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ABSTRACT

In-sample learning has emerged as a powerful paradigm that mitigates the Out-of-
Distribution (OOD) issue, which leads to violations of safety constraints in offline
safe reinforcement learning (OSRL). Existing approaches separately train reward
and cost value functions, yielding suboptimal policies within the safe policy space.
To address this, we propose the Region-Based Reward Penalty over Action Chunks
(R2PAC), a novel method that trains h-step optimal value function within the safe
policy space. By penalizing reward signals over action chunks that may poten-
tially lead to unsafe transitions, our method: (1) integrates cost constraints into
reward learning for constrained return maximization; (2) improves joint training
stability by accelerating the convergence speed with unbiased multi-step value
estimation; (3) effectively avoids unsafe states through temporally consistent be-
haviors. Extensive experiments on the DSRL benchmark demonstrate that our
method outperforms state-of-the-art algorithms, achieving the highest returns in
13 out of 17 tasks while maintaining the normalized cost below a strict threshold
in all tasks. The proposed method can be used as a drop-in replacement within
existing offline RL pipelines.

1 INTRODUCTION

Despite the potential to mitigate online safety risks, OSRL still inherits fundamental challenges
from both safety guarantees and offline regularization. A major challenge in offline reinforcement
learning (RL) is distributional shift (Levine et al., 2020; Fujimoto et al., 2019), wherein unseen
state-action pairs are often erroneously overestimated to have unrealistic values (Fujimoto et al.,
2019). This overestimation makes the policy preferentially select OOD actions during deployment.
To address these challenges, existing offline RL works propose to constrain the learned policy close
to the behavior policy or penalize the Q-values of OOD actions (Fujimoto et al., 2019; Kumar et al.,
2020; An et al., 2021; Kumar et al., 2019; Fujimoto and Gu, 2021). However, such approaches
may result in overly conservative policies (Mao et al., 2023). Another class of methods, in-sample
learning (Kostrikov et al., 2021; Hansen-Estruch et al., 2023; Xu et al., 2023; Garg et al., 2023; Xiao
et al., 2023) such as implicit Q-learning (IQL) (Kostrikov et al., 2021), offers a potential alternative
that effectively avoids the OOD issue. In-sample learning approximates optimal values without
querying the value function of any unseen actions. In addition, its decoupled value function and
policy learning processes provide additional feasibility to various parameterized actors (Hansen-
Estruch et al., 2023; Zheng et al., 2024; Wang et al., 2023).

A major challenge imposed by safety constraints is the necessity of preventing unsafe actions that
could result in catastrophic outcomes (Garcı́a et al., 2015; Ray et al., 2019; Brunke et al., 2022; An-
dersen et al., 2020; Shi et al., 2021). A magnitude of safe RL approaches, such as primal-dual meth-
ods (Wu et al., 2024; Chow et al., 2018) and reward penalty techniques (Thomas et al., 2021; Araújo
and Braga, 1998), fail to consistently satisfy constraints despite their foundation in constrained op-
timization, resulting in significant training performance instability. Feasibility analysis (Fisac et al.,
2019; Yu et al., 2022) can effectively enforce constraints, though its strong focus on constraint sat-
isfaction may result in overly conservative policies.
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Figure 1: An illustrative example of a reach-avoid control task. Left: The robot aims to reach the
goal while avoiding hazards. Middle: Under decoupled value functions, the robot at s1 myopically
chooses the action maximizing Vr (yellow arrow to s2). At s2, the Vr-maximizing action is unsafe
(red arrow), forcing a safe alternative (yellow arrow to s3) by Vc. However, the globally optimal
trajectory requires selecting the green arrow at s1. Right: In contrast, incorporating a reward penalty
into IQL encourages a coherent value function that balances safety and task achievement, resulting
in a shorter and more efficient hazard avoidance path toward the goal.

While the offline in-sample method IQL shows potential for incorporating safety constraints (Koirala
et al., 2025; Zheng et al., 2024), it faces significant challenges in guaranteeing safety. In the exist-
ing research, the independent training of reward and cost value functions can lead to the extracted
policy diverging from the optimal policies implied by each value function, thereby risking safety
failures or performance degradation. As shown in Figure 1, the separate training of reward and cost
value functions leads them to provide conflicting policy recommendations, forcing the policy onto
a suboptimal trajectory. In contrast, jointly training the value functions enables the agent to foresee
potential risks while pursuing reward maximization.

To address this issue, different from existing in-sample OSRL methods with separate training of the
reward and cost value function, we propose the Region-Based Reward Penalty over Action Chunks
(R2PAC), a novel in-sample OSRL method that is the first approach to enable IQL to directly learn
a single value function whose corresponding implicit policy is optimal within the safe policy space.
Our method introduces two effective extensions to the IQL algorithm, achieving strong performance
in both reward maximizing and constraint satisfaction.

The first innovation is on a new region-based reward-penalized update within the IQL framework,
which extends the reward value function of IQL to incorporate safety constraints. The key break-
through is that a straightforward yet powerful region-specific reward penalty enables the standard
IQL framework to learn a value function that corresponds to the constrained optimal policy. Specifi-
cally, a key step is to learn an optimal cost value function, through which we accurately identify safe
regions and establish a well-defined region that guides our targeted penalty design. Subsequently,
we penalize the reward signal for transitions into unsafe areas. Theoretical analysis shows that this
penalization ensures policy safety without sacrificing optimality, which is supported by our argu-
ment that an unsafe policy is always inferior to a safe one under our penalization. As a result, safe
policy extraction can be simplified using only a single value function.

We propose, for the first time, integrating action chunking, a technique widely employed in imitation
learning (Black et al., 2025; Li et al., 2025), into in-sample learning to stabilize the training of value
functions and to enhance its risk anticipation capability. First, we identify for the first time that,
by leveraging multi-step backpropagation to mitigate the impact of temporal difference (TD) errors,
action chunking helps to address the overfitting problem, a common issue in in-sample learning
methods (Chen et al., 2025; Xu et al., 2023; Garg et al., 2023). Furthermore, since our reward value
function is trained in dependency on the cost value function, action chunking helps stabilize the
training of the reward value function compared to single-step updates. Secondly, by predicting action
sequences over the next h steps, our method significantly improves the agent’s danger avoidance
capability. In contrast to single-step prediction, our approach equips the actor with implicit long-
horizon foresight, enabling earlier anticipation of potential hazards.

The proposed method is straightforward to implement and highly transferable to most OSRL algo-
rithms, as it requires no additional modules and uses a simple multi-layer perceptron (MLP) as the
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network backbone. Indeed, merely by changing to rely on a single value function and incorporat-
ing action chunking, we can avoid the challenge faced by existing in-sample learning methods in
balancing the contributions of reward and cost value functions.

Extensive experimental results demonstrate that our method outperforms other OSRL algorithms on
the DSRL benchmark (Liu et al., 2023a). Adopting only a single value function for policy extraction,
our method satisfies safety constraints across all 17 tasks and achieves the highest reward in 13 of
them.

2 RELATED WORK

Offline Safe RL. Safe offline RL learns policies from fixed datasets under safety constraints, com-
monly formulated as a Constrained Markov Decision Process (CMDP) (Altman, 2021). Existing
methods often combine Lagrangian-based safe RL techniques with offline algorithms (Kostrikov
et al., 2021; Xu et al., 2022; Zheng et al., 2024). Representative works include CPQ (Xu et al.,
2022), which penalizes unsafe and OOD actions but may harm generalization, and FISOR (Zheng
et al., 2024), which enforces strict safety via Hamilton–Jacobi reachability. Alternative sequence
modeling approaches (Liu et al., 2023b; Lin et al., 2023; Zhang et al., 2023) exist but are sensitive
to data quality.

Action Chunking. Action chunking has been widely used in imitation learning to improve pol-
icy robustness and handle non-Markovian behavior in offline datasets (Li et al., 2025; Black et al.,
2025; Liu et al., 2025; Bharadhwaj et al., 2024; George and Farimani, 2023). This approach pre-
dicts and executes action sequences in an open-loop manner, requiring a powerful parameterized
actor. Learning such chunked policies often relies on expressive generative models, including dif-
fusion (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020; Croitoru et al., 2023) and
flow matching (Frans et al., 2025; Gao et al., 2025; Lipman et al., 2024; Chen and Lipman, 2023;
Lipman et al., 2022). In this work, we repurpose action chunking to regularize the value function
and promote safety through temporally consistent actions in in-sample learning.

3 PRELIMINARY

Offline Safe RL. Safe RL is typically formulated as a CMDP (Altman, 2021), which is defined
by a tuple M := (S,A, P, r, c, γ). This tuple comprises a state space S, an action space A, a
transition dynamics P : S × A → ∆(S), a reward function r : S × A → R, a cost function
c : S × A → R, and a discount factor γ ∈ [0, 1]. The objective of safe RL is to find a policy
π(a|s) to maximize the expected cumulative rewards while satisfying the safety constraint, i.e.
maxπ Es0∼ρ0,at∼π,st+1∼P

[∑T−1
t=0 γtr(st, at)

]
, s.t.Es0∼ρ0,at∼π,st+1∼P

[∑T−1
t=0 γtc(st, at)

]
≤ ℓ,

where ρ0 denotes the distribution of initial states, T is the trajectory length, and ℓ ≥ 0 is the prede-
fined cost limit.

In offline RL, the objective is to optimize the safe RL objective with a previously collected dataset
D = {(s(i)t , a

(i)
t , r

(i)
t , c

(i)
t , s

(i)
t+1)

T−1
t=0 }

N−1
i=0 , which contains a total of N trajectories. Existing offline

safe RL methods typically solve the problem in the following form:

max
π

Est,at

[
T−1∑
t=0

γtr(st, at)

]
s.t. Est,at

[
T−1∑
t=0

γtc(st, at)

]
≤ ℓ; D(π||πβ) ≤ ϵ, (1)

where πβ is the underlying behavioral policy of the offline dataset, D(π||πβ) is a divergence term
to prevent the learned policy π shift form πβ .

Implicit Q Learning. IQL (Kostrikov et al., 2021) addresses the distribution shift issue by approxi-
mating value functions only on in-distribution data. This method is achieved through an asymmetric
ℓ2 loss (i.e., expectile regression). The losses for parameterized Q-function and state value function
in IQL are as follows:

LQ(θ) = E(s,a,s′)∼D
[
(r(s, a) + γVψ(s

′)−Qθ(s, a))2
]
, (2)

LV (ψ) = E(s,a)∼D
[
Lτ2(Qθ̂(s, a)− Vψ(s))

]
, (3)
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where Lτ2(u) = |τ − I(u < 0)|u2. For policy extraction, IQL uses Advantage Weighted Regression
(AWR) (Peng et al., 2019):

Lπ(ϕ) = E(s,a)∼D
[
exp(α(Qθ̂(s, a)− Vψ(s))) log πϕ(a|s)

]
, (4)

where α ∈ [0,∞] is the temperature parameter.

4 METHODS

In this section, we introduce the formulation of the proposed region-based reward penalty over ac-
tion chunks, which yields a single value function to achieve both reward maximization and constraint
satisfaction. Our approach comprises three key components: (1) the derivation of a region-based re-
ward penalty mechanism, (2) the adaptation of action chunking to stabilize value function training,
and (3) a simple yet effective policy extraction method based on flow-matching.

4.1 PENALIZED REWARD VALUE FUNCTION

To address safety requirements in offline RL, we first introduce a penalized value function. Our
objective is to learn a policy that consistently satisfies safety constraints, relying solely on in-sample
data.

We first separate the entire state space S into the safe region (Sπsafe) and the unsafe region (Sπunsafe).
Following the conventions established in prior work (Fisac et al., 2019; Zheng et al., 2024; Thomas
et al., 2021), we have the following definition:

Definition 1 The safe region and the unsafe region under a policy π are defined as:

Sπsafe := {s ∈ S|V πc ≤ ℓ} and Sπunsafe := S/Sπsafe. (5)

We denote S∗safe as the largest safe region, which is induced by the policy π∗
c := argminπ∈Π V

π
c (s).

By definition, for any state within S∗safe, there exists at least one policy that satisfies the safety
constraints from that state onward. Conversely, if a state belongs to s ∈ S∗unsafe := S/S∗safe, any
trajectory starting from it will eventually violate the safety threshold ℓ, since even the safest feasible
policy π∗

c fails to satisfy the constraint at s. Accordingly, we define the safe policy space as follows:

Definition 2 The safe policy space is defined as:

Πsafe := {π ∈ Π|V πc (ρ0) ≤ ℓ}, (6)

where ρ0 is the initial state distribution.

Region-Based Reward Penalty Framework. Inspired by Thomas et al. (2021), we adopt the re-
ward penalty framework to ensure safety. For a transition (s, a, s′, r), we transform it to:

(s, a, s′, r) =

{
(s, a, s′, r) If s′ ∈ S∗safe
(s, a, sa,−C) If s′ ∈ S∗unsafe

, (7)

where C ∈ R is a penalty constant for unsafe transitions, and sa denotes an absorbing state: any
action taken in sa returns to sa with reward −C. Under this formulation, any unsafe action that
would lead to an unsafe next state is effectively redirected to sa. Intuitively, provided that C is suffi-
ciently large, any policy that maximizes cumulative reward from a safe state s is guaranteed to avoid
entering the unsafe region. We denote the reward value function learned with this transformation as
V r. To formalize this intuition, we present the following proposition:

Proposition 1 Assume that the safe policy space Πsafe is non-empty for any ℓ ≥ 0. Then for any
safe policy π1 ∈ Πsafe and any unsafe space π2 ∈ Π/Πsafe, the value functions satisfy

V
π1

r (ρ0) > V
π2

r (ρ0) (8)

under the condition

C >

∑T−1
t=0 γt(rmax − rmin)

ℓ
, (9)

where rmax and rmin denote maximum and minimum of the reward.
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The above discussion ensures that, starting from a safe state, a policy maximizing V r will, in theory,
never enter the unsafe region. Moreover, we demonstrate that our penalty framework also preserves
optimality when extended to hard constraints. The proof and corresponding discussion are provided
in Appendix A.1 and Appendix A.2.

Learning the Safe and Reward Value Functions. We employ IQL to learn the optimal cost value
functions Q∗

c , V
∗
c using

LQc
= E(s,a,s′)∼D

[
(c(s, a) + γVc(s

′)−Qc(s, a))2
]
, (10)

LVc
= E(s,a)∼D

[
Lτ2(Vc(s, a)−Qc(s))

]
, (11)

Based on V ∗
c , we derive the largest safe region S∗unsafe. Additionally, we apply the same IQL frame-

work to learn the optimal reward value function using the converted transition data:

LQr
= E(s,a,s′)∼D

[
(I(Vc(s′) ≤ ℓ)(r(s, a) + γV r(s

′)) + I(Vc(s′) > ℓ)C −Qr(s, a))2
]
, (12)

LV r
= E(s,a)∼D

[
Lτ2(Qr(s, a)− V r(s))

]
, (13)

where C = −C
1−γ =

∑∞
t=0 γ

t(−C) denotes the value of the absorbing state sa, and I(·) represents
the indicator function. To extract a policy that maximizes cumulative reward while satisfying safety
constraints, it suffices to maximize the penalized reward value function V r.

4.2 PENALIZED VALUE FUNCTION WITH ACTION CHUNKING

Although Section 4.1 offers a theoretically justified framework for safety guarantees, the training of
the penalized reward value function V r can exhibit instability caused by the dependency of V r on
Vc, where bootstrap errors propagate across both temporal horizon and value functions. To address
this, we integrate an action chunking technique into the IQL framework for value function learning.

Chunked Q-function. We generalize the critic training to operate over a horizon of h consecutive
actions:

Qr(st, at:t+h) =

t+h−1∑
k=t

γkrk + γhVr(st+h), Qc(st, at:t+h) =

t+h−1∑
k=t

γkck + γhVc(st+h), (14)

where at:t+h = {at, at+1, · · · , at+h−1}.
The chunked Q-function described above exhibits a structural similarity to the uncorrected n-step
return (Kozuno et al., 2021; Hessel et al., 2018), which introduces bias by conditioning only on
the first action while using rewards from a sequence of actions. In contrast, our method remains
unbiased, as the Q-function explicitly takes the entire action sequence as input.
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Figure 2: Batch-averaged Qr and Qc
values obtained during training with
vanilla IQL on the Bullet-Safety-Gym
BallRun task across various chunk
lengths.

Alleviate Overfitting in IQL. In IQL, the use of a large τ
(close to 1) in the asymmetric loss function leads to better
approximate the maximum value function. However, this
approach can cause the value function to overfit to over-
estimated Q-values originating from bootstrap errors. We
present the first analysis of Q-value overestimation in IQL
from a temporal horizon perspective, and introduce an ac-
tion chunking technique to mitigate the effect of bootstrap
errors. The overestimation is primarily due to the propa-
gation of bootstrap errors during the standard 1-step tem-
poral difference backups. This propagation results in cu-
mulative error amplification over extended temporal hori-
zons.

Unlike previous studies that mitigate overfitting via value
ensembles in 1-step IQL (Chen et al., 2025), our action chunking technique reduces approximation
error and enhances numerical stability by decreasing error propagation frequency without a huge
number of value networks. The use of h-step returns propagates value h times faster, accelerating
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convergence by reducing error propagation steps, thereby significantly improving numerical stability
compared to1-step IQL.

To demonstrate the effectiveness of action chunking in stabilizing training, we train vanilla IQL
on the BallRun task from the DSRL benchmark (Liu et al., 2023a). As illustrated in Figure 2,
vanilla IQL with a chunk length of 1 exhibits slow convergence and unstable Q-values. In contrast,
increasing the chunk length leads to faster convergence of the batch-averaged Q-values and smoother
training curves, indicating significantly improved stability throughout training.

Action Chunked Penalized Value Function. Our action chunking technique serves as a drop-in
modification and can be straightforwardly integrated with IQL. We employ a loss formulation similar
to Eq. 12 and 13 to train the h-step penalized reward value function Qr and state value function V r:

LQr
= E(st,at:t+h,st+h)∼D

[(
I(Vc(st+h) ≤ ℓ)

( h−1∑
k=0

γkrt+k + γhV r(st+h)
)
+

I(Vc(st+h) > ℓ)C −Qr(st, at:t+h)
)2]

, (15)

LV r
= E(st,at:t+h)∼D

[
Lτ2

(
Qr(st, at:t+h)− V r(st)

)]
. (16)

This loss extends the penalized Q-loss to h steps. To ensure consistency, we also train an h-step
policy π(at:t+h|st) designed to generate a sequence of h consecutive actions. Since maximizing
Qr is equivalent to solving a constrained optimization problem, the policy is trained by directly
maximizing Qr. Analogous to 1-step IQL, we state the following proposition:

Proposition 2 In the limit as τ → 1, h-step IQL converges to the optimal value function of an
induced MDP where each transition represents h steps in the original MDP.

Proposition 2 establishes that combining IQL with action chunking is equivalent to learning the
optimal value function in an induced MDP. This finding enables the seamless integration of action
chunking into our reward-penalty framework, ensuring interpretability. The proof is provided in
Appendix A.3.

4.3 PRACTICAL IMPLEMENT

Although the optimal policy maximizes V r to avoid entering unsafe regions, value function approx-
imation errors may still cause the agent to deviate into unsafe states during execution. Once in such
states, relying solely on V r provides no mechanism for identifying escape paths back to safety. To
overcome this limitation, which is further discussed in Section 5.2, we introduce decoupled objec-
tives for safe and unsafe states. Our approach leverages bothV r and the cost value function Vc to
guide policy recovery and ensure safety:

s ∈ Ssafe : maxπ Es
[
V
π

r (s)
]
, s ∈ Sunsafe : maxπ Es

[
− V πc (s)

]
. (17)

In the spirit of preserving simplicity and efficiency, we aim for a simple method for policy ex-
traction. We adopt a novel framework based on flow-matching models (Gao et al., 2025; Lipman
et al., 2024) utilizing classifier-free guidance (CFG) to generate actions from complex multi-modal
distributions (Frans et al., 2025).

We instantiate a single flow-matching network to serve as both the conditional and unconditional
policy. The policy is modeled by a velocity field vθ, conditioned on a partially-noised action ait:t+h,
noise scale i, current state st, and an optimality variable o ∈ {∅, 0, 1}. The optimality variable is
instantiated as follows:

st ∈ Ssafe : st ∈ Sunsafe :

o =

{
1 if Ar = Qr − V r ≥ 0

0 if Ar = Qr − V r ≤ 0
, o =

{
1 if Ac = Qc − Vc ≤ 0

0 if Ac = Qc − Vc > 0
.

(18)

vθ is trained via the following loss function:

Lv = E(st,at:t+h)∼D

[
||vθ(ait:t+h, i, st, o)− (at:t+h − a0t:t+h)||2

]
, (19)

ait:t+h = (1− i)a0t:t+h + iat:t+h, (20)

6
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and where the noise scale i is sampled uniformly from [0, 1], and a0t:t+h ∼ N (0, 1) is Gaussian
noise. When executing, the noised actions are denoised by:

v̂i = vθ(a
i
t:t+h, i, st, ∅) + ω(vθ(a

i
t:t+h, i, st, o)− vθ(ait:t+h, i, st, ∅)), (21)

where ω is the guidance scale. At each timestep, we generate a sequence of h actions but execute
only the first one. Given that most tasks in the DSRL benchmark involve infinite horizons, defining
an appropriate safety threshold is challenging. To address this, we adopt the α-quantile of the Vc
values from the dataset as the safety threshold. To further enhance safety, we employ rejection
sampling (Hatch et al., 2024; Hansen-Estruch et al., 2023; Chen et al., 2023) to select the action
with lowest Qc. Please see Appendix C and Appendix D for more details.

5 EXPERIMENTS

5.1 EVALUATION ON DSRL BENCHMARK

Datasets and Metrics. We evaluate the proposed method on Safety-Gymnasium (Ray et al., 2019)
and Bullet-Safety (Gronauer, 2022) tasks within the DSRL benchmark (Liu et al., 2023a), comparing
against state-of-the-art safe offline RL algorithms. Performance is measured using normalized return
and normalized cost. The normalized return is computed as R = (Rπ − Rmin)/(Rmax − Rmin),
where Rπ is the return of the current policy, and Rmax and Rmin are the maximum and minimum
returns in the dataset. The normalized cost is given byC = Cπ/κ, where κ > 0 is the cost threshold.
Following FISOR (Zheng et al., 2024), we treat safety as the primary evaluation criterion and aim to
maximize reward only when the safety constraint is satisfied. We set κ = 10 for Safety-Gymnasium
and κ = 5 for Bullet-Safety tasks, which are used in testing the algorithms aiming to achieve the
hard constraints and are hard to achieve in other OSRL algorithms.

Baselines. The baseline algorithms include: i) BC: Behavior cloning; ii) CPQ (Xu et al., 2022): a
constrained Q-learning approach that penalizes OOD actions as unsafe; iii) COptiDICE (Lee et al.,
2022): a Lagrangian method based on distribution correction estimation (DICE), extending Op-
tiDICE (Lee et al., 2021) for offline safe RL; iv) CDT (Liu et al., 2023b): a Constrained Decision
Transformer that infers future costs; v) TREBI (Lin et al., 2023): a cost-budget inference method
leveraging the Diffuser (Janner et al., 2022; Ajay et al., 2022) for real-time safe decision-making;
vi) FISOR (Zheng et al., 2024): a feasibility guided method combined with diffusion policies.

Main Results. The evaluation results are presented in Table 1. We primarily adopt the evaluation
metrics reported in FISOR (Zheng et al., 2024). Our proposed method demonstrates significant
performance improvements over all existing baselines. The first five baseline algorithms exhibit
substantial constraint violations under strict safety requirements, as a significant gap exists between
their theoretical guarantees and practical implementation. Although FISOR explicitly incorporates
hard constraints and achieves satisfactory constraint satisfaction, it tends to be overly conservative
in many tasks, resulting in comparatively low returns. In contrast, our method maximizes the opti-
mal value function within the safe policy space. Despite employing a more lenient cost metric Vc
compared to the feasibility-oriented objective, our approach still satisfies all strict cost constraints.
The experimental results clearly demonstrate that our method outperforms all baselines in terms of
reward attainment, achieving the highest reward in most of the tasks, while consistently keeping the
normalized cost below 1 across all tasks.

5.2 ABLATION STUDY AND ANALYSIS

Here we present ablation studies on the key components of our method. Additional ablation results
are provided in Appendix E.

Visualization Results. Figure 3 presents a UMAP projection (McInnes et al., 2020) of the value
functions Vr, Vc, and V r learned on the BallRun task, visualized with a subset of 5, 000 randomly
sampled states. We observe that states with high Vr values frequently coincide with high Vc values,
suggesting that purely maximizing Vr may lead the policy into unsafe states, especially under inac-
curate Vc estimates. In contrast, V r assigns low values to states with high Vc, while preserving value
trends similar to Vr in other regions, demonstrating the ability of V r to jointly optimize for reward
and safety during policy learning.
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Table 1: Normalized DSRL (Liu et al., 2023a) benchmark results. ↑ means the higher the better. ↓
means the lower the better. Each value is averaged over 20 evaluation episodes and 3 random seeds.
Gray: Unsafe agents. Bold: Safe agents whose normalized cost is smaller than 1. Red: Safe agents
with the highest reward. Blue: Safe agents with the second highest reward.

BC CDT CPQ COptiDICE TREBI FISOR ours
Task reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓

CarButton1 0.01 6.19 0.17 7.05 0.22 40.06 -0.16 4.63 0.07 3.75 -0.02 0.26 0.15 0.96
CarButton2 -0.10 4.47 0.23 12.87 0.08 19.03 -0.17 3.40 -0.03 0.97 0.01 0.58 0.07 0.25
CarPush1 0.21 1.97 0.27 2.12 0.08 0.77 0.21 1.28 0.26 1.03 0.28 0.28 0.29 0.36
CarPush2 0.11 3.89 0.16 4.60 -0.03 10.00 0.10 4.55 0.12 2.65 0.14 0.89 0.15 0.52
CarGoal1 0.35 1.54 0.60 3.15 0.33 4.93 0.43 2.81 0.41 1.16 0.49 0.83 0.42 0.57
CarGoal2 0.22 3.30 0.45 6.05 0.10 6.31 0.19 2.83 0.13 1.16 0.06 0.33 0.32 0.67

AntVel 0.99 12.19 0.98 0.91 -1.01 0.00 1.00 10.29 0.31 0.00 0.89 0.00 0.92 0.88
HalfCheetahVel 0.97 17.93 0.97 0.55 0.08 2.56 0.43 0.00 0.87 0.23 0.89 0.00 0.95 0.13

SwimmerVel 0.38 2.98 0.67 1.47 0.31 11.58 0.58 23.64 0.42 1.31 -0.04 0.00 0.55 0.12
SafetyGym

Average 0.35 6.05 0.50 4.31 0.02 10.58 0.29 5.94 0.28 1.36 0.30 0.35 0.42 0.50

AntRun 0.73 11.73 0.70 1.88 0.00 0.00 0.62 3.64 0.63 5.43 0.45 0.03 0.62 0.53
BallRun 0.67 11.38 0.32 0.45 0.85 13.67 0.55 11.32 0.29 4.24 0.18 0.00 0.30 0.00
CarRun 0.96 1.88 0.99 1.10 1.06 10.49 0.92 0.00 0.97 1.01 0.73 0.14 0.93 0.57

DroneRun 0.55 5.21 0.58 0.30 0.02 7.95 0.72 13.77 0.59 1.41 0.30 0.55 0.59 0.26
AntCircle 0.65 19.45 0.48 7.44 0.00 0.00 0.18 13.41 0.37 2.50 0.20 0.00 0.32 0.23
BallCircle 0.72 10.02 0.68 2.10 0.40 4.37 0.70 9.06 0.63 1.89 0.34 0.00 0.51 0.49
CarCircle 0.65 11.16 0.71 2.19 0.49 4.48 0.44 7.73 0.49 0.73 0.40 0.11 0.52 0.11

DroneCircle 0.82 13.78 0.55 1.29 -0.27 1.29 0.24 2.19 0.54 2.36 0.48 0.00 0.52 0.32
BulletGym

Average 0.72 10.58 0.63 2.09 0.32 5.28 0.55 7.64 0.56 2.45 0.39 0.10 0.54 0.31
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Figure 3: UMAP visualization of Vr, Vc, and V r across 5000 random states in the BallRun dataset.
Each dot corresponds to a distinct state.

Moreover, we observe that V r assigns nearly identical values to unsafe states, consequently provid-
ing insufficient incentive to escape such regions. This observation necessitates a policy designed to
actively minimize Vc whenever the agent is in an unsafe state.

Ablation on Safety Threshold. We evaluate the sensitivity of our method to the safety threshold
ℓ by testing three different values. The safety thresholds are selected as α-quantile of Vc values in
datasets. The results are presented in Figure 4. Since actions that violate the safety constraint lead to
termination in an absorbing state, the choice of ℓ directly influences the performance. Whenα ≤ 0.5,
the normalized score increases steadily with α. For α > 0.5, however, performance declines and
the normalized cost exhibits oscillations during training, although satisfactory evaluation results can
still be achieved using model checkpoints.
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Figure 4: Training curves and normalized scores for different thresholds on the BallRun task (Final
scores are evaluated over 20 episodes and 3 seeds)
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Table 2: Ablation on different design choices. Gray: Unsafe agents. Bold: Safe agents whose
normalized cost is smaller than 1.

w/o V r w/o Vc AWR actor Ours
Task reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓

BallRun 0.94 14.69 0.29 0.09 0.08 0.05 0.30 0.00
AntRun 0.62 5.73 0.61 1.16 0.63 0.43 0.62 0.53

AntCircle 0.58 13.00 0.38 0.20 0.34 3.12 0.32 0.23
DroneRun 0.71 13.28 0.60 0.94 0.47 0.60 0.59 0.26

DroneCircle 0.85 18.5 0.53 1.50 0.47 0.75 0.52 0.32
CarGoal1 0.59 1.18 0.35 0.48 0.33 0.62 0.42 0.57
CarGoal2 0.36 2.41 0.30 0.37 0.20 0.32 0.32 0.67
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Figure 5: Ablation over chunk length
(h ∈ {1, 3, 5, 7}) on BallRun and (h ∈
{1, 5, 10, 15}) on CarGoal2 tasks.

Ablation on Action Chunk Length. To validate the effi-
cacy of action chunking length in value function learning,
we conducted ablation studies on BallRun and CarGoal2
tasks. As the different time horizon in Safety-Gymnasium
and Bullet-Safety-Gym, we choose h ∈ {1, 3, 5, 7} in
BallRun and h ∈ {1, 5, 10, 15} in CarGoal2 for our ex-
periment. As shown in Fig. 5, using values of h > 1
leads to consistent performance improvements over the
baseline. Specifically, the normalized reward increases
steadily with the chunk length h, while the normalized
cost decreases.

Ablation on Key Components We evaluate the effec-
tiveness of key components in our method, particularly
the region-based reward-penalized value function. To assess the contribution of the penalized value
function, we compare against two ablated variants: (1) w/o V r, which uses the vanilla Vr without
safety-aware penalization as the objective of safe states, and (2) w/o Vc, which does not incorporate
the cost value function Vc for unsafe states. To further demonstrate that our performance is not
overly dependent on a specific policy extraction and parameterization approach, we also include an
ablation with a three-layer MLP Gaussian actor trained via AWR, denoted as AWR actor.

As summarized in Table 2, the variant w/o V r exhibits severe constraint violations due to the lack of
safety-aware value guidance. w/o Vc achieves strong constraint satisfaction in most tasks, but fails in
a subset of them as a result of pushing the safety threshold ℓ to its limit in pursuit of higher reward.
The AWR actor yields constraint satisfaction comparable to our full method but attains lower reward,
likely due to the limited expressivity of the parametric policy. In contrast, our complete approach
effectively balances constraint satisfaction and reward maximization.

The consistent safety performance of the latter three variants, all of which include the proposed
V r function, underscores the effectiveness of our penalized value formulation. Notably, the full
constraint satisfaction achieved by the AWR actor across all tasks suggests that the safety assurance
of our method is robust to the choice of actor architecture.

6 CONCLUSION

In this work, we propose a novel approach that utilizes IQL to learn safe and high-performing poli-
cies from offline dataset. We introduce a penalized reward formulation by integrating cost con-
straints into reward learning, enabling to approximate the optimal value function within a safe policy
space. We employ action chunking to enhance the numerical stability of the training process and
mitigate the effect of bootstrap errors, thereby improving the robustness of value function estima-
tion. We provide theoretical analysis, which shows that our penalized value function ensures policy
safety. Experiments on DSRL benchmarks demonstrate that our method outperforms existing base-
line algorithms in both safety and return, achieving the highest returns in 13 out of 17 tasks while
fully satisfying safety constraints.
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A THEORETICAL INTERPRETATIONS

A.1 PROOF TO PROPOSITION 1

proof. Let V π−C denotes the cost value function in reward penalty MDPMC , is defined as

V π−C(s) = Es0=s,at∼π,st∼P−C

[ T−1∑
t=0

γtI(st = sa)(−C)
]
, (22)

where P−C is the transition dynamic ofMC .

Consider an unsafe policy π1 in the original MDPM, such that V π1
c (ρ0) ≥ ℓ, and assume the cost

function c ∈ {0, 1}. Then inMC , we have V π1

−C(ρ0) ≤ −Cℓ, since the absorbing nature ofMC

leads to a higher visitation frequency of unsafe states under π1 compared toM. Then,

V
π1

r (ρ0) = Es0∼ρ0,at∼π1,st∼P−C

[ T−1∑
t=0

γtrt

]
= Es0∼ρ0,at∼π1,st∼P−C

[ T−1∑
t=0

γt(I(st ̸= sa)rt + I(st = sa)(−C))
]

= Es0∼ρ0,at∼π1,st∼P−C

[ T−1∑
t=0

γt(I(st ̸= sa)rt

]
+ Es0∼ρ0,at∼π1,st∼P−C

[ T−1∑
t=0

γtI(st = sa)(−C))
]

≤ Es0∼ρ0,at∼π1,st∼P

[ T−1∑
t=0

γtrt

]
+ Es0∼ρ0,at∼π1,st∼P−C

[ T−1∑
t=0

γt(I(st = sa)(−C))
]

= V π1
r (ρ0) + V π1

−C(ρ0)

≤ V π1
r (ρ0)− Cℓ

≤
T−1∑
t=0

γtrmax − Cℓ. (23)

Now, assume that for any ℓ ≥ 0, there exists at least one safe policy π2 such that V π2
c (ρ0) ≤ l.

Setting ℓ = 0, π2 never enters sa, and thus the minimum reward it receives inMc is
∑T−1
t=0 γtrmin.

To ensure that π1 is suboptimal, it suffices to choose C such that:
T−1∑
t=0

γtrmax − Cℓ <
T−1∑
t=0

γtrmin. (24)

Rearranging, we derive

C >

∑T−1
t=0 γt(rmax − rmin)

ℓ
. (25)

For the infinite-horizon case where T =∞, this simplifies to

C >
rmax − rmin

(1− γ)ℓ
. (26)

A.2 DISCUSSION OF OPTIMALITY

In this section, we will show that when C → ∞, the optimal policy in the penalized MDPMC is
also the optimal policy in the original MDPM with ℓ = 0.

Let π∗
C denote the optimal solution toMC , and π∗ denote the optimal solution toM. When l = 0,

V π
∗

c (ρ0) = 0. Therefore, π∗ will never enter the unsafe region (i.e., all states with state visitation
distribution dπ

∗
> 0 have zero cost). InMC , π∗ will never receive the −C penalty.
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As C → ∞, π∗
C will also never receive the −C reward, since there exists at least one policy (e.g.,

π∗) whose value is greater than
∑T−1
t=0 γtrmin. Hence, the state visitation distribution of π∗

C inMC

is zero over the absorbing state sa. Excluding sa, the transition structure ofMC is identical to that
ofM. Therefore, π∗

C is also the optimal policy forM.

A.3 PROOF TO PROPOSITION 2

proof. For a MDPM, we define a new MDPMh. Mh has the same state space S asM. The
new action space Ah, the h-step reward function rh, and transition probabilities Ph is:

Ah = A×A× · · ·A︸ ︷︷ ︸
h times

, (27)

rh(st, at:t+h) =

h−1∑
k=0

γkrt+k, (28)

Ph(st+h|st, at) =
∑

st+1,··· ,st+h−1

t+h−1∏
k=t

P (sk+1|sk, ak). (29)

Then we consider the offline setting, where data are collected by a behavior policy µ(at:t+h|st).
Following Theorem 3 of Kostrikov et al. (2021), we have

lim
τ→1

Vτ (st) = max
at:t+h∈Ah

s.t. µ(at:t+h|st)>0

Q∗(st, at:t+h). (30)

The above discussion says that IQL with action chunking still approximates an optimal value func-
tion inMh. While the optimal action for each state is a chunk of actions in the dataset. We further
extend the h-step IQL to obtain the explicit form of the corresponding implicit policy. Following
Theorem 4.1 of Hansen-Estruch et al. (2023), we write the objective as

arg min
V (st)

Eat:t+h∼µ[f(Q(st, at:t+h)− V (st))],

where f is arbitrary convex function, and f = Lτ in IQL. Note that the objective function is convex
with respect to V (s)

0 =
∂

∂V (s)
Eat:t+h∼µ[f(Q(st, at:t+h)− V (st))]

∣∣∣∣
V=V ∗

= −Eat:t+h∼µ[f
′(Q(st, at:t+h)− V ∗(st))]

= Eat:t+h∼µ

[
|f ′(Q(st, at:t+h)− V ∗(st))|(Q(st, at:t+h)− V ∗(st))

|Q(st, at:t+h)− V ∗(st)|

]
. (31)

We then define the implicit policy to be

πimp(at:t+h|st) =
µ(at:t+h|st)|f ′(Q(st, at:t+h)− V ∗(st))|

Zimp|Q(st, at:t+h)− V ∗(st)|
, (32)

where Zimp is a normalization constant, and rewrite the above expression as

= Eat:t+h∼πimp [(Q(st, at:t+h)− V ∗(st))]

=
∂

∂V (st)
− 1

2
· Ea∼πimp [(Q(st, at:t+h)− V (st))

2]

∣∣∣∣
V=V ∗

= 0. (33)

With the above discussion, we obtain the action chunking policy is also a reweighted form of behav-
ior policy like 1-step IQL do. For loss in Eq. 15, we have that the implicit policy is

πimp(at:t+h|st) ∝
µ(at:t+h|st)|f ′(Q(st, at:t+h)− V

∗
(st))|

|Q(st, at:t+h)− V
∗
(st)|

. (34)
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Figure 6: Dataset Composition Overview for Bullet-Safety-Gym Tasks.

B BENCHMARK DETAILS

B.1 SAFETY GYMNASIUM

Safety-Gymnasium (Ray et al., 2019), a MuJoCo-based benchmark for safe RL, evaluates the trade-
off between performance and safety through two categories of environments. The first involves
obstacle avoidance tasks performed by a Car agent across three scenarios (Goal, Button, and Push),
each with two difficulty levels (1 and 2). These tasks represent an important class of real-world
reinforcement learning problems in which an agent must move through an environment and interact
with objects to achieve a goal. The agent receives rewards for task completion and penalties for con-
tacting hazards. These environments are named in the format {Agent}{Task}{Difficulty} (e.g., Car-
Goal1). The second category consists of velocity-constrained environments featuring three agents
(Ant, HalfCheetah, and Swimmer), where the objective is to maximize forward movement reward
while adhering to safe speed limits. This tests the ability to balance performance with precise con-
trol to avoid failures due to overspeed. Environments in this category follow the naming scheme
AgentVel (e.g., AntVelocity).

B.2 BULLET SAFEY GYM

Bullet-Safety-Gym (Gronauer, 2022) is a safe RL benchmark based on the PyBullet engine. Unlike
Safety-Gymnasium, it uses shorter time horizons to enable faster training, serving as its efficient
complementary alternative, with a broader variety of robotic agents, including Ball, Car, Drone, and
Ant. The task settings remain relatively straightforward, offering two main types: Circle and Run.
Each environment is named concisely using the convention {Agent}{Task}, (e.g., AntCircle ).

B.3 COMPOSITION OF THE DATASET

The datasets used in our evaluations predominantly contain a mix of safe and unsafe trajectories. The
safety compliance of policies during evaluation is determined by their adherence to the undiscounted
cost-return threshold. We provide further details regarding the dataset composition.

Figure 6 and Figure 7 show the reward and cost returns of trajectories in the dataset, with each point
representing one pre-collected trajectory. Most datasets used in our evaluation contain both safe
and unsafe trajectories. The cost limit is indicated by a red dashed line for reference. A significant
number of trajectories exceed this limit, and unsafe trajectories often outnumber safe ones.
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Figure 7: Dataset Composition Overview for Safety-Gymnasium Tasks.
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Algorithm 1 CFG Training

for Each gradient steps do
(s, a) ∼ D, a0 ∼ N (0, I), t ∼

U(0, 1)
Label with optimality o ∈ {0, 1}.
If rand() < 0.1, set optimality o = ∅.
at ← (1− t) a0 + t a
θ ← ∇θ∥vθ(at, t, s, o)− (a− a0)∥2

end for

Algorithm 2 CFG Sampling

a ∼ N (0, I)
t← 0
for n ∈ [0, . . . , N − 1] do

v = (1− w) vθ(a, t, s, ∅) + w vθ(a, t, s, o = 1)
a← a+ (n/N)v
t← t+ (n/N)

end for
return a

C FLOW MATCHING AND CLASSIFIER FREE GUIDANCE

Flow Matching. Flow matching is an expressive diffusion-style generative model that enjoys
simplicity compared to denoising diffusions. Given a data distribution p(x) ∈ ∆(Rd) on a
d-dimensional Euclidean space, flow matching aims to construct a time-dependent vector field
vθ : [0, 1]× Rd → Rd such that a flow ϕ : [0, 1]× Rd → Rd is described by:

d

dt
ϕt(x) = vθ(ϕt(x)), (35)

where ϕ1(x) = x. A simplest variant of flow matching is based on linear paths and uniform time
sampling, and trained by minimizing the following loss:

Ex0∼N (0,Id),x1∼p(x),t∼Unif[0,1]

[
∥vθ(t, xt)− (x1 − x0)∥2

]
, (36)

where N (0, Id) is the d-dimensional standard normal distribution, Unif[0, 1] denotes the uniform
distribution, and xt = (1− t)x0 + txt.

Classifier Free Guidance. Classifier-free guidance (CFG) (Ho and Salimans, 2021) uses Bayes’
rule to guide the generated distribution to the desired direction. CFG trains a single diffusion model
to implement both conditional and unconditional ones. Rather than sampling in the direction of a
trained classifier’s gradient, the CFG approach derives the guided distribution through the following
formula:

∇x log q(x) = ∇x log p(x) + ω(∇x log p(x|y)−∇x log p(x)), (37)
where q(x) is the guided distribution.

Policy Improvement by CFG. In recent work, Frans et al. (2025) proposed the use of CFG to
steer a diffusion policy toward optimality, demonstrating strong empirical performance. The au-
thors parameterize policies as a product of two components: a reference policy π̂ and an optimality
function f : R→ R. The policy is defined as follows:

π(a|s) ∝ π̂(a|s) · f
(
A(s, a)

)
, (38)

where A(s, a) denotes the advantage function. It is shown that if f is non-negative and monoton-
ically increasing with respect to A, then π is guaranteed to improve upon π̂. This result can be
generalized to an exponentiated form:

π(a|s) ∝ π̂(a|s) · f
(
A(s, a)

)ω
, (39)

where ω controls the degree of improvement.

In practice, the optimality function f is cast as a binary random variable o ∈ {∅, 0, 1}, with a likeli-
hood proportional to f : p(o|s, a) ∝ f(A(s, a)). A flow-matching instantiation of this framework is
detailed in Algorithm 1 and Algorithm 2.

D IMPLEMENT DETAILS

Our implementation is based on PyTorch (Paszke et al., 2019). All experiments were conducted on
a single NVIDIA RTX 4090 GPU, with each run completed within 4 hours. Further implementation
details are provided in the following section.
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D.1 PSEUDOCODE

To provide an intuitive understanding of our method, we present a brief summary of it in this sub-
section.

Algorithm 3 R2PAC

1: Initialize parameters Qr, Qc, V r, Vc, vθ
2: Value function learning (h-step IQL):
3: for each gradient steps do
4: get batch of (st, at:t+h, st+h) ∼ D
5: update Qr , Qc,V r and Vc by the Eq. 15 and Eq. 16
6: update target networks
7: end for
8: Policy extraction (CFG):
9: for each gradient steps do

10: get batch of (st, at:t+h) ∼ D
11: update vector filed vθ using Eq. 19
12: end for

Through the action chunking technique, action sequences are employed as inputs to the Q-function
during training. We extend the 1-step approach employed in IQL to incorporate h consecutive
actions. Specifically, we utilize transitions of the form (st, at:t+h, st+h), and apply expectile re-
gression, using the same state-value function estimation method as IQL, to approximate the optimal
value function. ForLQr , the loss calculation includes an additional penalty term for safety constraint
violations, as defined in Eq. 7.

Our policy extraction is performed using h-step value functions. We employ a CFG method for
policy extraction, based on Frans et al. (2025), with slight adjustments to the optimality criteria. Our
actor is designed to generate a sequence of h consecutive actions. During execution, however, only
the first action in each sequence is executed, consistent with standard 1-step actors.

D.2 HYPERPARAMETER

To facilitate understanding and analysis of hyperparameter effects, we categorize them into two
classes: unified hyperparameters for all DSRL experiments (Table 3) and per-task hyperparameters
(Table 4).

To achieve optimal performance across tasks, we carefully tuned our algorithm’s key hyperparam-
eters. The hyperparameter configurations are provided in Table 3. The CFG scale ω balances task
performance against behavioral regularization: a higher ω prioritizes high-value actions, while a
lower ω adheres more closely to the behavior policy. These selections reflect inherent task require-
ments. In our experiments, we found that a mild guidance scale (ω = 2.0) consistently achieved
high performance, and was therefore kept fixed across all tasks.

The cost threshold ℓ, which serves as a metric to separate safe and unsafe regions, significantly
influences performance. A high value of ℓ may cause the policy to overlook safety constraints,
whereas a low value can overly constrain the policy, hindering reward maximization. Fine-tuning
ℓ is a challenging and labor-intensive process. To reduce the workload, we propose a principled
approach that sets ℓ as the α-quantile of the dataset value. As illustrated in Figure 6, datasets
vary in their composition of safe and unsafe trajectories. Empirically, we observe that datasets
with a higher proportion of safe trajectories tolerate a larger ℓ, leading to improved performance
without constraint violation. Conversely, for datasets with fewer safe trajectories, a smaller ℓ is
preferable. Accordingly, we adaptively set ℓ as the α-quantile of the state value Vc during training.
This approach eliminates the need for manual tuning of ℓ and thus yields robust and high-performing
results in our experiments.

Another important hyperparameter is the penalty coefficient C. Theoretically, setting C as large
as possible is preferred. However, in practice, an excessively large C may hinder value function
approximation due to limited model capacity. Empirically, we observe that our method is relatively
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Table 3: Hyperparameters for DSRL experiments.

Hyperparameter Value
Learning rate 0.0003
Optimizer Adam (Kingma and Ba, 2014)
Gradient steps 600000
Minibatch size 1024
MLP dimensions [512, 512, 512, 512]
Nonlinearity GELU (Hendrycks and Gimpel, 2023)

Flow steps 32
Flow time sampling distribution Unif([0, 1])
CFG scale w 2.0
Generated candidate numbers 16

Chunk length h 1 for HalfCheetahVel task and 5 for others
Expectile τ 0.9
Discount factor γ 0.99
Target critic soft update 0.005
Reward scale 200.0 for Car series task in Safey-Gymnasium, 1.0 for others
Cost scale 1.0

Table 4: Per-task hyperparameters selection

Task Quantile α Penalty Coefficient C
AntRun 0.7 1.0
BallRun 0.5 1.0
CarRun 0.95 1.0
DroneRun 0.7 1.0
AntCircle 0.7 1.0
BallCircle 0.85 1.0
CarCircle 0.9 1.0
DroneCircle 0.7 1.0

CarPush1 0.9 10.0
CarPush2 0.9 10.0
CarGoal1 0.9 10.0
CarGoal2 0.9 10.0
CarButton1 0.8 10.0
CarButton2 0.5 10.0
AntVelocity 0.95 1.0
HalfCheetahVelocity 0.99 1.0
SwimmerVelocity 0.7 1.0

insensitive to the choice of C. Therefore, we offer only two options for C, as shown in Table 4, to
simplify hyperparameter tuning.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ADDITIONAL VISUALIZATION RESULTS

We provide more UMAP visualization over Vr, Vc, and V r to elucidate the advantage of our method
in Figure.8.
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(a) UMAP visualization in the DroneRun task.
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(b) UMAP visualization in the DroneCircle task.
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(c) UMAP visualization in the AntRun task.
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(d) UMAP visualization in the AntCircle task.

Figure 8: Comparative visualization of learned state representations using UMAP dimensionality
reduction across four distinct locomotion tasks: DroneRun, DroneCircle, AntRun, and AntCircle.
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Figure 9: Training curves of our method and AWR-Flow on DroneRun, DroneCircle, CarGoal1,
CarGoal2, CarPush1, and CarPush2 tasks

E.2 ADDITIONAL ABLATION ON POLICY EXTRACTION CHOICE

We demonstrate that the h-step penalized reward value function is the most effective component of
our method. To verify the irrelevance of the policy extraction manner, we compare the CFG actor
with the AWR actor.

In Section 5, we have conducted the ablation studies using a three-layer MLP Gaussian actor, which
is trained by

Lπ = E(s,a)∼D

[(
Is∈Ssafe exp(α(Qr − V r) + Is∈Ssafe exp(β(Vc −Qc)

)
log πϕ(a|s)

]
, (40)

where α, β > 0 denote the temperature parameter. In our experiment, we set both α and β as 6.0.

To isolate the effect of the policy parameterization method, we also do an extra experiment using
the flow-matching framework for the AWR actor. We denote it as AWR-Flow. The loss function is
defined as:

Lv =E(st,at:t+h)∼D

[(
Is∈Ssafe exp(α(Qr − V r)

+ Is∈Ssafe exp(β(Vc −Qc)
)
||vθ(ait:t+h, i, st)− (at:t+h − a0t:t+h)||2

]
. (41)

As shown in Figure 9, both AWR-Flow and our CFG method demonstrate enhanced safety assurance
and achieve higher final rewards in most tasks by maximizing V r.

E.3 COST METRIC CHOICE

Our method can be readily adapted to different safety metrics. A particularly promising metric called
feasibility (Zheng et al., 2024; Yu et al., 2022; Bansal et al., 2017) has recently been introduced
in RL, which is Hamilton–Jacobi (HJ) reachability, notable for its hard constraint guarantees and
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Figure 10: Training curves of our method and feasibility on DroneRun, DroneCircle, CarGoal1,
CarGoal2, CarPush1, and CarPush2 tasks

Bellman backup-style updating. The feasibility Q-function is updated as

Qh(s, a)← (1− γ)h(s) + γmax{h(s), Vh(s′)}, (42)

where h is the state constraint function.

We evaluate a variant of our method, denoted as feasibility, wherein HJ reachability is adopted as the
criterion for distinguishing safe and unsafe regions while keeping all other components unchanged.
As shown in Figure 10, this variant maintains a plausible constraint-satisfaction capability. We
note a slight performance drop, which we attribute to the strict, hard-constraint nature of the HJ
reachability condition.

F TRAINING CURVE

We evaluate our method on 17 tasks from the DSRL benchmark. The training curves are presented
in Figure 11 and Figure 12. All experiments use the same hyperparameters specified in Table 3 and
Table 4.

G LIMITATIONS

One limitation of our current study stems from the need to fine-tune the safety threshold l across
different datasets, which is particularly challenging due to varying proportions of unsafe transitions.
To mitigate this issue, we introduce a simple adaptive thresholding method based on the α-quantile.
Looking forward, we plan to develop more resilient cost metrics that are robust to uncertain or unsafe
data distributions, such as feasibility analysis.
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Figure 11: Training curves on the Bullet-Safety-Gym tasks.
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Figure 12: Training curves on the Safety-Gymnasium tasks.
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