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Abstract

The similarity matrix measures pairwise similari-
ties between a set of data points and is an essen-
tial concept in data processing, routinely used in
practical applications. Obtaining a similarity ma-
trix is typically straightforward when data points
are completely observed. However, incomplete
observations can make it challenging to obtain
a high-quality similarity matrix, which becomes
even more complex in online data. To address
this challenge, we propose matrix correction algo-
rithms that leverage the positive semi-definiteness
(PSD) of the similarity matrix to improve simi-
larity estimation in both offline and online sce-
narios. Our approaches have a solid theoretical
guarantee of performance and excellent potential
for parallel execution on large-scale data. Empir-
ical evaluations demonstrate their high effective-
ness and efficiency with significantly improved
results over classical imputation-based methods,
benefiting downstream applications with superior
performance. Our code is available at https:
//github.com/CUHKSZ-Yu/OnMC.

1 INTRODUCTION

Similarity measures how similar two objects are [Pekalska
and Duin, 2005, Balcan et al., 2008, Schleif and Tino, 2015].
Estimating pairwise similarities for given data points is a
fundamental problem with numerous applications. Similar-
ity functions, such as inner product [Morozov and Babenko,
2018], cosine similarity [Singhal, 2001], Jaccard coefficient
[Bag et al., 2019], and more generally, a family of mathe-
matical functions called kernels [Aronszajn, 1950], form an
essential component of various data processing techniques
[Schölkopf et al., 2002, Bishop and Nasrabadi, 2006] and
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are commonly used in practical applications [Lee, 1997,
Koyejo et al., 2014, Wang and Sun, 2015].

Motivation. Estimating pairwise similarity can be straight-
forward on fully observed samples. However, on incom-
plete datasets containing missing values or attributes that
are common in practice [Little and Rubin, 2019], similar-
ity estimation usually becomes non-trivial. Moreover, the
data are not at hand in many tasks, and offline processing
becomes not applicable. Instead, the similarity values have
to be calculated in real-time with the availability of new
samples, i.e., on online data. Being able to handle such data
sequentially becomes a more critical requirement. Online
data processing is usually more complicated than offline pro-
cessing, posing a non-trivial challenge for researchers and
practitioners [Borodin and El-Yaniv, 2005, Fuller, 2009].

Challenges. In this paper, our work focuses on estimating
similarity matrices for incomplete online data, which com-
monly appear in downstream applications such as informa-
tion retrieval, ranking, and recommender systems [Manning
et al., 2008, Ma et al., 2007, Hsieh et al., 2017]. The chal-
lenges arising from the missing observations and sequential
processing requirements make the problem hard to solve.
The classical imputation approaches are commonly applied
to handle these missing observations. However, the perfor-
mance of data imputation methods highly relies on data
assumptions and is sensitive to data distributions. Applying
imputation approaches [Dempster et al., 1977, Little and Ru-
bin, 2019] without domain knowledge of data is less likely
to produce high-quality estimates. Moreover, the real-time
requirement of online processing often makes it impractical
to use computation-demanding imputation algorithms.

Strategy. We resort to a fundamentally different approach,
called matrix correction, to estimate similarity matrices
from incomplete data. Instead of imputing missing values in
the observed data matrix Xo, we correct an initial similarity
matrix So estimated from incomplete data Xo to Ŝ, which
satisfies specific mathematical properties that the ground
truth matrix S∗ should possess, such as the positive semi-
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definiteness (PSD). Theoretically, our approach provides an
improved estimator Ŝ that becomes closer to the unknown
ground truth S∗ than the initial So in the Frobenius norm.
Empirically, to handle different online scenarios, we first
propose a model for sequential data that updates only newly
added similarity vectors using convex optimization, then
extend it to online batch data with parallel vector correction,
and further scale it to large-scale data using a divide-and-
conquer approach. The experiments validate our theoretical
claims on the proposed correction methods and also show
their superiority to existing imputation-based methods in
terms of accuracy, stability, scalability, and improved per-
formance for downstream applications.

Contributions. Our proposed approaches provide a conve-
nient tool for data analysis with contributions as follows:

• Methodological Novelty and Soundness: We propose a
novel approach to similarity matrix estimation in the pres-
ence of incomplete data. In contrast to classical imputation-
based methods that heavily rely on data structures, we make
a fundamentally different strategy to bypass prior knowl-
edge of the missing mechanism and assumptions on the data
structure. By leveraging the positive semi-definite (PSD)
property of similarity measures, our approaches start with
an estimated similarity matrix So and then correct So to Ŝ
by solving a convex optimization problem. This leads to a
significantly improved estimator Ŝ to the unknown ground
truth S∗, with ∥S∗− Ŝ∥2F ≤ ∥S∗−So∥2F theoretically, and
they apply to various similarities, including all valid kernels,
without requiring domain knowledge of Xo.

• Computational Efficiency and Scalability: Our pro-
posed approach is designed to handle incomplete online
data and estimate similarity matrices accurately. We pro-
vide a simple yet efficient algorithm for sequential data that
solves a convex optimization problem for similarity vectors.
The algorithm can be applied to online batch data with paral-
lel correction. To further improve scalability, we extend the
algorithm on large-scale datasets using a divide-and-conquer
approach that runs more efficiently on parallel platforms,
making it broadly applicable for practical applications.

Notations. Regular letters, e.g., X and x, denote completely
observed matrices and vectors. Letters with a superscript
“o”, e.g., Xo and xo, denote partially observed matrices and
vectors which may contain missing values. In the case of no
missing values, we have Xo = X and xo = x.

2 PRELIMINARIES

2.1 SIMILARITY ON INCOMPLETE DATA

For datasets without missing values, computing the pairwise
similarity score between any two data points is usually triv-
ial. However, for incompletely observed data, their pairwise
similarity score needs to be approximated. For incompletely

observed data points xo, yo ∈ Rd, denote I ⊆ {1, · · · , d}
as the index set recording the positions of features that are
observed in both points. Assuming I is not empty, denote
xo
I ∈ R|I| as a vector of selected values in xo on I . Then,

their inner product, squared norm, and squared Euclidean
distance can be approximated by:

xo⊤yo ≈ xo
I
⊤yoI ·

d

|I|
,

∥xo∥2 ≈ ∥xo
I∥2 ·

d

|I|
, ∥yo∥2 ≈ ∥yoI∥2 ·

d

|I|
,

∥xo − yo∥2 ≈ ∥xo
I − yoI∥2 ·

d

|I|
.

(1)

Specifically, xo
I and yoI are two complete vectors restricted

on R|I|, and therefore their inner product and l2 norm need
to be re-scaled on Rd, resulting in the following estimations:

Cosine similarity: so =
xo
I
⊤yoI

∥xo
I∥ · ∥yoI∥

,

Jaccard coefficient: so =
xo
I
⊤yoI

∥xo
I∥2 + ∥yoI∥2 − xo

I
⊤yoI

,

Gaussian kernel: so = exp(−γ∥xo
I − yoI∥2 ·

d

|I|
).

(2)

2.2 POSITIVE SEMI-DEFINITENESS PROPERTY

With many classical similarity measures including those
defined in Eq. (2) and a wide family of kernel functions, the
ground truth of the similarity matrix satisfies the positive
semi-definiteness (PSD) property [Nader et al., 2019]. In
practice, the PSD property lays the foundation for many
similarity-based machine learning algorithms [Schölkopf
et al., 2002, Ma et al., 2020, 2021].

However, the similarity matrix So estimated from missing
data Xo usually loses the PSD property due to incomplete
observations. In practice, a common remedy is to first im-
pute the missing values and then calculate a PSD similarity
matrix. Unfortunately, imputation methods aim to restore
X rather than S, which usually has no guarantee at all of
the quality on the estimation of S. Moreover, the imputa-
tion performance depends heavily on domain knowledge,
such as data distribution and matrix rank. When there is no
available knowledge, the quality of imputation becomes not
reliable anymore. These limitations motivate us to design
a new matrix correction method that directly focuses on
similarity matrices based on the PSD property.

3 METHODOLOGY

Our work begins with a general model for similarity es-
timation in an offline scenario, which we then extend to
three online data scenarios: sequential data, batch data, and



large-scale data. Our offline approach formulates a convex
optimization problem with a PSD constraint, which would
output a closer estimate of the ground-truth similarity matrix
if the initial input estimate is non-PSD. Furthermore, for se-
quential data, we transform the matrix optimization problem
into a vector optimization problem, creating the optimal cor-
rection for similarity vectors. We then extend the algorithm
to achieve parallel similarity vector correction on online
batch data with significantly improved efficiency. Finally,
we adopt a divide-and-conquer approach to scale the model
to large-scale data, with significantly reduced algorithm
complexity and enhanced applicability. Our approaches are
theoretically guaranteed and can adapt to various data and
practical scenarios, benefiting downstream applications.

3.1 OFFLINE ESTIMATION OF SIMILARITY

Consider offline data Xo = [xo
1, . . . , x

o
n] ∈ Rd×n with

missing values in n samples. Denote S∗ = [S∗
ij ] as the

ground truth of the similarity matrix, where S∗
ij = S∗

ji is the
true similarity value between two samples xo

i and xo
j . The

true matrix S∗ is unknown due to missing values, and we
only have a similarity matrix So estimated from incomplete
data Xo. Note that Xo ̸= X for incomplete data.

We try to correct the initial matrix So to an improved esti-
mate. Inspired by the matrix calibration models [Li, 2015,
2020, Li and Yu, 2022], we formulate the offline model to
recover PSD property with the minimum Frobenius norm:

min
S∈Mn: S⪰0

∥S − So∥2F

subject to Sij ∈ [l, u], ∀ 1 ≤ i, j ≤ n.
(3)

Here Mn is the set of n×n real symmetric matrices, ∥ · ∥F
denotes the Frobenius norm of a matrix, and l, u denote the
lower bound and upper bound, respectively.

Denote the feasible region in Eq. (3) as T = {S ∈
Mn | S ⪰ 0, Sij ∈ [l, u], ∀ 1 ≤ i, j ≤ n}, which is
a closed convex set. The solution to Eq. (3) is the projec-
tion of So onto T , denoted by Ŝ. The direct projection is
complex, and there is no closed form of Ŝ. Fortunately, the
feasible region T can be regarded as the intersection of
two closed convex subsets T1 and T2, with much simpler
structures:

T1 = {S ∈ Mn | S ⪰ 0},
T2 = {S ∈ Mn | Sij ∈ [l, u], ∀ 1 ≤ i, j ≤ n}.

Then Ŝ can be solved efficiently by projecting So onto T1
and T2 iteratively. Denote by P1, P2 the projection onto
T1, T2, respectively, in the form of

P1(S) = U Σ̂U⊤ with S = UΣU⊤, Σ̂ij = max{Σij , 0},
P2(S) = {P2(Sij)} with P2(Sij) = median{l, Sij , u},

where UΣU⊤ gives the spectral decomposition (SD) of S.

In particular, we choose Dykstra’s alternating projection
algorithm [Dykstra, 1983] to find the optimal projection by
the following form:



X
(t)
0 = X

(t−1)
2

Z = X
(t)
i−1 + Y

(t−1)
i

X
(t)
i = Pi(Z)

Y
(t)
i = Z − Pi(Z)

(4)

for i = 1, 2 and t = 1, 2, · · · , where X
(0)
2 = So, Y

(0)
1 =

Y
(0)
2 = 0, and 0 is an all-zero matrix of appropriate size.

The convergence guarantee relies on the Boyle-Dykstra re-
sult [Boyle and Dykstra, 1986]: both {X(t)

1 } and {X(t)
2 }

generated by Eq. (4) converge to Ŝ = minS∈T ∥S − So∥2F .

In such cases, our Offline Similarity Matrix Correction
(OffMC) model in Eq. (3) can be solved efficiently, which
is summarized in Algorithm 1.

Algorithm 1 OffMC (Offline Model)

Input: X ∈ Rd×n: an offline incomplete dataset; tol: tol-
erance (10−5); maxiter: maximum of iterations (100).

Output: Ŝ ∈ Rn×n: the corrected similarity matrix.
1: Calculate So via Eq. (2).
2: Initialize X

(0)
2 = So, Y

(0)
1 = Y

(0)
2 = 0, t = 0.

3: while ∥X(t)
1 −X

(t−1)
1 ∥F > tol and t < maxiter do

4: t = t+ 1, X
(t)
0 = X

(t−1)
2 .

5: for i = 1, 2 do
6: Z = X

(t)
i−1 + Y

(t−1)
i ;

7: X
(t)
i = Pi(Z);

8: Y
(t)
i = Z − Pi(Z).

9: return Ŝ = X
(t)
1 .

A nice observation about Ŝ is that, compared with So, it
provides an improved estimate towards the unknown ground
truth S∗, which is our main theorem as follows.

Theorem 1. ∥S∗− Ŝ∥2F ≤ ∥S∗−So∥2F . The equality holds
if and only if So ∈ T , i.e., So = Ŝ.

The fact can be obtained from Kolmogorov’s criterion
[Deutsch, 2012, Li, 2015], which characterizes the best esti-
mation in an inner product space. The proof is provided in
the Supplementary. From the result we can see, Ŝ improves
So in terms of a shorter distance to the unknown S∗, except
in a special (and rare) case of Ŝ = So which happens only
when the initial estimate So falls into the feasible region T .
In other words, once So is a non-PSD matrix, we definitely
obtain a better estimate Ŝ.



3.2 ONLINE ESTIMATION OF SIMILARITY

Now, we further investigate the online scenario. Without
causing confusion, we modify the notation slightly. Let
Xo = [xo

1, . . . , x
o
n] ∈ Rd×n be a set of offline data points.

Denote by So
n ∈ Rn×n the similarity matrix derived from

Xo. If there exist missing values in Xo, we could improve
inaccurate So

n to a better estimate Ŝn via Algorithm 1. If
not, then Ŝn = So

n = S∗
n is the accurate similarity matrix.

Assume we already have a better (accurate) similarity matrix
Ŝn. In a typical online scenario, as incomplete data points
Y o = [yo1, . . . , y

o
m] ∈ Rd×m come into observation in an

online way, our task is to expand the similarity matrix Ŝn

to So
n+m ∈ R(n+m)×(n+m), which contains both the cor-

rected Ŝn and estimated elements, and then to improve the
estimates closer to the unknown ground truth. In this section,
we first establish a general online model for sequential data
that comes one by one, then we further develop it to deal
with online data coming in a batch using a high-parallel pat-
tern, and finally, we provide a flexible framework on parallel
platforms for large-scale datasets.

3.2.1 Online Model for Sequential Data

The online scenario can be thought of as a process that cor-
rects the similarity matrix immediately when an incomplete
data point yoi (i = 1, . . . ,m) arrives one by one. For this
task, a natural solution is to impute the missing values first
and then calculate the similarity matrix based on the im-
puted data, which, regardless of the accuracy, often leads to
high computation costs and becomes impractical in online
applications without any guarantee.

Let us start with the simplest case of m = 1. The solution
to this case can be trivially extended to cases of m > 1.
Assume that Ŝn is strictly positive definite 1, and let So

n+1 =[
Ŝn vo
v⊤o c

]
where vo ∈ Rn gives the estimated similarity

values between the incomplete online data point yo1 and all
offline data in Xo, and c = so(yo1, y

o
1) is a known fixed

value (e.g., c = 1). The corrected Ŝn shall not be changed
during the correction process. So the problem becomes how
to correct an expanded matrix So

n+1 to be positive semi-
definite by updating the estimated similarity vector vo.

From the properties of the Schur complement, it gives the
equivalent condition for the PSD property of a Hermitian
matrix [Horn and Johnson, 2012, Theorem 7.7.9] as follows.

Lemma 1. Let Sn ∈ Rn×n be a strictly positive definite ma-

trix. Let Sn+1 =

[
Sn v
v⊤ c

]
, where v ∈ Rn and c ∈ R is a

known value. Then Sn+1 is PSD if and only if v⊤S−1
n v ≤ c.

1If Ŝn is only positive semi-definite, we can increase its diago-
nal elements a little bit to make it strictly positive definite.

Here we can see, ensuring the positive semi-definiteness of
the expanded similarity matrix So

n+1 becomes equivalently
the following optimization problem:

min
v∈Rn

∥v − vo∥2 subject to v⊤Ŝ−1
n v ≤ c. (5)

Eq. (5) is a convex optimization problem [Boyd and Van-
denberghe, 2004]. We are now able to develop an effi-
cient algorithm to update the vector vo by projecting it
onto the feasible region which corrects the matrix So

n+1

to be positive semi-definite. Let Ŝn = UΣU⊤ be the
spectral decomposition (SD) of Ŝn. Here U is orthogo-
nal and Σ = diag(σ1, · · · , σn) is a diagonal matrix with
σ1 ≥ · · · ≥ σn > 0. Let Ŝn = CC⊤ and C = UΣ

1
2 . Then

C−1 = (UΣ
1
2 )−1 = Σ− 1

2U−1 = Σ− 1
2U⊤ = Σ−1C⊤.

Equivalently, the objective function in Eq. (5) can be written
in the following form:

∥v − vo∥2 = ∥C(C−1v − C−1vo)∥2

= (C−1v − C−1vo)
⊤Σ(C−1v − C−1vo).

The left side of the optimization constraint can be written as

v⊤Ŝ−1
n v = v⊤(CC⊤)−1v = (C−1v)⊤(C−1v).

Change the variables vo, v into γo = C−1vo and γ = C−1v.
Optimizing Eq. (5) can be reformulated as a convex prob-
lem:

min
γ∈Rn

1

2
(γ − γo)

⊤Σ(γ − γo) subject to γ⊤γ ≤ c.

To solve this optimization problem, we consider two cases:

1) If γ⊤
o γo ≤ c, then γ̂ = γo is the solution;

2) If γ⊤
o γo > c, the solution appears on the boundary.

For the second case, define the Lagrangian function as

L(λ) =
1

2
(γ − γo)

⊤Σ(γ − γo) + λ(γ⊤γ − c), λ ≥ 0.

From the Karush–Kuhn–Tucker (KKT) condition [Gordon
and Tibshirani, 2012], we have:

∂L

∂γ
= Σγ − Σγo + 2λγ = 0

λ(γ⊤γ − c) = 0

λ ≥ 0

γ⊤γ − c ≤ 0

(6)

arriving at γ = (Σ + 2λI)−1Σγo =

 σ1

σ1+2λγ
o
1

· · ·
σn

σn+2λγ
o
n

 and

∥γ∥2 = c. There is no closed-form solution of γ and λ. We
resort to a numerical method instead. By letting λmin = 0



and λmax = σ1

2
√
c
∥γo∥, we have, from Eq. (6), ∥γ∥2 > c

when λ = λmin and ∥γ∥2 < c when λ = λmax. Note
that the value of ∥γ∥2 monotonically decreases when λ
increases. Then we can obtain γ by searching λ from the
region (λmin, λmax) by the bisection method.

Let γ = γ̂ be the solution to Eq. (6), then the optimal
solution to Eq. (5) is given by

v̂ =

{
Cγo, if γ⊤

o γo ≤ c,

Cγ̂, if γ⊤
o γo > c.

(7)

Now we have successfully obtained the corrected similar-
ity vector v̂ and corresponding similarity matrix Ŝn+1 =[

Ŝn v̂
v̂⊤ c

]
⪰ 0. Accordingly, the One-step Online Cor-

rection approach has developed, which performs efficiently
and converges quickly, usually in less than 10 iterations of
the bisection search on λ with high precision. Moreover,
this approach also has a theoretical guarantee that

∥v∗ − v̂∥2 ≤ ∥v∗ − vo∥2 (8)

naturally derived by Theorem 1, due to ∥S∗
n+1− Ŝn+1∥2F ≤

∥S∗
n+1 − So

n+1∥2F .

In the case of m > 1 online samples, we can correct each
estimated similarity vector one by one from yo1 to yom. Specif-
ically, this is done via sequentially correcting the estimated
similarity vectors between each yot (1 ≤ t ≤ m) and data
points [xo

1, · · · , xo
n, y

o
1, · · · , yot−1] by applying the one-step

online model via Eq. (5), which is shown in Line 7 of Al-
gorithm 2, i.e., the Online Similarity Matrix Correction for
Sequential Data (OnMC-S). The theoretical performance is
also guaranteed globally by

∥S∗
n+t−Ŝn+t∥2F ≤ ∥S∗

n+t−So
n+t∥2F , ∀ t = 0, . . . ,m (9)

Algorithm 2 OnMC-S (Online Model for Sequential Data)

Input: Xo ∈ Rd×n: an offline incomplete dataset; Y o ∈
Rd×m: an online incomplete dataset.

Output: Ŝn+m ∈ R(n+m)×(n+m): corrected similarity.
1: Calculate So

n via Eq. (2).
2: Obtain Ŝn from So

n via Algorithm 1.
3: for t = 1, 2, . . . ,m do
4: Perform SD of Ŝn+t−1.
5: Calculate c = similarity value of yot itself.
6: Calculate vo ∈ Rn+t−1 = similarity vector between

yot and [xo
1, . . . , x

o
n, y

o
1, . . . , y

o
t−1] via Eq.(2).

7: Obtain v̂ by one-step correction from vo via Eq.(5).

8: Update Ŝn+t =

[
Ŝn+t−1 v̂
v̂⊤ c

]
.

9: return Ŝn+m.

3.2.2 Online Model for Batch Data

A nontrivial challenge to the basic online algorithm intro-
duced in Section 3.2.1 is the computational costs when
facing a large number of online samples that comes in a
batch, which involves multiple expensive spectral decom-
position operations in Line 4 of Algorithm 2. To tackle the
challenge, we consider the procedure schematically shown
in Fig. 1. The matrix to correct, denoted by So

n+m, is di-
vided into four block matrices: 1) Soff: estimated similarities
between offline samples; 2) Spar: estimated similarities be-
tween offline and online samples; 3) S⊤

par: transpose of Spar;
4) Son: estimated similarities between online samples. Here
Spar is regarded as m similarity vectors [vo1, . . . , v

o
m] with

n-dimension that estimated between each online sample yot
and offline samples [xo

1, · · · , xo
n].

The modified Online Similarity Matrix Correction for Batch
Data (OnMC-B) in Algorithm 3 can be summarized into
two steps: (i) both Soff and Son can be corrected to Ŝoff and
Ŝon directly via Algorithm 1; (ii) parallel correction: all
similarity vectors in Spar can be corrected concurrently by
the one-step correction method via Eq. (5) and we only need
to do the spectral decomposition of Ŝoff once, where the
results can be reused for all online samples, executed in
high parallel efficiency and greatly saves the running time.

Although we can only guarantee the PSD property of Ŝoff
and Ŝon instead of the whole matrix Ŝn+m, the theoreti-
cal guarantee that the corrected result is closer to the un-
known ground truth than the initial estimate still holds.
By Theorem 1 and Eq. (8), we have ∥S∗

off − Ŝoff∥2F ≤
∥S∗

off−Soff∥2F , ∥S∗
on−Ŝon∥2F ≤ ∥S∗

on−Son∥2F , ∥v∗t −v̂t∥2 ≤
∥v∗t − vot ∥2, ∀ 1 ≤ t ≤ m.

Thus, we have a guarantee of the final performance

∥S∗
n+m − Ŝn+m∥2F ≤ ∥S∗

n+m − So
n+m∥2F , (10)

where the complete proof is provided in the Supplementary.

Algorithm 3 OnMC-B (Online Model for Batch Data)

Input: Xo ∈ Rd×n: an offline incomplete dataset; Y o ∈
Rd×m: an online incomplete dataset.

Output: Ŝn+m ∈ R(n+m)×(n+m): corrected similarity.
1: Calculate So

n+m via Eq. (2) and divide it into Soff ∈
Rn×n, Spar = [vo1, . . . , v

o
m] ∈ Rn×m, Son ∈ Rm×m.

2: Obtain Ŝoff, Ŝon from Soff, Son via Algorithm 1.
3: Perform SD of Ŝoff.
4: parfor t = 1, 2, . . . ,m do
5: Calculate c = similarity value of yot itself.
6: Obtain v̂t by one-step correction from vot via Eq.(5).
7: end
8: Obtain Ŝpar = [v̂1, . . . , v̂m].

9: return Ŝn+m =

[
Ŝoff Ŝpar

Ŝ⊤
par Ŝon

]
.



3.2.3 Online Model for Large-scale Data

The computational bottle of the online correction algorithms
mainly comes from the SD operations on the matrix Soff and
Son, which have a complexity of O(n3) for a matrix of size
n× n. The complexity grows quickly with the increase of
n and a very large n will lead to prohibitive computational
costs. To tackle the challenge, we further propose a more
scalable correction approach. The key idea is through the
splitting of the matrices Soff, Spar and Son to handle large-
scale datasets as shown in Fig. 1. The procedure runs in
highly parallel efficiency with block matrices of a much
smaller size, and ensures significantly better scalability. The
details of Online Similarity Matrix Correction for Large-
scale Data (OnMC-L) are as follows.

Blocking

Parallel

1


offN
)(

off
iS )(

off_par
iS

)(
on

jS

)(
on_par

jS

1


offN

1


onN

T )(
off_par

iS

offS parS

T
parS onS

n m

n

m

o
mnS 

n m

n

m

Figure 1: Schematic diagram of two online similarity matrix
correction approaches (i.e., OnMC-B, OnMC-L).

Large n: We divide Soff ∈ Rn×n evenly into Noff block
matrices with the same size koff × koff. After the partition,
the sequential decomposition of all {S(i)

off } has a complexity
of O(nk2off), whereas decomposing each of the n

koff
blocks

has a complexity of O(k3off). This is much lower than the
complexity O(n3) of decomposing the whole Soff, which
significantly reduces the computation cost of SD operations.

Large m: Similarly, we divide the m×m matrix Son into
Non block matrices with the same size kon × kon. Firstly,
all {S(j)

on } can be simultaneously corrected by Algorithm 1.
Once each Ŝ

(j)
on is obtained, all similarity vectors in S

(j)
on_par

can be corrected in parallel via one-step online correction,
which is the same as parallel correction in Lines 3-8 in
Algorithm 3, as shown in Lines 5 and 10 in Algorithm 4.

Table 1: Time and space complexity analysis.

Model Time complexity Space complexity
OffMC O(n3) O(n2)
OnMC-S O((n+m)3) O(n2 + nm+m2)
OnMC-B O(n3 +m3) O(n2 + nm+m2)
OnMC-L O(nk2off +mk2on) O(n2 + nm+m2)

n = offline size; m = online size; koff, kon = block size.

Algorithm 4 OnMC-L (Online Model for Large-scale Data)

Input: Xo ∈ Rd×n: an offline incomplete dataset; Y o ∈
Rd×m: an online incomplete dataset; koff, kon: sizes.

Output: Ŝn+m ∈ R(n+m)×(n+m): corrected similarity.
1: Set Noff = n/koff, Non = m/kon.
2: Calculate So

n+m via Eq. (2) and divide it into sub-
matrices {S(i)

off , S
(i)
off_par}

Noff
i=1 and {S(j)

on , S
(j)
on_par}Non

j=1.
3: parfor i = 1, 2, . . . , Noff do
4: Obtain Ŝ

(i)
off from S

(i)
off via Algorithm 1.

5: Obtain Ŝ
(i)
off_par from S

(i)
off_par via parallel correction.

6: end
7: Obtain Ŝoff = {Ŝ(i)

off }
Noff
i=1 and Ŝoff_par = {Ŝ(i)

off_par}
Noff
i=1.

8: parfor j = 1, 2, . . . , Non do
9: Obtain Ŝ

(j)
on from S

(j)
on via Algorithm 1.

10: Obtain Ŝ
(j)
on_par from S

(j)
on_par via parallel correction.

11: end
12: Obtain Ŝon = {Ŝ(j)

on }Non
j=1 and Ŝon_par = {Ŝ(j)

on_par}Non
j=1.

13: return Ŝn+m =

[
Ŝoff Ŝpar

Ŝ⊤
par Ŝon

]
.

3.3 ALGORITHM SUMMARY

Assumption and Limitation. Under a mild assumption on
the PSD property of the similarity matrix, our methods apply
to a variety of similarity functions, including all valid ker-
nels. Without explicit requirements for domain knowledge,
the methods do not assume the missing mechanism or the
data distribution. Once the estimated similarity matrix from
incomplete data is non-PSD, our algorithms can correct it
to an improved estimate nearer to the ground truth. Despite
this theoretical guarantee of nearness to the ground truth,
a quantitative result or measure of improvement remains
lacking, which is a limitation that requires our further study.

Novelty and Advantage. Theoretically, our key contribu-
tion is bringing together tools from disparate areas (e.g.,
matrix theory and convex optimization) to arrive at efficient
and grounded algorithms for similarity estimation. Empiri-
cally, a series of extensions is delicately designed for online
settings where data are arriving in batches, which apply to
large-scale datasets and offer fast, scalable, and robust alter-
natives to imputation methods, especially in the absence of
sufficient domain knowledge of the data.

Application Prospect. Our algorithms provide an improved
similarity matrix, which ensures the applicability of the ma-
chine learning algorithms that require a PSD similarity ma-
trix, such as support vector machine algorithms [Schölkopf
et al., 2002] and reproducing kernel Hilbert space methods
[Berlinet and Thomas-Agnan, 2011]. Moreover, improved
similarities by our methods can benefit downstream appli-
cations, such as classification and clustering that rely on
the pairwise similarity between samples, which is partially
validated in Section 5 with superior performance.



4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We adopt four well-known benchmark datasets,
which cover a reasonable range of application domains: 1)
MNIST: a grayscale image dataset of handwritten digits
(0-9) with 784 dimensions [LeCun et al., 1998]; 2) CIFAR-
10: a color image dataset of ten real objects with 3072 di-
mensions [Krizhevsky and Hinton, 2009]; 3) PROTEIN: a
sparse binary bioinformatics dataset with 357 dimensions
[Wang, 2002]; 4) RCV1: a sparse newswire stories dataset
from Reuters with 47236 dimensions [Lewis et al., 2004].

Data Preprocessing. We randomly select n complete data
points as the offline dataset X = [x1, . . . , xn] ∈ Rd×n

and m incomplete data points as the online dataset Y o =
[yo1, . . . , y

o
m] ∈ Rd×m, where each entry in Y o is replaced

by the NA value with probability r (random missing is
most commonly used). The online task is to obtain a better
similarity matrix estimate Ŝ for all existing data when online
incomplete data points come into observation sequentially.

Baselines. The proposed online approaches are compared
with several representative imputation methods: 1) statistical
methods: ZERO, MEAN, kNN [Kim et al., 2004]; 2) re-
gression methods: Linear Regression (LR) [Seber and Lee,
2012], Random Forest (RF) [Stekhoven and Bühlmann,
2012]; 3) online matrix completion methods: GROUSE
[Balzano et al., 2010] and KFMC [Fan and Udell, 2019].
All imputation methods are trained purely on offline datasets,
and most seek a mapping between observed and missing
values and replace missing ones with statistical estimates.

Evaluation Metric. Denote So = [So
ij ] ∈ R(n+m)×(n+m)

as the estimated similarity matrix from [X,Y o] via Eq. (2).
We correct So to Ŝ by matrix correction approaches or
calculate Ŝ from the imputed data. Then the performance is
evaluated by the Relative-Mean-Square Error (RMSE) from
the ground truth S∗:

RMSE =
∥S∗ − Ŝ∥2F
∥S∗ − So∥2F

. (11)

All the experiments in Section 4 are carried out on Cosine
Similarity for 10 random seeds on the server with 28 CPU
cores under the MATLAB platform using intel MKL as the
maths library. Implementation details and numerical results
are comprehensively given in the Supplementary.

4.2 PERFORMANCE COMPARISON

All the methods are evaluated on four benchmark datasets
with different missing ratios r ∈ {20%, 50%, 80%}, and
the results for fixed sizes (n,m) = (5000, 1000) and
(1000, 5000) are shown in Table 2 and Fig. 2, respectively.
The experimental results show that our OnMC methods

consistently achieve the best performance (lowest RMSE)
than all baseline methods on all the datasets.
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Figure 2: Comparison of Relative-Mean-Square Error
(RMSE) on MNIST dataset with fixed offline size n = 1000.
The x-axis shows the online size m increases from 1000 to
5000, and the y-axis shows the RMSE value, which is of
log-scale. Note that the ZERO imputation method’s RMSE
> 10 is not shown due to being out of range.

Performance Guarantee. Our matrix correction methods
have a theoretical guarantee on RMSE ≤ 1 and in most
real cases RMSE < 1 empirically. Comparatively, the impu-
tation approaches have no such guarantee, and sometimes
their RMSEs exceed 102. When the domain knowledge of
incomplete data is not available, matrix correction provides
a seemingly better solution.

Effect of Online Size. Given a fixed offline size, the online
correction methods maintain good performance with the
sequential arrival of online data points, as shown in Fig. 2.
The RMSEs of the correction methods gradually decrease
with more online data. Comparatively, the RMSEs of the
imputation methods sometimes increase with the online size,
especially for a small missing ratio.

Sensitivity to Missing Ratio. With a large missing ratio
r, the initial So is often far away from the ground truth S∗

and more likely hurts its PSD, which leaves much room
for improvement. Therefore more significant improvement
of ||Ŝ − S∗||2F is achieved through correction for a larger
r. For a small missing ratio r, So is close to S∗, and the
improvement is not that evident, resulting in a high RMSE.

Missing Mechanism. The matrix correction algorithm it-
self does not require explicit assumptions about the missing
mechanism. In our experiments, we adopt a missing com-
pletely at random (MCAR) setting, but the proposed method
can also improve the relative-mean-square error (RMSE)
for missing at random (MAR) and missing not at random
(MNAR) mechanisms as well. Similarly, the method has
no explicit assumptions on the number of missing features
or their correlation. In our evaluation, the missing ratio of
features ranges from 20% to 80%. Our method provides an
improved estimate in all settings.

In short, the proposed OnMC methods achieve consistently
superior results on cosine similarity with the RMSE mea-
sure, which justifies their effectiveness and theoretical guar-
antee, providing a practical tool for similarity estimation.



Table 2: Comparison of the Relative-Mean-Square Error (RMSE) with fixed n = 5000 and m = 1000. The best performances
are highlighted in Bold. The proposed OnMC approaches obtain the smallest RMSE in all experiments, which shows evident
improvement over the imputation methods and justifies the theoretical evidence given in Theorem 1.

Dataset MNIST CIFAR-10 PROTEIN RCV1

Missing Ratio 20% 50% 80% 20% 50% 80% 20% 50% 80% 20% 50% 80%
ZERO 46.63 78.48 52.03 16.72 27.76 18.53 120.2 203.6 130.1 377.0 648.1 425.0
MEAN 5.350 8.484 5.050 17.71 30.77 23.46 1.463 1.865 0.928 2.084 2.830 1.402
kNN 1.086 1.619 0.973 6.669 8.605 5.790 1.219 1.510 1.697 1.483 2.064 0.535
LR 1.680 1.683 0.571 15.22 8.897 6.006 15.40 12.78 3.644 70.67 51.99 4.852
RF 0.976 1.494 1.315 0.962 0.921 0.908 1.317 1.698 0.871 1.292 1.848 1.078
GROUSE 1.684 2.478 1.326 2.771 4.632 3.148 1.397 1.692 0.728 1.867 2.500 1.152
KFMC 1.113 1.911 1.538 1.011 1.678 1.514 0.867 0.909 0.483 1.234 1.496 0.774
OnMC-S 0.895 0.774 0.537 0.926 0.822 0.618 0.682 0.532 0.368 0.686 0.534 0.368
OnMC-B 0.905 0.793 0.561 0.936 0.849 0.643 0.706 0.546 0.379 0.700 0.552 0.380

4.3 SENSITIVITY ANALYSIS

An experiment of sensitivity analysis is conducted on the
MNIST with (n,m) = (1000, 1000), and the results are
shown in Fig. 3. We vary r in [20%, 80%] and present how
the correction performance changes. It shows that OnMC-
S/B has more stable RMSEs than the imputation methods,
and the promising performance obtained in this wide range
of r verifies the effectiveness of the proposed approaches.
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Figure 3: Sensitivity analysis on MNIST of n = m = 1000.

4.4 EFFICIENCY ANALYSIS

To evaluate the efficiency, we measure the running time of
all approaches in a scenario of (n,m) = (1000, 1000) on
the MNIST dataset. Fig. 4 shows that the proposed OnMC-
B method runs much faster than other imputation methods.
When r = 50%, the OnMC-B method only runs 13 seconds,
which is around 15 times faster than the OnMC-S (199
seconds) and even 45 times faster than KFMC (589 seconds),
benefiting from the blocking and parallel correction.

For a large scenario of (n,m) = (5000, 1000), we observe
that the OnMC-S and OnMC-B algorithms are limited by
the spectral decomposition (SD) of large matrices of size
n×n, with a complexity of O(n3). To overcome this limita-
tion, we replace the standard SD with a randomized singular
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Figure 4: Running time on MNIST with n = m = 1000.
The results of ZERO/MEAN are not included due to high
RMSEs. In this case, OnMC-L is the same as OnMC-B.

value decomposition (RSVD) [Halko et al., 2011], which
has a complexity of O(n2 log(k) + 2nk2), where k is the
target rank of the matrix. This significantly enhances opera-
tional efficiency while preserving decomposition accuracy,
resulting in improved efficiency for all algorithm versions,
as demonstrated in Table 3.

Table 3: Efficiency analysis on MNIST with n = 5000 and
m = 1000. The abbreviations S, B, and L refer to OnMC-
S, OnMC-B, and OnMC-L, respectively. For the OnMC-L
algorithm, koff = kon = 1000. For RSVD, k = 100.

Metric Time (sec) RMSE

Missing Ratio 20% 50% 80% 20% 50% 80%
kNN 1717 1715 1536 1.086 1.619 0.973
LR 267 170 91 1.680 1.683 0.571
RF 9088 9103 7682 0.976 1.494 1.315
GROUSE 295 294 267 1.684 2.478 1.326
KFMC 321 314 302 1.113 1.911 1.538
S 11002 11250 11200 0.895 0.774 0.537
S-RSVD 345 341 338 0.932 0.800 0.565
B 19 37 37 0.905 0.793 0.561
B-RSVD 4 21 17 0.930 0.803 0.570
L 4 22 18 0.912 0.800 0.571
L-RSVD 3 20 17 0.936 0.809 0.573



4.5 SCALABILITY ANALYSIS

We increase the dataset sizes to test the scalability of all al-
gorithm versions. Table 4 shows that the one-by-one update
pattern of the S version cannot handle scenarios with large n
and m, despite RSVD acceleration. Fortunately, the B and L
versions can effectively handle online large-scale data after
batch and parallel processing with the RSVD operation.

Table 4: Scalability analysis on MNIST with r = 50%.

Metric Time (sec) RMSE

Sizes n = m 2K 5K 10K 2K 5K 10K
S 6812 - - 0.677 - -
S-RSVD 242 - - 0.689 - -
B 90 2516 - 0.682 0.680 -
B-RSVD 77 1746 - 0.686 0.684 -
L 38 118 255 0.691 0.691 0.689
L-RSVD 18 109 130 0.697 0.698 0.697

In particular, the OnMC-L algorithm divides the matrix into
sub-matrices and corrects them in parallel, providing a more
flexible framework. As Fig. 5 shows, OnMC-L has a clear
advantage in running time, efficiently giving the correction
result in one minute on a few thousand samples. It takes less
than 10 minutes to correct a matrix of size 10000× 10000,
which cannot be finished in several hours by the OnMC-S/B
methods. The results exhibit its good scalability with a high
potential to be applied in large-scale computing scenarios.
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Figure 5: Performance of OnMC-L method on the MNIST
dataset with different sizes (n,m) and koff = kon = 1000.

5 APPLICATION

We further investigate whether the corrected results benefit
classification tasks. Conforming to the real-world online
scenarios, we set the dataset sizes as (n,m) = (5000, 1000)
and remove the time-consuming RF and OnMC-S algo-
rithms, which do not finish the task in an hour. We apply
the nearest neighbor classifier and for each online incom-
plete sample, its label is predicted by the label of the nearest
neighbor with maximum similarity in the offline dataset.
The accuracy displayed in Fig. 6 shows that the OnMC-B

performs well on three widely used similarities, including
cosine similarity, Jaccard coefficient, and Gaussian kernel.
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Figure 6: Comparison of classification accuracy on the
MNIST with dataset sizes (n,m) = (5000, 1000).

6 CONCLUSION

Estimating pairwise similarity is a fundamental problem in
data analysis with various applications. However, obtaining
a suitable similarity matrix is often challenging in practice,
particularly when data points are incomplete. This challenge
is even more significant in an online setting.

Instead of imputing missing values, our work utilizes matrix
correction and proposes a general method for incomplete on-
line data that corrects an estimated similarity vector between
offline and online data points. A series of online algorithms
are designed to deal with sequential data, batch data, and
large-scale data with a theoretical guarantee. The algorithms
outperform existing imputation methods in online scenarios
with different incomplete observations by ensuring the PSD
property. With the benefits of the online correction scheme
and parallel execution, our approaches provide a practical
tool in downstream applications, as validated empirically in
the classification task.
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