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Abstract

Reinforcement learning (RL) is a powerful tool for finding optimal policies in sequential
decision processes. However, deep RL methods have two weaknesses: collecting the amount
of agent experience required for practical RL problems is prohibitively expensive, and the
learned policies exhibit poor generalization on tasks outside the training data distribu-
tion. To mitigate these issues, we introduce automaton distillation, a form of neuro-
symbolic transfer learning in which Q-value estimates from a teacher are distilled into a
low-dimensional representation in the form of an automaton. We then propose methods
for generating Q-value estimates where symbolic information is extracted from a teacher’s
Deep Q-Network (DQN). The resulting Q-value estimates are used to bootstrap learning
in the target discrete and continuous environment via a modified DQN and Twin-Delayed
Deep Deterministic (TD3) loss function, respectively. We demonstrate that automaton
distillation decreases the time required to find optimal policies for various decision tasks
in new environments, even in a target environment different in structure from the source
environment.

1 Introduction

Sequential decision tasks, in which an agent learns policies to maximize long-term rewards through trial and
error, are often solved using reinforcement learning (RL). However, a critical limitation of conventional RL
methods is their poor adaptability when faced with even minor changes in task objectives or environmental
dynamics. This limitation is particularly problematic in real-world applications, such as robotics, where
environments and tasks frequently evolve, requiring substantial retraining and resulting in high sample
complexity and inefficient adaptation. This issue becomes even more pronounced for tasks characterized by
sparse, non-Markovian rewards or tasks with long-term action dependencies, scenarios known to challenge
standard RL approaches significantly.

Humans, in contrast, efficiently adapt to new situations by leveraging abstract concepts and generalizing
knowledge from prior experiences to unfamiliar scenarios. Traditional deep learning methods, lacking ex-
plicit abstraction capabilities, struggle to replicate such human-like adaptability. Recently, neuro-symbolic
computing has emerged as a promising integration of symbolic reasoning and neural approaches, enabling ef-
fective knowledge transfer, enhanced interpretability, and improved generalization across unseen tasks (Tran
& Garcez, 2016; Verma et al., 2018; Anderson et al., 2020). For example, consider a mobile robot deployed
in an office tasked with delivering personalized coffee orders. The robot must efficiently adapt knowledge
from delivering coffee in a conference room to serving coffee in an office hall, a seemingly minor shift that
typically demands significant retraining under traditional RL paradigms.

Non-Markovian Reward Decision Processes (NMRDPs) Bacchus et al. (1996); Littman et al. (2017) have
successfully modeled tasks with sparse or non-Markovian rewards by augmenting state representations to
encode temporal or historical context, making the problem effectively Markovian. Such augmented repre-
sentations can naturally integrate symbolic approaches, particularly automata, to represent task objectives
clearly and compactly (Camacho et al., 2017; Gaon & Brafman, 2020; De Giacomo et al., 2013). Despite
these advances, enabling efficient transfer learning for NMRDPs remains challenging, especially when trans-
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Figure 1: Example environment configurations for the Blind Craftsman teacher (a) and student (b) en-
vironments with additional obstacles introduced. (c) A continuous state and action student environment
where the yellow, blue, green, and orange cubes represent the agent, wood, factory, and home, respectively,
positioned at random continuous positions.

ferring knowledge across domains with differing state-action spaces or environmental dynamics. We focus
on improving few-shot transfer capabilities, where an agent leverages prior experience from related tasks to
quickly adapt to a new task with different dynamics and characteristics, minimizing the training time needed
to reach near-optimal performance. A central challenge in this setting is how to effectively represent rewards
in a way that both enables transfer and supports policy optimization. Symbolic representations, such as
reward machines, have been used to capture task structure, where transitions in the reward machine encode
high-level progress across subtasks toward completing the overall objective (Icarte et al., 2022; Camacho
et al., 2018).

In this work, we propose a strategy that leverages symbolic representations of RL objectives to facilitate
knowledge transfer from an expert agent trained in a related source domain (the "teacher") to another agent
learning a target task (the "student"). While reward functions commonly express task objectives, many
decision-making problems are more naturally described through high-level intermediate steps articulated
in natural language. Such descriptions can be translated into formal languages like linear temporal logic
(LTL) (Brunello et al., 2019), which can be converted into an equivalent automaton representation (Wolper
et al., 1983). For tasks sharing common goals, this automaton provides a unified symbolic language through
which states and actions in the source and target domains correspond to automaton nodes and transitions.
Furthermore, assigning value estimates to automaton transitions converts this representation into a compact,
abstract model, significantly facilitating the learning process.

We introduce two variants of transfer learning that, to the best of our knowledge, have not been previously
explored in the literature. These variants leverage the automaton representation of an objective to convey
information about the reward signal from the teacher to the student. The first, static transfer, generates
estimates of the Q-value of automaton transitions by performing value iteration over the abstract Markov
Decision Process (MDP) defined by the automaton. The second variant, dynamic transfer, distills knowledge
from a teacher Deep Q-Network (DQN) (Mnih & et al., 2015) into the automaton by mapping teacher Q-
values of state-action pairs in the experience replay buffer to their corresponding transition in the automaton.

We evaluate our proposed methods across multiple environments with varying dynamics (such as that pre-
sented in Figure 1), demonstrating significant performance improvements over standard RL and baseline
methods. Notably, our experiments include challenging scenarios where the student environment contains
novel features absent in the teacher’s domain or when transferring knowledge from discrete to continuous
state-action spaces. Results highlight our method’s ability to achieve superior performance and faster con-
vergence, particularly emphasizing the benefits of symbolic abstraction for rapid adaptation in complex,
dynamic real-world tasks.
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Figure 2: (a) A simple NMRDP. At each time step, the agent may move one square in any cardinal direction.
A sequence of actions satisfies the objective if and only if the agent obtains both the sword and the shield.
The objective is decomposed using the atomic propositions AP = {sword, shield}, with a labeling function
L such that L(s0) = {}, L(s1) = {}, L(s2) = {sword}, L(s3) = {shield}. Rollouts which achieve the objective
also satisfy the LTLf specification ϕ = F(sword) ∧ F(shield). (b) An automaton defined over the alphabet
Σ = {{}, {sword}, {shield}, {sword, shield}}. The automaton accepts the subset of strings in Σ∗ that satisfy
the LTLf formula.

2 Preliminaries

We model the teacher and student decision processes as a NMRDP defined below.
Definition 1 (Non-Markovian Reward Decision Process (NMRDP)). An NMRDP is a decision process
defined by the tuple M = ⟨S, s0, A, T, R⟩, where S is the set of valid states, s0 ∈ S is the initial state, A is
the set of valid actions, T : S × A × S → [0, 1] is a transition function defining transition probabilities for
each state-action pair to every state in S, and R : (S × A)∗ → R defines the reward signal observed at each
time step based on the sequence of previously visited states and actions.

NMRDPs differ from MDPs in that the reward signal R may depend on the entire history of observations
rather than only the current state. However, the reward signal is often a function of a set of abstract
properties of the current state, which is of much smaller dimension than the original state space. Thus, it can
be beneficial to represent the reward signal in terms of a simpler vocabulary defined over features extracted
from the state. We assume the existence of a set of atomic propositions AP for each environment, which
capture the dynamics of the reward function, as well as a labeling function, L : S → 2AP , that translates
experiences into truth assignments for each proposition p ∈ AP . In cases where such a labeling function
does not explicitly exist, it is possible to find one automatically (Hasanbeig et al., 2021). Using these atomic
propositions, NMRDP objectives, assumed to be the same in the teacher and student environment, can be
succinctly expressed as formal specifications. A particularly convenient representation is a Deterministic
Finite-State Automaton (DFA), formally defined as follows:

Definition 2 (Deterministic Finite-State Automaton (DFA)). A DFA is an automaton defined by the tuple
A = ⟨Σ, Ω, ω0, F, δ⟩, where Σ is the alphabet of the input language, Ω is the set of states with starting state
ω0, F ⊆ Ω is the set of accepting states, and δ : Ω× Σ→ Ω defines a state transition function.

The atomic propositions AP comprise a vocabulary of abstract properties of the state space which directly
correspond to the reward structure. Using the labeling function L, states in an NMRDP can be mapped
to an element in the alphabet Σ = 2AP . Then, the set of rollouts which satisfy the objective constitute a
regular language over Σ. The parameters Ω, ω0, F, δ are chosen such that the set of strings accepted by the
objective automaton A is equivalent to the aforementioned regular language; we illustrate this with a simple
example in Figure 2. An additional consequence of developing such a vocabulary is that RL objectives can
be expressed as a regular language and subsequently converted into a DFA.
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Remark 1. One benefit of the automaton representation is the ability to express non-Markovian reward
signals in terms of the automaton state. During an episode, the state of the automaton can be computed in
parallel with observations from the learning environment.

Given the current automaton state ω and a new observation s′, the new automaton state can be computed as
ω′ = δ(ω, L(s′)). We assume that the atomic propositions capture the non-Markovian behavior of the reward
signal, thus, the system dynamics are Markovian in the cross-product of the observation and automaton
state spaces (De Giacomo et al., 2019). Formally, we represent the cross-product of an NMRDP and its
corresponding objective automaton as an MDP.

Definition 3 (Cross-Product Markov Decision Process). The cross-product of an NMRDP M =
⟨S, s0, A, T, R⟩ and a DFA A = ⟨Σ, Ω, ω0, F, δ⟩ which captures the non-Markovian behavior of the reward
signal is a Markov Decision Process (MDP) Mprod = ⟨S ×Ω, (s0, ω0), A, T × δ, R′⟩ where R′ : Ω×Σ→ R is
a Markovian reward signal (i.e., can be expressed as a function of only the current state and action).

Note that transforming an NMRDP into a cross-product MDP permits the use of traditional RL algorithms,
which rely upon the Markovian assumption, for decision tasks with non-Markovian reward signals.

Implicit in the previous discussion is that the objective is translated into an automaton prior to learning.
The difficulty of explicitly constructing an automaton to represent a desired objective has motivated the
development of automated methods for converting a reward specification into an automaton representation.
Such methods observe a correspondence between formal logics (such as regular expressions, LTL, and its
variants) and finite-state automata (Wolper et al., 1983). In particular, finite-trace Linear Temporal Logic
(LTLf ) has been used to represent RL objectives (Camacho et al., 2019; Velasquez et al., 2021).

Definition 4 (Finite-Trace Linear Temporal Logic (LTLf )). A formula in LTLf consists of a set of atomic
propositions AP which are combined by the standard propositional operators and the following temporal
operators: the next operator Xϕ (ϕ will be true in the next time step), the eventually operator Fϕ (ϕ will
be true in some future time step), the always operator Gϕ (ϕ will be true in all future time steps), the until
operator ϕ1 U ϕ2 (ϕ2 will be true in some future time step, and until then ϕ1 must be true), and the release
operator ϕ1 R ϕ2 (ϕ2 must be true always or until ϕ1 first becomes true).

It has been shown that specifications in LTLf can be transformed into an equivalent deterministic finite
automaton (De Giacomo & Vardi, 2015), and tools for compiling automata are readily available (Zhu et al.,
2017). Moreover, it is possible, in principle, to convert descriptions using a predefined subset of natural
language into LTL (Brunello et al., 2019). Thus, it is feasible to translate a specification provided by a
domain expert into an automaton representation using automated methods.

In this paper, we leverage this symbolic automaton representation specifically for knowledge transfer in RL.
Given a source and a target environment with similar objectives but that differ in dynamics or state-action
characteristics, our transfer learning approach uses DFAs to abstract and transfer task-relevant knowledge
explicitly. Notably, we assume that the LTLf specifications used to generate DFAs are provided externally,
either derived from expert domain knowledge or automatically synthesized from natural language inputs Fug-
gitti & Chakraborti (2023); Brunello et al. (2019). Our primary transfer learning objectives are inspired by
the metrics (Taylor & Stone, 2009):

• Time to Threshold (TT): Number of training steps required to reach an acceptable performance
threshold in target environments, highlighting few-shot transfer efficiency.

• Transfer Ratio (TR): The ratio of the cumulative rewards obtained by an agent leveraging transferred
knowledge to those obtained by an agent trained from scratch. It quantifies the performance gain
from knowledge transfer.

3 Automaton Distillation

In this section, we introduce our knowledge transfer approach. First, we train a DQN expert in the teacher
environment. Next, we distill the expert’s Q-values into an automaton that encapsulates the task objective,
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associating each transition’s value with an estimated Q-value for corresponding state-action pairs in the
teacher environment. Finally, this automaton guides the student during training, enabling effective transfer
of expertise. We refer to this methodology as "automaton distillation" since it involves extracting insights
from a teacher automaton to enhance learning in the student environment.

Dynamic Transfer. Our primary focus lies in a dynamic transfer learning algorithm that distills value
estimates from an agent trained with Deep Q-learning into the objective automaton. This process uses a
contractive mapping from the teacher NMRDP’s state-action pairs to the abstract MDP defined by the
automaton. Additionally, an analogous expansive mapping from the abstract MDP to the student NMRDP
provides an initial Q-value estimate for state-action pairs in the target domain, assisting the student’s
learning process. The automaton mediates between the teacher and student domains, enabling experience
sharing without requiring manual state-space mappings (Taylor & Stone, 2005) or unsupervised map learning
(Ammar et al., 2015).

The teacher DQN is trained using only standard RL methods (Wang et al., 2016b; Van Hasselt et al.,
2016; Schaul et al., 2015). However, to track both the current node in the automaton and the environment
state, we store samples of the form ((s, ω), a, r, (s′, ω′)) in the experience replay ER buffer. We define
ηteacher : Ω × Σ → N as the number of times each automaton node ω and a set of atomic propositions
σ ∈ 2AP appear in the experience replay ER of the teacher (note that ω and σ define a transition in the
automaton objective as given by δ(ω, σ) = ω′):

ηteacher(ω, σ) = |{((s, ω), a, r, (s′, ω′)) ∈ ER|L(s′) = σ}|. (1)

Similarly, we define Qavg
teacher : Ω×Σ→ R to be the average Q-value corresponding to the automaton transition

given by ω and σ ∈ 2AP , according to the teacher DQN:

Qavg
teacher(ω, σ)=

∑
{((s,ω),a,r,(s′,ω′))∈ER|L(s′)=σ}Qteacher((s, ω),a)

ηteacher(ω, σ) . (2)

where Qteacher((s, ω), a) is the Q-value learned by the teacher DQN at augmented state (s, ω) and action a.

In DQN and actor-critic networks, target networks are critical for stabilizing training by providing fixed
targets for temporal difference (TD) updates. These networks are typically updated at a slower rate or
through a smoothing process to avoid instability caused by rapidly changing Q-values.

In this paper, we incorporate the teacher’s knowledge into the student’s learning by modifying the student’s
target Q-value:

Q′
student((s, ω), a) = β(ω, L(s′)) Qavg

teacher(ω, L(s′)) +
(
1− β(ω, L(s′))

)
Qtarget. (3)

Here, β : Ω× Σ→ [0, 1] controls the influence of the teacher’s knowledge, Qavg
teacher(ω, L(s′)) is the teacher’s

average Q-value for transition (ω, L(s′)), and Qtarget is the standard target Q-value. This approach applies
to both DQN and actor-critic algorithms like TD3 (Fujimoto et al., 2018), where Qtarget in equation 3 is
defined as follows. For DQN,

Qtarget = r + γ max
a′

Qstudent((s′, ω′), a′; θtarget), (4)

and for TD3,
Qtarget = r + γ min

i=1,2
Qstudent

(
(s′, ω′), ã; θtarget

i

)
. (5)

Here, r := R′(ω, σ) is the reward received within the student environment during transition ω
σ−→ ω′ in the

product MDP, γ is the discount factor, s′ is the next state, Qstudent is the student’s Q-value function, θtarget

represents the parameters of the target network, a′ and ã = πϕ′(s′)+ε are the action suggested by the target
policy network at state s′, where ε is the exploration noise.

The annealing function is defined as β(ω, σ) = ρηstudent(ω,σ), where ρ = 0.999 and ηstudent(ω, σ) is the number
of times the transition (ω, σ) has been sampled during student training.
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The loss function for updating the student’s network is:

Loss(θ) = E((s,ω),a,r,(s′,ω′))∼P (ER)[Q′
student((s, ω), a)−Q((s, ω), a; θ)]2, (6)

where Q((s, ω), a; θ) is the student’s Q-value prediction, and P is a priority function favoring samples, from
the student’s ER, with higher prediction errors.

This method performs non-Markovian knowledge transfer, as the automaton compactly represents envi-
ronment dynamics and encodes the non-Markovian reward signal. This versatility enables our method to
facilitate knowledge transfer not only between discrete environments but also from discrete to continuous
environments, as demonstrated in our experiments. Our approach enhances the student’s learning by inte-
grating the teacher’s knowledge directly into the target Q-value. This allows the student to benefit from
the teacher’s expertise while adapting to its own environment, leading to faster convergence and improved
performance in complex tasks.

The asymptotic behavior of automaton Q-learning depends on the annealing function β in the student Q-
udpate in equation 3. When β = 0, automaton Q-learning reduces to vanilla Q-Learning. Next, we establish
a convergence result for tabular automaton Q-learning.
Theorem 1 (Convergence of Automaton Q-Learning). Let the Q-values be updated in the product MDP
Mprod = ⟨S×Ω, (s0, ω0), A, T × δ, R′⟩, where R′ : Ω×Σ→ R is the reward function defined over automaton
transitions. Define σt = L(st+1) and rt := R′(ωt, σt) as the reward observed during step t, corresponding to
the transition ωt

σt−→ ωt+1 = δ(ωt, σt). Let the Q-values be updated as:

Qt+1((st, ωt), at) = (1− αt)Qt((st, ωt), at) + αtβtQ
avg
teacher(ωt, σt)

+ αt(1− βt) [rt + γVt(st+1, ωt+1)] , (7)

where Vt(s, ω) = maxa Qt((s, ω), a). Then, Qt((s, ω), a)→ Q∗((s, ω), a) with probability 1 under the following
conditions:

1. The state space S, automaton state space Ω, and action space A are finite.

2. The learning rates αt ∈ [0, 1) satisfy
∑

t αt =∞ and
∑

t α2
t <∞.

3. The distillation weights βt ≥ 0 satisfy limt→∞ βt = 0 and
∑

t αt(1− βt) =∞.

4. The symbolic reward variance Var(rt) is uniformly bounded.

5. Either γ = 1 and all policies reach a cost-free terminal state, or γ ∈ [0, 1).

Proof. We decompose the Q-values as Qt = qt + ht with updates:

qt+1((st, ωt), at) = (1− αt)qt((st, ωt), at) + αt(1− βt) [rt + γVt(st+1, ωt+1)] , (8)
ht+1((st, ωt), at) = (1− αt)ht((st, ωt), at) + αtβtQ

avg
teacher(ωt, σt). (9)

Convergence of qt: This update corresponds to Q-learning in the product MDP using rewards rt = R′(ωt, σt).
Since the reward is bounded, the learning rate αt(1−βt) satisfies Robbins–Monro conditions, and the state-
action space is finite, it follows (e.g., Jaakkola et al., 1994) that:

qt((s, ω), a)→ Q∗((s, ω), a) w.p. 1.

Convergence of ht: Let ct := Qavg
teacher(ωt, σt). Since ct is drawn from a fixed and bounded function over the

finite domain Ω× Σ, there exists C <∞ such that |ct| ≤ C for all t. The update becomes:

ht+1 = (1− αt)ht + αtβtct.

This is a stochastic approximation with a vanishing forcing term βtct, and under the given assumptions on
αt and βt, it converges to zero almost surely.
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Since qt → Q∗ and ht → 0 almost surely, we conclude:

Qt = qt + ht → Q∗ w.p. 1.

Static Transfer. Static value estimates can be effective when the abstract MDP defined by the automaton
accurately captures the environment dynamics. Such estimates can be computed via tabular Q-learning over
the abstract MDP:

Q(ω, σ)←Q(ω, σ) + α(R′(ω, σ) + γ max
σ′

Q(ω′, σ′)−Q(ω, σ)) . (10)

The resulting Q-values can be used in the place of Qavg
teacher in Equation 6. This method has the benefit of

stabilizing training in the early stages without requiring a DQN oracle or any additional information beyond
the reward structure.

4 Related Work

Deep RL has made remarkable progress in many practical problems, such as recommendation systems,
robotics, and autonomous driving. However, despite these successes, insufficient data and poor generalization
remain open problems. In most real-world problems, it is difficult to obtain training data, so RL agents often
learn with simulated data. However, RL agents trained with simulated data usually have poor performance
when transferred to unknown environment dynamics in real-world data. To address these two challenges,
transfer learning techniques (Zhu et al., 2023) have been adopted to solve RL tasks.

Among transfer learning techniques, Domain Adaptation (DA) is the most well-studied in deep RL. Early
attempts in DA constructed a map from states and actions in the source domain onto the target domain by
hand (Taylor & Stone, 2005). Subsequent efforts aimed to learn a set of general latent environment represen-
tations that can be transferred across domains such as inter-task mapping and representation reuse (Ammar
& Taylor, 2012), and learning disentangled representations (Higgins et al., 2017; Srinivas et al., 2020; Xing
et al., 2021; Yi et al., 2023). Additionally, integrating meta-learning, often referred to as "learning to learn",
with domain adaptation has enabled agents to rapidly adjust to novel tasks or environments using minimal
data (Finn et al., 2017; Wang et al., 2016a). These methods rely on extra layer of exploitation to learn the
domain before knowledge transfer.

In contrast to DA, methods like traditional policy distillation (Rusu et al., 2015), where knowledge is directly
transferred from the teacher to the student (Jin et al., 2024; Yang et al., 2024), use a direct approach in
transferring knowledge. While this approach emphasizes directly copying behaviors, some recent works
focus on constructing an intermediate, abstract representation of the environment. For example, high-level
symbolic domain descriptions have been used to build low-dimensional abstractions of the original state
space (Kokel et al., 2022), which can be used to model the dynamics of the original system. Also, (Icarte
et al., 2022) further constructs an automaton which realizes the abstract decision process and uses the
automaton to convey information about the reward signal. These methods focused on single-task while in
Qiu et al. (2023) task-oriented and goal-conditioned within a multitasking framework were learned.

Static transfer learning methods based on reward machines were developed in (Camacho et al., 2018; Icarte
et al., 2022). By treating the nodes and edges in the automaton as states and actions, respectively, the au-
tomaton can be transformed into a low-dimensional abstract MDP which can be solved using Q-learning or
value iteration approaches. The solution to the abstract MDP can speed up learning in the original environ-
ment using a potential-based reward shaping function (Camacho et al., 2019), by introducing counterfactual
experiences during training (Icarte et al., 2022; Voloshin et al., 2023) or by providing contextual guidance
derived from reward structures learned across diverse training contexts. Azran et al. (2024).

However, static transfer methods perform poorly when the abstract MDP fails to capture the behavior of
the underlying process. Consider applying the static transfer approach proposed in (Icarte et al., 2022) for
the objective defined by the LTLf formula ϕ = F(b∨e)∧ (¬F(a)∨¬F(c))∧ (a R ¬b)∧ (c R ¬d)∧ (d R ¬e),
whose automaton is given in Figure 4a.
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(a) (b) (c)

Figure 3: Example 7 × 7 environment configurations for the Blind Craftsman (a), Dungeon Quest (b), and
Diamond Mine (c) environments.

(a) Simple automaton with two traces.

(b) Teacher Q-values produced by dynamic (red)
and static (blue) automaton distillation on the Blind
Craftsman environment.

Assume that the reward function grants a reward of 1 for transitions leading to either terminal state and a
reward of 0 for all other transitions. (Icarte et al., 2022) perform value iteration over the abstract MDP with
update

V (ω) := max
ω′=δ(ω,σ)

R(ω, σ) + γV (ω′). (11)

As can be seen in the automaton in Figure 4a, there are two traces which satisfy the objective: one of
length 2 and one of length 3. Due to the discount factor γ < 1, value iteration will favor taking transition
a, which has a shorter accepting path, over transition c in the starting state. However, it may be the case
that observing b after observing a takes many steps in the original environment, and thus the longer trace
c→ d→ e takes less steps to reach an accepting state.

In contrast to static transfer, which uses prior knowledge of the reward function to model the behavior of
the target process, dynamic transfer leverages experience acquired by interaction in a related domain to
empirically estimate the target value function. Dynamic transfer has the advantage of implicitly factoring
in knowledge of the teacher environment dynamics; in the previous example, if the shorter trace a → b
takes more steps in the teacher environment than the longer trace c → d → e, this will be reflected in the
discounted value estimates learned by the teacher.

5 Experimental Results

In this section, we evaluate our automaton distillation approach. For each time step in the student’s training,
we update our target policy with respect to Q′ (The pseudocode is provided in Algorithm 1 in Appendix A).
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Table 1: An evaluation of automaton distillation and other reward machine transfer approaches. We show that
automaton distillation successfully transfers knowledge to the student environment. We show the mean and standard
deviation of the transfer ratio averaged over 8 seeds. The italicized figures indicate negative TR. BlindCraftManObs
refers to the environment blindcraftsman with obstacles.

Metric Transfer-Dynamics Environment CRM CPREP Static Distill Dyn Distill

TTAUC

Discrete–Discrete

BlindCraftMan 199835.98 ± 39626.54 237009.07 ± 30064.85 194037.82 ± 9396.00 111515.92 ± 2818.89
BlindCraftManObs 434982.79 ± 122704.47 392687.42 ± 99958.54 186997.95 ± 23397.48 38668.11 ± 9272.46
DungeonQuest 827653.48 ± 119397.18 438406.01 ± 44567.97 375656.36 ± 61651.82 90682.37 ± 15536.00
GoldMine 1000000.0 ± 0.0 1000000.0 ± 0.0 290313.72 ± 43304.58 723871.45 ± 296460.19

Discrete–Continuous

BlindCraftMan 335160.81 ± 42506.67 311190.14 ± 78927.61 175176.02 ± 66449.40 126996.97 ± 45392.95
BlindCraftManObs 437139.52 ± 53840.96 299458.60 ± 63050.75 154929.25 ± 53437.07 216010.25 ± 51547.48
DungeonQuest 213265.48 ± 41918.38 283279.45 ± 35904.54 149336.94 ± 71913.11 196528.84 ± 54569.72
GoldMine 1000000.0 ± 0.0 1000000.0 ± 0.0 588773.29 ± 123336.65 469081.81 ± 71926.05

TR

Discrete–Discrete

BlindCraftMan 10.17 ± 0.017 10.93 ± 0.02 9.83 ± 0.03 12.50 ± 0.02
BlindCraftManObs −1.06 ± 0.03 0.24 ± 0.2 2.45 ± 0.02 3.013 ± 0.03
DungeonQuest −3.54 ± 0.11 19.87 ± 0.13 20.58 ± 0.10 43.54 ± 0.39
GoldMine −3.86 ± 0.15 −2.76 ± 0.10 0.90 ± 0.16 0.86 ± 0.16

Discrete–Continuous

BlindCraftMan −0.05 ± 0.048 0.29 ± 0.062 0.94 ± 0.022 1.073 ± 0.05
BlindCraftManObs 0.43 ± 0.058 0.37 ± 0.02 1.22 ± 0.030 0.882 ± 0.067
DungeonQuest 0.88 ± 0.028 1.07 ± 0.045 1.28 ± 0.05 1.36 ± 0.056
GoldMine −0.45 ± 0.001 −0.45 ± 0.001 0.009 ± 0.020 0.20 ± 0.046

5.1 Experimental Setup

We evaluate our algorithm on three environments, continuous and discrete environments, with long-horizon
and sparse reward signals.

Blind Craftsman: This environment consists of woods, a factory, and a home; obstacles can be added for
extra difficulty. The objective is satisfied when the agent has crafted three tools and arrived home. One
wood is required to craft a tool. However, since the agent can only carry two pieces of wood at a time, the
agent must alternate between collecting wood and crafting tools. The objective is defined over the atomic
propositions AP = {wood, factory, tools ≥ 3, home} and given by the LTLf formula ϕ = G(wood =⇒
F factory) ∧ F(tools ≥ 3 ∧ home) with a corresponding automaton of 4 nodes and 12 transitions.

Dungeon Quest: This environment consists of a key, a chest, a shield, and a dragon. The agent can acquire
a key and a shield by interacting with a key or shield, respectively. Additionally, the agent can obtain a
sword by interacting with a chest with a key in its inventory. Once the agent has the sword and the shield,
it may interact with the dragon to defeat it and complete the objective. The objective is defined over the
atomic propositions AP = {key, shield, sword, dragon} and given by the LTLf formula ϕ = F(dragon) ∧
(key R ¬sword)∧ (sword R ¬dragon)∧ (shield R ¬dragon) with a corresponding automaton of 7 nodes and
17 transitions.

Gold Mine: This environment consists of a wood tile, a diamond tile, GoldMine tiles, and iron tiles.
The agent may acquire wood, iron, or GoldMine by interacting with the respective objects. Once the
agent has collected wood and 30 iron, it automatically crafts a pickaxe. The agent may then obtain di-
amond by interacting with the diamond while holding a pickaxe. Once the agent has acquired either
1 diamond or 10 GoldMine, it may return to home to complete the objective. To simplify the result-
ing automaton and limit unnecessary reward, once the agent has collected GoldMine, it cannot obtain
the diamond, and vice versa. Intuitively, although collecting diamond requires less automaton tran-
sitions, collecting 30 iron is relatively time-consuming. Thus, this environment represents a scenario
where the objective automaton misrepresents the difficulty of the task. The objective is defined over
the atomic propositions AP = {wood, diamond, GoldMine = 1, GoldMine = 2, ..., GoldMine = 10, home}
and given by the LTLf formula ϕ = F(home) ∧ (¬F(GoldMine = 1) ∨ ¬F(wood)) ∧
(wood R ¬diamond) ∧ (GoldMine = 1 R ¬GoldMine = 2) ∧ ... ∧ (GoldMine = 9 R ¬GoldMine = 10) ∧
((diamond ∨GoldMine = 10) R ¬home) with a corresponding automaton of 15 nodes and 29 transitions.

The source domains is randomly generated maps 7 × 7 as in Figure 3, and the target domains, either an
independently generated 10 × 10 map or an environment with width and height within a continuous range
of [7 m, 7 m] as shown in fig. 1(c). For the grid-world, agents can obtain objects by being on the object
tile. On the other hand, objects are collected in a continuous environment when their Euclidean distance
to the object is < 0.25 m. The agent receives a reward of +1 for collecting each item, +100 for expecting
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the final task, and a −0.1 per time step, an additional −0.1 for going out of the boundary in the continuous
environment.

Each agent is represented by a Dueling DQN (Wang et al., 2016b) or TD3 (Fujimoto et al., 2018). To
learn the policy in the discrete environment, the network consists of a convolutional feature extractor and
separate value and advantage heads. The feature extractor is a residual network with 3 residual blocks, each
using a 3× 3 convolutional kernel with 32 filters and Leaky ReLU activation. The resulting feature map is
flattened and split into equal halves, which are fed separately to the value and advantage heads. Each head
contains a single fully connected layer with 1 and # actions nodes, respectively. Q-values are reconstructed
by re-centering advantages to have a mean equal to the output of the value head. The neural network takes
as input a stack of 2D grids. Each layer in this stack represents a distinct entity type, which includes the
agent, tile types, or inventory item types. Inventory items are represented through constant-valued input
planes.

In the continuous environment, the network consists of a two-layer feedforward neural network of 800 and
600 hidden nodes, respectively, with rectified linear units (ReLU) between each layer for both the actor
and critic and a final tanh unit following the output of the actor. The network receives a compact vector
comprising the 2D position of the agent, velocity components, and current inventory counts. This vector is
generated by the underlying Box2D physics engine that simulates realistic environmental dynamics.

Additionally, as in (Icarte et al., 2022), we incorporate the automaton state into the input, training on
elements of the cross-product MDP state space (s, ω) ∈ S × Ω. The objective automaton is generated
using the Python FLLOAT synthesis tool based on the LTLf behavioral specification; automata for each
environment are shown in Figure 5. During training episodes, the automaton state is continuously tracked
and stored alongside each experience in the replay buffer. It is then represented as a one-hot vector and
concatenated to the network input, enriching the network’s representation of the current state.

(a) (b) (c)

Figure 5: Objective automata for the Blind Craftsman (a), Dungeon Quest (b), and Diamond Mine envi-
ronments.

5.2 Evaluation

During each training session, the optimal source policy is identified, and its knowledge is distilled into
the automaton as per Equation 2. Following Algorithm 1, the target policy is evaluated in eight parallel
experiments, each initialized with a distinct random seed. The average reward from these experiments,
illustrated in Figure 6, is subsequently used to calculate the transfer metrics (TT and TR). Additionally,
these metrics are summarized in Table 1, reporting the mean, standard deviation and 95% confidence intervals
to quantify performance variability across the trials.

5.2.1 Evaluation Metrics

We define the training history under policy π as hπ(t), representing the expected return at timestep t. Using
this history, we compute the following transfer evaluation metrics:

10
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Figure 6: Reward per episode (y-axis) over time (x-axis) during training. The top row shows results from the discrete
student environment, while the bottom row corresponds to the continuous student environment.

Time to Threshold (TT) = min{t | hπ(t) ≥ κ}

Transfer Ratio (TR) =
AUC

(
hπstudent

)
−AUC

(
hπtarget

)∣∣AUC
(
hπtarget

)∣∣ (12)

Here, κ is a predefined performance threshold, and t is the timestep at which the expected return hπ(t) first
meets or exceeds κ. The area under the curve (AUC) is computed as the average of return values along
the training curve. In addition to evaluating the Time-to-Threshold (TT) for a single threshold, we define
TTAUC as the AUC of the TT values over a set of predefined thresholds. This aggregate metric provides a
comprehensive measure of how quickly the policy attains various performance levels.

We compare our method against several benchmarks, including counterfactual experiences for reward ma-
chines (CRM), a static transfer method proposed in (Icarte et al., 2022), and CPREP (Azran et al., 2024), a
contextual transfer method, and RL over product MDP (i.e., including the automaton state in the DQN/TD3
input) and RL baselines.

As illustrated in Figure 6, our method achieves faster convergence compared to baseline methods. Regarding
the TTAUC , our method consistently outperforms alternatives except in specific cases mentioned explicitly.
The TR metric demonstrates that our approach effectively avoids negative transfer, an issue observed in
certain cases with competing methods.

These findings confirm that our approach enhances transfer performance even when environmental dynamics
differ significantly. This improvement is particularly notable in the Gold Mine environment, where the
assumption that short automaton traces correlate with shorter trajectories in the original environment is
misleading. Dynamic automaton distillation utilizes an empirical estimate of trajectory length over the
teacher’s decision process and circumvents inaccuracies in the abstract MDP. Thus, dynamic automaton
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distillation is effective when the optimal policies in the teacher and student environments follow similar
automaton traces.

Some behavioral specifications can lead to objective automata with cycles, as evidenced by the Blind Crafts-
man environment. Figure 4b shows the Q-values generated by automaton distillation. Unlike static distilla-
tion, dynamic distillation can distinguish between states which are (nearly) equivalent in the abstract MDP
by incorporating episode length; states which are further from the goal receive discounted rewards, resulting
in smaller Q-values.

Cycles in the automaton do not necessarily lead to infinite reward loops as it is often the case that in the
original environment, the cycle may be taken only a finite number of times. While it is possible to construct
an automaton without cycles by expanding the state space of the automaton to include the number of cycles
taken, the maximum number of cycle traversals must be known a priori and incorporated into the objective
specification, which may not be possible. Additionally, environments that share an objective may admit
different numbers of cycle traversals; thus, cycles offer a compact representation that permits knowledge
transfer between environments. However, cycles can aggravate the differences between the abstract MDP
and the original decision process, resulting in negative knowledge transfer. In such cases, state-of-the-
art transfer methods (Icarte et al., 2022) may actually increase training time relative to a naïve learning
algorithm.

6 Conclusion

In this paper, we proposed automaton distillation, which leverages symbolic knowledge of the objective and
reward structure in the form of formal language, to stabilize and expedite training of reinforcement learning
agents.

Value estimates for transitions in the automaton are generated using static (i.e. a priori) methods such as
value iteration over an abstraction of the target domain or dynamically estimated by mapping experiences
collected in a related source domain to automaton transitions. The resulting value estimates are used as
initial learning targets to bootstrap the student learning process resulting in faster learning even for a target
environment different in structure from the source environment. We illustrate several failure cases of existing
automaton-based transfer methods, which exclusively reason over a priori knowledge, and argue instead for
the use of dynamic transfer. We demonstrate that both static and dynamic automaton distillation reduce
training costs and outperform state-of-the-art knowledge transfer techniques.

7 AI Impact Statement

Neuro-symbolic transfer learning via automata combines the adaptability of neural networks with the inter-
pretability of symbolic reasoning, creating a robust AI approach. This synergy enhances knowledge transfer
across diverse tasks and structurally different domains, improving generalization and enabling AI systems
to learn efficiently from limited data while reasoning about complex relationships and sequential tasks.

By facilitating the transfer of knowledge from discrete to continuous environments, our method helps mitigate
the sim-to-real gap, enabling autonomy learned in simulation to be more effectively applied in real-world
settings. This capability is crucial in robotics and other fields where simulated training must translate
to practical applications. Utilizing automata for knowledge transfer fosters the development of intelligent,
adaptable, and interpretable AI systems that can learn rapidly in complex real-world environments.
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Appendix

A Algorithm

In Algorithm 1, we provide a detailed algorithm for our proposed automaton Distillation method.
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Algorithm 1: Automaton Distillation with DQN or TD3
Input: Teacher automaton Q-values Qteacher, automaton state transition function, δ, labeling function
L, number of training steps T , number of steps per target update, tupdate, batch size M , actor update
period d, learning rate α, annealing rate ρ, soft-update,τ , exploration constant ϵ, discount factor γ

Output: Student parameters θ
Initialize Networks:
if DQN then

Critic: Qθ; Target: θtarget ← θ
end
else TD3

Critics : Qθ1 , Qθ2 ; Actor: πϕ;
Targets: θtarget

1 ← θ1, θtarget
2 ← θ2, ϕ′ ← ϕ

end
Initialize replay buffer ER, automaton transition visit counts η
for t← 1 to T do

if DQN then
Take ϵ-greedy action a;

end
else TD3

Select action with exploration noise a← πϕ(s) + ε, ε ∼ N (0, σnoise)
end
Observe reward r and new state s′;
Compute new automaton state ω′ = δ(ω, L(s′));
Append augmented experience ((s, ω), a, r, (s′, ω′)) to the replay buffer ER with priority 1;
Sample M transitions, {(si, ωi), ai, ri, (s′

i, ω′
i)}M

i=1, from replay with priority pi;
Compute annealing parameters for each transition βi ← ρη(ωi,L(s′

i));
Update Qtarget according to Eq. equation 4 or Eq. equation 5;
Generate adjusted targets Q′

i ← βiQteacher(ωi, L(s′
i)) + (1− βi)Qtarget;

Update Q-networks θ ← θ − α
M

∑
i pi∇θ(Q′

i −Q((si, ωi), ai; θ))2;
if TD3 and t mod d = 0 then

ϕ← ϕ− α
M

∑
i∇ϕQ1((si, ωi), πϕ(si));

end
Update buffer priorities pi = (Q′

i −Q((si, ωi), ai; θ))2;
for i← 1 to M do

Update visit count η(ωi, L(s′
i))← η(ωi, L(s′

i)) + 1;
end
if t mod tupdate = 0 then

if DQN then
θtarget ← θ;

end
else TD3

θtarget
k ← τθk + (1− τ)θtarget

k k = 1, 2;
ϕ′ ← τϕ + (1− τ)ϕ′;

end
end

end
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