the same score(f), denoted as scorei in Step 1. If it is a
duplicate, it is discarded.

Our deduplication step allows finding good priority functions with fewer functions processed (gen-
erated, evaluated, and stored) by avoiding prompts that include functionally identical examples dif-
fering only in syntax (see Appendix D).

Each island in the program database is initialized with the same trivial priority function shown in Fig-
ure 2, which assigns equal priority to all sequences. To allow information exchange between islands,
we periodically reset them. During a reset, the stored priority functions in the worst-performing half
of the islands are discarded. Each island is then re-initialized with the priority function that initial-
ized the highest-scoring cluster from a randomly sampled surviving island. Romera-Paredes et al.
(2024) reset islands after a fixed time interval. In our implementation, we reset islands after a fixed
number R of stored priority functions to decouple the reset logic from the rate at which functions
are processed (which depends on available resources).

5 EXPERIMENTS

We run 20 evolutionary search experiments, varying the initial temperature T , sampling period P ,
and the number of functions R stored before an island reset. Each experiment runs with or without
dynamically decreasing the LLM sampling temperature to balance exploration and exploitation.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Code sizes for single-deletion correction. Each row corresponds to a run configuration:
trivial initialization (fT ); first successful function after 120K processed (f120K); best function from
standard runs with varying hyperparameters (f ); using weighted scoring (fW ); prompts 3 and 4
with StarCoder2 (f3,4) and GPT-4o mini (f3,4/GPT, see Figures 18 and 20 for prompt details). Bold
indicates the VT0(n) bound, which is optimal for n ≤ 11.

Priority function n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 n = 13 n = 14 n = 15 n = 16

fT 8 14 25 42 71 125 224 406 737 1345 2468
f∗ 10 16 30 52 94 172 316 586 1054 2000 3389

f120K 10 16 30 52 94 172 316 449 794 1386 2515
fW∗

10 16 30 52 94 172 316 564 1096 1364 2493
f3,4&3/GPT 10 16 30 52 94 172 316 586 1096 2048 3856
f4/GPT 10 16 30 52 94 172 316 586 1083 2025 3696

∗Reported code sizes are not constructed by a single priority function. For each code length n, we report the maximum size achieved across all successful functions
discovered with the run configuration.

Our main finding is that FunSearch discovers priority functions that construct maximum-size single-
deletion-correcting codes for lengths 6 ≤ n ≤ 11, including previously unknown constructions. For
longer code lengths (n > 11), where VT codes are conjectured to be optimal, FunSearch rediscovers
them within our greedy framework and also finds alternative constructions of the same size (verified
up to length n = 25). For two deletions, we discover larger codes than previously known for code
lengths n = 12, 13 and 16.

5.1 EXPERIMENTAL SETUP

We score the generated priority functions on code sizes achieved for a single deletion (s = 1) and
lengths n ∈ [6, 11], where the maximum independent set sizes are known. The evaluation range
balances computational feasibility and problem difficulty. Smaller code lengths n make the problem
trivial, while larger n result in prohibitive computational and memory costs.

Each evolutionary search processes (generates, evaluates, and stores) up to 400K priority functions,
which takes about 350 GPU hours. Performance is measured as a binary outcome: success or failure.
A function is said to be successful if it constructs maximum independent sets on all evaluation inputs.
A configuration is successful if it discovers at least one successful function during the search. If a
run succeeds before 400K functions, we stop early. We then process an additional 20K functions to
find other successful functions that may generalize better to longer code lengths.

For error-correcting codes to be practical, they should work for arbitrary sequence lengths. However,
testing our priority functions on larger code lengths is expensive, as the number of sequences they
must evaluate grows exponentially with sequence length. Evaluating functions on inputs where the
optimum is known provides a practical way to judge their quality. Functions that fail to achieve
optimality on the evaluation inputs are not promising candidates to test on larger code lengths.
Therefore, we only analyze successful functions at the end of each search.

We use the LLM hyperparameters listed in Table 7c in Appendix B, which we find to perform best
in smaller-scale experiments.

In all experiments, we use the independent set size for code length n = 11 as the scoring function for
the generated priority functions, as we find it discovers successful functions with fewer processed
programs than aggregate scoring functions (see Appendix E).

5.2 UNDERLYING LOGIC OF PRIORITY FUNCTIONS

We first identify common logical structures in the discovered priority functions and then discuss
their relation to the best known VT codes. We categorize the discovered priority functions into
graph-based and number-theoretic functions.

Graph-based priority functions assign priority based on local graph connectivity and sequence char-
acteristics, considering both the degree of a vertex and the bit patterns of its neighbors. An example
is in Figure 10 in Appendix C.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

6 7 8 9 10 11 12 13 14 15 16

Code length n

O
ve

rl
a
p

100%

90−99%

80−89%

70−79%

60−69%

50−59%

40−49%

30−39%

20−29%

10−19%

1−9%

0%

Figure 3: Sequence overlap between discovered priority functions and the largest VT0(n) codes for
n ∈ [6, 16]. Color denotes overlap bin and bar height the number of functions.

Number-theoretic priority functions assign priority based on the integer representations of neighbor-
ing sequences and their bit patterns. An example is in Figure 11 in Appendix C.

The best-known single-deletion-correcting codes are the VT codes (Varshamov & Tenengolts,
1965). For a given parameter a ∈ Z, the VT code of length n, denoted VTa(n), is defined as
the set of binary sequences v = (v1, v2, . . . , vn) ∈ {0, 1}n satisfying

n∑
i=1

ivi = a+ (n+ 1)k, k ∈ Z, (1)

where a is the remainder and k the quotient when dividing
∑n

i=1 ivi by n+1.

The VT0(n) code has maximum code size as n → ∞ and is conjectured to have maximum code size
for all code lengths n. In our framework, VT0(n) codes can be represented by a priority function
that assigns a high priority (e.g., +∞) to sequences satisfying Equation 1 with a = 0, and a low
priority (e.g., 0) to those that do not.

Figure 3 shows the sequence overlap between the codes constructed by our discovered priority func-
tions and the largest VT0(n) codes for tested code lengths n ∈ [6, 16]. Many of our discovered
priority functions recover the largest VT0(n) codes with 100% sequence overlap and follow simi-
lar logic, as both graph-based and number-theoretic functions assign weights to bits based on their
position in the sequence. However, priority functions that use graph structure alongside sequence
information discover previously unknown codes. For example, the graph-based priority function in
Figure 10 (Appendix C) constructs codes that share no sequences with the largest VT0(n) codes for
n = 7, 9, 11, and 13, while achieving the same size.

5.3 GENERALIZATION TO LONGER CODE LENGTHS AND MULTIPLE DELETIONS

A key strength of our approach is that we search for priority functions that construct deletion-
correcting codes, rather than searching for the codes directly. This allows us to construct longer
and multiple deletion-correcting codes with the priority functions found for short code lengths and
a single deletion.

Table 1 shows that priority functions optimized for code lengths n ∈ [6, 11] also achieve the conjec-
tured largest VT0(n) code sizes for n = 12, 13 and remain close for n ∈ [14, 16]. For two deletions,
the priority functions construct codes whose sizes are close to the best known over the tested lengths
n ∈ [7, 16], and improve on them for n = 13, where our search discovers a two-deletion-correcting
code of size 50, larger than the previous best known size of 49. The corresponding priority function
is shown in Figure 9, and detailed results are given in Table 4, both in Appendix I.

Compared to previous search-based methods that search the full space of 2n binary sequences (Land-
jev & Haralambiev, 2007; Swart & Ferreira, 2003), our search finds functions that construct larger
two-deletion-correcting codes for lengths n ∈ [12, 16]. Searching the sequence space becomes ex-
ponentially harder with the code length, making it increasingly difficult to discover large codes. In
contrast, our approach searches in the space of priority functions, independent of the code length.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

def f(v, G, n, s):
# The condition ord(a) > 125 has no effect, as the ASCII values of ’0’ and ’1’ are always below 125.
v = ’’.join([’-’ * (ord(a) > 125) + a for a in list(v)])
onepositions = [c for c, d in reversed(list(enumerate(v, start=-len(v)))) if d == ’1’]
negonesum = sum([-c for c in onepositions])
# Maximum of negonesum is (n-1)/2 for n odd and n/2 for n even, which is always < n, so taking mod n does
not change the priority

finalans = (⌊negonesum/((n + s) · 1)⌋ % n)
return finalans

Figure 4: Priority function generated by StarCoder2 using Prompt 4, with comments added for
clarity (see Figure 20 for prompt details). For s = 1, the function constructs the VT0 code when
used to iteratively select sequences in order of priority and lexicographic tie-breaking.

These results show that priority functions optimized for single-deletion correction can, to some
extent, generalize beyond their evaluation range. However, we did not find priority functions that
construct maximum single-deletion-correcting codes where known and match or exceed the best-
known sizes for two deletions over all tested code lengths.

5.4 PROMPT ENGINEERING AND GENERAL-PURPOSE LLMS

To assess whether prompt engineering improves generalization to longer code lengths or sample ef-
ficiency (fewer functions processed before success), we modify the baseline prompt in Figure 2. We
also test GPT-4o mini, an instruction-tuned model trained on diverse tasks beyond code generation,
which may better interpret the task than code-only models.

We find that prompt engineering improves generalization for both StarCoder2 and GPT-4o mini and
improves sample efficiency for GPT-4o mini. Explicitly instructing StarCoder2 to consider binary
string properties leads to rediscovering the largest VT0(n) codes in an alternative form.

5.4.1 PROMPT ENGINEERING

We test five prompts. Prompt 1 explicitly states that we are considering the single deletion case
(s = 1) and that the priority function determines the importance of each vertex for inclusion in
the independent set. Prompt 2 includes the evaluation script to provide context on how the priority
function determines independent set size through greedy selection. Prompt 3 removes the graph G
as an input to the priority function and excludes the networkx package to bias the LLM toward
computing priority based on sequence structure only. Prompt 4 explicitly instructs the LLM to
consider sequence structure. Prompt 5 combines modifications from prompts 1 and 4. The prompts
are shown in Appendix G.1.

Table 1 shows that the priority functions discovered using StarCoder2 with prompts 3 and 4 gener-
alize better to longer code lengths. Figures 19 and 21 in Appendix G.1 show examples of priority
functions found with prompts 3 and 4, respectively, that achieve VT0(n) code sizes for all tested
code lengths n ∈ [6, 25], but follow a different logic. The function in Figure 21 constructs new
codes for odd lengths that have zero sequence overlap with the largest VT0(n) codes in this range.
Figure 4 shows the priority function found with prompt 4, which is equivalent to the largest VT0(n)
codes for all code lengths, as explained in Appendix H.

The other prompts fail to find successful priority functions within 400K processed. With prompt en-
gineering (prompt 3), the first successful function is discovered after approximately 300K functions,
compared to 120K in the best run without prompt engineering. This suggests that, for StarCoder2,
the prompts considered here do not improve sample efficiency.

5.4.2 GPT-4O MINI FOR GENERATING PRIORITY FUNCTIONS

Figure 5 shows that GPT-4o mini finds a successful priority function with fewer candidates than
StarCoder2 (69K vs. 120K) and generates a larger fraction of executable functions (43.7% vs.
16.2%). However, without prompt engineering, GPT-4o mini fails to find successful functions within
400K processed. Successful solutions are only found with prompts 3 and 4.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3 4

Total Functions Processed ×105

140

160

180

200

O
ve

ra
ll

B
es

t
S

co
re

Baseline
Prompt 1
Prompt 2

Prompt 3
Prompt 4

Prompt 5
Optimal

(a) Search trajectory with GPT-4o mini.

0 1 2 3 4

Total Functions Processed ×105

140

160

180

200

O
ve

ra
ll

B
es

t
S

co
re

Baseline
Prompt 1
Prompt 2

Prompt 3
Prompt 4

Prompt 5
Optimal

(b) Search trajectory with StarCoder2.

Figure 5: GPT-4o mini finds successful priority functions with fewer processed and generates more
executable functions than StarCoder2, but requires prompt engineering.

Figures 23 and 24 in Appendix G.2 show examples of priority functions discovered with GPT-4o
mini using prompt 3 and prompt 4, respectively. Functions generated with prompt 3 achieve 100%
sequence overlap with the largest VT0(n) codes for lengths n ∈ [6, 25], while functions generated
with prompt 4 achieve VT0(n) code sizes for n ∈ [6, 13] and are close to VT0(n) code sizes for
larger lengths n ∈ [14, 16].

5.5 SEARCH FOR MULTIPLE DELETION-CORRECTING CODES

We now conduct evolutionary searches for two-deletion-correcting codes. Since optimal code sizes
are unknown in this regime, we process all 400K functions without early stopping and analyze all
functions in the program database that achieve a larger average size on the evaluation inputs than the
trivial initialization.

We consider two additional evaluation sets for the search. The first scores functions on two-deletion-
correcting code sizes for n ∈ [7, 12]. The second jointly scores single- and two-deletion correction,
using n ∈ [9, 11] for s = 1 and n ∈ [10, 12] for s = 2. Each set runs with the default configuration
from Section 5.1, as well as weighted scoring and prompt 4, totaling six additional runs.

Searches targeting two-deletion correction discover a new lower bound at n = 12, improving from
32 to 34 (e.g., Figure 28). The joint search finds a new bound at n = 16, improving from 201 to
204 and functions achieving VT0(n) sizes for single deletion with n ∈ [6, 13] that closely match
best-known sizes for two and three deletions over n ∈ [7, 16] (e.g., Figure 33). Appendix I provides
details, Table 4 summarizes achieved sizes, and Figure 26 shows differences from best-known sizes.

6 CONCLUSION AND LIMITATIONS

In this work, we found new error-correcting codes and re-discovered existing ones using LLMs and
evolutionary search. Our method applies to any error type or combination thereof, as long as the
distinguishability constraint is well-defined (e.g., for deletions ensuring no common subsequences).

A key limitation of our approach is the poor scalability of the evaluator, which makes evolutionary
search infeasible for moderate to large code lengths. The evaluator must compute priorities for
exponentially many sequences as code length increases. For graph-based priority functions, the
evaluator must also construct or load the full graph storing all sequences and pairwise edges, which
quickly becomes memory-prohibitive

Nonetheless, searching in function space generalizes better than previous approaches (Landjev &
Haralambiev, 2007; Swart & Ferreira, 2003) that search all binary sequences directly. Priority func-
tions found for shorter codes can construct larger codes and, as we have seen, generalize to some
extent. Moreover, these functions can be mathematically analyzed to potentially determine code
sizes without explicit construction, as demonstrated by the priority function that rediscovered VT
codes.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

LLM USAGE

Large language models were used as writing assistance tools for editing and polishing the text for
this submission.

REFERENCES

Virginia Aglietti, Ira Ktena, Jessica Schrouff, Eleni Sgouritsa, Francisco J. R. Ruiz, Alan Malek,
Alexis Bellot, and Silvia Chiappa. FunBO: Discovering acquisition functions for bayesian opti-
mization with FunSearch. arXiv:2406.04824, 2024.

Thomas R. Albrecht, Hitesh Arora, Vipin Ayanoor-Vitikkate, Jean-Marc Beaujour, Daniel Bedau,
David Berman, Alexei L. Bogdanov, Yves-Andre Chapuis, Julia Cushen, Elizabeth E. Dobisz,
Gregory Doerk, He Gao, Michael Grobis, Bruce Gurney, Weldon Hanson, Olav Hellwig, Toshiki
Hirano, Pierre-Olivier Jubert, Dan Kercher, Jeffrey Lille, Zuwei Liu, C. Mathew Mate, Yuri
Obukhov, Kanaiyalal C. Patel, Kurt Rubin, Ricardo Ruiz, Manfred Schabes, Lei Wan, Dieter
Weller, Tsai-Wei Wu, and En Yang. Bit-patterned magnetic recording: Theory, media fabrication,
and recording performance. IEEE Transactions on Magnetics, 2015.

Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic time
(unless SETH is false). In Proceedings of the forty-seventh annual ACM symposium on Theory of
Computing, 2015.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
Dangers of Stochastic Parrots: Can Language Models Be Too Big? In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, 2021.

Shuvayan Brahmachary, Subodh M. Joshi, Aniruddha Panda, Kaushik Koneripalli, Arun Kumar
Sagotra, Harshil Patel, Ankush Sharma, Ameya D. Jagtap, and Kaushic Kalyanaraman. Large
language model-based evolutionary optimizer: Reasoning with elitism. Neurocomputing, 2025.

Sergiy Butenko, Panos Pardalos, Ivan Sergienko, Vladimir Shylo, and Petro Stetsyuk. Finding
maximum independent sets in graphs arising from coding theory. In Proceedings of the 2002
ACM Symposium on Applied Computing, 2002.

Humberto Carrillo and David Lipman. The Multiple Sequence Alignment Problem in Biology.
SIAM Journal on Applied Mathematics, 1988.

Angelica Chen, David Dohan, and David So. EvoPrompting: Language Models for Code-Level
Neural Architecture Search. In Advances in Neural Information Processing Systems, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
Large Language Models Trained on Code. arXiv:2107.03374, 2021.

Zijie Chen, Zhanchao Zhou, Yu Lu, Renjun Xu, Lili Pan, and Zhenzhong Lan. UBER:
Uncertainty-Based Evolution with Large Language Models for Automatic Heuristic Design.
arXiv:2412.20694, 2024.

Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Deterministic Document Exchange Protocols,
and Almost Optimal Binary Codes for Edit Errors. In IEEE 59th Annual Symposium on Founda-
tions of Computer Science (FOCS), 2018.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training Verifiers to Solve Math Word Problems. arXiv:2110.14168, 2021.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

Daniel Cullina and Negar Kiyavash. Generalized Sphere-Packing Bounds on the Size of Codes for
Combinatorial Channels. IEEE Transactions on Information Theory, 2016.

Daniel Cullina, Ankur A. Kulkarni, and Negar Kiyavash. A coloring approach to constructing
deletion correcting codes from constant weight subgraphs. In IEEE International Symposium on
Information Theory Proceedings, 2012.

Pham Vu Tuan Dat, Long Doan, and Huynh Thi Thanh Binh. HSEvo: Elevating Automatic
Heuristic Design with Diversity-Driven Harmony Search and Genetic Algorithm Using LLMs.
arXiv:2412.14995, 2024.

Arman Fazeli, Alexander Vardy, and Eitan Yaakobi. Generalized Sphere Packing Bound. IEEE
Transactions on Information Theory, 2015.

Chrisantha Fernando, Dylan Sunil Banarse, Henryk Michalewski, Simon Osindero, and Tim
Rocktäschel. Promptbreeder: Self-Referential Self-Improvement via Prompt Evolution. In Pro-
ceedings of the 41st International Conference on Machine Learning, 2024.

Andreas L Gimpel, Wendelin J Stark, Reinhard Heckel, and Robert N Grass. Challenges for error-
correction coding in dna data storage: photolithographic synthesis and dna decay. Digital Dis-
covery, 2024.

Rishi Hazra, Alkis Sygkounas, Andreas Persson, Amy Loutfi, and Pedro Zuidberg Dos Mar-
tires. REvolve: Reward Evolution with Large Language Models using Human Feedback.
arXiv:2406.01309, 2024.

A.S.J. Helberg and H.C. Ferreira. On multiple insertion/deletion correcting codes. IEEE Transac-
tions on Information Theory, 2002.

Farzaneh Khajouei, Mahdy Zolghadr, and Negar Kiyavash. An algorithmic approach for finding
deletion correcting codes. In 2011 IEEE Information Theory Workshop, 2011.

Andrei Nikolaevich Kolmogorov. Three approaches to the definition of the concept “quantity of
information”. Problemy peredachi informatsii, 1965.

Ankur A Kulkarni and Negar Kiyavash. Nonasymptotic upper bounds for deletion correcting codes.
IEEE Transactions on Information Theory, 2013.

Ivan Landjev and Kristiyan Haralambiev. On multiple deletion codes. Serdica Journal of Computing,
2007.

Robert Lange, Yingtao Tian, and Yujin Tang. Large Language Models As Evolution Strategies. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2024.

Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, Dave Marwood, Shumeet Baluja, Dale Schuurmans,
and Xinyun Chen. Evolving Deeper LLM Thinking. arXiv:2501.09891, 2025.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley.
Evolution through large models. In Handbook of evolutionary machine learning. Springer, 2023.

V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 1966.

V.I. Levenshtein. Bounds for deletion/insertion correcting codes. In Proceedings IEEE International
Symposium on Information Theory,, 2002.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving Quantitative Reasoning Problems with
Language Models. In Advances in Neural Information Processing Systems, 2022.

Ming Li, Paul Vitányi, et al. An introduction to Kolmogorov complexity and its applications.
Springer, 2008.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 2022.

Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large
Language Model. In Proceedings of the 41st International Conference on Machine Learning,
2024.

László Lovász and Michael D Plummer. Matching theory. American Mathematical Soc., 2009.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv:2402.19173, 2024.

Chris Lu, Samuel Holt, Claudio Fanconi, Alex Chan, Jakob Foerster, Mihaela van der Schaar, and
Robert Lange. Discovering preference optimization algorithms with and for large language mod-
els. In Advances in Neural Information Processing Systems, 2024.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv:2310.12931, 2023.

Kyle Mahowald, Anna A Ivanova, Idan A Blank, Nancy Kanwisher, Joshua B Tenenbaum, and
Evelina Fedorenko. Dissociating language and thought in large language models. Trends in
cognitive sciences, 2024.

Miodrag J Mihaljević, Lianhai Wang, and Shujiang Xu. An approach for security enhancement
of certain encryption schemes employing error correction coding and simulated synchronization
errors. Entropy, 24(3):406, 2022.

Kazuhisa Nakasho, Manabu Hagiwara, Austin Anderson, and J. B. Nation. The Tight Upper Bound
for the Size of Single Deletion Error Correcting Codes in Dimension 11. arXiv:2309.14736, 2023.

Muhammad Umair Nasir, Sam Earle, Julian Togelius, Steven James, and Christopher Cleghorn.
Llmatic: neural architecture search via large language models and quality diversity optimization.
In proceedings of the Genetic and Evolutionary Computation Conference, 2024.

Stuart SP Parkin, Masamitsu Hayashi, and Luc Thomas. Magnetic domain-wall racetrack memory.
science, 2008.

Pivotal Software. RabbitMQ. https://www.rabbitmq.com/. Accessed: 2025-05-11.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 2024.

Wei-Wei Shi, Wei Han, and Wei-Chao Si. A hybrid genetic algorithm based on harmony search and
its improving. In Informatics and Management Science I. Springer, 2012.

Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K
Reddy. Llm-sr: Scientific equation discovery via programming with large language models.
arXiv:2404.18400, 2024.

Neil JA Sloane. On single-deletion-correcting codes. Codes and designs, 2002.

12

https://www.rabbitmq.com/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Theo G Swart and Hendrik C Ferreira. A note on double insertion/deletion correcting codes. IEEE
Transactions on Information Theory, 2003.

R. R. Varshamov and G. M. Tenengolts. Codes which correct single asymmetric errors. Avtomatika
i Telemekhanika, 1965.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv:2304.12244, 2023.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. arXiv:2309.03409, 2023.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. ReEvo: Large Language Models as Hyper-Heuristics with Reflective Evolution.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen Qian, Chang Xu, and Samuel Albanie. Can
gpt-4 perform neural architecture search? arXiv:2304.10970, 2023.

Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, and Bryan Hooi. Monte carlo tree search for compre-
hensive exploration in llm-based automatic heuristic design. arXiv:2501.08603, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10

Number of LLMs

0

2

4

6

F
u

n
ct

io
n

s/
H

ou
r

×103

1 2 3 4 5 6 7 8 9 10

Number of LLMs

0

2

4

6

F
u

n
ct

io
n

s/
H

ou
r

×103

Ratio 1:20

Ratio 1:15

Ratio 1:10

Ratio 1:5

Figure 6: Rate at which functions are processed for different LLM-to-evaluator ratios in our dis-
tributed implementation of FunSearch.

A IMPLEMENTATION DETAILS

We implement FunSearch using RabbitMQ (Pivotal Software) for parallelization via asynchronous
message passing. The system consists of multiple LLMs and evaluators, and a single program
database, each running as an independent worker. Workers communicate through RabbitMQ queues
using the Advanced Message Queuing Protocol (AMQP) 0-9-1, which runs over the Transmission
Control Protocol (TCP). Each worker consumes and publishes messages to their designated queues.

The program database constructs prompts and sends them to the LLM queue. The LLMs process
these prompts to generate new priority functions, which are published to the evaluator queue. The
evaluators compute evaluation scores and return the results to the program database queue.

The number of functions that can be processed within a fixed time interval is determined by the
number of LLMs and evaluators. We run our implementation of FunSearch with different LLM-
to-evaluator ratios to understand how resource allocation affects throughput. Each LLM runs on
a single GPU (NVIDIA A100 (80GB) or H100 (94GB)), while each evaluator processes inputs in
parallel using two CPU cores. Evaluators execute functions with a 5-minute timeout; if execution
exceeds this limit, the function is considered non-executable.

Figure 6 shows the throughput in functions per hour (higher is better) for different LLM-to-evaluator
ratios. We achieve the highest throughput at the largest tested ratio of 20 evaluators per LLM. We
expect that increasing the number of evaluators further would increase throughput, but we could
not test this due to infrastructure constraints. The reported results correspond to a suboptimal setup
where evaluators construct the graph from scratch rather than loading a precomputed file, which
increases evaluation time. Using precomputed graphs increases throughput further, but does not
change the conclusion that evaluators are the limiting factor, and increasing their number relative to
LLMs increases throughput up to a point.

If processing rates between LLMs and evaluators are imbalanced during execution, our imple-
mentation also supports dynamically scaling their number (within available resources) to optimize
throughput.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

100 200 300

Maximum New Tokens

1.00

1.25

1.50

1.75

2.00

R
ep

.
P

en
al

ty

0.0

0.5

1.0

1.5

P
er

fo
rm

an
ce

(a) Performance across maximum
new tokens and repetition penalty.

0.5 1.0 1.5

Sampling Temperature

0.6

0.7

0.8

0.9

1.0

T
o
p

-p
V

al
u

e

0.0

0.1

0.2

0.3

P
er

fo
rm

a
n

ce

(b) Performance across temperature
and top-p.

Parameter Best Range

Rep. Penalty 1.2 [1,2]
Top-p 0.78 [0.6,1]
Max. Tokens 246 [50,300]
Temp. 0.94 [0.5,1.5]

(c) Best-performing hyper-
parameters.

Figure 7: Results of LLM hyperparameter optimization from smaller-scale experiments.

B LLM HYPERPARAMETER OPTIMIZATION

We conduct two independent grid searches for the LLM hyperparameters, varying maximum new
tokens and repetition penalty while keeping temperature and top-p fixed, and vice versa.

We measure performance as the average improvement in the independent set sizes constructed by
the best priority functions across all islands for all code lengths n ∈ [6, 11] with deletion parameter
s = 1, relative to the trivial initialization. Each grid search run is evaluated after one hour using one
GPU and 40 CPUs to balance search depth with computational feasibility.

For the grid search over maximum new tokens, we consider values in the range [60, 300], and for
repetition penalty, values in [1.0, 2.0], both divided into 10 equally spaced grid points. Temperature
and top-p are fixed at 0.2 and 0.95, respectively, as in Section 7.1.3 of Lozhkov et al. (2024). The
results are shown in Figure 7a. Low repetition penalties combined with high maximum new tokens
often result in the LLM repeating the code completion task, generating multiple function headers
with minor variations or trivial return statements instead of a single, improved function. Repetition
penalties above 1.22 fail to generate executable functions. While competitive results are achieved
with maximum new tokens between 60 and 140 and repetition penalties between 1.05 and 1.11, the
highest performance is observed with 246 maximum new tokens and a repetition penalty of 1.22.
As discovering new maximum code sizes requires only a single priority function, we proceed with
these hyperparameters.

For the grid search over temperature and top-p, we consider values in [0.5, 1.5] and [0.6, 1.0], re-
spectively, with 10 equally spaced grid points, while keeping maximum new tokens fixed at 246 and
the repetition penalty at 1.22. The results are shown in Figure 7b. Higher variability in token sam-
pling (larger temperature and top-p values) increases fluctuations in the performance metric but also
improves performance. More deterministic sampling results in more syntactically correct functions
but does not lead to better performance.

These findings align with the hypothesis of Romera-Paredes et al. (2024) that the LLM contributes
by exploring diverse function solutions, occasionally generating good executable functions but often
producing unusable outputs. The best performance is achieved at a temperature of 0.9444 and a top-
p of 0.7778.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 2: Results for different evolutionary search hyperparameter configurations. A check mark (
√

)
indicates that the configuration discovered a priority function achieving the maximum code size; a
cross (×) indicates it did not.

(a) Results for initial temperature T , with P = 30K
and R = 1.2K fixed.

T n = 6 n = 7 n = 8 n = 9 n = 10 n = 11

0.05 × √ × × × ×
0.1

√ √ √ √ √ √
0.3

√ √ × × √ ×
0.5 × × √ × × ×
1

√ √ × × × ×

(b) Results for period P , with T = 0.1 and R =
1.2K fixed.

P n = 6 n = 7 n = 8 n = 9 n = 10 n = 11

5,000
√ √ √ √ √ √

10,000
√ √ √ × × ×

30,000
√ √ √ √ √ √

50,000
√ √ √ √ √ √

100,000
√ √ √ × × ×

(c) Results for the number of functions R stored be-
fore an island reset, with T = 0.1 and P = 30K
fixed.

R n = 6 n = 7 n = 8 n = 9 n = 10 n = 11

300
√ √ √ √ √ √

600
√ √ √ √ √ √

1200
√ √ √ √ √ √

2400 × √ × × × ×
5000

√ √ × √ × ×

(d) Results for dynamically decreasing the LLM tem-
perature to greedy decoding after storing D func-
tions.

D n = 6 n = 7 n = 8 n = 9 n = 10 n = 11

5,000
√ √ √ √ √ √

10,000 × √ × √ × ×
20,000

√ √ √ √ √ ×
50,000

√ √ × × √ √

C EVOLUTIONARY SEARCH HYPERPARAMETER OPTIMIZATION

We perform independent grid searches over the evolutionary search hyperparameters initial temper-
ature T , sampling period P and the number of functions R stored before an island reset, using the
best-performing LLM hyperparameters from Table 7c. Performance is measured as a binary out-
come: success or failure in finding a priority function that constructs a maximum independent set
for all evaluation inputs n ∈ [6, 11] with s = 1, where the maximum is known. Each evolutionary
search run is evaluated after generating 400K priority functions or stops early if a successful function
is found and 20K additional ones are generated. Examples for graph-based and number-theoretic
functions are given in Figures 10 and 11, respectively.

Table 2a summarizes the results for initial temperatures T ∈ {0.05, 0.1, 0.3, 0.5, 1} with a fixed
sampling period of P = 30K and R = 1.2K functions stored before a reset. A successful priority
function is found only when the temperature is set to T = 0.1. Figure 8a shows the evolutionary
search trajectories, plotting the highest score assigned to priority functions across all clusters and
islands as new functions are processed. With T = 0.1, a successful function (shown in Figure 9) is
found after approximately 115,850 processed functions, with 20.7% of generated functions stored
at the end of the search. When the temperature is set to T = 0.05, 0.3, 0.5, or 1, the percentages of
stored functions are 18.6%, 19.3%, 12.0%, and 10.0%, respectively. Across all configurations, only
a small fraction of the generated functions are stored, with many failed executions.

Table 2b summarizes the results for sampling periods P ∈ {5K, 10K, 30K, 50K, 100K}, with a
fixed temperature of T = 0.1 and R = 1.2K functions stored before a reset. Adjusting the sampling
period does not improve performance beyond the configuration with P = 30K in the grid search
over temperature. Figure 8b shows the evolutionary trajectories for different sampling periods. With
P = 5K, a successful priority function is found after 193,815 processed functions, with 18.1%
stored at termination. With P = 50K, a successful function is found after 132,499 processed
functions, with 23.0% stored. When the sampling period is set to P = 10K or P = 100K, no
successful function is found after 400K processed functions, and the fractions of stored functions
are 13.0% and 19.8%, respectively.

Table 2c summarizes the results for numbers of functions R ∈ {300, 600, 1.2K, 2.4K, 5K} stored
before an island reset, with a fixed temperature of T = 0.1 and a sampling period of P = 30K.
Varying R does not improve performance beyond the configuration with R = 1.2K in the grid
search over temperature. Figure 8c shows the evolutionary trajectories for different values of R.
With R = 300, a successful priority function is found after 251,359 processed functions, with
18.2% stored at termination. With R = 600, a successful function is found after 196,756 processed

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 1 2 3 4

Total Functions Processed ×105

140

160

180

200

O
ve

ra
ll

B
es

t
S

co
re

T = 0.05
T = 0.1
T = 0.3

T = 0.5
T = 1
Optimal

(a) Varying initial temperature T ∈ {0.05, 0.1, 0.3,
0.5, 1} with fixed P = 30K and R = 1.2K.

0 1 2 3 4

Total Functions Processed ×105

140

160

180

200

O
ve

ra
ll

B
es

t
S

co
re

P = 5 000
P = 10 000
P = 30 000

P = 50 000
P = 100 000
Optimal

(b) Varying P ∈ {5K, 10K, 30K, 50K, 100K}
with fixed T = 0.1 and R = 1.2K.

0 1 2 3 4

Total Functions Processed ×105

140

160

180

200

O
ve

ra
ll

B
es

t
S

co
re

R = 300
R = 600
R = 1 200

R = 2 400
R = 5 000
Optimal

(c) Varying number of functions R ∈ {300, 600,
1.2K, 2.4K, 5K} stored before an island reset, with
fixed T = 0.1 and P = 30K.

0 1 2 3 4

Total Functions Processed ×105

140

160

180

200

O
ve

ra
ll

B
es

t
S

co
re

D = 5 000
D = 10 000
D = 20 000

D = 50 000
Optimal

(d) Dynamically decreasing LLM temperature,
reaching greedy decoding at D ∈ {5K, 10K, 20K,
50K} functions.

Figure 8: Trajectories for varying evolutionary search hyperparameters.

functions, with 19.9% stored. When R = 2, 400 or R = 5K, no successful function is found within
400K processed, and the fractions of stored functions are 19.2% and 19.6% , respectively.

We also experiment with dynamically decreasing the LLM sampling temperature to balance explo-
ration and exploitation. The temperature is initialized at 0.94 and decreases as more functions are
stored on the island from which the prompt is sampled, reaching zero at D ∈ {5K, 10K, 20K, 50K}
stored functions. Similar to reducing the temperature for sampling clusters as more functions are
stored, decreasing the LLM sampling temperature makes token sampling more deterministic over
time, promoting the exploitation of higher-scoring function examples in prompts.

Table 2d summarizes the results for dynamically decreasing the LLM sampling temperature for
different values of D. While this approach slightly increases the number of executable functions,
it does not improve search efficiency in finding a successful priority function with fewer functions
processed compared to a fixed temperature. Figure 8d shows the evolutionary trajectories. With
D = 5K, a successful priority function is found after 246,639 processed functions, with 22.6%
stored at termination. When D = 10K, 20K, or 50K, no successful function is found within 400K
processed, with 21.1%, 17.2%, and 21.4% stored, respectively.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 3: Evolutionary search configurations that find successful priority functions with 400K pro-
cessed.

Initial T Period P Reset R Dynamic D

0.1 30,000 1,200 w/o
0.1 30,000 1,200 5,000
0.1 30,000 300 w/o
0.1 30,000 600 w/o
0.1 5,000 1,200 w/o
0.1 50,000 1,200 w/o

def f(v, G, n, s):
neighbours = []
for neighbor in G[v]:

p = np.log(int(neighbor[:-s], 2) + 1) * \
(2 ** (((len(neighbor) - s) - neighbor[:(-s)].count(’0’)) +

((neighbor[-s:] != ’0’) * len([i for i in range(0, len(neighbor), 8)])))) / \
np.exp(sum([(i == "1") * len([j for j in ["1"] * 3]) for i in neighbor]))

neighbours.append((p, neighbor))
if not neighbours:

return 0
return sorted(neighbours, key=lambda x: x[0], reverse=True)[0][0]

Figure 9: Successful priority function f120K found after about 120K processed with T = 0.1,
P = 30K and R = 1.2K.

def f(v, G, n, s):
position = [(j + 1) · (n − j)/(6 · s) for j, value in enumerate v if int(value) == 1]
total_position = np.sum(position)
degree = G.degree(v)/ float(n)
return 4 · total position + 5 · degree

Figure 10: Graph-based priority function that constructs codes with zero sequence overlap with the
largest VT0(n) codes for lengths n = 7, 9, 11, 13 while achieving the same code size.

def f(v, G, n, s):
def _find_matches(vertex, n, s):

counter = 0

counter = sum ([int(c) · (2i − 1) for i, c in enumerate(reversed(list(vertex)))])
return (bin(counter)).count("1")

def _count_ones(vertex):
counter=0
counter=sum([int(_)for _ in list(vertex)])
return counter

weights=[(_find_matches(vertex_,n, s)/(s+0.5)*np.exp(-(_count_ones(vertex_))),vertex_) for vertex_ in G[
v]]

return sorted(weights)[-1]

Figure 11: Number-theoretic priority function that constructs the same codes as the largest VT0(n)
codes for lengths n ∈ [6, 11], but follows a different logic.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 2 4 6

Stored Functions (per Island)
×103

0.0

0.2

0.4
D

u
p

li
ca

te
R

at
io

Mean duplicate ratio
±1 std dev

(a) Mean duplicate ratio.

0.0 0.5 1.0 ×105

140

160

B
es

t
S

co
re

0.0 0.5 1.0
×105

Total Processed Functions

Island 1
Island 2
Island 3
Island 4
Island 5
Island 6
Island 7
Island 8
Island 9
Island 10

(b) Best score trajectory without (left) and with (right) deduplication.

Figure 12: Results of the evolutionary search experiments with and without function deduplication.

D EFFECTIVENESS OF DEDUPLICATION

We assess the effectiveness of our function deduplication step by running an evolutionary search
without it. For this search, we use an initial temperature T = 0.1, a sampling period P = 30K,
store R = 1.2K functions before an island reset, and use the best-performing LLM hyperparameters
listed in Table 7c.

Figure 12a shows the mean duplicate ratio, defined as the number of duplicate functions divided
by the total number of stored functions. It is computed every 200 stored functions per island and
averaged across all islands. Without deduplication, approximately 20% of stored functions are du-
plicates, either exact copies of previously seen priority functions or syntactically modified versions
with unchanged logic.

Figure 13 shows a prompt with duplicate few-shot examples and the corresponding function out-
put generated by the LLM. Duplicate examples often result in the LLM generating functions with
identical logic or minor syntactic changes, which fail to construct larger independent sets.

Figure 12b compares the run without deduplication to the run with deduplication that uses the same
run configurations. The search with deduplication processes fewer functions before finding a suc-
cessful one, suggesting that deduplication improves sample efficiency by filtering out prompts with
duplicate examples.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

import numpy as np
import networkx as nx

def f0(v, G, n, s):
"""Returns the priority with which we want to add vertex v."""
vertex = str(v)
count = 0
for j in range(3, n + 1):

for k in range(n - (j - 1)):
ones = []
zeros = []
if vertex[k] == ’1’ or vertex[k] == ’0’:

for l in range(k, k + j):
if vertex[l] == ’1’:

ones.append("1")
elif vertex[l] == ’0’:

zeros.append("0")
if len(ones) > len(zeros):

count += len(ones)
ones = []

elif len(zeros) > len(ones):
count -= len(zeros)
zeros = []

else:
pass

return count

def f1(v, G, n, s):
""" Improved version of f0."""
vertex = str(v)
count = 0
for i in range(3, n + 2):

# print("i is ")
# print(i)
if i <= n + 1:

for j in range(n - (i - 1)):
ones = []
zeros = []
for k in range(j, j + i):

if vertex[k] == ’1’:
ones.append("1")

elif vertex[k] == ’0’:
zeros.append(’0’)

if len(ones) > len(zeros):
count += len(ones)

elif len(ones) < len(zeros):
count -= len(zeros)

return count

def f2(v, G, n, s):
"""Improved version of f1."""
vertex = str(v);
count = 0;
ones = list();
zeros = list ();
for i in range((n)):

if vertex[i] == ’0’:
zeros.append("0");

if vertex[i] == ’1’:
ones.append ("1")

if (len(ones)-len(zeros)) >= 1 :
count+= len(ones);
while len(ones)!=0:

ones.pop(-1)
zeros=[]

elif (-len(ones)+len(zeros))>= 1:
count-= len(zeros);
while len(zeros)!=0:

zeros.pop(-1)
# ones=[];

return int(count /4 )

Figure 13: Prompt with duplicate few-shot examples f0 and f1 and the function f2 generated by the
LLM.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

12 13 14 15 16

Code Length n

500

1500

2500

In
d

ep
en

d
en

t
S

et
S

iz
e Largest Weighted

(a) Average independent set size for code lengths be-
yond the evaluation range, computed over all pri-
ority functions, with error bars showing the mini-
mum–maximum range.

0 1 2 3 4

Total Functions Processed
×105

50

60

70

80

O
ve

ra
ll

B
es

t
S

co
re

140

160

180Largest Weighted Average

(b) Search trajectories. The dotted lines indicate the
maximum scores at 172 (right axis), 72.78 (left axis),
and 62.33 (left axis) for largest, weighted, and aver-
age scoring, respectively.

Figure 14: Results of evolutionary searches with different scoring functions.

def f(v, G, n, s):
return -np.average([float(((int(y[:n-(s+1)].count(’1’))*( int((y[-1:( -(n-s)):(-1)]).count (’1’) )))**2/
len(list(G.neighbors(y))))) for y in [ v ]+(list(G.neighbors(v)))])

Figure 15: Priority function fW found using weighted scoring.

E EFFECT OF THE SCORING FUNCTION ON PERFORMANCE AND
GENERALIZATION

The experiments in Section 5.2 of the main paper show that the priority functions discovered using
the baseline prompt generalize to code lengths n = 12, 13, beyond the evaluation range n ∈ [6, 11],
but remain only close to the largest VT0(n) code sizes for larger code lengths n.

To improve generalization to longer code lengths, we explore aggregate scoring functions that eval-
uate priority functions based on their performance across all code lengths in the evaluation range,
rather than only on the largest length. We compare two aggregate scoring strategies against the
baseline, which uses the independent set size at length n = 11. The first is a simple average of
independent set sizes over all evaluated lengths (n ∈ [6, 11]). The second is a weighted average
over the same range, with weights proportional to n. All runs use an initial temperature T = 0.1,
sampling period P = 30K, number of functions R = 1.2K stored before an island reset, and the
best-performing LLM hyperparameters listed in Table 7c.

Perhaps surprisingly, Figure 14a shows that the baseline scoring function achieves better general-
ization than the two aggregate alternatives. While the weighted scoring function discovers a priority
function that achieves the largest VT0(n) code size at n = 14, the baseline consistently finds func-
tions that construct larger code sizes for all other tested lengths (n ∈ [12, 16] \ {14}). Figure 14b
further shows that evaluating only on the largest code length finds a successful priority function with
fewer processed than the weighted scoring function. In contrast, the average scoring function fails to
find a successful function within 400K processed. These results suggest that focusing on the largest
evaluated length is both more efficient and more effective for discovering functions that generalize
to longer code lengths when searching for large single-deletion-correcting codes.

Given these findings, we also run an evolutionary search using only the largest code size n = 11
(and s = 1) to reduce computational overhead. However, evaluating priority functions on a single
code length biases the search toward functions that are hardcoded for n = 11 and fail to execute for
other lengths. Additionally, this setup affects clustering. Functions are now clustered based on their
score (their performance on the largest code length n = 11) rather than their independent set sizes
across all evaluated code lengths (n ∈ [6, 11]). This results in fewer, larger clusters (and thus fewer
distinct function length ranges). As a result, shorter functions are sampled more frequently, and the
few-shot prompts become less diverse compared to clustering based on multiple evaluation inputs.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 1 2 3 4

Total Functions Processed ×105

140

160

180

200

O
ve

ra
ll

B
es

t
S

co
re

Run 1
Run 2

Run 3
Optimal

Figure 16: Trajectories for multiple runs with the same configuration using an initial temperature
T = 0.1, sampling period P = 30K, and number of functions R = 1.2K stored before an island
reset. Two out of the three runs find a successful priority function within 400K processed.

F VARIATION ACROSS EVOLUTIONARY RUNS

The performance of FunSearch depends on two main factors: the quality of the LLM output and
the functions sampled as examples for the few-shot prompt. These factors introduce inherent ran-
domness into the method. To evaluate how FunSearch’s performance varies across runs, we conduct
two additional evolutionary search experiments with initial temperature T = 0.1, sampling period
P = 30K, and R = 1.2K functions stored before an island reset as well as the best performing
LLM hyperparameters listed in Table 7c. This configuration previously found a successful function
with the fewest processed.

Figure 16 shows the evolutionary search trajectories, plotting the maximum score (independent set
size for the largest code length n = 11) as new functions are processed. Out of the three runs with
the same configuration, two find a maximum independent set for all code lengths n ∈ [6, 11] within
the limit of 400K processed.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

"""
Finds large independent set in graph G where vertices are binary strings of length n.
Vertices in G are connected if they share a subsequence of length at least n − s, where s = 1.

The functions f assign a priority to each vertex, indicating its importance for inclusion in the independent
set.

Improve f1 over its previous versions below.
Keep the code short and comment for easy understanding.
"""
import numpy as np
import networkx as nx

def f0(v, G):
"""Returns the priority with which we want to add vertex v."""
return 0.0

def f1(v, G):
"""Improved version of f0"""

Figure 17: Prompt 1 specifies the single-deletion case and explains that the priority function reflects
the importance of each vertex for inclusion in the independent set.

"""
Finds large independent set in graph G where vertices are binary strings of length n.
Vertices in G are connected if they share a subsequence of length at least n − s.

Improve f1 over its previous versions below.
Keep the code short and comment for easy understanding.
"""
import numpy as np

def f0(v, G):
"""Returns the priority with which we want to add vertex v."""
return 0.0

def f1(v, G):
"""Improved version of f0"""

Figure 18: Prompt 3 omits the graph G as input to the priority function and removes the import
networkx as nx line to bias the LLM toward computing priority based only on sequence struc-
ture.

G DETAILS ON PROMPT ENGINEERING AND GENERAL-PURPOSE LLMS

In this section, we provide additional details on prompt engineering and replacing StarCoder2 with
GPT-4o Mini. For all runs, we use the configuration with an initial temperature T = 0.1, sampling
period P = 30K, and number of functions R = 1.2K stored before an island reset, as well as the
best performing LLM hyperparameters as listed in Table 7c.

G.1 PROMPT ENGINEERING

Here we describe our modifications to the baseline prompt in Figure 2. For prompts 3 and 4, which
discover priority functions that achieve maximum code sizes where known, we further analyze their
logic, with prompt 4 rediscovering the VT0(n) code.

Prompt 1 in Figure 17 specifies that we consider the single-deletion case and that priority reflects a
vertex’s importance for inclusion in the independent set. The rest remains identical to the baseline
prompt.

We introduce prompt 1 after observing that many generated functions include redundant conditions
when s = 1, such as s > n, which is always false. While explicitly stating s = 1 reduces such
redundancies, it does not improve performance in constructing maximum independent sets.

Prompt 2 in Figure 25 includes the entire evaluation script to give context on how the priority
function is used to construct the independent set. The rest remains identical to the baseline prompt.
Within the 400K processed functions, prompt 2 does not find a successful one. This may be because
the additional context distracts from the main task of improving the priority function to construct
larger independent sets.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

def f(v, n, s):
lst=[]
for p in range ((n-2)) :

for q in range (((p+2)),(n)) :
string=""
for r in range (p,q+1) :

string+=v[r]
lst.append(string)

clist=[*map(lambda w:(w).count(’1’),lst)]
averageofobservations=(np.mean(clist));
deviationfromaverage=(np.var(clist)**.65);
priortiyvalue= -(averageofobservations/3+.3)*(deviationfromaverage**.65*(.7))+ (.8)+(1/(len(v)*2.5 ));
return round(priortiyvalue,10)

Figure 19: Priority function found using prompt 3 that achieves largest VT0(n) code sizes for all
evaluated lengths n ∈ [6, 25] with 100% sequence overlap.

"""
Finds large independent set in graph G where vertices are binary strings of length n.
Vertices in G are connected if they share a subsequence of length at least n − s.

Improve f1 over its previous versions below.
Keep the code short and comment for easy understanding.

Consider properties of the binary string v, such as specific patterns, the number of ones/zeros.
"""
import numpy as np
import networkx as nx

def f0(v, G):
"""Returns the priority with which we want to add vertex v."""
return 0.0

def f1(v, G):
"""Improved version of f0"""

Figure 20: Prompt 4 explicitly instructs the LLM to consider properties of the binary string, such as
the number of zeros and ones.

Prompt 3 in Figure 18 removes the graph G as input to the priority function and the network pack-
age from the import statements to bias the LLM to generate functions that rely only on sequence-
specific information. The rest remains identical to the baseline prompt.

The priority functions discovered using evolutionary search with prompt 3 follow a common struc-
ture. Most functions assign priority based on statistics of the number of 1-bits in an increasing
sliding window over the sequence, with either a fixed minimum length (e.g., 2) or one determined
by the deletion correction parameter s. The functions differ in which statistics of the 1-bit count
they use (e.g., mean, variance, maximum) and how they transform the statistic(s) (e.g., scaling fac-
tors or number of unique sliding windows). These variations affect how well the priority function
generalizes to longer code lengths. The function achieving the largest VT0(n) code sizes for lengths
n ≤ 25 is given in Figure 19, with 100% sequence overlap.

Prompt 4 in Figure 20 explicitly instructs the LLM to focus on bit patterns in the sequence when
assigning priority. The rest remains identical to the baseline prompt. As a result, StarCoder2 redis-
covers the largest VT0(n) codes for all n. Beyond the VT formulation (discussed in Appendix H),
the other discovered priority functions can be grouped into two main categories.

The first consists of functions that compute statistical properties of the sequence: the count of 1-bits,
the product of their positions, and the sum of cumulative sums of 0-bit positions. The priority score
is determined by applying bitwise operations (XOR, AND, OR, shifts) and logical conditions on
these statistics, as illustrated in Figure 21. Interestingly, both categories have 100% overlap with the
largest VT0(n) codes when n is even and 0% overlap when n is odd.

The second consists of a single function that assigns priority based on:

−
n∑

i=1

xi · (n− i+ 1) mod (n+ 1) − b mod n,

where b = 1.5. We find that this function appears multiple times with different values of b but
achieves maximum code sizes on the evaluation inputs only when b = 1.5. This suggests that the

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

def f(v, G, n, s):
count_ones = np.array([int(char) for char in v]).sum()
product_positions = abs((np.arange(n) * np.array([int(char) for char in v])).prod())
sum_cumsum_zeros = ((˜np.array([int(char) for char in v]).astype(bool)).cumsum().sum()) % (n + 1)
c = [count_ones, product_positions, sum_cumsum_zeros]
priority_score = min([

((c[-1] ** 4) & c[-2]) + (((c[-1] * 9) < c[-2])),
˜((((-c[-1]) << c[-2]) ˆ ˜c[-1]) & ˜c[-2]),
((˜(˜c[-2] | ˜(c[-1])))) ˆ (˜c[-1]) ˆ ((-(˜(c[-1] | c[-2]))) ˆ (c[-1] > 1)),
˜(˜c[-1] & ˜c[-2]),
(c[-1] + 1) == c[-2]

])
return priority_score

Figure 21: Example of a priority function found using prompt 4 that achieves the largest VT0(n)
code sizes for all evaluated code lengths n ∈ [6, 20], based on statistical properties of the sequence.
It has 100% sequence overlap for even n and zero overlap for odd n.

LLM explores both globally and locally within the function space, even without being explicitly
instructed to do so.

Prompt 5 in Figure 22 combines the modifications of prompts 1 and 4. However, it does not find a
successful priority function within 400K processed, even though prompt 4 rediscovers VT0 codes.
The rest remains identical to the baseline prompt.

"""
Finds large independent set in graph G where vertices are binary strings of length n.
Vertices in G are connected if they share a subsequence of length at least n − s.

The functions f assign a priority to each vertex v indicating its importance for inclusion in the independent
set.

Desired properties of the function f:
- **Efficiency**: The function should be computationally efficient.
- **Avoid Redundant Computations**: Do not perform unnecessary calculations or repeat work.
- **Clarity**: The code should be easy to understand, with appropriate comments.
- **Innovation**: Explore different strategies for calculating the priority. Consider specific characteristics

of the binary strings, such as:
- Patterns in the binary string.
- The number of ones or zeros (Hamming weight).
- Distribution of bits (e.g., runs of ones or zeros).

Improve f1 over its previous versions below.
Keep the code short and comment for easy understanding.
"""
import numpy as np
import networkx as nx

def f0(v, G):
"""Returns the priority with which we want to add vertex v."""
return 0.0

def f1(v, G):
"""Improved version of f0"""

Figure 22: Prompt 5 provides more detailed instructions, emphasizing efficiency, clarity, and inno-
vation. It explains that priority reflects a vertex’s importance for inclusion in the independent set,
and prompts the LLM to consider binary string properties such as the number and distribution of
zeros and ones.

G.2 PRIORITY FUNCTIONS DISCOVERED WITH GPT-4O MINI

Here, we discuss the logic used by the priority functions discovered with GPT-4o Mini.

Using Prompt 3. The priority functions discovered with prompt 3 and GPT-4o mini follow a similar
logic. They compute priority based on the counts of 1- and 0-bits, the number of 0-bits appearing
after the last 1-bit, and the sum of 1-bits within certain sliding windows. Each function combines
or weights these counts differently. An example is shown in Figure 23. These functions achieve the
largest VT0(n) code sizes for all evaluated code lengths n ≤ 25, with 100% sequence overlap.

Using Prompt 4. The priority functions discovered with prompt 4 and GPT-4o mini compute prior-
ity based on the number of 1- and 0-bits in a sequence, the count of 1-bits within sliding windows,
and the number of neighbors each sequence has in the graph G. They differ primarily in how the

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

def f(v, n, s):
ones_count = v.count(’1’)
zero_count = v[:n - s].count(’0’)
efficient_zero_contributions = sum(1 for i in range(n) if v[i] == ’0’ and ’1’ in v[:i])
overlap_ones = sum(v[i:i + n - s].count(’1’) for i in range(n - s + 1))
overlap_count = (overlap_ones + zero_count) // (n - s + 1)
return ones_count + zero_count * (n - s + 2) + efficient_zero_contributions - overlap_count + ones_count *

efficient_zero_contributions // (n - s + 1)

Figure 23: Example of a priority function found using prompt 3 and GPT-4o mini that achieves the
largest VT0(n) code sizes for all lengths n ∈ [6, 25], with 100% sequence overlap.

def f(v, G, n, s):
num_ones = v.count(’1’)
num_zeros = n - num_ones
total_neighbors = len(list(G.neighbors(v)))
balance = abs(num_ones - num_zeros) / n
pattern_score = sum((v[i:i+b].count(’1’)) for b in range(1, n - s + 1) for i in range(n - b + 1))
uniqueness_score = len(set(v)) / n
redundancy_score = total_neighbors / (n + 1e-6)
density = num_ones / n
return (num_ones * redundancy_score + pattern_score + uniqueness_score - density - balance)

Figure 24: Example of a priority function found using prompt 4 and GPT-4o mini that achieves the
largest VT0(n) code sizes for all lengths n ∈ [6, 13], with 100% sequence overlap for even n and
0% overlap for odd n.

counts are weighted or combined. An example is shown in Figure 24. All functions achieve the
largest VT0(n) code sizes for lengths n ∈ [6, 13], with 100% sequence overlap for even n and 0%
overlap for odd n.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

"""
Finds large independent set in graph G where vertices are binary strings of length n.
Vertices in G are connected if they share a subsequence of length at least n − s.

Improve f1 over its previous versions below.
Keep the code short and comment for easy understanding.
"""
import numpy as np
import networkx as nx
import itertools

def generate_graph(n, s):
G = nx.Graph()
sequences = [’’.join(seq) for seq in itertools.product(’01’, repeat=n)]
for seq in sequences:

G.add_node(seq)
for i in range(len(sequences)):

for j in range(i + 1, len(sequences)):
if has_common_subsequence(sequences[i], sequences[j], n, s):

G.add_edge(sequences[i], sequences[j])
return G

def has_common_subsequence(seq1, seq2, n, s):
threshold = n - s
if threshold <= 0:

return True
prev = [0] * (n + 1)
current = [0] * (n + 1)
for i in range(1, n + 1):

for j in range(1, n + 1):
if seq1[i - 1] == seq2[j - 1]:

current[j] = prev[j - 1] + 1
else:

current[j] = max(prev[j], current[j - 1])
if current[j] >= threshold:

return True
prev, current = current, prev

return False

def evaluate(params):
n, s = params
independent_set = solve(n, s)
return len(independent_set)

def solve(n, s):
G_original = generate_graph(n, s)
G_for_priority = G_original.copy()
priorities = {v: f1(v,G_for_priority, n, s) for v in G_original.nodes}
vertices_sorted = sorted(G_original.nodes, key=lambda v: (-priorities[v], v))
independent_set = set()
for v in vertices_sorted:

if v not in G_original:
continue

independent_set.add(v)
neighbors = list(G_original.neighbors(v))
G_original.remove_node(v)
G_original.remove_nodes_from(neighbors)

return independent_set

def f0(v, G):
"""Returns the priority with which we want to add vertex v."""
return 0.0

def f1(v, G):
"""Improved version of f0"""

Figure 25: Prompt 2 includes the evaluation script, which provides context on how the priority
function is used to construct the independent set.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

H EQUIVALENCE BETWEEN THE DISCOVERED PRIORITY FUNCTION AND
THE LARGEST VT CODE

In this section, we show that our priority function f in Figure 4, found with prompt 4, rediscovers
the largest VT0(n) codes in an alternative form. That is, the priority function selects codewords that
match the largest VT0(n) codes for all code lengths n within our greedy construction algorithm.

For a single deletion (s = 1), the priority function f assigns priority to a binary sequence v of
length n as follows

f(v, n, s = 1) =

⌊
W (v)

n+ 1

⌋
where W (v) =

n∑
i=1

(n− i+ 1) · vi. (2)

Let q(v) and r(v) be defined as

q(v) =

⌊
W (v)

n+ 1

⌋
and r(v) = W (v) mod (n+ 1),

such that the weighted sum can be decomposed as W (v) = q(v)(n + 1) + r(v). Expanding the
remainder, we obtain

r(v) ≡
n∑

i=1

(n+ 1) · vi −
n∑

i=1

i · vi ≡ −
n∑

i=1

i · vi ≡ n+ 1−
n∑

i=1

i · vi (mod n+ 1).

Thus, a sequence v with remainder r satisfies VT Equation 1 with parameter a = n+ 1− r(v).

In our greedy construction, sequences are considered in descending order of their priority (i.e., their
quotient q). Among sequences with the same priority q, we sort them in ascending lexicographic
order, with 0 smaller than 1. A binary sequence v precedes (i.e., is considered before) binary
sequence w if, at the first position j where they differ, vj = 0 and wj = 1.

The most significant bits (i.e., leftmost bits) contribute the most to the weighted sum W , so se-
quences with fewer leading 1-bits (and thus smaller W ) appear earlier in lexicographic order. Thus,
for each priority q, sequences with the smallest remainder r = 0, which correspond to the codewords
in the largest VT0(n) code, are considered first for inclusion in the independent set.

To establish equivalence, it remains to show that, once all sequences v with r(v) = 0 have been
included, no additional sequence with equal priority can be added to the independent set without
violating the independence property.

Claim 1. For any binary sequence w of length n with priority q(w), there exists a sequence v in
the largest VT0(n) code that shares a common subsequence with w and has priority q(v) ≥ q(w)
(for all n).

The remainder of this section establishes this claim.

VT codes partition the space of all binary sequences of length n into n+1 deletion-correcting codes
VTa(n) (see Equation 1). Each VTa(n) code forms a maximal independent set, meaning that no
additional sequence can be added without violating independence. This follows, for example, from
the result by Cullina et al. (2012), which proves that VT codes optimally solve the coloring problem.
Since each independent set is maximal, for any binary sequence w ∈ {0, 1}n \VTa(n), there must
exist at least one binary sequence v ∈ VTa(n) that shares a common subsequence of length n − 1
with w. Otherwise, w could be added to VTa(n), contradicting maximality.

To show that the sequence v that shares a common subsequence with w has priority q(v) ≥ q(w),
we use the following property of VT codes.

Property 1 (Used in the decoding algorithm by Levenshtein (1966); see also (Sloane, 2002)). If
two binary sequences v ∈ VTa(n) and w ∈ VTa′(n) with a ̸= a′ share a common subsequence of
length n− 1, their VT-weighted sum difference satisfies

1 ≤
∣∣∣∣∣

n∑
i=1

i · vi −
n∑

i=1

i · wi

∣∣∣∣∣ ≤ n.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Below, we show that our weighted sum W in Equation 2 also satisfies Property 1. Thus, the se-
quences have equal priority, q(v) = q(w) and we have established Claim 1.

We consider all three cases in which the sequences v and w can be obtained from their common
subsequence z of length n− 1.

Case 1: Inserting a 0-bit. The sequences v and w are obtained from their common subsequence z

by inserting a 0-bit at different positions, denoted by Ij0(z), where j is the position of the insertion.
All three sequences have m 1-bits. The weighted sum W (Ij0(z)) can change by at most

W (I00 (z)) =

n∑
i=1

((n− 1) + 1− (i+ 1) + 1) · zi = W (z)

≤ W (Ij0(z)) ≤ W (In0 (z)) =

n∑
i=1

((n− 1) + 1− i+ 1) · zi = W (z) +m.

The lower bound follows from inserting the 0-bit before the first 1-bit, e.g., at position j = 0,
shifting all subsequent bits by one, and the upper bound from inserting it after the last 1-bit, e.g., at
j = n.

Then it holds that
1 ≤ |W (v)−W (w)| ≤ m.

Case 2: Inserting a 1-bit. The sequences v and w are obtained from their common subsequence z

by inserting a 1-bit at different positions, denoted by Ij1(z), where j is the position of the insertion.
Sequences v and w have m 1-bits and z has m− 1 1-bits. The weighted sum W (Ij1(z)) can change
by at most

W (z) +m ≤ W (Ij1(z)) ≤ W (z) + n.

The lower bound follows from inserting the 1-bit at the end, contributing 1 to the new weighted sum.
The upper bound follows from inserting it at the beginning, contributing n to the weighted sum and
all subsequent positions shifted by one. Then it holds that

1 ≤ |W (v)−W (w)| ≤ n−m.

Case 3: Inserting Different Bits. Sequence v is obtained from common subsequence z by inserting
a 1-bit, while sequence w is obtained by inserting a 0-bit. The sequence v has m 1-bits, whereas w
and z have m− 1 1-bits.

If we delete a 1-bit from v, denoted by Dj
1(v), its weighted sum can change by at most

W (v)− n ≤ W (Dj
1(v)) = W (z) ≤ W (v)−m,

where the upper bound follows from deleting a 1-bit at the end (when the sequence has a 0-bit in the
(n− 1)th position) and the lower bound from deleting a 1-bit at the beginning.

Similarly, if we delete a 0-bit from sequence w, denoted by Dj
0(w), its weighted sum can change

by at most
W (w)−m+ 1 ≤ W (Dj

0(w)) = W (z) ≤ W (w),

where the upper bound follows from deleting a 0-bit at the beginning and the lower bound from
deleting a 0-bit at the end.

By interchanging the upper bounds, we obtain a lower bound on the weighted sum difference:

W (w)− (m− 1) ≤ W (v)−m ⇒ 1 ≤ W (v)−W (w).

For the upper bound, we get:

W (v)− n ≤ W (w) ⇒ W (v)−W (w) ≤ n.

This shows that Property 1 also holds if the weighted sum for a sequence is defined as in our priority
function in Equation 2 and concludes our proof of equivalence.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

10 15

Code length n

−103

−102

−101

−100

0

G
a
p

to
b

es
t-

k
n

ow
n

(l
o
g)

s = 1

10 15

Code length n

−101

−100

0

100

s = 2

10 15

Code length n

−101

−100

0

s = 3

Scored on:

s=1 s=2 s=1, 2

Run configuration:

default weighted prompt 4

Figure 26: Gap to best-known code sizes (log scale) across all runs, varying evaluation inputs (single,
two, joint deletions) and configurations (default, weighted and prompt 4).

I DETAILS ON SEARCH FOR MULTIPLE DELETION CORRECTING CODES

In this section, we detail results from our searches for two-deletion-correcting codes, as well as joint
searches for single- and two-deletion-correcting codes. We analyze both performance on evaluation
inputs (i.e., the deletion parameters and code lengths used to evaluate the new functions during the
search) and generalization to unseen deletion parameters and code lengths.

We consider three sets of evaluation inputs, defined by the number of deletions s and the code length
n: (i) s = 1, n ∈ [6, 11]; (ii) s = 2, n ∈ [7, 12]; and (iii) s = 1, 2, with n ∈ [9, 11] for s = 1,
and n ∈ [10, 12] for s = 2. For each set, we report results using the default configuration, weighted
scoring, and prompt 4.

Table 4 summarizes the code sizes achieved for single, two, and three deletions across lengths n ∈
[6, 16]. For two deletions, the search finds priority functions that match or nearly match the best-
known code sizes across all tested lengths. For n = 12, it discovers a function (Figure 28) that
constructs a code of size 34, improving upon the previous best of 32. For n = 16, the search for
single- and two-deletion-correcting codes yields a new lower bound of 204 (e.g., achieved by the
function in Figure 32), exceeding the previous best of 201.

Figure 26 shows the difference from the best-known code sizes for the functions with the small-
est total difference to best-known across all deletion parameters (single, two, and three) and lengths
n ∈ [6, 16]. Among all functions scored on two-deletion-correcting code sizes, the best one achieves
a total difference of 2957 (normalized: 4.03). In contrast, scoring on both single- and two-deletion-
correcting code sizes results in a much lower total difference of 30 (normalized: 1.75). The normal-
ized score divides each difference by the corresponding best-known code size, ensuring that large
absolute differences for single-deletion cases (where code sizes are larger) do not dominate the total.
The lower scores in the joint case (both normalized and unnormalized) suggest better generalization
across deletion counts and code lengths.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 4: Code sizes achieved for single, two, and three deletions by priority functions from runs
evaluated on s = 1, s = 2, and s = 1, 2. Each entry is the maximum across all best-performing
functions∗. Best-performing functions are selected based on exact matches (when s = 1), or the
smallest total difference from best-known sizes over the run’s evaluation inputs (when s > 1).
The final columns report the sizes achieved by the trivial lexicographic baseline, prior search re-
sults (Landjev & Haralambiev, 2007), and best-known VT0(n) code sizes (Varshamov & Tenen-
golts, 1965) or minimum-degree heuristics code sizes (Khajouei et al., 2011) for comparison. Bold
values indicate known maxima. Superscripts link to figures showing the function that achieves the
reported code size.

(n, s) Scored on s = 1∗∗ Scored on s = 2 Scored on s = 1, 2 Trivial Search-based Best known

(7,1) 16 15 1633 14 - 16
(8,1) 30 27 3033 25 - 30
(9,1) 52 44 5233 42 - 52
(10,1) 94 80 9433 71 - 94
(11,1) 172 131 17233 125 - 172
(12,1) 3164,19,23 227 31633 224 - 316
(13,1) 5864,19,23 409 58633 406 - 586
(14,1) 10964,19,23 743 109633 737 - 1096
(15,1) 20484,19,23 1342 204833 1345 - 2048
(16,1) 38564,19,23 2467 385633 2468 - 3856

(7,2) 59,19 527 529 5 5 5
(8,2) 79,15 727 733 6 7 7
(9,2) 9 10 10 9 11 11
(10,2) 13 1628 15 13 16 16
(11,2) 21 22 21 20 21 24
(12,2) 3215 3428 33 29 31 32
(13,2) 509 48 5031 46 49 49
(14,2) 7819 77 7833 72 75 78
(15,2) 125 123 124 114 109 126
(16,2) 2019 200 20432 189 176 201

(7,3) 24,19,21,23 227,28 229 2 2 2
(8,3) 44,19 427,28 429 4 4 4
(9,3) 54 527,28 4 5 5 5
(10,3) 5 627,28 630 5 6 6
(11,3) 7 827,28 7 6 7 8
(12,3) 11 11 10 10 10 12
(13,3) 13 14 14 13 12 15
(14,3) 19 2027 18 18 15 20
(15,3) 26 26 26 24 24 28
(16,3) 37 37 38 34 31 40

∗If the maximum is taken over all priority functions in the database at the end of the search, the constructed code sizes match (or exceed, for n = 13) the best known
sizes on all evaluation inputs.
∗∗For computational reasons, we did not construct code sizes for all of the 170 successful priority functions discovered during the searches for single-deletion-
correcting codes. Instead, the maximum is taken over the subset of functions shown in Figures 10, 9, 15, 19, 4, 21, 23 and 24.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

def f(v, G, n, s):
"""Returns the priority with which we want to add ‘v‘ to the independent set."""
nodeInt= int(v,base=2); #convert to decimal
bitwiseXORArray= [int(i,2)ˆnodeInt

for i in list(set(G[v]))];#create array that shows what value is different between this
and each neighbour

numOfOnes= [(lambda x : sum(map(int, bin(x).replace(’0b’,’’)[::-1])))(bitValue)#how many ones in the
difference

for bitValue
in bitwiseXORArray ];

distBetweenBitAndNode= [(lambda x: n - abs(n // 2 - x))(onesCount) for onesCount in numOfOnes];
avgOfDifferenceInBitsFromMedian= sum(distBetweenBitAndNode)/(max(1,(len(numOfOnes)-1)));
score= (.9**(avgOfDifferenceInBitsFromMedian)) * ((float)(bin(nodeInt).count(’1’)))**(7/(1+(abs(6-n))));
return round(score,3)

Figure 27: Example of a priority function found using default configuration, scored on two-deletion-
correcting code sizes.

def f(v, G, n, s):
"""Returns the priority with which we want to add ‘v‘ to the independent set."""
hamming_dist = [ ]
for v in list(G.adj[v]):

difference = [(i!= j)for (i,j) in zip(v,v )]
dist= sum([(i ==True )for i in difference ])
hamming_dist+= [ int(dist)]

avg = np.array(hamming_dist).mean()
one_count = sum([char == "1" for char in v])
percen_one =(one_count / len(v))
priority =.8*(avg)+ -.7* abs (((percen_one)-.5 ))
return -round(priority,4)

Figure 28: Example of a priority function found using prompt 4, scored on two-deletion-correcting
code sizes.

def f(v, G, n, s):
"""Returns the priority with which we want to add ‘v‘ to the independent set."""
maxseqLenght= min((n*.7),(7.+s));
kmrsLengh= max((round(np.mean ([2,maxseqLenght])) ), 3.);
numberKmers= n-(kmrsLengh)+(1);
kmscrLst=[]
for stidx in range(numberKmers):

numOfonesinNd= sum([(c=="1") *1for c in v[stidx : (stidx+(kmrsLengh))]]);
OneWtgh= (numOfonesinNd/kmrsLengh)**.5;
Kmrcr= (1./(OneWtgh +.000001 ))**((kmrsLengh )/2) * (numberKmers/.1)*(kmrsLengh)** -.45;
kmscrLst.append(Kmrcr );

Ttlscr= (np. log(((1.*numberKmers )*np. mean(kmscrLst)))).__abs__();
return -Ttlscr

Figure 29: Example of a priority function found using prompt 3, scored on single- and two-deletion-
correcting code sizes.

def f(v, G, n, s):
"""Returns the priority with which we want to add ‘v‘ to the independent set."""
total=0
d=[ (int(bit)) for bit in list(v)]
degree=len(list(filter( lambda x :(int(x)==1 ),[ (int(bit)) for bit in list(v)])))
adj = len(list(nx.neighbors(G, v)))
if(degree<=1 and adj <7):

return (.9/(1.+float(degree))) *( pow((((deg+7)/2.* float(total))+0.01),(.9/.9+(1/deg)))) * pow(1./
adj,-(.15))

else:
for k in range(n//2 + n %2):

total += sum([(int)(d[i])for i in range(k,(n)-k)])
deg=(max(degree,.1))/1.
return ((1./(float(deg)+1))* ( (deg +1.)**deg )*total+0.01)*( pow( ( 1.-(1.-1./float(adj)) ),(-.3)))

Figure 30: Example of a priority function found using default configuration, scored on single- and
two-deletion-correcting code sizes.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

def f(v, G, n, s):
"""Returns the priority with which we want to add ‘v‘ to the independent set."""
def findNumberOfOnesForEveryPossibleSubstring():

def numberOfOnesInNode(i,k):
substr = v[i:(i + k)]
return sum([int (val == ’1’)for val in substr]);

possibleLengths=[x for x in range(1,(n-s))]
onelist=[]
for index,elemt in enumerate(possibleLengths):

startindex= 0
while True:
numofOne=numberOfOnesInNode(startindex, elemt);
onelist.append({’onenum’:numofOne,’startingIndex’:startindex});
startindex += 1

if ((startindex+ elemt)>n):
break

return onelist
onelist=findNumberOfOnesForEveryPossibleSubstring()

score=lambda x:-(x[’onenum’] * x[’onenum’]) *(max(1,abs(((x[’startingIndex’]/float(n)))-(s/(float(n))))))
finalScore=map(score,onelist)
return sum(finalScore)

Figure 31: Example of a priority function found using prompt 3, scored on single- and two-deletion-
correcting code sizes. It achieves a new lower bound for s = 2 and n = 16, with size 202, compared
to the previously best known size of 201.

def f(v, G, n, s):
"""Returns the priority with which we want to add ‘v‘ to the independent set."""
weight= []
for k in range ((n)+1):

cnt=0
for p in range(((n)- (k))+1):

substring=""
for r in range(p,(p)+(k)):

characTer=str( int(v[r]))
substring+=characTer

numZeROES=substring.count("0")
NUMONES=substring.count("1")
if numZeROES>=NUMONES:

Weight=-( numZeROES*2*(k+1))
else :

Weight =(NUMONES*.8*(k+1))
weight.append(Weight)

averagE=np.mean(weight )
return averagE

Figure 32: Example of a priority function found using prompt 4, scored on one and two-deletion
correcting code sizes. It achieves a new lower bound for s = 2 and n = 16, with size 204 compared
to the previously best known size of 201.

def f(v, G, n, s):
"""Returns the priority with which we want to add ‘v‘ to the independent set."""
wt=[]
for q in range ((n)+1):

counter=0
for w in range(((n)-q )+1) :

substring=""
for e in range(w, (w +(q))):

character= str( int(v[e]))
substring+= character

NumberofZeroes=substring.count("0")
NumbersOfOnes=substring.count("1")
if NumbersOfOnes>=NumberofZeroes :

weight= -(NumbersOfOnes )*(q*6+.89)
else :

weight= (NumberofZeroes )*.5 * (q *3 )
wt.append(weight)

if len(wt)!=0 :
Average=sum(wt)/len(wt)**.7*3

return Average

Figure 33: Example of a priority function found using prompt 4, evaluated on one and two-deletion-
correcting code sizes.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

10 16 30 52 94 17
2

Independent Set Size

0.0

0.1

0.2

0.3

0.4

D
en

si
ty

n = 6
n = 7

n = 8
n = 9

n = 10
n = 11

Figure 34: Distribution of independent set sizes when sequences are iteratively added in order over
105 permutations of all 2n sequences.

J COMPUTATIONAL DIFFICULTY OF FINDING A MAXIMUM INDEPENDENT SET
IN OUR GRAPHS

Finding a maximum independent set in a general graph is NP-complete (Lovász & Plummer, 2009).
Even if the optimal size is known, evaluating all subsets of that size requires

(
2n

optimal size

)
evaluations.

For example, for n = 6, s = 1 and maximum size 10, this already exceeds 151 billion evaluations.
Without knowing the exact optimal size, all possible subsets of varying sizes must be considered,
leading to a worst-case complexity of 22

n

. Moreover, verifying whether a subset forms a valid
deletion-correcting code is expensive and requires checking that no two sequences share a common
subsequence of length n − s. This check can be done in O(n2) time using dynamic programming
for fixed s, so verifying a subset requires O(k2n2) time (Cormen et al., 2022).

However, if many maximum independent sets exist in the graph, a simple greedy search can quickly
find one, significantly reducing the problem’s difficulty. To get an idea of whether our graphs con-
tain many maximum independent sets, we iteratively add sequences in order over 105 random per-
mutations of all 2n sequences to determine how often a random construction finds a maximum
independent set for code lengths n ∈ [6, 11] and a single deletion s = 1.

Figure 34 shows the distribution of independent set sizes for each code length n ∈ [6, 11]. For the
smallest code length (n = 6), the random search finds a maximum independent set in 118, and
for n = 7 in 8 out of 105 attempts. For larger code lengths, the random search does not find a
maximum independent set in any of the 105 attempts. Moreover, as the code length increases, the
distribution of independent set sizes shifts further from the maximum set size, indicating that the
problem becomes more difficult.

34


	Introduction
	Related work
	Related work on LLM-guided search
	Related work on deletion-correcting codes

	Problem statement
	Method
	Experiments
	Experimental setup
	Underlying logic of priority functions
	Generalization to longer code lengths and multiple deletions
	Prompt engineering and general-purpose LLMs
	Prompt engineering
	GPT-4o mini for generating priority functions

	Search for multiple deletion-correcting codes

	Conclusion and limitations
	Implementation details
	LLM hyperparameter optimization
	Evolutionary search hyperparameter optimization
	Effectiveness of deduplication
	Effect of the scoring function on performance and generalization
	Variation across evolutionary runs
	Details on prompt engineering and general-purpose LLMs
	Prompt engineering
	Priority functions discovered with GPT-4o mini

	Equivalence between the discovered priority function and the largest VT code
	Details on search for multiple deletion correcting codes
	Computational difficulty of finding a maximum independent set in our graphs

