
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ZEBRA: IN-CONTEXT AND GENERATIVE PRETRAIN-
ING FOR SOLVING PARAMETRIC PDES

Anonymous authors
Paper under double-blind review

ABSTRACT

Solving time-dependent parametric partial differential equations (PDEs) is chal-
lenging, as models must adapt to variations in parameters such as coefficients,
forcing terms, and boundary conditions. Data-driven neural solvers either train on
data sampled from the PDE parameters distribution in the hope that the model gen-
eralizes to new instances or rely on gradient-based adaptation and meta-learning
to implicitly encode the dynamics from observations. This often comes with in-
creased inference complexity. Inspired by the in-context learning capabilities of
large language models (LLMs), we introduce Zebra, a novel generative auto-
regressive transformer designed to solve parametric PDEs without requiring gra-
dient adaptation at inference. By leveraging in-context information during both
pre-training and inference, Zebra dynamically adapts to new tasks by condition-
ing on input sequences that incorporate context trajectories or preceding states.
This approach enables Zebra to flexibly handle arbitrarily sized context inputs
and supports uncertainty quantification through the sampling of multiple solution
trajectories. We evaluate Zebra across a variety of challenging PDE scenarios,
demonstrating its adaptability, robustness, and superior performance compared to
existing approaches.

1 INTRODUCTION

Training partial differential equation (PDE) solvers is a challenging task due to the variety of be-
haviors that can arise in physical phenomena, and neural solvers have limited generalization capa-
bility(Chen et al., 2018; Raissi et al., 2019; Li et al., 2021). We tackle the parametric PDE problem
(Cohen & Devore, 2015), where a model is trained on trajectories defined by varying PDE param-
eters with the goal of generalizing across a wide range of parameters. The parameters may include
initial and boundary conditions, physical coefficients, and forcing terms. We focus on pure data-
driven approaches that do not leverage any prior knowledge on the underlying equations.

A natural approach to this problem is to sample from the parameter distribution, i.e., to train using
different PDE instances or parameter values, along with multiple trajectories for each PDE instance.
This requires a training set representative of the distribution of the underlying dynamical system,
which is difficult to meet in practice given the complexity of physical phenomena. Other approaches
explicitly condition on specific PDE parameters, (Brandstetter et al., 2022b; Takamoto et al., 2023)
relying on the availability of such prior knowledge. This requires a physical model of the observed
system, making the incorporation of PDE parameters into neural solvers challenging beyond ba-
sic PDE coefficients. An alternative approach involves online adaptation to new PDE instances by
leveraging observations from novel environments. Here we consider that an environment is charater-
ized by a set of parameters. This adaptation is often implemented through meta-learning, where the
model is trained on a variety of simulations corresponding to different environments—i.e., varying
PDE parameter values—so that it can quickly adapt to new, unseen PDE simulation instances using
a few trajectory examples(Kirchmeyer et al., 2022; Yin et al., 2022). This method offers a high
flexibility but requires gradient updates for adaptation, adding computational overhead. Another
common setting involves leveraging historical data to condition the neural network, allowing it to
generalize to new PDE instances without retraining (Li et al., 2021; McCabe et al., 2023). Again the
generalization ability is limited to dynamics close to the ones used for training. Exploring another
direction and motivated by the successes encountered in natural language processing and vision,
some authors have begun investigating the development of foundation models for spatio-temporal
dynamic physical processes (Subramanian et al., 2023; Herde et al., 2024; McCabe et al., 2023).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

This approach involves training a large model on a variety of physics-based numerical simulations
with the expectation that it will generalize to new situations or equations. While they consider mul-
tiple physics we focus on solving parametric PDEs, i.e. multiple variations of the same physical
phenomenon.

We explore here a new direction inspired by the successes of in-context learning (ICL) and its ability
to generalize to downstream tasks without retraining (Brown et al., 2020; Touvron et al., 2023). We
propose a framework, denoted Zebra, relying on in-context pretraining (ICP), for solving paramet-
ric PDEs and learning to condition neural solvers to adapt fast to new situations or said otherwise
for solving for new parameter values. As for ICL in language the model is trained to generate ap-
propriate responses given context examples and a query. The context examples could be trajectories
from the same dynamics starting from different initial conditions, or simply a brief history of past
system states for the target trajectory. The query will consist for example of an initial state condi-
tion, that will serve as inference starting point for the forecast. This approach offers key advantages
compared to existing methods. It can leverage contexts of different types and sizes, it requires only
a few context examples to adapt to new dynamics and can handle as well 0-shot learning. It allows
us to cover a large variety of situations.

On the technical side, Zebra introduces a novel generative autoregressive solver for parametric
PDEs. It employs an encode-generate-decode framework: first, a vector-quantized variational auto-
encoder (VQ-VAE) (Oord et al., 2017) is learnt to compress physical states into discrete tokens
and to decode it back to the original physical space. Next, a generative autoregressive transformer
is pre-trained using a next token objective. To leverage the in-context properties of the model,
Zebra is directly pretrained on arbitrary-sized contexts such as extra trajectories or historical states
of the target dynamics. At inference, Zebra can handle varying context sizes for conditioning
and support uncertainty quantification, enabling generalization to unseen PDE parameters without
gradient updates.

Our main contributions include:

• We introduce a generative autoregressive transformer for modeling physical dynamics. It
operates on compact discretized representations of physical state observations. This dis-
cretization is performed through a VQ-VAE. The encoder tokenizes observations into se-
quences of tokens, while the decoder reconstructs the original states. This framework repre-
sents the first successful application of generative modeling using quantized representations
of physical systems.

• To harness the in-context learning strengths of autoregressive transformers, we develop a
new pretraining strategy that conditions the model on historical states or example trajecto-
ries with similar dynamics, allowing it to handle arbitrary-sized context token inputs.

• We evaluate Zebra on a range of parametric PDEs on two distinct settings. In the first, the
model infers dynamics from a context trajectory that shares similar behavior with the target
but differs in initial conditions, representing a one-shot setting. Zebra’s performance is
benchmarked against domain-adaptation baselines specifically trained for such tasks. In
the second scenario, only a limited number of historical frames of the target trajectory
are available, requiring the model to deduce the underlying dynamics solely from these
inputs. Zebra consistently demonstrates competitive performance across both evaluation
contexts.

2 PROBLEM SETTING

2.1 SOLVING PARAMETRIC PDE

We aim to solve parametric time-dependent PDEs beyond the typical variation in initial conditions.
Our goal is to train models capable of generalizing across a wide range of PDE parameters. To
this end, we consider time-dependent PDEs with different initial conditions, and with additional
degrees of freedom, namely: (1) coefficient parameters — such as fluid viscosity or advection speed
— denoted by vector µ ; (2) boundary conditions B, e.g. Neumann or Dirichlet; (3) forcing terms
δ, including damping parameter or sinusoidal forcing with different frequencies. To simplify nota-
tion we denote ξ := {µ,B, δ} and we define Fξ as the set of PDE solutions corresponding to the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1

...

Codebook
2 3 4 ...

3

1

4 4
44

4

4

4K K

2
2

22

2

CNN
Encoder Decoder

CNN

quantization

quantized codescodes K

Time Time

Tokenize Tokenize

Trajectory 1 Trajectory 2

Trajectories sharing the same dynamics

<bot> <eot> <bot><bos> <eos><eot>

Input: Sequence of indices

Output: Next token probabilties

Transformer

...

...

Special
tokens

<bos>

<bot> <eot>

begin of sequence

begin of new trajectory end of trajectory

end of sequence<eos>

Output: reconstructionInput: physical field

VQVAE1

2 In-context Pretraining

Figure 1: Zebra Framework for solving parametric PDEs. 1) A finite vocabulary of physical
phenomena is learned by training a VQ-VAE on spatial representations. 2) During the pretraining,
multiple trajectories sharing the same dynamics are tokenized and concatenated into a common
sequence S. A transformer is used to predict the next tokens in these sequences, conditioned on
the context. This enables the model to perform both zero-shot and few-shot generation, without
gradient-based updates.

PDE parameters µ, boundary conditions B and forcing term δ, and refer to Fξ as a PDE partition.
Formally, a solution u(x, t) within Fξ satisfies:

∂u

∂t
= F

(
δ, µ, t, x,u,

∂u

∂x
,
∂2u

∂x2
, . . .

)
, ∀x ∈ Ω,∀t ∈ (0, T] (1)

B(u)(x, t) = 0, ∀x ∈ ∂Ω,∀t ∈ (0, T] (2)

u(0, x) = u0, ∀x ∈ Ω (3)

where F is a function of the solution u and its spatial derivatives on the domain Ω, and also includes
the forcing term δ ; B is the boundary condition constraint (e.g., spatial periodicity, Dirichlet, or
Neumann) that must be satisfied at the boundary of the domain ∂Ω; and u0 is the initial condition
sampled with a probability measure u0 ∼ p0(.).

2.2 GENERALIZATION FOR PARAMETRIC PDE

Solving time-dependent parametric PDEs requires developing neural solvers capable of generalizing
to a whole distribution of PDE parameters. In practice, changes in the PDE parameters often lead
to distribution shifts in the trajectories which makes the problem challenging. Different directions
are currently being explored briefly reviewed below. We focus on pure data-driven approaches that
do not make use of any prior knowledge on the equations. We make the assumption that the models
are learned from numerical simulations so that it is possible to generate from multiple parameters.
This emulates real situations where for example, a physical phenomenon is observed in different
contexts.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0-shot learning with temporal conditioning A first direction consists in adapting the classical
ERM framework to parametric PDE solving by sampling multiple instances of a PDE, in the hope
that this will generalize to unseen conditions in a 0-shot setting. It is usually assumed that for both
learning and inference, a sequence of past states is provided as initial input to the model, leveraging
its potential to infer the dynamics characteristics in order to forecast future values. The neural solver
Gθ is then conditioned by a sequence of past states for a trajectory ut−m∆t:t := (ut−m∆t, . . . ,ut)
where m ≥ 1. Depending on the architecture, this can be implemented by stacking the informa-
tion in the channel dimension (Li et al., 2021), or by creating an additional temporal dimension as
done in video prediction contexts (McCabe et al., 2023; Ho et al., 2022). This approach makes an
implicit i.i.d. assumption on the training - test distributions which is often not met with dynamical
phenomena. It offers a limited flexibility in cases where only limited historical context is accessible.

Few-shot learning by fine tuning Another category of methods leverages fine tuning. As for the
0-shot setting above, a model is pretrained on a distribution of the PDE parameters. At inference,
for a new environment, fine tuning is performed on a sample of the environment trajectories. This
approach often relies on large fine tuning samples and involves updating all or a subset of parameters
(Subramanian et al., 2023; Herde et al., 2024).

Adaptive conditioning A more flexible approach relies on adaptation at inference time through
meta-learning. It posits that a set of environments e are available from which trajectories are sam-
pled, each environment e being defined by specific PDE parameter values (Zintgraf et al., 2019a;
Kirchmeyer et al., 2022). The model is trained from a sampling from the environments distribution
to adapt fast to a new environment. The usual formulation is to learn shared and specific environ-
ment parameters Gθ+∆θξ , where θ and ∆θξ are respectively the shared and specific parameters. At
inference, for a new environment, only a small number of parameters θξ is adapted from a small
sample of observations.

Table 1: Key distinctions with Baselines. Zebra is the only method that supports both adaptive
conditioning, temporal conditioning, and does not require gradient computations at inference.

Method Adaptive conditioning Temporal conditioning In-context

CAPE (Takamoto et al. (2023)) ✗ ✗ ✗
Vanilla CODA (Kirchmeyer et al. (2022)) ✓ ✗ ✗
MPP (McCabe et al. (2023)) ✗ ✓ ✗
Zebra ✓ ✓ ✓

3 ZEBRA FRAMEWORK

We introduce Zebra, a novel framework designed to solve parametric PDEs through in-context
learning and flexible conditioning. Zebra utilizes an autoregressive transformer to model partial
differential equations (PDEs) within a compact, discrete latent space. A spatial CNN encoder is em-
ployed to map physical spatial observations into these latent representations, while a CNN decoder
accurately reconstructs them. As illustrated in Figure 1, our pretraining pipeline consists of two
key stages: 1) Learning a finite vocabulary of physical phenomena, and 2) Training the transformer
using an in-context pretraining strategy, enabling the model to effectively condition on contextual in-
formation. At inference, Zebra allows both adaptive and temporal conditioning through in-context
learning (Table 1).

3.1 LEARNING A FINITE VOCABULARY OF PHYSICAL PHENOMENA

In order to leverage the auto-regressive transformer architecture and adopt a next-token generative
pretraining, we need to convert physical observations into discrete representations. To keep the mod-
eling with the transformer computationnaly tractable, we do not quantize the observations directly
but rather quantize compressed latent representations by employing a VQVAE (Oord et al., 2017).

Our encoder spatially compresses the input function ut by reducing its spatial resolution H ×W to
a lower resolution h × w while increasing the channel dimension to d. This is achieved through a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

convolutional model Ew, which maps the input to a continuous latent variable zt = Ew(ut), where
zt ∈ Rh×w×d. The latent variables are then quantized to discrete codes ztq using a codebook Z of
size K = |Z| and through the quantization step q. For each spatial code zt[ij], the nearest codebook
entry zk is selected:

ztq,[ij] = q(zt[ij]) := arg min
zk∈Z

∥zt[ij] − zk∥.

The decoder Dψ reconstructs the signal ût from the quantized latent codes ẑtq . Both models are
jointly trained to minimize the reconstruction error between the function ut and its reconstruction
ût = Dψ ◦ q ◦ Ew(ut). The codebook Z is updated using an exponential moving average (EMA)
strategy, which stabilizes training and ensures high codebook occupancy.

The training objective is:

LVQ =
∥ut − ût∥2

∥ut∥2
+ α∥sg[ztq]− Ew(ut)∥22,

where the first term is the Relative L2 loss commonly used in PDE modeling, and the second term
is the commitment loss, ensuring encoder outputs are close to the codebook entries. The parameter
α, set to 0.25, balances the two components. Here, sg denotes the stop-gradient operation that
detaches a tensor from the computational graph. We provide additional details on the architecture in
Appendix C.

Once this training step is done, we can tokenize a trajectory ut:t+m∆t by applying our encoder in
parallel on each timestamp to obtain discrete codes zt:t+m∆t

q and retrieve the corresponding index
entries st:t+m∆t from the codebook Z . Similarly, we detokenize discrete indices with the decoder.

3.2 IN-CONTEXT MODELING

We design sequences that enable Zebra to perform in-context learning on trajectories that share un-
derlying dynamics. To incorporate varying amounts of contextual information, we draw a number
n between 1 and nmax, then sample n trajectories sharing the same dynamics, each with m snap-
shots starting from time t, denoted as (ut:t+m∆t

1 , . . . ,ut:t+m∆t
n). These trajectories are tokenized

into index representations (st:t+m∆t
1 , . . . , st:t+m∆t

n), which are flattened into sequences s1, . . . , sn,
maintaining the temporal order from left to right. In practice, we fix nmax = 6 and m = 9.

Since our model operates on tokens from a codebook, we found it advantageous to introduce special
tokens to structure the sequences. The tokens <bot> (beginning of trajectory) and <eot> (end
of trajectory) clearly define the boundaries of each trajectory within the sequence. Furthermore, as
we sample sequences with varying context sizes, we maximize the utilization of the transformer’s
context window by stacking sequences that could also represent different dynamics. To signal that
these sequences should not influence each other, we use the special tokens <bos> (beginning of
sequence) and <eos> (end of sequence). The final sequence design is:

S = <bot>[s1]<eot><bot>[s2]<eot> . . .<bot>[sn]<eot>

And our pretraining dataset is structured as follows:

<bos>[S1]<eos><bos>[S2]<eos> . . .<bos>[Sl]<eos>

3.3 NEXT-TOKEN PRETRAINING

The transformer is trained using self-supervised learning on a next-token prediction task with teacher
forcing (Radford et al., 2018). Given a sequence S of discrete tokens of length N , the model is
optimized to minimize the negative log-likelihood (cross-entropy loss):

LTransformer = −ES
N∑
i=1

log p(S[i]|S[i′<i]),

where the model learns to predict each token S[i] conditioned on all previous tokens S[i′<i]. Due
to the transformer’s causal structure, earlier tokens in the sequence are not influenced by later ones,
while later tokens benefit from more context, allowing for more accurate predictions. This structure

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

naturally supports both generation in a zero-shot and few-shot setting within a unified framework.
Our transformer implementation is based on the Llama architecture (Touvron et al. (2023)). Ad-
ditional details can be found in Appendix C. Up to our knowledge, this is the first adaptation of
generative auto-regressive transformers to the modeling of physical dynamics.

3.4 INFERENCE: FLEXIBLE CONDITIONING

In this section, we outline the inference pipeline for Zebra across various scenarios. For simplicity,
we assume that all observations have already been tokenized and omit the detokenization process.
Let s∗ represent the target token sequence for which we aim to predict the following timestamps.

• Temporal conditioning with ℓ frames: The prompt is structured as S =
<bos><bot>[s0:ℓ∆t∗], and the transformer generates the subsequent tokens based on this
input.

• Adaptive conditioning with n examples and an initial condition: The prompt is structured
as S = <bos><bot>[s0:m∆t

1]<eot> . . .<bot>[s0:m∆t
n]<eot><bot>[s0∗], allowing the

model to adapt based on the provided examples and initial condition.

• Adaptive conditioning with n examples and ℓ frames: This setup combines con-
text from multiple trajectories with the initial timestamps, structured as S =
<bos><bot>[s0:m∆t

1]<eot> . . .<bot>[s0:m∆t
n]<eot><bot>[s0:ℓ∆t∗].

At inference, we adjust the temperature parameter τ to calibrate the level of diversity of the next-
token distributions. The temperature τ scales the logits yi before the softmax function :

p(S[i] = k|S[i′<i]) = softmax
(yk
τ

)
=

exp
(
yk
τ

)∑
j exp

(yj
τ

)
When τ > 1, the distribution becomes more uniform, encouraging exploration, whereas τ < 1
sharpens the distribution, favoring more deterministic predictions.

4 EXPERIMENTS

In this section, we experimentally validate that our framework enables various types of conditioning
during inference. As the first model capable of performing in-context learning with an autoregressive
transformer for PDEs, Zebra can tackle a wide range of tasks that existing frameworks are unable
to address without gradient-based adaptation or finetuning. We conduct pretraining as outlined in
Section 3 for each dataset described in Section 4.1 and evaluate Zebra on distinct tasks without
additional finetuning. We begin by assessing Zebra’s performance in the challenging one-shot
setting, focusing on adaptation methods as the main baselines (Section 4.2). Next, we compare its
performance in the more traditional temporal conditioning tasks in Section 4.3. We then explore its
generalization in the out-of-distribution regime in Section 4.2. Lastly, we examine the uncertainty
quantification enabled by Zebra’s generative nature and analyze the model’s generated trajectories
in Appendix D.1 and Appendix D.2, respectively.

Table 2: Dataset Summary

Dataset Name Number of env. Trajectories per env. Main parameters

Advection 1200 10 Advection speed
Heat 1200 10 Diffusion and forcing

Burgers 1200 10 Diffusion and forcing
Wave boundary 4 3000 Boundary conditions

Combined equation 1200 10 α, β, γ

Wave 2D 1200 10 Wave celerity and damping
Vorticity 2D 1200 10 Diffusion

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: One-shot adaptation. Conditioning from a similar trajectory. Test results in relative L2 on
the trajectory. ‘–‘ indicates inference has diverged.

Advection Heat Burgers Wave b Combined Wave 2D Vorticity 2D

CAPE 0.00941 0.223 0.213 0.978 0.00857 – –
CODA 0.00687 0.546 0.767 1.020 0.0120 0.777 0.678

[CLS] ViT 0.140 0.136 0.116 0.971 0.0446 0.271 0.972

MPP-in-context 0.0902 0.472 0.582 0.472 0.0885 0.390 0.173

Zebra 0.00794 0.154 0.115 0.245 0.00965 0.207 0.119

4.1 DATASETS DETAILS

As in Kirchmeyer et al. (2022), we generate data in batches where each batch of trajectories shares
the same PDE parameters. For each batch or environment, the resulting trajectories sharing the
same dynamics have different initial conditions. We consider different whole factors of variations
across multiple datasets and drastically increase the different number of environments compared
to previous studies (Yin et al. (2022), Kirchmeyer et al. (2022)). We conduct experiments across
seven datasets: five in 1D—Advection, Heat, Burgers, Wave-b, Combined—and two in 2D—Wave
2D, Vorticity. These datasets were selected to encompass different physical phenomena and test
generalization under changes to various PDE terms, as described below.

Varying PDE coefficients The changing factor is the set of coefficients µ in Equation 1. For the
Burgers, Heat, and Vorticity 2D equations, the viscosity coefficient ν varies across environments.
For Advection, the advection speed β changes. In Wave-c and Wave-2D, the wave’s celerity c is
unique to each environment, and the damping coefficient k varies across environments in Wave-2D.
In the Combined equation, three coefficients (α, β, γ) vary, each influencing different derivative
terms respectively: −∂u2

∂x ,+∂2u
∂x2 ,−∂3u

∂x3 on the right-hand side of Equation 1.

Varying boundary conditions In this case, the varying parameter is the boundary condition B
from Equation 2. For Wave-b, we explore two types of boundary conditions—Dirichlet and Neu-
mann—applied independently to each boundary, resulting in four distinct environments.

Varying forcing term The varying parameter is the forcing term δ in Equation 1. In Burgers
and Heat, the forcing terms vary by the amplitude, frequency, and shift coefficients of δ(t, x) =∑5
j=1 Aj sin

(
ωjt+ 2π

ljx
L + ϕj

)
.

A detailed description of the datasets is provided in Appendix B, and a summary of the number
of environments used during training, the number of trajectories sharing the same dynamics, and
the varying PDE parameters across environments is presented in Table 2. For testing, we evaluate
all methods on trajectories with new initial conditions on unseen environments. Specifically, we
used 120 new environments for the 2D datasets and 12 for the 1D datasets, with each environment
containing 10 trajectories.

4.2 CONTEXT ADAPTATION FROM SIMILAR TRAJECTORIES

Setting We evaluate Zebra’s ability to perform in-context learning by leveraging example tra-
jectories that follow the same underlying dynamics as the target. Formally, in the n-shot adaptation
setting, we assume access to a set of n context trajectories {u0:m∆t

1 , . . . ,u0:m∆t
n } at inference time,

all of which belong to the same dynamical system Fξ. The goal of the adaptation task is to accu-
rately predict a future trajectory u∆t:m∆t

∗ from a new initial condition u0
∗, knowing that the target

dynamics is shared with the provided context example trajectories. In this comparison, Zebra is
the only model that performs in-context learning from these example trajectories.

Sampling For Zebra, we employ a random sampling procedure for generating the next tokens
for all datasets, setting a low temperature (τ = 0.1) to prioritize accuracy over diversity. Predictions
are generated using a single sample under this configuration.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Baselines We evaluate Zebra against CODA (Kirchmeyer et al., 2022) and CAPE (Takamoto et al.,
2023). CODA is a meta-learning framework designed for learning parametric PDEs. It leverages
common knowledge from multiple environments where trajectories from a same environment e
share the same PDE parameter values. CODA training performs adaptation in the parameter space
by learning shared parameters across all environments and a context vector ce specific to each en-
vironment. At the inference stage, CODA adapts to a new environment in a one-shot manner by
only tuning ce with several gradient steps. CAPE is not designed to perform adaptation via extra-
trajectories, but instead needs the correct parameter values as input to condition a neural solver. We
adapt it to our setting, by learning a context ce instead of using the real parameter values. During
adaptation, we only tune this context ce via gradient updates. Additionally, we introduce a baseline
based on a vision transformer (Peebles & Xie, 2023), integrating a [CLS] token that serves as a
learned parameter for each environment. This token lets the model handle different dynamics, and
during inference, we adapt the [CLS] vector via gradient updates, following the same approach
used in CODA and CAPE. We refer to this baseline as [CLS]ViT. As an additional baseline, we
include MPP-in-context, which has been adapted from McCabe et al. (2023) by stacking similar
trajectories in the temporal dimension (as we do) to enable in-context conditioning and one-shot
adaptation.

Metrics We evaluate the performance using the Relative L2 norm between the predicted rollout

trajectory ûtrajectory
∗ and the ground truth utrajectory

∗ : L2
test =

1
Ntest

∑
j∈test

||ûtrajectory
j −utrajectory

j ||2
||utrajectory

j ||2
.

Results As evidenced in Table 3, Zebra demonstrates strong overall performance in the one-shot
adaptation setting, often surpassing baseline methods that have been trained specifically for this
task. In more challenging datasets, such as Burgers, Wave-b, and the 2D cases, Zebra consistently
achieves lower relative L2 errors, highlighting its capacity to model complex dynamics effectively.
Notably, Zebra excels in 2D environments, outperforming both CODA and [CLS]ViT and avoid-
ing the divergence issues encountered by CAPE. While Zebra performs comparably to CODA on
simpler datasets like Advection and Combined, its overall stability and versatility across a range
of scenarios, particularly in 2D settings, highlight its competitiveness. Although there is room for
improvement in specific cases, such as the Heat dataset, Zebra stands out as a reliable and scal-
able solution for in-context adaptation for parametric PDEs, offering a robust alternative to existing
gradient-based methods. We further analyze the influence of the number n of context examples on
the rollout performance with Zebra, as illustrated in Figure 2. While there is a general decreasing
trend—indicating that more context examples tend to reduce rollout loss—there is still noticeable
variance in the results. This suggests that the relationship between the number of context examples
and performance is not perfectly linear. We hypothesize that this analysis would benefit from being
conducted with more than a single generated trajectory to ensure more robust estimations.

2 4
Context examples

6 × 10 3

7 × 10 3

8 × 10 3
Advection

2 4
Context examples

1.02 × 10 1

1.04 × 10 1

1.06 × 10 1

1.08 × 10 1

1.1 × 10 1

1.12 × 10 1

1.14 × 10 1

Burgers

2 4
Context examples

1.25 × 10 1

1.3 × 10 1

1.35 × 10 1

1.4 × 10 1

1.45 × 10 1

1.5 × 10 1

1.55 × 10 1
Heat

2 4
Context examples

8 × 10 3

9 × 10 3

Combined

Figure 2: Influence of the number of examples. Zebra’s rollout loss for a different number of
trajectory examples. The x-axis is the # of context examples and the y-axis is the Relative L2.

4.3 TEMPORAL CONDITIONING

Setting We then evaluate the temporal conditioning capabilities of Zebra, i.e. its generalization
capabilities when conditioned by the initial states of the target trajectories. Formally, given a new
trajectory u∗, we suppose that a set of ℓ states u

0:(ℓ−1)∆t
∗ is already available from the trajectory

and we wish to predict the states at the following timestamps uℓ∆t:m∆t
∗ .

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Baselines We test Zebra against CODA (Kirchmeyer et al., 2022), CAPE (Takamoto et al., 2023)
and MPP (McCabe et al., 2023). CODA is designed for adapting neural networks to a new environ-
ment given an extra-trajectory sampled from this environment. In this setup, we do not have access
to extra-trajectories but to the first timestamps of the target trajectory. We thus modify CODA for this
setting; the model is adapted with the ℓ first states by learning only ce, and then starts from u(ℓ−1)∆t

to predict the rest of the trajectory. We adapt CAPE to that setting too, as done with CODA. MPP is
a vision transformer conditioned by a sequence of frames, using temporal and spatial self-attention
blocks to capture spatio-temporal dependencies. MPP does not require additional adaptation at in-
ference and can be used in zero-shot on new trajectories. It is pretrained with a fixed number of input
frames in the vanilla version. We also include MPP-in-context, a variant that was pretrained with
context trajectories, as explained in Section 4.2. For Zebra, we employ the sampling procedure
described in Section 4.2.

Table 4: Zero-shot prediction from 2 frames. Conditioning from a trajectory history with 2 frames
as input. Test results in relative L2 on the trajectory. ‘–‘ indicates inference has diverged.

Advection Heat Burgers Wave b Combined Wave 2D Vorticity 2D

CAPE 0.00682 0.234 0.225 1.10 0.0125 – –
CODA 0.00560 0.378 0.472 0.994 0.0197 0.974 0.623

MPP[2] 0.0075 0.0814 0.100 1.0393 0.0250 0.285 0.101
MPP[3] 0.919 1.0393 0.581 0.900 0.201 0.596 0.219

MPP-in-context 0.197 0.204 0.176 1.13 0.0985 0.363 0.1393

Zebra 0.00631 0.227 0.221 0.992 0.0084 0.201 0.0874

Results Table 4 highlights Zebra’s strong zero-shot prediction performance using only 2 frames
(ℓ = 2) as context, outperforming competing methods across a wide range of PDEs. Notably,
Zebra excels on both 1D and 2D datasets, delivering consistent and robust results even in complex
dynamics like Wave 2D and Vorticity 2D. CAPE and CODA, while competitive in some datasets,
either diverge or struggle with accuracy in more challenging scenarios, particularly in 2D problems.

Advection Burgers Heat Combined Wave b

10 2

10 1

100

Ro
llo

ut
 lo

ss

0.006

0.221 0.228

0.008

0.993

0.006

0.054 0.047

0.005

0.191

Zero-Shot vs. One-Shot Performance (2 Frames)
Zero-Shot
One-Shot

Figure 3: Zero-shot vs one-shot perfor-
mance of Zebra with 2 frames.

MPP trained with two frames (MPP[2]) is overall a
very strong baseline in this setting; it performs best
on Heat and Burgers and obtains good results in the
2D cases. However, if we take a model that has been
pretrained specifically on three frames (MPP[3]),
and test it under this setting, the performance de-
grades drastically. In contrast, Zebra exhibits a high
flexibility. It can be used with any number of frames,
as long it does not exceed the maximum sequence
size seen during training. Furthermore, keeping this
setting with two initial frames as inputs, we expose
in Figure 3 the gains we could expect on the rollout
loss if we had access in addition to the input frames
to an example trajectory as described in Section 4.2.
We can observe that Zebra consistently improves its accuracy when prompted with an additional
example. Most notably, Zebra’s behavior goes from a random prediction on Wave b in zero-shot
to more confident predictions thanks to the additional example.

4.4 OUT-OF-DISTRIBUTION GENERALIZATION

Datasets We focus on the following distribution shifts from these datasets (i) Heat: we vary the
forcing coefficients from Appendix B.3 and sample Aj ∈ [−1.0, 1.0], ωj ∈ [−0.8,−0.8]; (ii) Vor-
ticity 2D: We sample the viscosity within the range [5× 10−4, 10−3] for numerical comparisons. In
Figure 4 we also evaluate a shift to a more turbulent regime by sampling the viscosity in [10−5, 10−4]
; (iii) Wave 2D: we sample the wave celerity c in [500, 550], and the damping term k in [50, 60]. Set-
ting We evaluate the different models on the one-shot and zero-shot settings for trajectories with
out-of-distribution parameters. Note that this setting is particularly challenging.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

In
te

ns
ity

Figure 4: Zero-shot prediction on Vorticity in the turbulent OoD regime ν ∈ [1e− 5, 1e− 4]

Results We report all metrics in Table 5 for both zero-shot and one-shot experiments. Overall, all
methods are impacted by the shift in distribution, with performance consistently degrading across
all tasks. Zebra is best on 5 experiments out of 6. CODA and CAPE perform the worst in these
scenarios. This is expected for the 2D datasets, as they already struggled to generalize within the
training distribution. On the Heat dataset, errors for CAPE and CODA double in the one-shot setting,
whereas Zebra maintains similar accuracy, highlighting its robustness to distribution shifts. In the
one-shot setting, MPP-in-context outperforms CAPE and CODA baselines. MPP[2] performs well
on the zero-shot setting with two context frames, but cannot solve initial value problems when only
one initial condition is provided as for classical solvers. Overall, out-of-distribution generalization
appears as a complex task for strong distributional shifts. Comparing Zebra to CAPE and CODA,
adaptation through in-context learning appears as a better alternative than gradient-based adaptation.

Table 5: Out-of-distribution results. Test results in relative L2 on the trajectory. ‘–‘ indicates
inference has diverged. For each dataset, the left column shows results for One-shot adaptation ,
while the right column shows results for Zero-shot prediction.

Heat Wave 2D Vorticity 2D
One-shot Zero-shot One-shot Zero-shot One-shot Zero-shot

CAPE 0.47 0.33 – – – –
CODA 1.03 0.66 1.51 1.32 1.71 1.59

MPP[2] – 0.19 – 0.70 – 0.22
MPP-in-context 0.52 0.32 0.68 0.66 0.30 0.28

Zebra 0.15 0.34 0.68 0.55 0.24 0.21

5 LIMITATIONS

The quality of the generated trajectories is limited by the decoder’s ability to reconstruct details
from the quantized latent space. While the reconstructions are excellent for many applications, we
believe there is room for improvement. Future work could explore scaling the codebook size, as
suggested by Yu et al. (2023a) and Mentzer et al. (2023), to enhance the model’s reconstruction
capabilities. Additionally, investigating approaches that avoid vector quantization (Li et al., 2024)
could offer even further improvements, provided that in-context learning capabilities are preserved.
Lastly, our encoder and decoder are built using convolutional blocks, which restricts their use to
regular domains. More flexible architectures, such as those proposed by Serrano et al. (2024), could
help extend the model to more complex and irregularly sampled systems.

6 CONCLUSION

This study introduces Zebra, a novel generative model that adapts language model pretraining
techniques for solving parametric PDEs. We propose a pretraining strategy that enables Zebra
to develop in-context learning capabilities. Our experiments demonstrate that the pretrained model
performs competitively against specialized baselines across various scenarios. Additionally, as a
generative model, Zebra facilitates uncertainty quantification and can generate new trajectories,
providing valuable flexibility in applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

We describe the pretraining strategy in Section 3, and provide details on the architecture and its
hyperparameters in Appendix C. The datasets used are described in Appendix B. We plan to release
the code, the weights of the models, and the datasets used in this study upon acceptance.

REFERENCES

Akio Arakawa. Computational design for long-term numerical integration of the equa-
tions of fluid motion: Two-dimensional incompressible flow. part i. Journal of Com-
putational Physics, 1(1):119–143, 1966. ISSN 0021-9991. doi: https://doi.org/10.
1016/0021-9991(66)90015-5. URL https://www.sciencedirect.com/science/
article/pii/0021999166900155.

Johannes Brandstetter, Max Welling, and Daniel E Worrall. Lie point symmetry data augmentation
for neural pde solvers. In International Conference on Machine Learning, pp. 2241–2256. PMLR,
2022a.

Johannes Brandstetter, Daniel E Worrall, and Max Welling. Message passing neural pde solvers.
International Conference on Learning Representations, 2022b.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11315–11325, 2022.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Albert Cohen and Ronald Devore. Approximation of high-dimensional parametric pdes. Acta Nu-
merica, 2015.

Frank Cole, Yulong Lu, Riley O’Neill, and Tianhao Zhang. Provable in-context learning of linear
systems and linear elliptic pdes with transformers. arXiv preprint arXiv:2409.12293, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. International Conference on Learning Representations., 10 2021. URL http:
//arxiv.org/abs/2010.11929.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 12873–12883, 2021.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anand-
kumar, Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator transformer for large-
scale pde pre-training. 41th International Conference on Machine Learning (ICML 2024), 2024.

Maximilian Herde, Bogdan Raonić, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes. 2024.

11

https://www.sciencedirect.com/science/article/pii/0021999166900155
https://www.sciencedirect.com/science/article/pii/0021999166900155
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–
8646, 2022.

Liu Jiaqi, Jiaxu Cui, Jiayi Yang, and Bo Yang. Stochastic neural simulator for generalizing dynam-
ical systems across environments. pp. 5909–5917, 08 2024. doi: 10.24963/ijcai.2024/653.

Matthieu Kirchmeyer, Yuan Yin, Jérémie Donà, Nicolas Baskiotis, Alain Rakotomamonjy, and
Patrick Gallinari. Generalizing to new physical systems via context-informed dynamics model.
In International Conference on Machine Learning, pp. 11283–11301. PMLR, 2022.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. arXiv preprint arXiv:2406.11838, 2024.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differ-
ential equations. International Conference on Learning Representations., 10 2021. URL
http://arxiv.org/abs/2010.08895.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles
Cranmer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois
Lanusse, et al. Multiple physics pretraining for physical surrogate models. arXiv preprint
arXiv:2310.02994, 2023.

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantiza-
tion: Vq-vae made simple. International Conference on Learning Representations, 2023.

Roussel Desmond Nzoyem, David AW Barton, and Tom Deakin. Neural context flows for meta-
learning of dynamical systems. arXiv preprint arXiv:2405.02154, 2024.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. arXiv preprint arXiv:1711.00937, 2017.

Junyoung Park, Federico Berto, Arec Jamgochian, Mykel Kochenderfer, and Jinkyoo Park. First-
order context-based adaptation for generalizing to new dynamical systems. 2023. URL https:
//openreview.net/forum?id=AW0i0lOhzqJ.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. volume 9351, 2015. doi: 10.1007/978-3-319-24574-4 28.

Louis Serrano, Thomas X Wang, Etienne Le Naour, Jean-Noël Vittaut, and Patrick Gallinari. Aroma:
Preserving spatial structure for latent pde modeling with local neural fields. arXiv preprint
arXiv:2406.02176, 2024.

Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov,
Michael W Mahoney, and Amir Gholami. Towards foundation models for scientific machine
learning: Characterizing scaling and transfer behavior. Advances in Neural Information Process-
ing Systems 37 (NeurIPS 2023), 2023.

12

http://arxiv.org/abs/2010.08895
https://openreview.net/forum?id=AW0i0lOhzqJ
https://openreview.net/forum?id=AW0i0lOhzqJ

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Makoto Takamoto, Francesco Alesiani, and Mathias Niepert. Learning neural pde solvers with
parameter-guided channel attention. International Conference on Machine Learning (ICML),
2023.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. arXiv preprint arXiv:2404.02905, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, 2023.

T Wolf. Huggingface’s transformers: State-of-the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2019.

Yuan Yin, Ibrahim Ayed, Emmanuel de Bézenac, Nicolas Baskiotis, and Patrick Gallinari. Leads:
Learning dynamical systems that generalize across environments. Neural Information Processing
Systems, 2022.

Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 10459–10469, 2023a.

Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, et al. Language model beats diffusion–
tokenizer is key to visual generation. International Conference on Learning Representations,
2023b.

Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context
adaptation via meta-learning. In International Conference on Machine Learning, pp. 7693–7702.
PMLR, 2019a.

Luisa Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context
adaptation via meta-learning. 36th International Conference on Machine Learning, ICML 2019,
2019-June, 2019b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A RELATED WORK

A.1 LEARNING PARAMETRIC PDES

The classical ML paradigm The classical ML paradigm for solving parametric PDEs consists
in sampling from the PDE parameter distribution trajectories to generalize to new PDE parameter
values. It is the classical ERM approach. The natural way for generalizing to new PDE parameters
is to explicitly embed them in the neural network (Brandstetter et al., 2022b). Takamoto et al. (2023)
proposed a channel-attention mechanism to guide neural solvers with the physical coefficients given
as input; it requires complete knowledge of the physical system and are not designed for other PDE
parameter values, e.g., boundary conditions. It is commonly assumed that prior knowledge are not
available, but instead rely on past states of trajectories for inferring the dynamics. Neural solvers
and operators learn parametric PDEs by stacking the past states as channel information as done in
Li et al. (2021), or by creating additional temporal dimension as done in video prediction contexts
(Ho et al., 2022; McCabe et al., 2023). Their performance drops when shifts occur in the data
distribution, which is often met with parametric PDEs, as small changes in the PDE parameters can
lead to various dynamics. To better generalize to new PDE parameter values, Subramanian et al.
(2023) instead leverages fine-tuning from pretrained models to generalize to new PDE parameters.
It however often necessitates a relatively large number of fine tuning samples to effectively adapt to
new PDE parameter values, by updating all or a subset of parameters (Herde et al., 2024; Hao et al.,
2024).

Adaptive conditioning To better adapt to new PDE parameters values at inference, several works
have explored learning on multiple environments. During training, a limited number of environ-
ments are available, each corresponding to a specific PDE instance. Yin et al. (2022) introduced
LEADS, a multi-task framework for learning parametric PDEs, where a shared model from all envi-
ronments and a model specific to each environment are learned jointly. At inference, for a new PDE
instance, the shared model remain frozen and only a model specific to that environment is learned.
Kirchmeyer et al. (2022) proposed to perform adaptive conditioning in the parameter space; the
framework adapts the weights of a model to each environment via a hyper-network conditioned by a
context vector ce specific to each environment. At inference, the model adapts to a new environment
by only tuning ce. Park et al. (2023) bridged the gap from the classical gradient-based meta-learning
approaches by addressing the limitations of second-order optimization of MAML and its variants
(Finn et al., 2017; Zintgraf et al., 2019b). Other works have also extended these frameworks to
quantify uncertainty of the predictions : Jiaqi et al. (2024) proposed a conditional neural process to
capture uncertainty in the context of multiple environments with sparse trajectories, while Nzoyem
et al. (2024) leveraged information from multiple environments to enable more robust predictions
and uncertainty quantification.

A.2 GENERATIVE MODELS

Auto-regressive Transformers for Images and Videos Recent works have explored combining
language modeling techniques with image and video generation, typically using a VQ-VAE (Oord
et al., 2017) paired with a causal transformer (Esser et al., 2021) or a bidirectional transformer
(Chang et al., 2022). VQGAN (Esser et al., 2021) has become the leading framework by incorpo-
rating perceptual and adversarial losses to improve the visual realism of decoder outputs from quan-
tized latent representations. However, while these methods succeed in generating visually plausible
images, they introduce a bias—driven by perceptual and adversarial losses—that leads the network
to prioritize perceptual similarity and realism, often causing reconstructions to deviate from the true
input. In contrast, Zebra focuses on maximizing reconstruction accuracy, and did not observe
benefits from using adversarial or perceptual losses during training.

In video generation, models like Magvit (Yu et al., 2023a) and Magvit2 (Yu et al., 2023b) adopt
similar strategies, using 3D CNN encoders to compress sequences of video frames into spatiotem-
poral latent representations by exploiting the structural similarities between successive frames in a
video. However, such temporal compression is unsuitable for modeling partial differential equations
(PDEs), where temporal dynamics can vary significantly between frames depending on the tempo-
ral resolution. With Zebra, we spatially compress observations using the encoder and learn the
temporal dynamics with an auto-regressive transformer, avoiding temporal compression.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B DATASET DETAILS

B.1 ADVECTION

We consider a 1D advection equation with advection speed parameter β:

∂tu+ β∂xu = 0

For each environment, we sample β with a uniform distribution in [0, 4]. We sample 1200 parame-
ters, and 10 trajectories per parameter, constituting a training set of 12000 trajectories. At test time,
we draw 12 new parameters and evaluate the performance on 10 trajectories each.

We fix the size of the domain L = 128 and draw initial conditions as described in Equation (5)
in appendix B.5 and generate solutions with the method of lines and the pseudo-spectral solver
described in Brandstetter et al. (2022b). We take 140 snapshots along a 100s long simulations,
which we downsample to 14 timestamps for training. We used a spatial resolution of 256.

B.2 BURGERS

We consider the Burgers equation as a special case of the combined equation described in Ap-
pendix B.5 and initially in Brandstetter et al. (2022b), with fixed γ = 0 and α = 0.5. However, in
this setting, we include a forcing term δ(t, x) =

∑J
j=1 Aj sin(ωjt + 2πℓjx/L + ϕj) that can vary

across different environments. We fix J = 5, L = 16. We draw initial conditions as described in
Equation (5).

For each environment, we sample β with a log-uniform distribution in [1e − 3, 5], and sample
the forcing term coefficients uniformly: Aj ∈ [−0.5, 0.5], ωj ∈ [−0.4,−0.4], ℓj ∈ {1, 2, 3},
ϕj ∈ [0, 2π]. We create a dataset of 1200 environments with 10 trajectories for training, and 12
environments with 10 trajectories for testing.

We use the solver from Brandstetter et al. (2022b), and take 250 snapshots along the 4s of the
generations. We employ a spatial resolution of 256 and downsample the temporal resolution to 25
frames.

B.3 HEAT

We consider the heat equation as a special case of the combined equation described in Appendix B.5
and initially in Brandstetter et al. (2022b), with fixed γ = 0 and α = 0. However, in this setting, we
include a forcing term δ(t, x) =

∑J
j=1 Aj sin(ωjt + 2πℓjx/L + ϕj) that can vary across different

environments. We fix J = 5, L = 16. We draw initial conditions as described in Equation (5).

For each environment, we sample β with a log-uniform distribution in [1e − 3, 5], and sample
the forcing term coefficients uniformly: Aj ∈ [−0.5, 0.5], ωj ∈ [−0.4,−0.4], ℓj ∈ {1, 2, 3},
ϕj ∈ [0, 2π]. We create a dataset of 1200 environments with 10 trajectories for training, and 12
environments with 10 trajectories for testing.

We use the solver from Brandstetter et al. (2022b), and take 250 snapshots along the 4s of the
generations. We employ a spatial resolution of 256 and downsample the temporal resolution to 25
frames.

B.4 WAVE BOUNDARY

We consider a 1D wave equation as in Brandstetter et al. (2022b).

∂ttu− c2∂xxu = 0, x ∈ [−8, 8]

where c is the wave velocity (c = 2 in our experiments). We consider Dirichlet B[u] = u = 0 and
Neumann B[u] = ∂xu = 0 boundary conditions.

We consider 4 different environments as each boundary can either respect Neumann or Dirichlet
conditions, and sample 3000 trajectories for each environment. This results in 12000 trajectories for

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

training. For the test set, we sample 30 new trajectories from these 4 environments resulting in 120
test trajectories.

The initial condition is a Gaussian pulse with a peak at a random location. Numerical ground truth is
generated with the solver proposed in Brandstetter et al. (2022b). We obtain ground truth trajectories
with resolution (nx, nt) = (256, 250), and downsample the temporal resolution to obtain trajectories
of shape (256, 60).

B.5 COMBINED EQUATION

We used the setting introduced in Brandstetter et al. (2022b), but with the exception that we do not
include a forcing term. The combined equation is thus described by the following PDE:

[∂tu+ ∂x(αu
2 − β∂xu+ γ∂xxu)](t, x) = δ(t, x), (4)

δ(t, x) = 0, u0(x) =

J∑
j=1

Aj sin(2πℓjx/L+ ϕj). (5)

For training, we sampled 1200 triplets of parameters uniformly within the ranges α ∈ [0, 1], β ∈
[0, 0.4], and γ ∈ [0, 1]. For each parameter instance, we sample 10 trajectories, resulting in 12000
trajectories for training and 120 trajectories for testing. We used the solver proposed in Brandstetter
et al. (2022a) to generate the solutions. The trajectories were generated with a spatial resolution of
256 for 10 seconds, along which 140 snapshots are taken. We downsample the temporal resolution
to obtain trajectories with shape (256, 14).

B.6 VORTICITY

We propose a 2D turbulence equation. We focus on analyzing the dynamics of the vorticity variable.
The vorticity, denoted by ω, is a vector field that characterizes the local rotation of fluid elements,
defined as ω = ∇× u. The vorticity equation is expressed as:

∂ω

∂t
+ (u · ∇)ω − ν∇2ω = 0 (6)

Here, u represents the fluid velocity field, ν is the kinematic viscosity with ν = 1/Re. For the
vorticity equation, the parametric problem consists in learning dynamical systems with changes in
the viscosity term.

For training, we sampled 1200 PDE parameter values in the range ν = [1e − 3, 1e − 2]. For test,
we evaluate our model on 120 new parameters not seen during training in the same paramter range.
For each parameter instance, we sample 10 trajectory, resulting in 12000 trajectories for training and
1200 for test.

Data generation For the data generation, we use a 5 point stencil for the classical central differ-
ence scheme of the Laplacian operator. For the Jacobian, we use a second order accurate scheme
proposed by Arakawa that preserves the energy, enstrophy and skew symmetry (Arakawa, 1966). Fi-
nally for solving the Poisson equation, we use a Fast Fourier Transform based solver. We discretize
a periodic domain into 512 × 512 points for the DNS and uses a RK4 solver with ∆t = 1e − 3
on a temporal horizon [0, 2]. We then perform a temporal and spatial down-sample operation, thus
obtaining trajectories composed of 10 states on a 64× 64 grid.

We consider the following initial conditions:

E(k) =
4

3

√
π

(
k

k0

)4
1

k0
exp

(
−
(

k

k0

)2
)

(7)

Vorticity is linked to energy by the following equation :

ω(k) =

√
E(k)

πk
(8)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.7 WAVE 2D

We propose a 2D damped wave equation, defined by
∂2ω

∂t2
− c2∆ω + k

∂ω

∂t
= 0 (9)

where c is the wave speed and k is the damping coefficient. We are only interested in learning
ω. To tackle the parametric problem, we sample 1200 parameters in the range c = [0, 50] and
k = [100, 500]. For validation, we evaluate our model on 120 new parameters not seen during
training in the same paramter range. For each parameter instance, we sample 10 trajectory, resulting
in 12000 trajectories for training and 1200 for validation.

Data generation For the data generation, we consider a compact spatial domain Ω represented as a
64×64 grid and discretize the Laplacian operator similarly. ∆ is implemented using a 5×5 discrete
Laplace operator in simulation. For boundary conditions, null neumann boundary conditions are
imposed. We set ∆t = 6.25e − 6 and generate trajectories on the temporal horizon [0, 5e − 3].
The simulation was integrated using a fourth order runge-kutta schema from an initial condition
corresponding to a sum of gaussians:

ω0(x, y) = C

p∑
i=1

exp

(
− (x− xi)

2 + (y − yi)
2

2σ2
i

)
(10)

where we choose p = 5 gaussians with σi ∼ U[0.025,0.1], xi ∼ U[0,1], yi ∼ U[0.,1]. We fixed C to 1
here. Thus, all initial conditions correspond to a sum of gaussians of varying amplitudes.

C ARCHITECTURE DETAILS

C.1 BASELINE IMPLEMENTATIONS

For all baselines, we followed the recommendations given by the authors. We report here the archi-
tectures used for each baseline:

• CODA: For CODA, we implemented a U-Net Ronneberger et al. (2015) and a FNO (Li
et al., 2020) as the neural network decoder. For all the different experiments, we reported
in the results the best score among the two backbones used. We trained the different models
in the same manner as Zebra, i.e. via teacher forcing (Radford et al., 2018). The model is
adapted to each environment using a context vector specific to each environment. For the
size of the context vector, we followed the authors recommendation and chose a context
size equals to the number of degrees of freedom used to define each environment for each
dataset. At inference, we adapt to a new environment using 250 gradient steps.

• CAPE: For CAPE (Takamoto et al., 2023), we adapted the method to an adaptation set-
ting. Instead of giving true physical coefficients as input, we learn to auto-decode a context
vector ce as in CODA, which implicitly embeds the specific characteristics of each envi-
ronment. During inference, we only adapt ce with 250 gradient steps. For the architectures,
we use UNET and FNO as the backbones, and reported the best results among the two
architectures for all settings.

• [CLS] ViT: For the ViT, we use a simple vision transformer architecture Dosovitskiy
et al. (2021), but adapt it to a meta-learning setting where the CLS token encodes the
specific variations of each environment. At inference, the CLS token is adapted to a new
environment with 100 gradient steps.

• MPP: For MPP, we used the same model as the one used in the paper (McCabe et al., 2023).
As MPP was initially designed for 2D data, we also implemented a 1D version of MPP, to
evaluate it both on our 1D and 2D datasets. At inference, MPP can be directly evaluated on
new trajectories.

C.2 ZEBRA ADDITIONAL GENERATION DETAILS

We provide illustrations of our inference pipeline in Figure 5 and in Figure 6 both in the case of
adaptive conditioning and temporal conditioning. We also include a schematic view of the different

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

generation possibilities with Zebra in Figure 7, using the sequence design adopted during pretrain-
ing

Time

Tokenize Tokenize

Context trajectory

Initial condition

<bot> <eot> <bot><bos>

Transformer

generated tokens

Auto-regressive
generation

DeTokenize

Time

Generated Trajectory

Figure 5: Zebra’s inference pipeline from context trajectory. The context trajectory and initial
conditions are tokenized into index sequences that are concatenated according to the sequence de-
sign adopted during pretraining. The transformer then generates the next tokens to complete the
sequence. We detokenize these indices to get back to the physical space.

Time

Tokenize

Initial conditions

<bot><bos>

Transformer

generated tokens

Auto-regressive
generation

DeTokenize

Time

Generated Trajectory

Figure 6: Zebra’s inference pipeline from observations of several initial frames. The initial times-
tamps are tokenized into index sequences that are concatenated according to the sequence design
adopted during pretraining. The transformer then generates the next tokens to complete the se-
quence. We detokenize these indices to get back to the physical space.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

<bot> <eot> <bot> <eot>...<bos>

Conditional generation from similar trajectories

<bot>

a)

Transformer

Conditional generation from past trajectoryb)

initial conditionPrompt examples

Auto-regressive
generation

generated
 prediction

<bos> <bot>

Transformer
Auto-regressive

generation

generated
 trajectory

initial conditions

Unconditional generationc)

<bos> <bot>

Transformer

generated
 trajectory

Auto-regressive
generation

<bos>

<bot>

<eot>

begin of sequence

begin of new trajectory

end of trajectory

Initial condition of target trajectory

Context trajectory

Figure 7: Generation possibilities with Zebra.

C.3 AUTO-REGRESSIVE TRANSFORMER

Zebra’s transformer is based on Llama’s architecture, which we describe informally in Figure 8.
We use the implementation provided by HuggingFace (Wolf, 2019) and the hyperparameters from
Table 6 in our experiments. For training the transformer, we used a single NVIDIA TITAN RTX for
the 1D experiments and used a single A100 for training the model on the 2D datasets. Training the
transformer on 2D datasets took 20h on a single A100 and it took 15h on a single RTX for the 1d
dataset.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

LayerNorm

Multi-Head Attention

Llama block

LayerNorm

FFN

<bot> <eot> <bot> <eot>...<bos> <eos><bot> <eot>

Embedding layer

Llama block (x 8)

Linear

Softmax

<bos>

<bot>

<eot>

begin of sequence

begin of new trajectory

end of trajectory

Initial condition of target trajectory

Context trajectory

input: Sequence of indices

Output: Next-token probabilties

Figure 8: Zebra’s transformer architecture is based on Llama (Touvron et al., 2023).

Table 6: Hyperparameters for Zebra’s Transformer

Hyperparameters Advection Heat Burgers Wave b Combined Vorticity 2D Wave 2D

max context size 2048 2048 2048 2048 2048 8192 8192
batch size 4 4 4 4 4 2 2
num gradient accumulations 1 1 1 1 1 4 4
hidden size 256 256 256 256 256 384 512
mlp ratio 4.0 4.0 4.0 4.0 4.0 4.0 4.0
depth 8 8 8 8 8 8 8
num heads 8 8 8 8 8 8 8
vocabulary size 264 264 264 264 264 2056 2056
start learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
weight decay 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
scheduler Cosine Cosine Cosine Cosine Cosine Cosine Cosine
num epochs 100 100 100 100 100 30 30

C.4 VQVAE

We provide a schematic view of the VQVAE framework in Figure 9 and detail the architectures used
for the encoder and decoder on the 1D and 2D datasets respectively in Figure 10 and Figure 11.
As detailed, we use residual blocks to process latent representations, and downsampling and up-
sampling block for decreasing / increasing the spatial resolutions. We provide the full details of the
hyperparameters used during the experiments in Table 7. For training the VQVAE, we used a single
NVIDIA TITAN RTX for the 1D experiments and used a single V100 for training the model on the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

2D datasets. Training the encoder-decoder on 2D datasets took 20h on a single V100 and it took 4h
on a single RTX for 1D dataset.

1

...

Codebook

2 3 4 ...

3

1

4 4

44

4

4

4K K

2

2

22

2

Output: reconstructionInput: physical field

CNN
Encoder Decoder

CNN

quantization

quantized codescodes

K

Figure 9: Zebra’s VQVAE is used to obtain compressed and discretized latent representation. By
retrieving the codebok index for each discrete representation, we can obtain discrete tokens encoding
physical observations that can be mapped back to the physical space with high fidelity.

Table 7: Hyperparameters for Zebra’s VQVAE

Hyperparameters Advection Heat Burgers Wave b Combined Vorticity 2D Wave 2D

start hidden size 64 64 64 64 64 128 128
max hidden size 256 256 256 256 256 1024 1024
num down blocks 4 4 4 4 4 2 3
codebook size 256 256 256 256 256 2048 2048
code dim 64 64 64 64 64 16 16
num codebooks 2 2 2 2 2 1 2
shared codebook True True True True True True True
tokens per frame 32 32 32 32 32 256 128
start learning rate 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
weight decay 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
scheduler Cosine Cosine Cosine Cosine Cosine Cosine Cosine
num epochs 1000 1000 1000 1000 1000 300 300

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

VQ, codebook_size=256

Conv, c->64

ResBlock 64

DownBlockx4

GroupNorm + SiLU +
Conv, 256 -> 64 Conv, 64->256

UpBlockx4

ResBlock 64

GroupNorm + SiLU +
Conv, 64 -> c

Encoder Decoder

UpBlock

Depth to space:
c, h -> c, h*2

ResBlock c -> c/2

DownBlock

Conv, stride=2
c, h -> c, h/2

ResBlock c -> 2*c

GroupNorm + SiLU +
Conv c_in, c_out

GroupNorm + SiLU +
Conv c_out, c_out

ResBlock

Figure 10: Architecture of Zebra’s VQVAE for 1D datasets. Each convolution acts only on the
spatial dimension and uses a kernel of size 3. The Residual Blocks are used to process information
and increase or decrease the channel dimensions, while the Up and Down blocks respectively up-
sample and down-sample the resolution of the inputs. In 1D, we used a spatial compression factor
of 16 on all datasets. Every downsampling results in a doubling of the number of channels, and
likewise, every upsampling is followed by a reduction of the number of channels by 2. We choose a
maximum number of channels of 256.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

VQ, codebook_size=2048

Conv, c->128

ResBlock 128

DownBlockx2

GroupNorm + SiLU +
Conv, 512 -> 16

Conv, 16->512

UpBlockx2

ResBlock 128

GroupNorm + SiLU +
Conv, 128 -> c

Encoder Decoder

UpBlock

Depth to space:
c, h -> c, h*2

ResBlock c -> c/2

DownBlock

Conv, stride=2
c, h -> c, h/2

ResBlock c -> 2*c

GroupNorm + SiLU +
Conv c_in, c_out

GroupNorm + SiLU +
Conv c_out, c_out

ResBlock

x2 x2

x2 x2

Figure 11: Architecture of Zebra’s VQVAE for 2D datasets. Each convolution acts only on the
spatial dimensions and uses a kernel of size 3. The Residual Blocks are used to process information
and increase or decrease the channel dimensions, while the Up and Down blocks respectively up-
sample and down-sample the resolution of the inputs. In 2D, we used a spatial compression factor
of 4 for Vorticity, and 8 for Wave2D. Every downsampling results in a doubling of the number of
channels, and likewise, every upsampling is followed by a reduction of the number of channels by
2. We choose a maximum number of channels of 1024.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D ADDITIONAL QUANTITATIVE RESULTS

D.1 UNCERTAINTY QUANTIFICATION0 50 100 150 200 250
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Initial condition
Time 0
Time 1

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Va
lu

e

Mean prediction and confidence interval
Mean, Time 0
Mean, Time 1
Mean, Time 2
Mean, Time 3
Mean, Time 4
Mean, Time 5
Mean, Time 6
Mean, Time 7
Mean, Time 8
Gt, Time: 9
Mean, Time: 9
Mean ± 3xStd, Time: 9

Prompt = Context Images + initial condition

Figure 12: Uncertainty quantification with
Zebra in a one-shot setting on Heat.

Since Zebra is a generative model, it allows us to
sample multiple plausible trajectories for the same
conditioning input, enabling the computation of key
statistics across different generations. By calculat-
ing the pointwise mean and standard deviation, we
can effectively visualize the model’s uncertainty in
its predictions. In Figure 12, the red curve repre-
sents the ground truth, the blue curve is the predicted
mean and the blue shading indicates the empirical
confidence interval (3 × standard deviation).

Motivated by this observation, we investigate how
varying the model’s temperature parameter τ affects
its predictions; specifically in the one-shot adapta-
tion setting described in Section 4.2. By adjusting τ ,
we aim to assess its impact on both the accuracy and
variability of the predictions. We employ three metrics to evaluate the model’s uncertainty:

1. Relative L2 loss: This assesses the accuracy of the generated trajectories by measuring the
bias of the predictions relative to the ground truth.

2. Relative standard deviation: We estimate the variability of the predictions using the for-
mula: Relative Std = ||σ̂∗||2

||m̂∗||2 where m̂∗ and σ̂∗ represent the empirical mean and standard
deviation of the predictions, computed pointwise across 10 generations.

3. Confidence level: We create pointwise empirical confidence intervals CI(x) =
[m̂∗(x)− 3σ̂∗(x), m̂∗(x) + 3σ̂∗(x)] and compute the confidence level as:
Confidence level = 1

nx

∑
x 1u∗(x)∈CI(x). This score indicates how often the ground

truth falls within the empirical confidence interval generated from sampling multiple
trajectories.

When modeling uncertainty, the model achieves a tradeoff between the quality of the mean pre-
diction approximation and the guarantee for this prediction to be in the corresponding confidence
interval. Figure 13 illustrates the trade-off between mean prediction accuracy and uncertainty cali-
bration. At lower temperatures, we achieve the most accurate predictions, but with lower variance,
i.e. with no guarantee that the target value is within the confidence interval around the predicted
mean. Across most datasets, the confidence level then remains low (less than 80% for τ < 0.25),
indicating that the true solutions are not reliably captured within the empirical confidence intervals.
Conversely, increasing the temperature results in less accurate mean predictions and higher relative
standard deviations, but the confidence intervals become more reliable, with levels exceeding 95%
for τ > 0.5. Therefore, the temperature can be calibrated depending on whether the focus is on
accurate point estimates or reliable uncertainty bounds.

To complement our main analysis, we examine how the model’s uncertainty evolves as additional
information is provided as input. Specifically, we compare Zebra’s average error and relative un-
certainty when conditioned on one example trajectory, with one or two frames as initial conditions.
Table 8 reports the relative L2 loss and relative standard deviation for both scenarios. The results
clearly show that including the first two frames as initial conditions reduces both the error and the
relative standard deviation consistently. This indicates that, while some of the uncertainty remains
aleatoric, the epistemic uncertainty is reduced as more input information becomes available.

D.2 ANALYSIS OF THE GENERATION

Setting In this section, we aim to evaluate whether our pretrained model can generate new samples
given the observation of a trajectory in a new environment. The key difference with previous settings
is that we do not condition the transformer with tokens derived from a real initial condition. We
expect the model to generate trajectories, including the initial conditions, that altogether follow the

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 8: Uncertainty quantification in the one-shot setting. Conditioning from a trajectory exam-
ple and 1 frame or 2 frames as initial conditions. Metrics include relative L2 loss (average accuracy)
and relative standard deviation (average spread around the average prediction). The temperature is
fixed at 0.1.

Advection Heat Burgers Wave b Combined

Rel. L2 1 frame 0.006 0.156 0.115 0.154 0.008
Rel. L2 2 frames 0.004 0.047 0.052 0.075 0.005

Rel. Std. 1 frame 0.003 0.062 0.048 0.074 0.005
Rel. Std. 2 frames 0.002 0.019 0.018 0.040 0.003

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Temperature

10 2

10 1

Ro
llo

ut
 L

os
s (

lo
g

sc
al

e)

Rollout Loss

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Temperature

10 2

10 1

100

Re
la

tiv
e

St
an

da
rd

 D
ev

ia
tio

n
(lo

g
sc

al
e)

Standard Deviation

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Temperature

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Co
nf

id
en

ce
 le

ve
l (

lo
g

sc
al

e)

Confidence level

Advection
Burgers
Heat
Combined
Wave b
95% Confidence level

Figure 13: Uncertainty quantification with Zebra. The main parameter of this study is the tem-
perature (x-axis). We then look from left to right at (1) The rollout loss, i.e. the relative L2 loss
between the predictions and the ground truth; (2) The relative standard deviation to quantify the
spread around the mean; (3) The confidence level, that measures the frequency of observations that
lie within the empirical confidence interval.

same dynamics as in the observations. Our objective is to assess three main aspects: 1) Are the
generated trajectories faithful to the context example, i.e., do they follow the same dynamics as
those observed in the context ? 2) How diverse are the generated trajectories—are they significantly
different from each other? 3) What type of initial conditions does Zebra generate?

Metrics To quantify the first aspect, we propose a straightforward methodology. We generate
ground truth trajectories using the physical solver that was originally employed to create the dataset,
starting with the initial conditions produced by Zebra and using the ground truth parameters of the
environment (that Zebra cannot access). We then compute the L2 distance between the Zebra-
generated trajectories and those generated by the physical solver. For the second aspect, we cal-
culate the average distance between the Zebra-generated trajectories to measure diversity. These
two metrics are presented in Table 9 for both the Advection and Combined Equations. Finally, as a
qualitative analysis, we perform PCA on the initial conditions generated by Zebra, and we visualize
the first two components in Figure 14 for the Combined Equation case.

Sampling We keep the default temperature (τ = 1.0) to put the focus on diversity, and for each
context trajectory, we generate 10 new trajectories in parallel.

Results According to Table 9, we can conclude that in this context, Zebra can faithfully generate
new initial conditions and initial trajectories that respect the same physics as described in the context
example. This means that our model has learned the statistical properties that relate the initial
conditions with the later timestamps. The high average L2 between generated samples indicate that
the generated samples are diverse. We can visually verify this property by looking at fig. 14, noting
that the generated samples cover well the distribution of the real samples.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 9: Fidelity and diversity - The L2 is a proxy score for measuring the fidelity to the dynamics
in the context. The average L2 between samples quantifies the distance between each generation.

Model L2 Average L2 between samples

Advection 0.0185 1.57
Combined Equation 0.0136 1.59

PCA Component 1

PC
A

Co
m

po
ne

nt
 2

PCA at time t=0
Generated Data
Real Data

(a) Analysis of the distribution of the generated
initial conditions (t=0).

PCA Component 1

PC
A

Co
m

po
ne

nt
 2

PCA at time t=9
Generated Data
Real Data

(b) Analysis of the distribution of the generated
trajectories (t=9).

Figure 14: Qualitative analysis. We generate new initial conditions and obtain rollout trajectories
with Zebra on new test environments. We then perform a PCA in the physical space to project on a
low-dimensional space, at two given timestamps to check whether the distributions match.

D.3 DATASET SCALING ANALYSIS

We investigate how the zero-shot error on the test set evolves as we vary the size of the training
dataset. To this end, we train the auto-regressive transformer on datasets containing 10, 100, 1000,
and 12,000 trajectories and evaluate Zebra’s generations on the test set, starting with two frames as
inputs. The training time is proportional to the dataset size: for example, the number of training
steps for 1,000 trajectories is 10 times the number of steps for 100 trajectories. The results are
presented in Figure 15.

First, we observe that Zebra requires a substantial amount of data to generalize effectively to differ-
ent parameter values, even within the training distribution. This aligns with findings in the literature
that transformers, especially auto-regressive transformers, excel at scaling —performing well on
very large datasets and for larger model architectures. However, for smaller datasets, this approach
may not be the most efficient. We believe that Zebra’s potential resides when applied to vast amounts
of data, making it an ideal candidate for scenarios involving large-scale training.

Second, for the Combined equation, we notice that performance plateaus between 100 and 1,000
trajectories. This may be due to insufficient training or a lack of diverse examples, as the Combined
equation is more challenging compared to the Advection equation, whose performance follows a
more log-linear trend. This suggests that additional data or targeted training strategies might be
needed to achieve better generalization for more complex equations.

D.4 INFERENCE TIME COMPARISON

Table 10 compares the inference time for one-shot adaptation across different methods when predict-
ing a single trajectory given a context trajectory and an initial condition. For Zebra, the inference
process, which includes encoding, auto-regressive prediction, and decoding, is much faster in 1D
and slightly faster in 2D. For Zebra, the bottleneck at inference is the autoregressive generation of
tokens, which speed is about 128 tokens per second on a V100 for 2D and an RTX for 1D. The
decoding is fast and can be done in parallel for the trajectory in one forward pass. In contrast,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

101 102 103 104

Training dataset size (log scale)

10 2

10 1

100

Er
ro

r /
 L

os
s (

lo
g

sc
al

e)

Scaling Law: Training Size vs. Error
Combined
Advection

Figure 15: Dataset scaling analysis. Zero-shot error on the test set vs. the training dataset size.

for CODA and CAPE, the majority of the inference time is spent on adaptation and gradient-based
steps. Here the times were reported with 100 gradient steps, note that we used 250 for the rest of
the experiments. We believe Zebra’s inference time could be further optimized by (1) improving the
optimization code and leveraging specialized hardware such as H100 (for flash attention) and LPUs
(which show significant speed-ups agains GPUs), and (2) increasing the number of tokens sampled
per step (as in e.g. next-scale prediction Tian et al. (2024)).

Table 10: Inference times for one-shot adaptation. Average time in seconds to predict a single
trajectory given a context trajectory and an initial condition. Times include adaptation and forecast
for CODA and CAPE, while it includes encoding, auto-regressive prediction and decoding for Zebra.

Advection Vorticity 2D

CAPE 18s 23s
CODA 31s 28s

Zebra 3s 21s

D.5 INFLUENCE OF THE CODEBOOK SIZE

The codebook size K is a crucial hyperparameter. It directly affects the quality of the reconstruc-
tions, since a larger codebook can improve the reconstructions quality. However, it also impacts the
dynamics modeling stage: the smaller the codebook, the easier it is for the transformer to learn the
statistical correlations between similar trajectories. To have a sense of this trade-off, we report the
relative reconstruction errors and the one-shot prediction errors in Table 11. The reconstruction error
decreases when the codebook size increases. However, the one-shot prediction error decreases from
32 to 64 codes but then gradually increases from 64 to 512. We can see that it follows a U-curve in
Figure 16. This phenomenon was observed in a different context in Cole et al. (2024).

Table 11: Influence of the codebook size. Reconstruction error and one-shot prediction error on
Burgers for different codebook sizes. Errors in relative L2.

Codebook Size Reconstruction Loss One-shot Prediction
32 0.0087 0.116
64 0.0043 0.097

128 0.0024 0.124
256 0.0019 0.163
512 0.0015 1.093

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 16: One-shot accuracy vs codebook size. One-shot prediction error on the test set for
various codebook sizes. Error in relative L2.

D.6 RECONSTRUCTION ERRORS

We report the accuracy of the reconstructions from our decoder in Table 12. Here, no dynamics
is involved, we simply evaluate the quality of the encoding and of the decoding. On 1D and 2D
datasets, the decoding errors are respectively of 0.1 % and 1% on the test set.

Table 12: Reconstruction errors. Test relative L2 loss between reconstructions from Zebra’s VQ-
VAE and the ground truths.

Advection Heat Burgers Wave b Combined Wave 2D Vorticity 2D

VQVAE of Zebra 0.0003 0.0019 0.0016 0.0011 0.0022 0.010 0.017

E QUALITATIVE RESULTS

We provide visualizations of the trajectories generated with Zebra under different settings in the
following figures:

• Zero-shot prediction: Figure 18, Figure 22, Figure 27, Figure 30, Figure 33, Figure 45,
Figure 51.

• One-shot prediction: Figure 17, Figure 21, Figure 25, Figure 29, Figure 32, Figure 42,
Figure 48.

• Five-shot prediction: Figure 19, Figure 23, Figure 26, Figure 34.

• Uncertainty quantification: Figure 20, Figure 24, Figure 28, Figure 31, Figure 28.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

E.1 ADVECTION

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

1.5

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e
Generation

Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

Prompt = Context Images + initial condition

Figure 17: One-shot adaptation on Advection

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Initial conditions
Time 0
Time 1

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Generation
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

Prompt = Initial condition

Figure 18: Zero-shot prediction on Advection

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
1.0

0.5

0.0

0.5

1.0

Va
lu

e

Example 2
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Example 3
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.0

0.5

0.0

0.5

Va
lu

e

Example 4
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Example 5
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Generation
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

Prompt = Context Images + initial condition

Figure 19: Five-shot adaptation on Advection

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250
1.5

1.0

0.5

0.0

0.5

1.0
Va

lu
e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0
Va

lu
e

Mean prediction and confidence interval
Mean, Time 0
Mean, Time 1
Mean, Time 2
Mean, Time 3
Mean, Time 4
Mean, Time 5
Mean, Time 6
Mean, Time 7
Mean, Time 8
Gt, Time: 9
Mean, Time: 9
Mean ± 3xStd, Time: 9

Prompt = Context Images + initial condition

Figure 20: Uncertainty quantification on Advection

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

E.2 BURGERS

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e
Generation

Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

Prompt = Context Images + initial condition

Figure 21: One-shot adaptation on Burgers

0 50 100 150 200 250

0.4

0.2

0.0

0.2

0.4

Va
lu

e

Initial conditions
Time 0
Time 1

0 50 100 150 200 250

0.5

0.0

0.5

1.0

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Generation
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

Prompt = Initial condition

Figure 22: Zero-shot prediction on Burgers

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250

0.75

0.50

0.25

0.00

0.25

0.50

0.75
Va

lu
e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

1.5

Va
lu

e

Example 2
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.5

0.0

0.5

1.0

Va
lu

e

Example 3
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Example 4
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.75

0.50

0.25

0.00

0.25

0.50

0.75
Va

lu
e

Example 5
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Generation
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

Prompt = Context Images + initial condition

Figure 23: Five-shot adaptation on burgers

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
Va

lu
e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Initial condition
Time 0
Time 1

0 50 100 150 200 250

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Va

lu
e

Mean prediction and confidence interval
Mean, Time 0
Mean, Time 1
Mean, Time 2
Mean, Time 3
Mean, Time 4
Mean, Time 5
Mean, Time 6
Mean, Time 7
Mean, Time 8
Gt, Time: 9
Mean, Time: 9
Mean ± 3xStd, Time: 9

Prompt = Context Images + initial condition

Figure 24: Uncertainty quantification on Burgers

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250

1.0

0.5

0.0

0.5

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Generation
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

Prompt = Context Images + initial condition

Figure 25: One-shot adaptation on Heat

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0
Va

lu
e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Example 2
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Example 3
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.0

0.5

0.0

0.5

Va
lu

e

Example 4
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Va

lu
e

Example 5
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
0.8

0.6

0.4

0.2

0.0

0.2

0.4

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Generation
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

Prompt = Context Images + initial condition

Figure 26: Five-shot prediction on Heat

0 50 100 150 200 250

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Va
lu

e

Initial conditions
Time 0
Time 1

0 50 100 150 200 250

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Va
lu

e

Generation
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

Prompt = Initial condition

Figure 27: Zero-shot adaptation on Heat

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
2.0

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Mean prediction and confidence interval
Mean, Time 0
Mean, Time 1
Mean, Time 2
Mean, Time 3
Mean, Time 4
Mean, Time 5
Mean, Time 6
Mean, Time 7
Mean, Time 8
Gt, Time: 9
Mean, Time: 9
Mean ± 3xStd, Time: 9

Prompt = Context Images + initial condition

Figure 28: Uncertainty quantification on Heat

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

E.3 HEAT

E.4 WAVE BOUNDARY

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Va
lu

e

Generation
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9
Time 10
Time 11
Time 12
Time 13
Time 14

Prompt = Context Images + initial condition

Figure 29: One-shot adaptation on Wave b

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Initial conditions
Time 0
Time 1

0 50 100 150 200 250

0.5

0.0

0.5

1.0

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Generation
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9
Time 10
Time 11
Time 12
Time 13
Time 14

Prompt = Initial condition

Figure 30: Zero-shot prediction on Wave b

0 50 100 150 200 250

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
1.0

0.5

0.0

0.5

1.0

1.5

Va
lu

e

Mean prediction and confidence interval
Mean, Time 0
Mean, Time 1
Mean, Time 2
Mean, Time 3
Mean, Time 4
Mean, Time 5
Mean, Time 6
Mean, Time 7
Mean, Time 8
Mean, Time 9
Mean, Time 10
Mean, Time 11
Mean, Time 12
Mean, Time 13
Gt, Time: 14
Mean, Time: 14
Mean ± 3xStd, Time: 14

Prompt = Context Images + initial condition

Figure 31: Uncertainty quantification on Wave b

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

E.5 COMBINED EQUATION

0 50 100 150 200 250

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e
Generation

Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

Prompt = Context Images + initial condition

Figure 32: One-shot adaptation on Combined

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Initial conditions
Time 0
Time 1

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Generation
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

Prompt = Initial condition

Figure 33: Zero-shot prediction on Combined

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250

0.4

0.2

0.0

0.2

0.4

0.6
Va

lu
e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.4

0.2

0.0

0.2

0.4

Va
lu

e

Example 2
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.0

0.5

0.0

0.5

1.0

Va
lu

e

Example 3
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Example 4
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250
0.3

0.2

0.1

0.0

0.1

0.2
Va

lu
e

Example 5
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Va
lu

e

Generation
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

Prompt = Context Images + initial condition

Figure 34: Five-shot adaptation on Combined

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Va

lu
e

Example 1
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

Initial condition
Time 0

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Va
lu

e

Ground Truth
Time 0
Time 1
Time 2
Time 3
Time 4
Time 5
Time 6
Time 7
Time 8
Time 9

0 50 100 150 200 250

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
Va

lu
e

Mean prediction and confidence interval
Mean, Time 0
Mean, Time 1
Mean, Time 2
Mean, Time 3
Mean, Time 4
Mean, Time 5
Mean, Time 6
Mean, Time 7
Mean, Time 8
Gt, Time: 9
Mean, Time: 9
Mean ± 3xStd, Time: 9

Prompt = Context Images + initial condition

Figure 35: Uncertainty quantification on Combined equation

E.6 VORTICITY

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.3

0.2

0.1

0.0

0.1

0.2

0.3

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure 36: One-shot adaptation on Vorticity. Example 1.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure 37: One-shot adaptation on Vorticity. Example 2.

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.3

0.2

0.1

0.0

0.1

0.2

0.3

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure 38: One-shot adaptation on Vorticity. Example 3.

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8

0.3

0.2

0.1

0.0

0.1

0.2

0.3

In
te

ns
ity

Figure 39: Zero-shot prediction on Vorticity. Example 1.

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8

0.4

0.2

0.0

0.2

0.4

0.6

In
te

ns
ity

Figure 40: Zero-shot prediction on Vorticity. Example 2.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8

0.4

0.2

0.0

0.2

0.4

In
te

ns
ity

Figure 41: Zero-shot prediction on Vorticity. Example 3.

E.6.1 OUT-OF-DISTRIBUTION

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.4

0.2

0.0

0.2

0.4

0.6

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure 42: One-shot OoD adaptation on Vorticity. Example 1.

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.4

0.2

0.0

0.2

0.4

0.6

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure 43: One-shot OoD adaptation on Vorticity. Example 2.

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.4

0.2

0.0

0.2

0.4

0.6

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure 44: One-shot OoD adaptation on Vorticity. Example 3.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8

0.4

0.2

0.0

0.2

0.4

0.6

In
te

ns
ity

Figure 45: Zero-shot OoD prediction on Vorticity. Example 1.

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

In
te

ns
ity

Figure 46: Zero-shot OoD prediction on Vorticity. Example 2.

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8

0.4

0.2

0.0

0.2

0.4

0.6

In
te

ns
ity

Figure 47: Zero-shot OoD prediction on Vorticity. Example 3.

E.7 WAVE 2D

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.1

0.0

0.1

0.2

0.3

0.4

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure 48: One-shot adaptation on Vorticity. Example 1.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.2

0.1

0.0

0.1

0.2

0.3

0.4

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure 49: One-shot adaptation on Wave2d. Example 2.

Example t=0 Example t=1 Example t=2 Example t=3 Example t=4 Example t=5 Example t=6 Example t=7 Example t=8 Example t=9

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8 Pred t=9

0.2

0.1

0.0

0.1

0.2

In
te

ns
ity

Ex
am

pl
e

G
ro

un
d

Tr
ut

h
Pr

ed
ic

ti
on

s

Figure 50: One-shot adaptation on Wave2d. Example 3.

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8

0.2

0.1

0.0

0.1

0.2

In
te

ns
ity

Figure 51: Zero-shot prediction on Wave2d. Example 1.

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8

0.2

0.0

0.2

0.4

0.6

In
te

ns
ity

Figure 52: Zero-shot prediction on Wave2d. Example 2.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

GT t=0 GT t=1 GT t=2 GT t=3 GT t=4 GT t=5 GT t=6 GT t=7 GT t=8 GT t=9

Pred t=1 Pred t=2 Pred t=3 Pred t=4 Pred t=5 Pred t=6 Pred t=7 Pred t=8

0.3

0.2

0.1

0.0

0.1

0.2

In
te

ns
ity

Figure 53: Zero-shot prediction on Wave2d. Example 3.

47

	Introduction
	Problem setting
	Solving parametric PDE
	Generalization for parametric PDE

	Zebra Framework
	Learning a finite vocabulary of physical phenomena
	In-context modeling
	Next-token pretraining
	Inference: Flexible conditioning

	Experiments
	Datasets details
	Context adaptation from similar trajectories
	Temporal conditioning
	Out-of-distribution generalization

	Limitations
	Conclusion
	Reproducibility Statement
	Related Work
	Learning parametric PDEs
	Generative models

	Dataset details
	Advection
	Burgers
	Heat
	Wave boundary
	Combined equation
	Vorticity
	Wave 2D

	Architecture details
	Baseline implementations
	Zebra additional generation details
	Auto-regressive transformer
	VQVAE

	Additional Quantitative results
	Uncertainty quantification
	Analysis of the generation
	Dataset scaling analysis
	Inference time comparison
	Influence of the codebook size
	Reconstruction errors

	Qualitative results
	Advection
	Burgers
	Heat
	Wave boundary
	Combined equation
	Vorticity
	Out-of-distribution

	Wave 2D

