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ABSTRACT

To narrow the considerable gap between artificial and human intelligence, we
propose a new task, namely reference-limited compositional learning (RLCL),
which reproduces three core challenges to mimic human perception: composi-
tional learning, few-shot, and few referential compositions. Building upon the
setting, we propose two benchmarks that consist of multiple datasets with diverse
compositional labels, providing a suitable and realistic platform for systemati-
cally assessing progress on the task. Moreover, we extend popular few-shot and
compositional learning approaches to serve as baselines, and also introduce a sim-
ple method that achieves better performance in recognizing unseen compositions.
Extensive experiments demonstrate that existing solutions struggle with the chal-
lenges imposed by the RLCL task, revealing substantial research space for pursu-
ing human-level compositional generalization ability.

1 INTRODUCTION
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Figure 1: By learning from a large amount of seen compositions and samples as references, AI
systems can extract the visual invariants to understand what is “red”, and use the learned knowledge
to recognize unseen compositional concepts. However, referential compositions and samples are
usually insufficient when learning in realistic scenarios, making it more difficult to learn novel ele-
ments from limited compositions. While humans can rapidly generalize to unknown pairs of novel
primitives in real-world environments, whether the artificial compositional learners can achieve such
human-level compositional generalization ability is still a question. In this paper, we propose a re-
alistic and untouched task to explore whether existing learning algorithms can still generalize well
despite the limitations of few-shot and few referential compositions.

Although deep learning methods have made astounding progress in various domains of artificial
intelligence (AI) research including computer vision (Goodfellow et al., 2016), they often take the
assumption that training and test data are independent and identically distributed (i.i.d.). A grow-
ing number of investigations have demonstrated that these approaches do not generalize to out-of-
distribution (o.o.d.) tests, i.e., they fail to make correct predictions for examples that are even slightly
out of the data distribution on which they are trained (Muandet et al., 2013; Motiian et al., 2017;
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Arjovsky et al., 2019; Krueger et al., 2021). Such phenomenon is very common when deploying
vision applications to the real world, and is essentially due to the fact that limited training data can
only serve as an incomplete observation of an infinite number of situations in the world.

To endow AI systems with human-level generalization ability to quickly adapt to new environments,
researchers began to seek inspiration from how humans learn and understand the world. Different
from standard systems that are limited to a fixed set of categories at a time, humans generalize to
a large, essentially “unbounded” concept space by reasoning in a compositional manner (Bahdanau
et al., 2019; Vedantam et al., 2021). For example, based on familiarity with tomatoes and other red
objects, people can recognize a red tomato when they first encounter it. Similarly, if one has cut
a cake, it is easy to recognize the behavior of cutting a pizza after knowing what a pizza is. This
method of identifying novel complex concepts by composing known components (which we call the
“primitives” in this paper) is called compositional generalization, representing the essential ability
of human intelligence to make “infinite use of finite means” (Chomsky, 1957; Humboldt, 1988).

While considerable attention has been devoted to natural language processing works that improve
generalization performance on test data by equipping compositional skills (Lake & Baroni, 2018;
Finegan-Dollak et al., 2018; Russin et al., 2020), visual perception models are also expected to
more accurately identify compositional concepts, which could be significantly different from their
semantic constituents (Sadeghi & Farhadi, 2011; Zhang et al., 2017). Further, prior studies on
attribute-object compositions have begun to consider unseen compositions, that is, they learn the
compositionality of objects and their states from sufficient training samples and are tasked with
generalizing to unseen combinations of these primitives (Misra et al., 2017; Nagarajan & Grauman,
2018; Purushwalkam et al., 2019; Naeem et al., 2021). While these efforts have contributed to a
more comprehensive perception of the world, we argue that the existing setup seems idealistic and
inappropriate to simulate natural human learning. Firstly, humans have an inherent ability to learn
the compositionality of complex concepts with only a few examples and transfer the learned knowl-
edge to different situations. However, the few-shot problem would lead to severer generalization
issues in AI systems as the empirical risk is far from being a good approximation for expected
risk (Wang et al., 2020). Although an increasing number of models have tried to alleviate potential
overfitting (Snell et al., 2017; Finn et al., 2017; Chen et al., 2019), they still treat every class as
an independent entity and require referential data for any novel concept. Hence we would like to
investigate whether compositional learning can be performed with a restricted sample size, in other
words, whether few-shot learners can generalize to unseen label compositions. A more neglected
point is, unlike existing methods that have to refer to a large number of combinations with the same
primitive to extract semantic invariants from them, humans can discover potential primitives from
few combinations, or even only one, based on prior knowledge. This contributes to the adaptation
of humans to the long-tailed distribution of various compositional concepts in the real world, where
exist a few common primitives and many more composition-scarce primitives, making collecting all
possible scenarios for each primitive in advance expensive and time-consuming. Therefore, few ref-
erential compositions should also be a natural constraint for human-level compositional learning.

In this paper, we propose a novel task, reference-limited compositional learning (RLCL), that ap-
proximates the naturalistic learning environment that humans and artificial agents encounter. The
term “reference-limited” is used to indicate that when the model performs compositional learning,
the combinations that can be utilized as references are limited in terms of both the number of cat-
egories and the number of labeled samples. Therefore, RLCL requires the learner to incorporate
appropriate priors into learning, so that it can disentangle features of primitives without superfluous
references. As existing benchmarks fail to provide suitable conditions for systematic comparisons on
RLCL task, we provide two benchmarks that consist of multiple datasets of natural images attached
with sufficient attribute-object and action-object compositional labels, supporting us to sample re-
alistic episodes to simulate partially observable worlds. We also develop a simple refined-ProtoNet
that utilizes class descriptions to adaptively separate features of the specific primitive. Compared
to few-shot and compositional learning methods extended to our RLCL task, our method obtains
significant gains on recognizing unseen compositions. However, the mediocre results indicate chal-
lenges introduced by RLCL remain to be further addressed. By shedding light on the limitations of
existing settings and approaches, we hope to spur future work to develop human-level compositional
generalization ability for intelligent systems. We summarize our contributions as follows:

1. We introduce a new task denoted as reference-limited compositional learning (RLCL), where the
model is required to learn the primitives and generalize to recognize unseen compositions given only
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a few samples of limited compositions that contains these primitives. This offers a more realistic
and challenging environment for training and evaluating compositional learners.

2. We establish two datasets with diverse compositional labels and well-designed data splits, pro-
viding the required platform for systematically assessing progress on the task. Moreover, we adapt
classic few-shot and compositional learning methods and also propose refined-ProtoNet together as
baselines to accelerate future studies.

3. We conduct extensive experiments and analyses to explore the impact of constraints introduced
by the RLCL task. While refined-ProtoNet consistently achieves superior performance on recog-
nizing unseen compositions, experimental results show that the performance of these approaches is
hindered, leaving substantial room for developing human-level compositional generalization ability.

2 REFERENCE-LIMITED COMPOSITIONAL LEARNING

2.1 PROBLEM FORMULATION

The ultimate goal of the RLCL task is to recognize unseen visual pair compositions, whose primi-
tives have only appeared in limited seen compositions containing only a few samples. In this paper,
we follow the FSL setting to use the sampled episodes as a simulation of independent test environ-
ments, which refer to the data for learning as support and the data for inference as query. In addition,
we apply an open world setting that while all compositions contained in the support classes are seen
ones, the query classes include not only unseen compositions, but also seen compositions. At the
same time, we impose no constraint on the test time search space. Allowing predictions to come
from all possible pairs in the current episode, the setting is closer to the scenarios that are likely
to arise in real-world deployments, and thus leads to a more comprehensive study on achieving a
balanced and promising performance of both seen and unseen compositions.

More formally, we consider the visual recognition setting where each image x is associated with
a complex concept c that is a pair composition of two primitives p1 and p2, i.e., c = (p1, p2).
For example, p1 can represent a state like “cooked” or an action like “cut”, while p2 can refer to
an object such as “chicken” or “pizza”. When testing, the model are evaluated on episodes that
are sampled from a set of novel data Dn = {(x(i)n , c

(i)
n )} with label space Cn ⊂ P1

n × P2
n =

{(p1n, p2n)|p1n ∈ P1
n, p

2
n ∈ P2

n}. Cn denotes the novel composition set, and P1
n, P2

n are the two
corresponding novel primitive sets, each with Np primitive categories. Each episode contains a
support set S = {(x(i)s , c

(i)
s )|i = 1, 2, . . . , N c

s × Kc
s} that consists of N c

s support classes with
Kc
s labeled samples per class, and a query set Q = {(x(i)q , c

(i)
q )|i = 1, 2, . . . , N c

q × Kc
q} that

consists ofN c
q query classes withKc

q samples per class. The query classes not only containN c
s seen

compositions that are all in the support classes, but also comprise (N c
q −N c

s ) unseen compositions
that do not overlap with seen compositions. However, seen and unseen compositions in the same
episode share the same two primitive sets sampled from C1n and C2n, providing the possibility for
unseen compositions to be recognized. Following the open world setting, the prediction space of the
model contains Np2 compositions including seen, unseen and unfeasible ones. And the goal of the
model is to correctly predict the compositional labels of samples in Q with the access to S.

To extract the prior knowledge for learning to rapidly separate primitive features from images, in the
training phase, the model possesses the access to a set of base data Db = {(x(i)b , c

(i)
b )} with label

space Cb ⊂ P1
b × P2

b . Note that the base and novel primitive sets do not overlap, i.e., P1
b ∩ P1

n = ∅
and P2

b ∩ P2
n = ∅, and thus Cb ∩ Cn = ∅ also holds. We would like to mention that RLCL does

not require a specific procedure for learning from the training data. Keeping the spirit of matching
training and test conditions, some baselines follow the episodic training paradigm, meaning that
they are trained on episodes sampled using the same algorithm as used for test episodes. And the
non-episodic baselines are trained using all the labeled samples in Db.

2.2 EPISODE SAMPLING

In this section, we outline the sampling strategy that creates more realistic episodes for the RLCL
task. In each experiment, the value of Np is fixed for all sampled episodes in the same phase.
However, we allow episodes to have a different number of seen and unseen compositions, i.e., the
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values of N c
s and N c

q may vary from episode to episode. As N c
q actually corresponds to the number

of all potential compositions that can be obtained by pairing all primitives in the episode and also
exist in the dataset, N c

s is randomly sampled within a certain range of [Np+1, N c
q −1], making the

episode closer to the reality. The maximum value of this range guarantees that there exist unseen
compositions in the episode, and the minimum value implies that each primitive has the opportunity
to appear in more than one seen composition without being bound to another primitive all the time.

Concretely, for each episode, we first randomly sample Np seen compositions to obtain two prim-
itive sets P1

n, P2
n without duplicate primitives. Then, we check if P1

n and P2
n can be paired to

get enough existing compositions for being divided into seen and unseen ones. An episode that
can achieve the required number of composition pairs will be regarded as a valid episode, and the
remaining compositions will be randomly assigned to seen and unseen groups on the premise of sat-
isfying the restriction of N c

s . Therefore, we have N c
s seen compositions for the support classes and

N c
q compositions including seen and unseen ones for the query classes. Next, we randomly sample

Kc
s support samples for each seen composition and Kc

q samples for each composition in the query
classes. Note that for seen compositions that exist in both support and query classes, the samples
assigned to the two sets are not duplicated. Corresponding pseudocode can be found in Appendix D.

2.3 BENCHMARK DATASETS

As none of the current few-shot learning benchmarks provides the real-world compositional reason-
ing challenges that we would like to study, we create two datasets RLCL-ATTR and RLCL-ACT,
aiming to offer an environment for progress measurement and controlled analysis of the RLCL
task. Each dataset is comprised of multiple different existing datasets to ensure the presence of a
sufficient amount of data and composition pairs. This allows us to create a sufficient number of
episodes with diversity to simulate possible new environments during the test phase, ultimately en-
suring the validity of the evaluation. Therefore, according to its data sources, each of RLCL-ATTR
and RLCL-ACT can be naturally divided into three parts for different phases, and the primitives,
compositions and data contained in each part do not overlap. Also, to drive research in realistic
recognition tasks covering a variety of compositional concepts, we consider attribute-object and
action-object, the two most frequent composition types in the natural data, for the datasets. In other
words, our benchmark requires evaluated methods for a compositional learning of three types of
primitives: actions, attributes and objects, making itself more comprehensive and challenging. We
give a general overview of the two datasets and describe how we cleaned the existing data to get
them. More details of these datasets are provided in Appendix C.

RLCL-ATTR: This dataset consists of 99,771 images attached with 1,768 attribute-object pair
labels. Among them, 51,928 images of 1,076 compositions in the training phase are obtained from
C-GQA (Naeem et al., 2021), 29,922 images of 136 compositions in the validation phase are ob-
tained from UT-Zap50K (Yu & Grauman, 2014), and 17,921 images of 556 compositions in the test
phase are obtained from MIT-States (Isola et al., 2015).

RLCL-ACT: This dataset contains 30,420 images with 574 action-object pair labels, where
20,604 images of 214 compositions in the training phase are from HICO (Chao et al., 2015), 1,207
images of 22 compositions in the validation phase are from Visual Genome (Krishna et al., 2017),
and 8,609 images of 338 compositions in the test phase are from imSitu (Yatskar et al., 2016).

To ensure that the two datasets we obtained meet the needs of the RLCL task, we filtered the data in
all splits from the perspective of labels. Specifically, (1) compositions with fewer than 10 samples
were screened out to ensure that enough support and query samples can be simultaneously sampled
from the composition without duplicates, (2) for primitives that appeared in multiple splits, we kept
them in at most one split, (3) size-related attribute primitives that cannot be accurately depicted in
the images, such as “small”, “large”, “long” and “short”, were also filtered out from our datasets.
Specially, images from the Visual Genome dataset are densely annotated with numerous attributes
and objects, lacking a description of the focus of the content. Therefore, we kept the attribute-object
compositional label of the largest bounding box in each image, which most likely corresponds to the
main content, and removed other annotations.
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2.4 CHALLENGES OF THE RLCL TASK

We here summarize the three major challenges in the RLCL setting and discuss how they impair the
generalization performance of the models.

Compositional learning: To recognize new compositions that were never observed during training,
the model is required to shift the target of prediction from compositions to the primitive categories.
Thus, the primitive features should be disentangled from the samples and used for both training and
inference of the classifiers. However, as the representations of primitives are likely to be inherently
entangled, separating which primitive each part of the features belongs to can be challenging. Mean-
while, due to the principle of contextuality (Misra et al., 2017), the same primitive will be displayed
differently according to its matching context. As a result, images associated with the same primitive
may exhibit large intra-class variation, making it more difficult to learn generalized classifiers.

Few-shot: As recognizing unseen compositions can be viewed as an extreme case of distribution-
shift inference (Atzmon et al., 2020), the trained classifiers may overfit to the feature distributions
encoded only from the seen compositions. And a series of FSL studies have proved that such phe-
nomenon can be exacerbated by limiting the number of labeled samples. In our RLCL setup, taking
the RLCL-ATTR dataset as an example, each seen composition has only N c

s (no more than 5 in the
experiments) samples to learn in the episode. For comparison, there is an average of 28.43 samples
per seen composition in the MIT-State datasets (Isola et al., 2015) (the source of test split of RLCL-
ATTR) in the CZSL task. Moreover, a greater disparity arises when considering the amount of
referential data available for primitives. Each primitive has only 6.39 support samples on average in
each episode of RLCL-ATTR, while possessing 343.72 training samples on average in MIT-States.

Few referential compositions: As we have pointed out, observing a primitive from different con-
texts can help to extract the visual invariants and disambiguate its semantic properties. Therefore,
a large number and variety of referential compositions promote the ability to segregate primitive
features from the images, contributing to the rising performance of existing compositional learning
methods. While each primitive occupies 12.16 seen compositions on average in MIT-States, RLCL
places a limit on the number of seen compositions that the model can refer to. Setting Np to 5 as
default, each primitive appears in only 1.28 seen compositions on average in each test episode of
RLCL-ATTR. This limitation further increases the difficulty of feature separation and the risk of
overfitting, making RLCL a unique and hard-to-solve problem.

2.5 EVALUATION METRICS

In the RLCL task, we focus on how well the learned model recognizes both unseen and seen com-
position pairs, consistent with the adopted open world setting. To this end, we introduce three
evaluation metrics: (1) Unseen accuracy (UA): The average of the accuracy computed on query
samples from unseen compositions on all test episodes. (2) Seen accuracy (SA): The average of the
accuracy computed on query samples from seen compositions on all test episodes. (3) Harmonic
mean (HM): A metric that quantifies the overall performance of both seen and unseen accuracy
based on the results of all test episodes, defined as: HM = 2 (SA ∗ UA) / (SA + UA). Since the
value of UA is usually much smaller than SA, the level of HM is often dominated by the level of
UA, which is also consistent with our greater interest in how well the compositional learners recog-
nize unseen compositions. Thus, in most cases, HM can be used as the most representative metric
to participate in the comparison. In addition, we also record the statistics of each type of primitive
computed from the query samples of unseen and seen compositions.

3 METHODS

3.1 BASELINES

To accelerate future studies on RLCL, we here implement and extend several popular few-shot and
compositional learning methods as baselines. Specifically, MAML (Finn et al., 2017), ANIL (Raghu
et al., 2020), ProtoNet (Snell et al., 2017), RelationNet (Sung et al., 2018), Baseline (Chen et al.,
2019) and Baseline++ (Chen et al., 2019) are included due to their convenience of expansion, proven
performance, and representativeness among various FSL methods. For all selected FSL methods,
as they are designed to treat each class as an independent entity without considering pair labels, we
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Figure 2: Left: Episodic baselines on RLCL. Middle: Non-episodic baselines on RLCL. We use
L to denote the loss, fθ to denote the backbone, and kϕ to denote two independent primitive classi-
fiers or a joint compatibility classifier for compositions, depending on the specific method. Right:
our refined-ProtoNet utilizes the class description wp to adaptively separate features related to the
corresponding primitive p, which can be regarded as a rectification to the initial prototype v.

retain their training process, however, adapt them to have two parallel classifiers while sharing a
backbone. Each classifier is the same as the original but is responsible for a single type of primitive
rather than the entire label. And the loss also becomes the sum of the losses calculated by the two
classifiers. We have noticed that many recent FSL efforts claim that they can outperform the state-
of-the-arts on widely-used benchmarks. However, we point out that many methods rely on elaborate
arithmetic and structural designs, and establishing a parallel classification branch for each primitive
type would result in doubling the number of parameters and computation time. Moreover, we also
experimented with some of them in advance, and results showed that they struggled to achieve
desirable performance with highly entangled image representations. Thus, they cannot be adapted
to our RLCL task by simply adding a parallel classifier, and we leave it to follow-up studies on how
to make these methods available for compositional learning with non-trivial extensions. And for
CZSL methods, we first consider VisualProd (Nagarajan & Grauman, 2018) that is commonly used
in existing works and does not require auxiliary side information. To further evaluate the highest
performance that existing CZSL methods can achieve on our RLCL task, we additionally select and
extend two state-of-the-art methods, SymNet (Li et al., 2020) and CGE (Naeem et al., 2021), which
are provided with word embeddings of labels as side information. For baselines adapted from CZSL
methods, we use all base data D to train the feature backbone which is then fixed, and support data
in each test episode to train the episode-specific classifiers, imitating the strategy that applies a pre-
trained feature extractor and trains other parameters with data from downstream tasks. More details
of these baseline models are given in Appendix F.

3.2 REFINED-PROTONET

The results in Table 1 show that ProtoNet performs relatively well in the implemented baselines,
especially in terms of SA. Nevertheless, the poor UA reveals that computing the mean of same-
primitive features is not an effective substitute for feature separation, since both primitive prototypes
and query features involved in the prototypical classification may be mixed with features of another
primitive type. This has little impact on the SA under the limitation of few referential compositions,
as each seen composition is likely to be the only one that contains the two primitives. However,
it leads to non-negligible degradation of UA. To devise a more competitive baseline for the RLCL
task, we propose that an adaptive feature selection mechanism should be designed to remedy the
shortcoming of ProtoNet. Such a mechanism is expected to enhance the features of corresponding
primitives according to class descriptions and suppress the irrelevant features, thus serving as a sep-
aration. Considering that each channel of a feature map can be regarded as a feature detector (Zeiler
& Fergus, 2014), and each dimension of the learned prototypes actually corresponds to each channel
of the original feature map, it is natural that this adaptive feature selection should act on channels.

Therefore, according to the above discussion, we develop a simple yet effective approach namely
refined-ProtoNet, which learns to utilize class descriptions to selectively emphasize features related
to the corresponding primitives based on the extended ProtoNet. Formally, for a specific primitive
p, we can obtain the refined prototype v

′

p that can then be used for prototype classification:

v
′

p = gφ(vp,wp), vp =
1

|Sp|
∑

(x
(i)
s ,c

(i)
s )∈Sp

GAP(F(i)
s ), (1)
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where GAP denotes global average pooling operation. F = fθ(x) ∈ RC×H×W is the feature map
output by the backbone fθ, and Sp denotes the support samples of the primitive p. gφ is the fea-
ture selection function with parameters φ for the corresponding classification branch, wp denotes
the class description of p, and vp denotes the prototype of p, i.e., an average of features that are
extracted from support samples that contain p in their compositional labels. Depending on whether
side information can be obtained, we propose two options for designing gφ, wp and vp. The ex-
perimental results in Section 4 show that refined-ProtoNet with either option improves significantly
in identifying unseen compositions, making it a competitive baseline that must be considered for
defeat in future studies.

Side information as wp. Assuming that the side information is available, as is often the case in zero-
shot learning, we can use pre-trained word embeddings of the p as the class descriptions wp ∈ RDw .
While making a soft selection of the features of the prototypes in the channel dimension, we also
perform an adaptive mixing with the mapped class descriptions to obtain the final refined prototypes,
thus allowing human prior knowledge to compensate for the sample scarcity problem caused by the
few-shot challenge. Formally, we have

v
′

p = gφ(vp,wp) =
1

1 + exp(−σ(h1(w′
p)))
⊗ vp +

exp(−σ(h1(w
′

p)))

1 + exp(−σ(h1(w′
p)))
⊗w

′

p, (2)

w
′

p = δ(h0(wp)), (3)

where σ denotes the Sigmoid activation function, δ denotes the ReLU activation function, and ⊗
denotes element-wise multiplication. h0(·), h1(·) are two fully-connected feed-forward networks,
each of which consists of two linear transformations with a ReLU activation in between. h0: RDw →
RC maps wp to the space where vp is located, and h1: RC → RC is used to generate a weight for
each dimension with side information. The probability of predicting xq as p can be expressed as

P (p|xq) = softmax(−de(GAP(Fq),v
′

p)), (4)

where de denotes the squared euclidean distance.

Prototypical features as wp. However, when coming to a new environment, AI systems learning to
recognize new primitives and compositions do not necessarily have human prior knowledge of these
new categories. When the side information is not available, we propose that prototypical features
can also be used as class descriptions. Inspired by Woo et al. (2018), we use both global average
pooling and max pooling to generate channel-wise statistics. Therefore, we have:

v
′

p = gφ(vp,wp) = gφ(vp,Fp) = σ(h(GMP(Fp)) + h(GAP(Fp)))⊗ vp, (5)

Fp =
1

|Sp|
∑

(x
(i)
s ,c

(i)
s )∈Sp

F(i)
s , (6)

where h(·) denotes two fully-connected layers around the ReLU non-linearity, and GMP denotes
global max pooling operation. As the only input to this feature selection is the visual features
themselves, the same selection can be done for features of query samples in each classification
branch, isolating the features corresponding to the primitive type of the current branch:

P (p|xq) = softmax(−de(gφ(GAP(Fq),Fq),v
′

p)), (7)
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Table 1: Results (%) with 95% confidence intervals under default parameter settings. Our refined-
ProtoNet achieves the best results on both UA and HM in both two datasets.

Method
RLCL-ATTR RLCL-ACT

UA SA HM UA SA HM

MAML 2.87±0.50 35.38±1.69 5.32±0.87 1.99±0.27 29.56±2.03 3.72±0.45
ANIL 1.53±0.17 27.86±0.52 2.91±0.31 1.68±0.51 24.95±2.95 3.14±0.88

ProtoNet 2.23±0.99 45.97±1.83 4.25±1.80 2.75±0.90 44.89±1.31 5.17±1.60
RelationNet 1.82±0.39 33.55±1.26 3.46±0.69 1.19±0.46 30.28±5.55 2.28±0.84

Baseline 1.59±0.35 35.67±0.63 3.04±0.65 1.23±0.20 30.75±1.23 2.36±0.37
Baseline++ 0.76±0.10 20.42±0.33 1.46±0.19 0.28±0.04 18.69±1.17 0.55±0.08
VisualProd 0.55±0.45 15.83±0.60 1.07±0.83 0.18±0.14 16.19±0.32 0.35±0.28

refined-ProtoNet 4.36±0.84 42.03±1.58 7.89±1.36 3.60±0.89 36.92±1.57 6.55±1.45

Learning with Side Information
SymNet 1.96±0.95 18.47±0.68 3.54±1.54 2.96±0.35 17.12±0.53 5.04±0.53

CGE 4.10±1.09 17.03±0.13 6.61±1.43 2.73±0.78 19.12±0.65 4.78±1.17
refined-ProtoNet 6.05±1.64 39.31±0.73 10.48±2.44 6.18±1.20 32.04±4.78 10.35±1.65

4 EXPERIMENTS

Experimental Setup. For a fair comparison, the basic experiments are conducted with a four-
layer convolution backbone (Conv-4) as in (Chen et al., 2019) for all implemented methods. If not
specified, Kc

s , Kc
q , and Np are all set by default to 5 while N c

s and N c
q are dynamic and randomly

sampled in each episode. All methods take in images resized to 84 × 84 as input. In the training
stage, we apply standard data augmentation including random crop, left-right flip, and color jitter.
All methods are trained using the Adam (Kingma & Ba, 2015) optimizer with an initial learning rate
10−3 and a L2 penalty of 5× 10−4. We train 60,000 episodes for episodic methods and 600 epochs
for non-episodic methods. For methods that require training parameters in test episodes, we use the
entire support set to train for 100 iterations. For methods using side information, we initialize the
word embeddings with pre-trained 300-dimensional word2vec (Mikolov et al., 2013) vectors. And
the best model is selected with the HM performance on the validation set. The reported average
results with 95% confidence intervals are obtained over 3 random experiments. Datasets and code
implemented in PyTorch (Paszke et al., 2019) will be released upon acceptance.

Our experiments aim to answer the following research questions:

How well do the implemented methods perform on RLCL? To first provide an overview of how
the implemented methods perform, Table 1 presents the UA, SA, and HM of all methods on two
datasets. As can be observed, all methods are much more successful in identifying seen composi-
tions than unseen compositions. Since identifying the former essentially does not require compo-
sitional generalization ability, the poor UA reveals that existing methods fail to learn in a compo-
sitional manner under the constraint of few-shot and few referential compositions. On top of this
conclusion, giving the credit to our adaptive feature selection mechanism, refined-ProtoNet shows a
significant advantage in identify unseen compositions and thus achieves the highest HM.

How much the few-shot challenge inhibits the compositional learning? Starting from 5, we
gradually decrease Kc

s to 3 and 1. As illustrated in Figure 3 (left), the top-performing methods are
declining as the number of samples available for reference decreases, and the majority of methods
perform worst when Kc

s = 1. We also report the harmonic mean of different types of primitive
in seen and unseen compositions in Appendix H. Similarly, in most cases, the overall performance
of the model in predicting the primitives gets worse as Kc

s decreases. And our refined-ProtoNet
continuously maintain outstanding performance together with ProtoNet. Another observation worth
noting is that in RLCL-ATTR, a majority of methods predict objects with higher accuracy than
attributes, presumably because recognizing the attributes is more difficult in this dataset. However,
different methods show different tendencies in the accuracy of predicting actions and objects in
RLCL-ACT, indicating that recognizing action-object pairs is a more complicated task that requires
carefully designed solutions.

How much the few referential compositions challenge inhibits the compositional learning? To
get an answer to this question, we conduct an experiment to fix the total number of compositions
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Figure 3: Left: HM (%) of different Kc
s on the two datasets. Right: HM (%) of different seen-

unseen composition ratios on RLCL-ATTR. As both the few-shot and few referential compositions
challenges become more extreme, the overall performance of these methods generally weakens.
Methods using side information take a pentagram (H) as the marker, and the methods not using side
information take a dot (•) as the marker. Our refined-ProtoNet is marked with a red line.

in each test episode and constantly adjust the seen:unseen composition ratio. The results are shown
in Figure 3 (right), and we note that the experiment is conducted only on RLCL-ATTR as its test
split supports for generating a sufficient number of episodes with various ratios. Unsurprisingly,
the fewer seen compositions are available, the worse the overall performance of all methods is.
This demonstrates that when the composition pairs available for reference become scarce, it is more
difficult for the model to correctly separate the primitive features from the composition features.
Apart from this conclusion, our refined-ProtoNet achieves the best HM on all ratios.

Why does refined-ProtoNet have advantages and disadvantages over ProtoNet in different
metrics? As can be observed in previous experimental results, refined-ProtoNet consistently out-
performs ProtoNet on both UA and HM but has worse performance on SA. Moreover, according to
Table 4 and 5, the performance of the two methods in recognizing primitives is essentially the same
on RLCL-ATTR, while on RLCL-ACT ProtoNet is even slightly better. To analyze the reasons for
the appearance of such phenomenon, we compare the errors that refined-ProtoNet makes to those
of ProtoNet. With refined-ProtoNet, about 70% of unseen compositions (U) are confused for seen
compositions (S), and about 25% of unseen compositions are confused for incorrect unseen pairs in
RLCL-ATTR. This yields an rate of U→S

U→U = 70%
25% = 2.8. And when side information is available,

this rate is further reduced to 69%
25% = 2.76. For comparison, this rate of ProtoNet is 85%

12% ≈ 7.08. In
RLCL-ACT, the rate of refined-ProtoNet is U→S

U→U = 71%
25% = 2.84 when not using side information

and 58%
36% ≈ 1.61 when using side information , while the one of ProtoNet is 86%

11% ≈ 7.82. As such
rates of ProtoNet are much more unbalanced than those of refined-ProtoNet, ProtoNet is more likely
to be overfitted to the seen compositions. As a result, it sacrifices performance in recognizing un-
seen compositions, and ultimately results in worse HM. On the contrary, refined-ProtoNet can better
combine the decomposed primitive features to recognize various compositions, which is consistent
with our expectations for compositional learners.

5 CONCLUSION

In this paper, we introduce reference-limited compositional learning (RLCL), a novel and non-trivial
task that mimics the naturalistic learning environment for compositional learners. To present a rich
playground to drive research on the task, we build two datasets that consist of natural images attached
with various compositional labels, which are commonly used to describe the world. Furthermore,
baselines adapted from popular few-shot and compositional learning algorithms are also provided.
Combining the challenges of compositional learning, few-shot, and few referential compositions,
our RLCL task has been proven by extensive experimental results that cannot be properly solved by
existing methods. We hope our work can facilitate and calibrate the development of compositional
learning systems that can be deployed in the real world.
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Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Proceedings of the Advances in Neural Information Processing Systems, pp.
8024–8035, 2019.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pp. 1532–1543, 2014.

Senthil Purushwalkam, Maximilian Nickel, Abhinav Gupta, and Marc’Aurelio Ranzato. Task-driven
modular networks for zero-shot compositional learning. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 3592–3601, 2019.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
towards understanding the effectiveness of MAML. In Proceedings of the International Confer-
ence on Learning Representations, 2020.

Laura Ruis, Jacob Andreas, Marco Baroni, Diane Bouchacourt, and Brenden M. Lake. A bench-
mark for systematic generalization in grounded language understanding. In Proceedings of the
Advances in Neural Information Processing Systems, 2020.

11



Under review as a conference paper at ICLR 2022

Jacob Russin, Jason Jo, Randall C. O’Reilly, and Yoshua Bengio. Compositional generalization by
factorizing alignment and translation. In Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics: Student Research Workshop, pp. 313–327, 2020.

Mohammad Amin Sadeghi and Ali Farhadi. Recognition using visual phrases. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1745–1752, 2011.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Proceedings of the Advances in Neural Information Processing Systems, pp. 4077–4087, 2017.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H. S. Torr, and Timothy M. Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 1199–1208, 2018.

Pavel Tokmakov, Yu-Xiong Wang, and Martial Hebert. Learning compositional representations for
few-shot recognition. In Proceedings of the IEEE International Conference on Computer Vision,
pp. 6372–6381, 2019.

Ramakrishna Vedantam, Arthur Szlam, Maximilian Nickel, Ari Morcos, and Brenden M. Lake.
CURI: A benchmark for productive concept learning under uncertainty. In Proceedings of the
Proceedings of the International Conference on Machine Learning, pp. 10519–10529, 2021.

Yaqing Wang, Quanming Yao, James T. Kwok, and Lionel M. Ni. Generalizing from a few ex-
amples: A survey on few-shot learning. ACM Computing Surveys (CSUR), 53(3):63:1–63:34,
2020.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. CBAM: convolutional block
attention module. In Proceedings of the European Conference on Computer Vision, pp. 3–19,
2018.

Mark Yatskar, Luke S. Zettlemoyer, and Ali Farhadi. Situation recognition: Visual semantic role
labeling for image understanding. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 5534–5542, 2016.

Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-shot learning via embedding adaptation
with set-to-set functions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 8805–8814, 2020.

Aron Yu and Kristen Grauman. Fine-grained visual comparisons with local learning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 192–199, 2014.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
Proceedings of the European Conference on Computer Vision, pp. 818–833, 2014.

Hanwang Zhang, Zawlin Kyaw, Shih-Fu Chang, and Tat-Seng Chua. Visual translation embedding
network for visual relation detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3107–3115, 2017.

Yixiong Zou, Shanghang Zhang, Ke Chen, Yonghong Tian, Yaowei Wang, and José M. F. Moura.
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A RELATED WORK

A.1 COMPOSITIONAL LEARNING

As the concept of compositionality was introduced very early in the philosophy of language, most
prior works (Lake & Baroni, 2018; Finegan-Dollak et al., 2018; Russin et al., 2020) focused on
encouraging neural networks to achieve human-like compositional generalization in understanding
natural language. While the compositionality of natural language is explicitly reflected in apply-
ing known syntactic and grammatical rules to novel words, cues in visual environments are more
implicit and uncertain. Therefore, in addition to the feature hierarchy applied by convolutional net-
works, how to better achieve the reuse of features corresponding to semantic elements for vision
systems remains to be explored. Some prior efforts (Johnson et al., 2017; Hudson & Manning,
2019; Ruis et al., 2020) focused on grounded language understanding task as the testbed, while the
compositional generalization ability of visual perception models was not investigated independently.
A more relevant topic to our work is compositional zero-shot learning (CZSL) (Misra et al., 2017;
Nagarajan & Grauman, 2018; Li et al., 2020), which aims to recognize unseen attribute-object com-
positions at test time while each constituent exists in training samples. Using side information that
describes novel composition pairs, e.g., word embeddings, attribute annotations, or text descriptions,
some notable methods utilize modular networks (Purushwalkam et al., 2019) or graph convolutional
networks (Naeem et al., 2021) to learn a joint compatibility function between the image, the at-
tribute, and the object. However, RLCL focuses more broadly on compositional learning of various
types of primitives based on the scarcity of referential compositions and samples. Experimental
results show that even the state-of-the-art CZSL methods also struggle with this challenge and are
surpassed by simple extensions on classical prototypical networks.

A.2 FEW-SHOT LEARNING

Few-shot learning (FSL) requires learning new tasks with few labeled examples. Recent FSL ad-
vances can be roughly categorized into the following three groups: (1) metric-based methods (Snell
et al., 2017; Sung et al., 2018; Ye et al., 2020) learn a generalizable embedding model to trans-
form all samples into a common metric space, where simple classifiers can be executed directly.
(2) initialization-based methods (Finn et al., 2017; Raghu et al., 2020) learn a good set of initial
parameters for the whole model or part of it, so that the model can quickly adapt to novel classes in
a small number of gradient update steps. (3) pretraining-based methods (Chen et al., 2019) train a
feature extractor with all the training data, and fix it during the meta-test phase whilst learning new
classifiers for novel classes.

Recently, several FSL works have aimed to improve the generalization performance with composi-
tional representations. Tokmakov et al. (2019) propose two forms of regularizations to learn an im-
age representation that is decomposable into parts by leveraging category-level attribute annotations.
Zou et al. (2020) use the self-supervision from object split orders to discover part-related primitives,
which are then composed to enhance novel classes. Huang et al. (2021) utilize an attributes-guided
attention mechanism to learn a more informative image representation as a combination of local
semantic features. However, limited by the traditional FSL setting on which they are based, these
approaches only consider feature compositionality and have not explored how to generalize to new
label compositions.

B SETTING COMPARISON

Table 2: Comparison of RLCL to other settings. Notation “-” indicates the corresponding challenge
is not considered by the FSL setting due to the non-compositional prediction targets.

Few-Shot Compositional Few Referential
Compositions

FSL 3 7 -
CZSL 7 3 7
RLCL (Ours) 3 3 3
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In this paper, we present a novel and non-trivial task, namely reference-limited compositional learn-
ing (RLCL). To clarify the differences between RLCL and existing settings, we include Table 2
to list the major challenges faced by these settings. In contrast to few-shot learning (FSL), RLCL
requires to recognize compositional concepts instead of independent entities, explicitly evaluating
the compositional generalization ability of visual models. Also, while there exists compositional
zero-shot learning (CZSL) that studies to recognize unseen compositions, it does not limit either the
number of referential compositions or the number of labeled samples per composition, making it far
from real-world deployment scenarios of intelligent systems.

C DATASET DETAILS

In this section, we give a more detailed introduction for our proposed RLCL-ATTR and RLCL-
ACT datasets.

C.1 BASIC STATISTICS

Table 3: Basic statistics of our proposed datasets.
Dataset RLCL-ATTR RLCL-ACT

Composition type attribute-object action-object
Total number of c 1,768 574

Number of c in train / val / test 1,076 / 136 / 556 214 / 22 / 338
Total number of p1 190 185

Number of p1 in train / val / test 105 / 33 / 52 52 / 10 / 123
Total number of p2 488 154

Number of p2 in train / val / test 281 / 12 / 195 59 / 11 / 84
Total number of samples 99,771 30,420

Number of samples in train / val / test 51,928 / 29,922 / 17,921 20,604 / 1,207 / 8,609

Basic statistics of the datasets are included in Table 3.

C.2 DATASET SOURCES

RLCL-ATTR and RLCL-ACT are formed of data originating from different real-world image
datasets. We here introduce the datasets we use in each split after further filtering. Note that the
statistics presented in the following are only used to describe the original datasets.

For RLCL-ATTR, the training split is from Compositional GQA (C-GQA) (Naeem et al., 2021)
(Figure 4(a)), a recently proposed dataset built on top of Stanford GQA dataset (Hudson & Manning,
2019). The dataset contains 9,378 compositional labels across 38k images. The validation split is
from UT-Zappos50K (Yu & Grauman, 2014) (Figure 4(b)), a large shoe dataset with 50,025 catalog
images of shoe type-material pairs from Zappos.com. The dataset is created in the context of an
online shopping task, where users care specifically about fine-grained visual differences. And the
test split is from MIT-States (Isola et al., 2015) (Figure 4(c)), a dataset that contains 63,440 images
depicting 245 natural objects in 115 different states, forming 1,262 possible composition pairs in
total.

For RLCL-ACT, the training split is from Humans Interacting with Common Objects
(HICO) (Chao et al., 2015) (Figure 4(d)), a dataset that consists of a total of 47,774 images, covering
600 categories of sense-based human-object interactions over 117 common actions performed on 80
common objects. The validation split is from Visual Genome (Krishna et al., 2017) (Figure 4(e)),
a dataset that collects dense annotations of objects, attributes, and relationships within each images.
The dataset contains 108,077 images where each image has an average of 35 objects, 26 attributes,
and 21 pairwise relationships between objects. And the test split is from imSitu (Yatskar et al.,
2016) (Figure 4(f)), a large-scale situation recognition dataset that contains over 125,000 images de-
picting 200,000 distinct situations. Each situation includes one of 500 possible activities and objects
from 11,000 options.
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(a) C-GQA (b) UT-Zappos50K (c) MIT-States

(d) HICO (e) Visual Genome (f) imSitu

Figure 4: Examples taken from each dataset forming RLCL-ATTR and RLCL-ACT.

D EPISODE SAMPLING STRATEGY

To better describe the episode sampling algorithm used in RLCL, we illustrate the pseudocode in
the Algorithm 1 that has been implemented in our code.

E EXPERIMENTAL SETUP

All methods take in images resized to 84× 84 as input. In the training stage, we apply standard data
augmentation including random crop, left-right flip, and color jitter. All methods are trained using
the Adam (Kingma & Ba, 2015) optimizer with an initial learning rate 10−3 and a L2 penalty of
5×10−4. We train 60,000 episodes for episodic methods and 600 epochs for non-episodic methods.
For methods that require training parameters in test episodes, we use the entire support set to train
for 100 iterations. For methods using side information, we initialize the word embeddings with pre-
trained 300-dimensional word2vec (Mikolov et al., 2013) vectors. And the best model is selected
with the HM performance on the validation set. Datasets and code implemented in PyTorch (Paszke
et al., 2019) will be released upon acceptance.

F BASELINE IMPLEMENTATION DETAILS

As we have discussed in Section A, existing FSL and CZSL approaches can not attempt the pro-
posed benchmarks without extensions. In this section, we introduce all baselines and how we adapt
them for comparison. Note that RedWine (Misra et al., 2017) was also taken into account and imple-
mented at first, however, eventually removed due to its poor performance especially when Kc

s = 1.

MAML. Short for Model-Agnostic Meta-Learning (Finn et al., 2017), MAML is a fairly general
optimization algorithm. To achieve a good generalization across a variety of episodes, MAML aims
to find the optimal initial parameters for the model, so that it can be rapidly and efficiently fine-
tuned to the new episode. Therefore, in the training episodes, the fine-tuned model parameters are
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Algorithm 1: Episode Sampling in RLCL
Input: D with label space C according to the requested class split of the given dataset, Np, Kc

s ,
Kc
q

Output: the sampled episode {S,Q}
Step 1. Sample primitive sets P1, P2

P1 = {}, P2 = {}, seen compositions Cseen = {};
while |Cseen| < Np do

Randomly sample a composition c = (p1, p2) from C;
if (p1 not in P1) and (p2 not in P2) then

Add c into Cseen, p1 into P1, and p2 into P2;

Step 2. Sample the support set S
S = {}, candidate compositions Ccandidate = {}, unseen compositions Cunseen = {};
for c ∈ P1 × P2 do

if (c in C) and (c not in Cseen) then
Add c into Ccandidate;

if |Ccandidate| < 2 then // Seen and unseen compositions are insufficient
Jump back to Step 1;

Randomly assign the first two compositions in Ccandidate to each of Cseen and Cunseen, and the
remaining ones in Ccandidate are randomly assigned to either Cseen or Cunseen each time;

for c ∈ Cseen do
Randomly sample Kc

s samples of c into S;
Step 3. Sample the query set Q
Q = {};
for c ∈ Cseen do

Randomly sample Kc
q samples of c from those do not overlap with S into Q;

for c ∈ Cunseen do
Randomly sample Kc

q samples of c into Q;

first obtained by performing a few gradient descent steps on the support set, and then the meta-
optimization is performed over the initial model parameters by backpropagating the second-order
gradients computed with the query set. For the RLCL task, we employ two independent linear layers
followed by a softmax function on the top of the backbone network, each of which is responsible
for predicting one type of primitives. The step size of gradient descent steps is set to 0.4.

ANIL. Short for Almost No Inner Loop (Raghu et al., 2020), ANIL is a significant simplification
to MAML that removes the inner loop updates for all but the head (final layer) of a neural network
during training and testing. Reported results show that ANIL performs identically to MAML on
standard few-shot classification benchmarks and offers computational benefits over MAML. Similar
to MAML, for the RLCL task, each type of primitive owns an independent linear classifier with inner
loop updates, while the backbone network without the inner loop is shared.

ProtoNet. Short for Prototypical Networks (Snell et al., 2017), ProtoNet averages the representa-
tions of support samples from the same class as the prototype, and then classifies each query sample
as the class whose prototype is “nearest” to it under Euclidean distance. For the RLCL task, we
construct a prototype for each primitive by aggregating the samples of compositions that contain
this primitive. Therefore, for each query sample, we perform two nearest-neighbor searches and
each of them predicts a primitive.

RelationNet. Short for Relation Networks (Sung et al., 2018), RelationNet applies a learnable
non-linear relation module instead of a fixed nearest-neighbor or linear classifier to evaluate the
relationship of the query image and category embeddings. The relation module consists of two
convolutional blocks and two fully-connected layers. Each convolutional block is a 3×3 convolution
with 64 filters followed by batch normalization, ReLU non-linearity, and 2×2 max-pooling. The
non-linearities after the two fully-connected layers are ReLU and Sigmoid, respectively.
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Baseline. As a non-episodic approach, Baseline (Chen et al., 2019) uses all the labeled samples in
the training stage to train the model, which consists of a backbone network as the feature extractor
and a linear classifier followed by a softmax function. When testing, the parameters of the backbone
network are fixed, and a new classifier is trained with the support set of each new episode. For the
RLCL task, we apply two linear classifiers to separately predict the primitives for each input image.
Following the original implementation, the batch size is set to 16 in the training stage, and each new
classifier is trained using a SGD optimizer for 100 iterations with a batch size of 4, an initial learning
rate 10−2 and a L2 penalty of 10−3.

Baseline++. Very similar to the Baseline, Baseline++ (Chen et al., 2019) uses the cosine distance
between the input feature and the learned weight vectors representing each class, aiming to reduce
intra-class variations. The weights of this distance-based classifier can be interpreted as prototypes
for each class. Here we also set up two separate classifiers as the extension for RLCL. Adjusting the
original value range [-1,1] to be more appropriate for the subsequent softmax layer, we follow the
original implementation to multiply the cosine similarity by a class-wise learnable scalar. The other
hyperparameters are the same as those used in the Baseline.

VisualProd. This is a common discriminatively-trained CZSL baseline (Misra et al., 2017; Nagara-
jan & Grauman, 2018), which uses two independent classifiers over image features to predict the
two primitives. The probability of a composition pair is simply the product of the probability of
each primitive: P (c) = P (p1)P (p2). We implement each classifier with a feedforward network
with two fully-connected layers, and ReLU non-linearity is used between the layers.

SymNet. Inspired by group theory, SymNet (Li et al., 2020) implements symmetry and the group
axioms including closure, associativity, identity element, invertibility element as the learning objec-
tives. And attribute classification is accomplished based on a Relative Moving Distance recognition
method, which utilizes the attribute change instead of the attribute pattern itself. The trade-off hy-
perparameters of the symmetry, axiom, triplet, p1 and p2 classification loss are set to 0.5, 0.01, 0.03,
1.0 and 0.1.

CGE. Short for Compositional Graph Embedding (Naeem et al., 2021), CGE learns a globally
consistent joint embedding space between image features and seen and unseen compositions from
a graph, where nodes are connected if a dependency exists in form of a compositional label, e.g.,
cute, dog and cute dog. For each test episode, we construct a new graph with all primitives and
possible compositions in the episode. The classification loss of support samples is backpropagated
through the seen compositional nodes to parameters of the graph convolutional network and the
image embedding function.

G ADDITIONAL EXPERIMENTAL RESULTS

In this section, our additional experiments aim to answer the following additional questions:

Is the model selection strategy for RLCL appropriate? Including choosing hyperparameters,
training checkpoints and architecture variants, effective model selection is crucial for obtaining
promising performance. However, when evaluating the generalization ability of the models with
distribution shifts, model selection is not as straightforward as in supervised learning due to the
lack of access to a validation set identically distributed to the test data (Gulrajani & Lopez-Paz,
2021). Following the common selection strategy used in FSL, we create a held-out validation set
and randomly sample a certain number of validation episodes, on which the model maximizing the
validation metric (HM in RLCL) is chosen. As the strategy assumes that validation and test episodes
are drawn from the same meta-distribution over episodes, one concern is that, unlike the standard
FSL, the data sources of validation set and test set are different in our proposed datasets, and there-
fore there exist distribution shifts that are not just caused by class differences. This may result in a
severer deviation between the actual situation and the assumption, thus affecting the effectiveness of
the validation.

To confirm that our validation set can play the role of model selection on the RLCL task, we record
the metrics (classification loss, UA, SA, and HM) on the same number of validation and test episodes
simultaneously during the training of refined-ProtoNet without side information. As illustrated in
Figure 5, we apply a simple moving average smoothing with a weight of 0.9 to better show the trend
of each metric. It can be observed that despite the differences in the specific values, the trends of
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Figure 5: Metrics of refined-ProtoNet on validation and test episodes as the training progresses. We
increased the transparency of the original lines to highlight the smoothed version.
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Figure 6: Metrics of SymNet, CGE and our refined-ProtoNet when using different class descriptions
on the two datasets.

the various metrics obtained on the validation and test episodes are roughly the same as the training
progresses. Therefore, although a better model selection strategy may be explored later for further
improvements, we believe that the validation set can currently be used as an alternative to the test
environment when selecting the model.

Do the choices of class descriptions affect the performance of CZSL methods? For methods
including SymNet, CGE and refined-ProtoNet that require class descriptions as input, we test not
only two popular word embedding models word2vec (Mikolov et al., 2013) and Glove (Pennington
et al., 2014), but also the prototypes obtained from the support samples to simulate the scenarios
where side information is available or unavailable. We see from Table 6 that our refined-ProtoNet
achieves the best in all cases, except for the achieved UA using prototypes on RLCL-ACT. An
observation worth highlighting is that while the UA and HM performance of CGE and refined-
ProtoNet decreased successively with the use of word2vec, Glove, and prototypes, SymNet shows
an opposite trend and achieves the best overall performance when using prototypes instead of side
information. This suggests that it could serve as a competitive baseline when side information is not
available.

Will a deeper backbone improve the performance? Recent few-shot learning studies have
reached a consensus that using a deeper convolution backbone may contribute to better performance,
and experimental results reported by Chen et al. (2019) demonstrate the reason may be that intra-
class variation decreases with the deepening of the backbone. To explore whether a deeper backbone

18



Under review as a conference paper at ICLR 2022

Conv-4 ResNet-10 ResNet-18

1

2

3

4

5

6

RL
CL

-A
TT

R

Unseen Acc.

Conv-4 ResNet-10 ResNet-18

15

20

25

30

35

40

45

Seen Acc.

Conv-4 ResNet-10 ResNet-18

2

4

6

8

10

Harmonic Mean

Conv-4 ResNet-10 ResNet-18
0

1

2

3

4

5

6

7

RL
CL

-A
CT

Conv-4 ResNet-10 ResNet-18
15

20

25

30

35

40

45

Conv-4 ResNet-10 ResNet-18
0

2

4

6

8

10

12

MAML
ANIL
ProtoNet

RelationNet
Baseline
Baseline++

VisualProd
Ours w/o side information
SymNet

CGE
Ours w/ side information

Figure 7: UA, SA and HM results (%) of different backbones on the two datasets. Methods using
side information take a pentagram (H) as the marker, and the methods not using side information
take a dot (•) as the marker. Our refined-ProtoNet is marked with a red line.

can improve the compositional learners on RLCL, we conduct an experiment that changes the depth
of the backbone for all methods whenKc

s = 5. The backbones are gradually increased to ResNet-10
and ResNet-18 in comparison with the original Conv-4, which have been the most commonly used
in existing works. Specifically, ResNet-18 is the same as described by He et al. (2016) with an input
size of 84 × 84, while ResNet-10 is a simplified version where only one residual building block is
used in each layer. We illustrate the results in Figure 7, and unlike most few-shot learning methods,
whose performance gets better as the backbone gets deeper, the methods we implemented present a
more complicated phenomenon in this experiment. While the tendency of the same method is quite
unstable on different datasets, different methods also show no consistent pattern on the same dataset
when the backbone deepens. Therefore, a deeper backbone needs to be paired with the appropriate
approaches, which can be a valuable research topic in the future.

H DETAILED RESULTS FOR DIFFERENT VALUES OF Kc
s

In Table 4 and 5, we report the exact values of the results for different values of Kc
s for reference.
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Table 4: Detailed results (%) for different values of Kc
s on RLCL-ATTR.

Method
RLCL-ATTR

Unseen Acc. Seen Acc. Harmonic Mean Primitive 1 HM Primitive 2 HM

Kc
s = 5

MAML 2.87±0.50 35.38±1.69 5.32±0.87 29.50±0.71 40.09±3.06
ANIL 1.53±0.17 27.86±0.52 2.91±0.31 25.93±2.15 33.38±3.02

ProtoNet 2.23±0.99 45.97±1.83 4.25±1.80 32.02±1.90 48.01±1.79
RelationNet 1.82±0.39 33.55±1.26 3.46±0.69 28.26±2.51 38.36±1.92

Baseline 1.59±0.35 35.67±0.63 3.04±0.65 28.95±1.47 38.47±2.05
Baseline++ 0.76±0.10 20.42±0.33 1.46±0.19 23.84±1.27 25.46±4.14
VisualProd 0.55±0.45 15.83±0.60 1.07±0.83 22.80±2.59 22.90±1.31

refined-ProtoNet 4.36±0.84 42.03±1.58 7.89±1.36 31.58±1.81 48.48±1.19

Learning with Side Information
SymNet 1.96±0.95 18.47±0.68 3.54±1.54 27.24±2.03 24.47±2.57

CGE 4.10±1.09 17.03±0.13 6.61±1.43 25.06±0.20 31.04±0.84
refined-ProtoNet 6.05±1.64 39.31±0.73 10.48±2.44 33.14±2.27 49.19±1.75

Kc
s = 3

MAML 3.04±0.59 31.00±0.70 5.53±0.97 28.69±2.19 37.17±2.20
ANIL 1.44±0.39 25.41±1.49 2.73±0.70 26.77±1.95 30.46±1.43

ProtoNet 2.11±0.68 41.69±0.90 4.01±1.22 30.58±0.57 44.21±2.10
RelationNet 1.75±0.19 29.51±3.15 3.30±0.36 27.98±1.68 34.43±3.55

Baseline 1.62±0.62 32.59±0.77 3.09±1.13 28.16±2.19 36.79±3.01
Baseline++ 0.33±0.13 18.59±0.15 0.65±0.25 24.75±1.89 22.41±4.34
VisualProd 0.87±0.10 17.27±0.78 1.65±0.18 23.02±2.81 24.29±2.45

refined-ProtoNet 3.78±1.16 37.20±0.83 6.85±1.91 30.05±1.39 44.61±2.45

Learning with Side Information
SymNet 2.02±0.15 17.68±0.43 3.62±0.25 26.93±0.53 24.19±1.51

CGE 5.34±0.24 13.99±0.57 7.73±0.26 25.98±1.11 31.02±1.21
refined-ProtoNet 6.68±1.02 34.93±3.58 11.21±1.40 32.32±4.29 46.80±2.17

Kc
s = 1

MAML 2.05±0.72 19.72±0.58 3.70±1.17 26.04±0.06 27.02±2.42
ANIL 1.77±0.22 19.00±1.57 3.23±0.36 24.40±1.30 26.66±2.14

ProtoNet 1.70±0.47 30.07±1.58 3.22±0.85 27.74±1.11 36.15±1.59
RelationNet 1.59±0.22 22.22±1.18 2.96±0.38 25.81±1.28 29.41±1.05

Baseline 1.21±0.32 23.44±0.25 2.31±0.58 26.07±0.64 29.00±1.18
Baseline++ 0.69±0.08 18.64±0.40 1.33±0.15 24.66±1.33 23.46±1.99
VisualProd 1.24±0.43 20.99±0.18 2.34±0.76 25.44±2.15 27.41±1.79

refined-ProtoNet 2.73±0.36 27.37±1.77 4.97±0.56 28.73±0.66 35.30±1.57

Learning with Side Information
SymNet 1.94±0.08 17.34±0.80 3.48±0.12 27.01±1.05 23.95±2.87

CGE 4.65±1.12 15.40±0.54 7.13±1.29 25.97±3.30 31.56±1.26
refined-ProtoNet 5.87±1.74 26.79±2.29 9.62±2.45 29.29±1.98 42.44±4.22
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Table 5: Detailed results (%) for different values of Kc
s on RLCL-ACT.

Method
RLCL-ACT

Unseen Acc. Seen Acc. Harmonic Mean Primitive 1 HM Primitive 2 HM

Kc
s = 5

MAML 1.99±0.27 29.56±2.03 3.72±0.45 25.94±1.02 29.26±1.71
ANIL 1.68±0.51 24.95±2.95 3.14±0.88 25.70±4.61 25.03±3.50

ProtoNet 2.75±0.90 44.89±1.31 5.17±1.60 45.21±2.52 35.03±1.42
RelationNet 1.19±0.46 30.28±5.55 2.28±0.84 31.36±6.31 27.91±2.06

Baseline 1.23±0.20 30.75±1.23 2.36±0.37 28.21±1.67 27.69±2.26
Baseline++ 0.28±0.04 18.69±1.17 0.55±0.08 13.50±2.30 22.42±2.36
VisualProd 0.18±0.14 16.19±0.32 0.35±0.28 13.72±1.80 21.88±2.73

refined-ProtoNet 3.60±0.89 36.92±1.57 6.55±1.45 39.20±2.96 33.37±2.24

Learning with Side Information
SymNet 2.96±0.35 17.12±0.53 5.04±0.53 31.74±1.64 22.30±2.03

CGE 2.73±0.78 19.12±0.65 4.78±1.17 25.57±2.48 23.05±1.11
refined-ProtoNet 6.18±1.20 32.04±4.78 10.35±1.65 41.84±3.12 33.00±1.87

Kc
s = 3

MAML 2.44±0.69 23.55±1.46 4.41±1.13 23.98±1.32 30.28±1.93
ANIL 1.71±0.39 22.91±1.23 3.19±0.68 24.41±1.03 25.55±0.32

ProtoNet 2.55±0.62 40.51±1.31 4.79±1.10 41.20±0.72 33.24±1.41
RelationNet 1.24±0.13 27.81±0.71 2.38±0.23 28.39±2.22 27.02±3.69

Baseline 1.26±0.47 27.22±1.29 2.40±0.87 24.57±3.76 26.88±3.19
Baseline++ 0.17±0.21 17.33±0.10 0.33±0.42 13.43±0.62 21.61±3.71
VisualProd 0.65±0.87 17.46±0.68 1.25±1.64 20.30±3.28 22.47±2.22

refined-ProtoNet 2.77±0.41 33.62±1.57 5.12±0.68 34.64±1.05 31.30±1.35

Learning with Side Information
SymNet 2.88±0.05 17.13±0.41 4.94±0.05 31.96±1.09 21.74±1.88

CGE 3.88±0.48 16.89±0.73 6.31±0.59 27.39±0.80 24.88±1.41
refined-ProtoNet 6.99±1.42 29.09±3.38 11.26±1.66 40.25±0.94 33.34±2.02

Kc
s = 1

MAML 1.24±0.31 18.36±0.41 2.33±0.55 16.60±0.85 27.05±3.45
ANIL 1.45±0.42 19.44±0.83 2.70±0.73 22.39±2.36 25.63±1.98

ProtoNet 1.78±0.30 29.96±1.03 3.36±0.53 33.37±1.80 28.70±1.25
RelationNet 0.87±0.52 20.06±3.30 1.66±0.96 19.49±5.32 24.36±3.25

Baseline 0.71±0.20 20.82±0.53 1.37±0.38 19.70±2.54 24.07±1.82
Baseline++ 0.32±0.48 18.02±0.25 0.63±0.93 14.32±3.85 22.69±1.32
VisualProd 0.88±0.19 21.97±0.56 1.68±0.36 26.12±1.78 25.43±1.15

refined-ProtoNet 1.80±0.33 23.39±0.36 3.35±0.56 25.17±0.19 28.56±0.89

Learning with Side Information
SymNet 2.28±1.71 17.90±0.56 4.01±2.72 27.35±1.59 23.02±2.82

CGE 4.05±0.78 15.51±0.91 6.41±0.91 28.56±2.09 26.39±1.50
refined-ProtoNet 6.41±2.02 22.57±1.67 9.96±2.46 34.69±4.19 31.30±2.66
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