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Abstract

Both entropy-minimizing and entropy-maximizing objectives for unsupervised rein-
forcement learning (RL) have been shown to be effective in different environments,
depending on the environment’s level of natural entropy. However, neither method
alone results in an agent that will consistently learn intelligent behavior across
environments. In an effort to find a single entropy-based method that will encourage
emergent behaviors in any environment, we propose an agent that can adapt its
objective online, depending on the entropy conditions it faces in the environment,
by framing the choice as a multi-armed bandit problem. We devise a novel intrinsic
feedback signal for the bandit, which captures the agent’s ability to control the
entropy in its environment. We demonstrate that such agents can learn to optimize
task returns through entropy control alone in didactic environments for both high-
and low-entropy regimes and learn skillful behaviors in certain benchmark tasks.
Videos and summarized findings can be found on our project webpage.

1 Introduction

Unsupervised reinforcement learning (URL), or learning without access to an extrinsic reward function,
has recently gained significant attention, often as a pretraining method (Jaderberg et al., 2017) or
as a reward bonus in sparse reward domains (Schmidhuber, 1991; Pathak et al., 2017; Burda et al.,
2019b). A recent focus has been on developing objectives where the agent has no access to extrinsic
rewards and instead develops emergent behaviors from intrinsic motivation alone (Lopes et al., 2012;
Kim et al., 2020; Berseth et al., 2021). In this context, unsupervised RL holds the promise of being
able to develop natural-like intelligence, i.e. generally-capable agents that can be deployed to solve
diverse tasks across diverse environments. However, thus far, no single intrinsic motivation function
has succeeded in capturing the complexity of motivation that gives rise to intelligent systems.

Interestingly, two seemingly opposing methods, surprise-minimization (Friston, 2010; Berseth et al.,
2021) and surprise-maximization (Schmidhuber, 1991; Pathak et al., 2017; Hazan et al., 2019; Tiapkin
et al., 2023), have been proposed as intrinsic motivations, with both methods performing well
depending on the properties of the environment in which they are deployed. In general, surprise-
minimizing methods (Berseth et al., 2021) perform well in environments with naturally high entropy
that can be reduced through control, while curiosity-based methods (Pathak et al., 2017) are
better suited to environments where explicit exploration is necessary to encounter novel information.
However, both methods are known to possess failure modes when exposed to the opposite entropy
regime (Schmidhuber, 2010; Sun & Firestone, 2020).

In this work, we propose an adaptive mechanism to select between maximizing and minimizing surprise
in a given environment, based on the agent’s ability to exert control over its entropy conditions,
which we frame as a multi-armed bandit problem. We experimentally validate our surprise-adaptive
agent by demonstrating its ability to mirror a surprise-maximizing or -minimizing agent in didactic
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low- and high-entropy environments, respectively, and, in doing so, perform well on these tasks
without any access to extrinsic task rewards. In benchmark environments, we demonstrate more
diverse emergent behaviors, as measured by the performance on extrinsic task reward, than observed
from the single-objective agents.

2 Related work

There is a rich body of work in the field of unsupervised RL and intrinsic motivation, upon which our
method builds. The most widely explored class of intrinsic objectives is related to improving state
coverage through exploration bonuses which reward some measure of novelty. In low-dimensional
settings, count-based methods (Auer, 2002; Bellemare et al., 2016; Machado et al., 2020) are simple
and effective but do not always extend well to higher dimensions (Lobel et al., 2023). Another
popular class of methods in high-dimensional settings uses prediction error as an exploration bonus
(Schmidhuber, 1991; Pathak et al., 2017). A conceptually similar idea is that of entropy maximization
(Hazan et al., 2019; Tiapkin et al., 2023; Jain et al., 2023), which seeks to maximize the entropy of
the distribution of states experienced by the agent throughout its lifetime. Naive implementations
of these novelty-seeking agents, however, can be susceptible to what is known as the "noisy-TV
problem" (Schmidhuber, 2010), where the agent becomes transfixed by irreducible aleatoric noise in
the environment. Various formulations have been developed to combat this issue, though issues often
persist (Houthooft et al., 2016; Pathak et al., 2017; Burda et al., 2019b). Though these methods are
generally implemented as bonuses to the extrinsic reward, some works have also investigated the
ability of curiosity-driven agents to achieve good task rewards without any access to the extrinsic
reward (Burda et al., 2019a)

An alternative class of intrinsic objectives also targets the scenario where no extrinsic rewards are
available by incentivizing the agent to exert control over its environment. This class of methods is
rooted in the free energy principle, a concept from neuroscience that posits that intelligent organisms
seek out stable niches by learning to control their environment to minimize the entropy they experience
over their lifetime (Friston, 2010). One prominent formulation in this class is that of empowerment,
defined as the maximal mutual information between an agent’s actions and future states (Klyubin
et al., 2005; Karl et al., 2015; Zhao et al., 2020). However, empowerment is computationally difficult
to estimate in large or continuous state and action spaces. A more tractable approximation to
the free-energy principle was proposed by Berseth et al. (2021) as surprise-minimization. In this
formulation, an upper bound on an agent’s total trajectory entropy is minimized by rewarding the
agent with the log-probability of the current state under the estimated state marginal distribution.
This method has shown promising results in a diverse set of stochastic environments (Berseth et al.,
2021; Rhinehart et al., 2021). Surprise-minimizing agents, however, can fall victim to the "dark room
problem" (Sun & Firestone, 2020), where the agent discovers an area of the state-space without any
stochastic dynamics and fails to seek out any additional experience.

Two recent works make efforts towards combining surprise-minimization and maximization objectives
to avoid the degenerate cases of prior methods, either using a complex multi-agent paradigm (Fickinger
et al., 2021) or learned skills (Zhao et al., 2022). In Fickinger et al. (2021) the authors seek to capture
more complex behaviors by alternately minimizing and maximizing surprise in an adversarial game
between surprise-minimizing and surprise-maximizing players. However, this adversarial approach is
susceptible to unstable training dynamics. In Zhao et al. (2022), they circumvent the complexity of
adversarial RL, instead training a single agent equipped with two different skill sets, one surprise-
minimizing, and the other surprise-maximizing. This approach is conceptually and practically simpler
than the multi-agent approach. However, neither method uses an adaptive mechanism to control
the objective, instead using fixed-length windows to alternate between objectives. In contrast, our
proposed method can adapt to entropy conditions online to bias the agent towards the objective with
the greatest potential.

Prior works have explored adaptivity in RL and found that it can be beneficial for learning (Badia
et al., 2020; Moskovitz et al., 2021). Similar to our work, Moskovitz et al. (2021) uses a multi-armed
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bandit to control a learning hyperparameter. However, their method relies on extrinsic rewards for
providing feedback to the bandit, while our method derives rewards based only on intrinsic signals.

3 Background

Reinforcement learning. RL is a learning paradigm for sequential decision-making problems. In
RL, an agent acts in an environment from which it receives observations and rewards. Formally, this
process can be modelled as a Markov Decision Process (MDP) consisting of the tuple (S,A, T ,R, γ)
where S is the state space, A is the action space, T : S ×A× S → [0, 1] is the transition function,
R : S ×A → R is the reward function, and γ is the discount factor. The goal of the RL agent is to
find a policy πϕ that produces actions that maximize the expected sum of discounted future rewards.

πϕ(at|st) = argmaxϕEp(τ |ϕ)

[
T∑

t=0
γtr(st, at)

]
(1)

In our experiments, we use the value-based method DQN (Mnih et al., 2015) to solve Equation 1.

Multi-armed bandits Multi-armed bandits can be thought of as a special case of RL where the
state-space consists only of a single state. Typically evaluated based on regret, multi-armed bandit
algorithms focus on the efficient trade-off between exploration and exploitation in order to find an
optimal action while incurring the minimum amount of sub-optimal actions. In this work, we adopt
one of the most popular algorithms, Upper Confidence Bounding (UCB)(Lai et al., 1985) for an
efficient trade-off. The UCB algorithm adds a count-based exploration bonus to the current value
estimate of an action before selecting the maximum valued arm:

at = argmaxa∈A

(
Qt(a) +

√
log t

Nt(a)

)
(2)

Entropy and surprise The notion of surprise derives from the optimization of the entropy of the
state marginal distribution under the policy πϕ(a|s), which we denote dπϕ(st). Given an estimate of
this state marginal distribution, pθt−1(st), we can express an estimate of the sum of the entropies
of the state distribution across a trajectory (see Appendix A of Berseth et al. (2021) for a full
derivation):

T∑
t=0
H(st) =

T∑
t=0
−Est∼dπϕ (st) [log dπϕ(st)] ≤

T∑
t=0

Est∼dπϕ (st)
[
− log pθt−1(st)

]
(3)

Recalling Equation 1, we can see that minimizing the sum of the state entropy over a trajectory
(Equation 3) corresponds to a surprise minimizing agent (Berseth et al., 2021) with a reward function
given by:

rs-min(st, at) = log pθt
(st+1) (4)

Maximizing this objective corresponds to an RL agent with a reward function given by:

rs-max(st, at) = − log pθt
(st+1) (5)

which is similar to the rewards provided to the EntGame agent in Tiapkin et al. (2023).

Conceptually, this means that the agent is punished (or rewarded) if the observed state st is
"surprising", that is, if it has high negative log-likelihood under the state marginal distribution
estimated so far. Hence, we refer to Equation (4) as surprise-minimization and Equation (5) as
surprise-maximization.
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4 Surprise-adaptive bandit

Surprise-minimization and surprise-maximization are most effective under particular entropy condi-
tions in the environment, surprise-minimization under high-entropy conditions (Berseth et al., 2021),
and surprise-maximization under low-entropy conditions. An intrinsically motivated agent that could
capitalize on the advantages each objective provides in its respective entropy regime would be a more
powerful and versatile intrinsic learner. Hence, we propose an agent that can alternatively optimize
for either objective, with an online adaptive mechanism for selecting the objective.

To design such an adaptive agent, we must first be able to optimize for either single-objective, which
requires an estimation of the state marginal distribution at time t, parameterized by θt (denoted
pθt−1 in Equation (3)). In general, this estimation can be quite complex; In Berseth et al. (2021), the
authors propose a simplification which we adopt here. The method estimates θt by first selecting
an appropriate distribution family to model observations (i.e. Gaussian, Bernoulli, etc.) and using
maximum likelihood estimation to estimate the sufficient statistics of the distributions, fitted to
the history of observed states through time t. Further details on estimating the state marginal
distribution as well as ablations on the choice of distribution are provided in Appendix A.3.

To adaptively select between the two objectives online, we propose a multi-armed bandit approach.
Provided with an appropriate performance signal, a bandit learns to select optimally between actions,
trading off exploration with exploitation to minimize the overall regret, making it an appropriate
choice for online adaption. The key question is what type of feedback is best to provide the bandit,
given access only to intrinsic rewards. We propose a feedback mechanism grounded in the observation
that the general goal in both surprise minimization and surprise maximization is for the agent to
be able to affect a change in the level of surprise it experiences. In a low-entropy environment, the
agent can best affect change by increasing entropy, and vice versa.

We propose using the absolute percent difference between the entropy of the state marginal distribution
at the end of the mth episode (H(p(m)

θT
)) and that of a random agent in the same environment

(H(prand
θT

)) (Equation (6)). The motivation for this is as follows: a random agent cannot control the
environment entropy as it cannot take any actions in response to feedback. Agents that produce
state visitation distributions whose entropy significantly diverges from that of a random agent must
therefore be exerting control over the entropy in the environment. We therefore provide feedback
to the bandit which promotes agents that can exert such control by rewarding large deviations
from a random agent. Since we are approximating the state marginal distributions by an analytical
distribution, we can compute H(p(m)

θT
) analytically from the estimated parameters (see A.3 for further

details).

fm =

∣∣∣∣∣H(p(m)
θT

)−H(prand
θT

)
H(prand

θT
)

∣∣∣∣∣ (6)

The precise algorithm is as follows (Algorithm 1). At the start of training, we estimate the entropy of
a random agent by collecting trajectories using a uniform random policy and averaging the entropy of
the state marginal distributions, computed at the end of each trajectory (Line 2). Then, at the start
of each episode m, we select an arm from the bandit, represented by binary indicator α(m), according
to the UCB algorithm (Line 10), which determines if the agent will receive rewards according to
Equation 4 or Equation 5 during the upcoming episode. The agent is trained for a single episode,
using any RL algorithm (Line 7). At the end of each episode, the bandit receives feedback fm on its
selection (Line 9). Algorithm 1 shows the full training procedure.

To instantiate the surprise-adaptive agent, we construct an augmented MDP out of the original
Markov process. Following Berseth et al. (2021), this augmented MDP has a state space that
includes the original state st, as well as the sufficient statistics of the state marginal distribution θt.
We additionally include α(m), as defined above, to ensure the reward function remains Markovian
(Castanyer et al., 2023).
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In our experiments, all agents were trained using DQN (Mnih et al., 2015), using two convolutional
neural networks (CNN) to encode the state. The first CNN encodes the observed state st, while the
second encodes the sufficient statistic of the state marginal distribution θt along with the bandit
choice α(m) which is added as an additional channel before applying the CNN. The outputs of the
CNNs are concatenated and passed through an MLP that outputs the Q-value. More details on
environments and training can be found in Appendix A.

Algorithm 1 Surprise-adaptive agent
1: Initialize network parameters ϕ, replay buffer β, initial mean of bandit arms µ(0), and initial

optimization direction α(0) ∼ Bern(0.5)
2: Compute H(prand

θT
) by rolling out random trajectories

3: for episode m = 0, 1 . . . , M do
4: so ∼ p(s0), reset θ0, s̄0 = (s0, θ0, 0, α(m)) ▷ construct initial augmented state
5: Set r(st, at) = (−1)α(m) − log pθt

(st) ▷ set reward function
6: for t = 0, . . . , T do
7: Collect experience and update policy ϕ← RL(ϕ, β) ▷ See Berseth et al. (2021)
8: end for
9: µ

(m+1)
i ← µ

(m)
i + 1

N(i) (fm − µ
(m)
i ) if α(m) = i else µ

(m)
i

10: α(m+1) ← UCB(µ(m+1)) ▷ Choose new α(m+1) based on UCB algorithm Lai et al. (1985)
11: end for

5 Experiments and analysis

To validate the usefulness and effectiveness of our method, we must demonstrate (1) Deficiencies in
the single objective agents under particular entropy conditions and how these deficiencies arise from
a lack of controllable entropy (2) Ability of the surprise-adaptive agent to select an objective based
on the controllable entropy and to mimic the behavior of the single-objective agents and, finally (3)
Correlation between entropy control and the emergence of intelligent behaviors.

With these goals in mind, we select several environments for evaluation; First, a set of didactic
environments that are designed specifically to create low- and high-entropy conditions to demonstrate
both the success and failure modes of single-objective entropy control. Second, a set of RL benchmark
environments that are not selected with any particular entropy conditions in mind, and hence are
demonstrative of how our algorithm could perform on arbitrary environments with unknown entropy
conditions.

For the high-entropy environments, we select the Tetris environment used in Berseth et al. (2021)
and construct the new Butterflies environment, shown in Figure 1. In Tetris the agent must survive
as long as possible by clearing rows of blocks before they reach the top of the frame. In Butterflies,
the agent (red) must find and catch butterflies (blue) that are moving randomly in the map, within
a fixed-length episode. For the low-entropy environment, we construct a static maze environment
(Maze), in which the agent navigates around a map with a single goal state, for a fixed-length
episode. For both Butterflies and Maze, we construct small (10x10) and large (32x32) versions of
the environments. More details on these new environments are available in Appendix A.2. For
the benchmark environments, we select the MinAtar (Young & Tian, 2019) suite of tasks. This
suite consists of simplified versions of five Atari games, which are designed to make the state space
categorical and fully observable without frame-stacking. Finally, to experiment on image-based
observations, we test on Freeway from the original Atari games suite (Bellemare et al., 2013)

Our analysis contrasts our method with the two dominant entropy-based intrinsic reward paradigms.
Hence, we compare our method (S-Adapt) against an exclusively surprise-minimizing agent (S-Min)
(Berseth et al., 2021) and an exclusively surprise-maximizing agent (S-Max). Here, the surprise-
maximizing agent represents the space of curiosity and maximum entropy methods (Pathak et al.,
2017; Hazan et al., 2019), though we note that our method could be implemented on top of any
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desired curiosity-based method. Additionally, as baselines, we compare the entropy-based intrinsic
agents against an agent trained on the extrinsic reward (Extrinsic), and a random agent (Random).

We compare the performance of the various agents both in terms of entropy control and emergent
behaviors. As a measure of entropy control, we consider the average surprise the agent experiences
across the episode. The metric for emergent behavior that we consider here is the undiscounted
episode return, as previous work has argued that entropy control can correlate with task rewards in
some environments (Berseth et al., 2021).

5.1 Failures of Single-Objective Entropy Control

First, we demonstrate, qualitatively and quantitatively, the success and failure modes of single-
objective entropy-based agents, using the didactic environments.

Qualitatively, we demonstrate the behaviors of S-Min and S-Max in the Maze and Butterflies
environments in Figure 1. We note that the S-Min agent achieves an interesting behavior of catching
butterflies in the Butterflies environment, but learns a degenerate solution of standing in place in the
Maze environment. On the other hand, the S-Max agent learns to navigate the Maze and reach the
goal but fails to catch any butterflies in the Butterflies environment.

Figure 1: The Butterflies (left) and Maze environments (right). S-Min trains the agent to actively
catch the butterflies in order to prevent diverse state configurations while at the same time preventing
the agent to navigate around Maze. S-Max trains the agent to avoid catching butterflies while
navigating the Maze efficiently. These two didactic environments show that current intrinsic objectives
fail to provide generally useful objectives for RL agents and cannot adapt.

Quantitatively, we evaluate the average surprise and average extrinsic returns for the agents across
training in all environments (Figures 2 to 4). Notably, the S-Min agent achieves the lowest or
near-lowest entropy in all environments, while the S-Max agent achieves the highest or near-highest
entropy in all environments, as expected.

(a) Small Maze (10x10) (b) Large Maze (32x32)

Figure 2: Average episode return (left) and surprise (right) versus environment interactions (average
over 5 seeds, with one shaded standard deviation) in the Maze environment. S-Max and S-Adapt
are the only objectives that allow the RL agents to consistently find the goal in the maze. These also
cause the largest change in surprise when compared to the random agent.
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However, we highlight that the qualitatively interesting direction for entropy control is correlated not
with a single objective, but with the scale of the absolute difference in the final entropy achieved by
the agent versus that of the Random agent. For example, in the Maze environment, the S-Max
agent drives a significant increase in entropy over the Random agent, while the S-Min agent
achieves a relatively small decrease (Figure 2). Similarly, in the Butterflies environment, the opposite
holds in the large map (Figure 2b). Interestingly, in the small map, the S-Min and S-Max agents
achieve roughly the same absolute change in entropy (Figure 2a). This is because in the smaller map,
avoiding butterflies is equally challenging compared to catching butterflies, while in the larger map,
the butterflies are easily avoided.

(a) Small Butterflies (10x10) (b) Large Butterflies (32x32)

Figure 3: Average episode return (left) and surprise (right) versus environment interactions (average
over 5 seeds, with one shaded standard deviation) in the Butterflies environment. S-Min, Extrinsic
and even the Random agent catch most of the butterflies in the small grid. Because of the small size
of the grid, surprise-minimization and surprise-maximization are equally effective in entropy control,
and hence the S-Adapt agent converges to S-Max. In the larger grid, however, the Random agent
can’t catch many butterflies and hence has a high-entropy state distribution. Again, the S-Max agent
learns to also avoid catching butterflies and the S-Min agent learns to catch butterflies. However,
catching butterflies results in a significant change in the state-marginal entropy in this larger grid.
The S-Adapt agent identifies this and converges to S-Min, resulting in agents that catch more than
half of the butterflies without access to the extrinsic reward.

5.2 Adaptive Entropy Control

Figure 4: Average episode return (left) and sur-
prise (right) versus environment interactions (aver-
age over 5 seeds, with one shaded standard devia-
tion) in Tetris. S-Min, S-Adapt, and Extrinsic
agents solve the game (i.e. consistently survive for
more than 200 steps). Interestingly, the surprise-
minimizing objective, which S-Adapt converges
to, turns out to be a better learning signal than
the row-clearing extrinsic reward in Tetris.

Capitalizing on the success modes of the single-
objective agents, the proposed S-Adapt agent
can adapt to the entropy landscape to achieve
entropy control across all didactic environments
(Figures 2 to 4). In Maze, the S-Adapt agent
converges to a surprise-maximizing strategy sim-
ilar to S-Max, as demonstrated by the high
entropy achieved by the end of training (Fig-
ure 2). On the other hand, in Tetris, the S-
Adapt agent converges to a surprise-minimizing
strategy, achieving low entropy on par with the
S-Min agent by the end of training (Figure 4).
In the Butterflies environment, an interesting
dichotomy in the S-Adapt agent’s behavior
arises. As noted in Section 5.1, in the small
grid, both the S-Min agent and S-Max agent
induce roughly the same amount of change in the
entropy versus the Random agent, using equally
challenging strategies (Figure 3a). Here, the S-
Adapt agent converges to surprise-maximizing
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behavior. However, as the size of the grid is increased, and the density of butterflies decreases, the
effect of minimizing entropy becomes much stronger versus the Random agent and the S-Adapt
agent correctly converges to the surprise-minimizing strategy (Figure 2b). More details on the effect
of butterfly density on the behavior of the S-Adapt agent can be found in Appendix B

Our results have shown that the S-Adapt agent can successfully recreate the performance of the S-
Min and the S-Max agents in their respective didactic environments. Next, we investigate controlling
entropy across the MinAtar benchmark, shown in Figure 5. Notably, these environments were not
constructed with any particular entropy regime in mind. Thus, these results are demonstrative of
how the proposed algorithm could perform in an arbitrarily chosen environment.

(a) Freeway (b) Seaquest

(c) Space Invaders (d) Breakout

(e) Asterix

Figure 5: Average episode return (left) and surprise (right) versus environment interactions (average
over 5 seeds, with one shaded standard deviation) in the MinAtar suite of environments. In all
environments the S-Adapt agent is able to select the direction for entropy optimization which
is most controllable, as demonstrated by the change in entropy from the beginning to the end of
training. The S-Adapt agent indeed demonstrates emergent behaviors in certain environments, such
as Freeway where it achieves rewards on par with that of the Extrinsic agent. However, in certain
environments, like Seaquest, Space Invaders and Asterix, the extrinsic reward is not closely correlated
with entropy control, with the Random agent and the Extrinsic agent achieving similar entropy.

Here again, we see that the S-Adapt agent can reliably select the objective with the greatest
controllable entropy. Though the difference between S-Min and S-Max agents in terms of divergence
with the Random agent is not as strong in some environments, the S-Adapt agent consistently
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chooses the objective with the relatively larger change in entropy. This provides confirmation that
our bandit algorithm can successfully select for controllable entropy in arbitrary environments.

5.3 Emergent Behaviour

Figure 6: Average episode return versus environ-
ment interactions (average over 5 seeds, with one
shaded standard deviation) in the Atari Freeway
environment. The S-Adapt agent learns useful
behaviours (making progress in the original task)
from image-based observations. The Extrinsic
agent achieves the highest returns as it exploits the
task rewards, the S-Max agent achieves slightly
lower returns than the S-Adapt agent, while the
S-Min agent achieves zero returns.

Finally, for these objectives to be useful, it is im-
portant that they correlate with the emergence of
interesting behaviors. Indeed, we note that the
extrinsic rewards in the didactic environments
generally correlate closely with one of two single-
objective agents (Figures 2 to 4). This suggests
that these environments have good potential for
entropy-based control to elicit emergent behav-
iors. Importantly, however, the extrinsic reward
does not correlate well with strictly one of S-
Min or S-Max in all environments. In Maze,
S-Max achieves high rewards, while in Butter-
flies and Tetris, S-Min achieves high rewards.
On the other hand, the S-Adapt agent achieves
high task rewards, on par or better than the Ex-
trinsic agent across all didactic environments.

Additionally, in some MinAtar environments, the
entropy-based agents exhibit emergent behavior
similar to that of the Extrinsic agent. In the
Freeway environment (Figure 5a), the S-Adapt
agent achieves competitive rewards with the Ex-
trinsic agent. A similar result is observed in
Breakout (Figure 5d). However, other environ-
ments, like Space Invaders and Seaquest (Figures 5b and 5c) do not appear to be good candidates
for intrinsic entropy control, since the Extrinsic and Random agents achieve similar entropy.

Finally, we investigate the emergence of interesting behaviors in a more complex, image-based
environment using Atari Freeway (Figure 6) as a case study. Unlike the previous environments,
observations in pixel space are non-binary and hence cannot be modeled using Bernoulli distributions.
Instead, we model the state marginal using a Gaussian distribution (see Appendix A.3 for more
details). The results show that both the S-Max and S-Adapt agents achieve respectable results
as compared to the extrinsic agent. Moreover, in this environment, the emergent behavior of the
S-Adapt agent is qualitatively different from both S-Max and S-Min agents; The S-Adapt agent
solves the game more frequently than the S-Max agent. This hints that mixing entropy maximization
and minimization in one adaptive objective induces emergent behaviors that cannot be learned by
exclusively optimizing for surprise minimization or maximization alone.

6 Conclusion

Our experiments demonstrate encouraging results for a surprise-adaptive agent. The S-Adapt agent
can select the objective with the more controllable landscape across both didactic environments
and benchmark environments. Moreover, the S-Adapt agent inherits the emergent behaviors of
the single-objective agents, achieving high rewards across all didactic environments, which neither
of the single-objective agents nor the extrinsic agent is able to achieve. Further work is needed to
understand exactly under what conditions such emergent behaviors can manifest, and how to elicit
them more reliably in arbitrary environments like MinAtar. Possible directions for improvement
here could include better methods for estimating the state marginal distribution with more accuracy.
Moreover, an interesting extension to this work would be to apply an adaptive agent in the continual
learning setting, where adaptation can occur at any time, not only at episode end.



RLJ | RLC 2024

Acknowledgments

We want to acknowledge funding support from NSERC, FRQNT, and CIFAR and compute support
from the Digital Research Alliance of Canada, Mila IDT and NVidia.

References
Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine

Learning Research, 3(Nov):397–422, 2002.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In International conference on machine learning, pp. 507–517. PMLR, 2020.

Christopher Bamford. Griddly: A platform for ai research in games. Software Impacts, 8:100066,
2021.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information
processing systems, 29, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

Glen Berseth, Daniel Geng, Coline Manon Devin, Nicholas Rhinehart, Chelsea Finn, Dinesh
Jayaraman, and Sergey Levine. Smirl: Surprise minimizing reinforcement learning in un-
stable environments. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=cPZOyoDloxl.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A. Efros. Large-
scale study of curiosity-driven learning. In International Conference on Learning Representations,
2019a. URL https://openreview.net/forum?id=rJNwDjAqYX.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019b. URL https:
//openreview.net/forum?id=H1lJJnR5Ym.

Roger Creus Castanyer, Joshua Romoff, and Glen Berseth. Improving intrinsic exploration by
creating stationary objectives. In International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=YbZxT0SON4.

Arnaud Fickinger, Natasha Jaques, Samyak Parajuli, Michael Chang, Nicholas Rhinehart, Glen
Berseth, Stuart Russell, and Sergey Levine. Explore and control with adversarial surprise. arXiv
preprint arXiv:2107.07394, 2021.

Karl Friston. The free-energy principle: a unified brain theory? Nature reviews neuroscience, 11(2):
127–138, 2010.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pp. 2681–2691. PMLR, 2019.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. Advances in neural information processing systems,
29, 2016.

Shengyi Huang, Rousslan Fernand JulienDossa Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,
Kinal Mehta, and João GM Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. The Journal of Machine Learning Research, 23(1):12585–12602,
2022.

https://openreview.net/forum?id=cPZOyoDloxl
https://openreview.net/forum?id=rJNwDjAqYX
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=YbZxT0SON4


RLJ | RLC 2024

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representations, 2017. URL https://openreview.net/
forum?id=SJ6yPD5xg.

Arnav Kumar Jain, Lucas Lehnert, Irina Rish, and Glen Berseth. Maximum state entropy exploration
using predecessor and successor representations. Advances in Neural Information Processing
Systems, 36, 2023.

Maximilian Karl, Justin Bayer, and Patrick van der Smagt. Efficient empowerment. arXiv preprint
arXiv:1509.08455, 2015.

Kuno Kim, Megumi Sano, Julian De Freitas, Nick Haber, and Daniel Yamins. Active world model
learning with progress curiosity. In International conference on machine learning, pp. 5306–5315.
PMLR, 2020.

Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. Empowerment: A universal
agent-centric measure of control. In 2005 IEEE congress on evolutionary computation, volume 1,
pp. 128–135. IEEE, 2005.

Tze Leung Lai, Herbert Robbins, et al. Asymptotically efficient adaptive allocation rules. Advances
in applied mathematics, 6(1):4–22, 1985.

Sam Lobel, Akhil Bagaria, and George Konidaris. Flipping coins to estimate pseudocounts for
exploration in reinforcement learning. In International Conference on Machine Learning, pp.
22594–22613. PMLR, 2023.

Manuel Lopes, Tobias Lang, Marc Toussaint, and Pierre-Yves Oudeyer. Exploration in model-
based reinforcement learning by empirically estimating learning progress. In Advances in neural
information processing systems, pp. 206–214, 2012.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with
the successor representation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 5125–5133, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, Michael Arbel, and Michael Jordan. Tactical
optimism and pessimism for deep reinforcement learning. Advances in Neural Information Processing
Systems, 34:12849–12863, 2021.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In International conference on machine learning, pp. 2778–2787. PMLR,
2017.

Nicholas Rhinehart, Jenny Wang, Glen Berseth, John Co-Reyes, Danijar Hafner, Chelsea Finn, and
Sergey Levine. Information is power: intrinsic control via information capture. Advances in Neural
Information Processing Systems, 34:10745–10758, 2021.

Jürgen Schmidhuber. Curious model-building control systems. In Proc. international joint conference
on neural networks, pp. 1458–1463, 1991.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
transactions on autonomous mental development, 2(3):230–247, 2010.

Zekun Sun and Chaz Firestone. The dark room problem. Trends in Cognitive Sciences, 24(5):346–348,
2020.

https://openreview.net/forum?id=SJ6yPD5xg
https://openreview.net/forum?id=SJ6yPD5xg


RLJ | RLC 2024

Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Remi Munos, Alexey Naumov,
Pierre Perrault, Yunhao Tang, Michal Valko, and Pierre Menard. Fast rates for maximum entropy
exploration. In International Conference on Machine Learning, pp. 34161–34221. PMLR, 2023.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

Andrew Zhao, Matthieu Gaetan Lin, Yangguang Li, Yong jin Liu, and Gao Huang. A mixture
of surprises for unsupervised reinforcement learning. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=OHkq7qNr72-.

Ruihan Zhao, Pieter Abbeel, and Stas Tiomkin. Efficient online estimation of empowerment for
reinforcement learning. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=u2YNJPcQlwq.

https://openreview.net/forum?id=OHkq7qNr72-
https://openreview.net/forum?id=u2YNJPcQlwq


RLJ | RLC 2024

A Environment and Training Details

A.1 Training Details

All agents were trained using DQN (Mnih et al., 2015). Reward values are normalized by subtracting
the rolling mean and dividing by the standard deviation before fitting the Q network. For the
S-Adapt agent, we use the original UCB algorithm with exploration coefficient 2 in the Maze (large)
and MinAtar environments, for all other environments we set the exploration coefficient to

√
2. we

trained all agents using the implementation of DQN from CleanRL (Huang et al., 2022). We trained
all agents with a learning rate of 0.0001 with Adam optimizer, a discount factor of 0.99, a batch size
of 32, a replay buffer size of 1M, and for 10M environment interactions. We use epsilon-greedy for
exploration with a linearly decaying epsilon from a value of 1 to 0.01, decaying over the first 10%
of timesteps in all environments except MinAtar and Atari which decays over the first 50% of time
steps. Model architecture details for each environment are provided in the next section.

A.2 Environments

Tetris We take the Tetris environment directly from the implementation provided by the authors
of (Berseth et al., 2021). In this environment, the agent receives 0 at all steps, except for a losing
step which results in a -100 reward. The maximum episode length is 200. Environment observations
and the sufficient statistic of the state marginal are flattened before being fed into two independent
two-layer MLPs with hidden dimensions 120 and 84. The outputs of the MLPs are concatenated and
passed through a linear layer that outputs the Q-value.

Maze We constructed custom Maze environments (small and large) using the Griddly platform
(Bamford, 2021). A pixel-rendering of the small and large mazes used in our experiments can be
found in Figure 7. The task reward in both environments is +1 when the agent reaches the goal and
0 otherwise.

Figure 7: Pixel-rendering of the small maze (left) and the large maze (right)

The size of the small maze is 10x10 and the episode length is 100. Environment observations and
the sufficient statistic of the state marginal are passed through two independent CNNs with a single
convolutional layer. The outputs of the CNNs are concatenated and passed through a single-layer
MLP with hidden dimension 512 that outputs the Q-value.
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The size of the large maze is 32x32 and the episode length is 250. Environment observations and
the sufficient statistic of the state marginal are passed through two independent CNNs with three
convolutional layers with kernel size of (3,3), a stride value of 2 and a padding value of 1. The outputs
of the CNNs are concatenated and passed through a single-layer MLP with hidden dimension 512
that outputs the Q-value.

Butterflies We constructed the custom Butterflies environment (small and large) using the Griddly
platform (Bamford, 2021). The task reward in both environments is +1 when the agent catches a
butterfly and 0 otherwise.

The size of the small map is 10x10 and the episode length is 100, while the size of the large map
is 32x32 and the episode length is 500. We use the same architecture as the Maze environment for
estimating the Q-value.

MinAtar In MinAtar environments, we use the same architecture as the Butterflies environments
and we set the episode length to 500.

Atari In Atari Freeway environment, we use the same architecture and pre-processing as in Mnih
et al. (2015). We use the same multiple CNN architecture as the Maze environment for estimating
the Q-values from the augmented state with sufficient statistics.
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A.3 Estimation of State Marginal Distribution

In all binary environments (Tetris, Maze, Butterflies, MinAtar), the observed state st is a binary
entity map of size H ×W × C, where H is the height of the map, W is the width of the map and C
is the number of channels, with each channel representing a single object type in the environment. A
value of one is set in the (h, w) position of channel c (denoted sh,w,c

t ) if an object of type c currently
occupies the (h, w) position in the map, and zero otherwise. The state marginal distribution is

estimated as H ×W × C independent Bernoulli distributions, with probability ph,w,c
t =

∑t

t′=0
sh,w,c

t′
t ,

which constitutes a sufficient statistic for the Bernoulli distribution. Hence, the sufficient statistic of
the entire state marginal distribution is given by θt = {ph,w,c

t : h ∈ H, w ∈W, c ∈ C} and is the same
shape as the observations st.

The choice of the Bernoulli distribution is justified by the binary nature of the data. However, we
perform an ablation using a Gaussian distribution as an alternative to confirm the validity of this
choice (Figure 8).

In the image-based environment (Atari Freeway), the observed state st is an image. Here, we
use a Gaussian distribution for the state marginal estimation. Using the same notation as above,
the sufficient statistics for the Gaussian distribution are given by empirical mean and variance
µh,w,c

t =
∑t

t′=0
sh,w,c

t′
t , σh,w,c

t =
∑t

t′=0
(µh,w,c

t −sh,w,c

t′ )2

t . The sufficient statistic for the entire state
marginal distribution is then given by θt = {µh,w,c

t , σh,w,c
t : h ∈ H, w ∈W, c ∈ C}.

(a) Maze (small) (b) Maze (large) (c) Space Invaders

(d) Seaquest (e) Freeway (f) Breakout

Figure 8: Average episode return of the S-Adapt (average over 5 seeds, with one shaded standard
deviation), using Gaussian and Bernoulli distributions for estimating the state marginal distribution.
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B Additional Experiments

Here we present additional results on the impact of butterfly density on the behavior of the S-Adapt
agent.

(a) Very High Density (b) High Density (c) Medium Density

(d) Low Density (e) Very Low Density

Figure 9: Average episode return of the S-Adapt agent (average over 5 seeds, with one shaded
standard deviation) over various butterflies densities in the Butterflies (large) environment. At (very)
high density (Figures 9a and 9b), the Random agent resembles the S-Min agent and catches large
number of butterflies as indicated by the high episode return. Hence, the S-Adapt agent converges
to surprise-maximization to induce large absolute difference in entropy from the Random agent and
avoids butterflies as indicated by the low episodic return. In contrast, at very low density (Figure 9e),
the Random agent is unable to catch butterflies and resembles the S-Max agent. The S-Adapt
agent converges to surprise-minimization and almost catches all the butterflies as indicated by the
high episodic return. At medium and low densities (Figures 9c and 9d), the S-Adapt agent oscillates
between surprise-maximization and surprise-minimization as they roughly induce the same absolute
difference in entropy.


