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Abstract

Sequence memory is an essential attribute of natural and artificial intelligence that
enables agents to encode, store, and retrieve complex sequences of stimuli and
actions. Computational models of sequence memory have been proposed where
recurrent Hopfield-like neural networks are trained with temporally asymmetric
Hebbian rules. However, these networks suffer from limited sequence capacity
(maximal length of the stored sequence) due to interference between the memories.
Inspired by recent work on Dense Associative Memories, we expand the sequence
capacity of these models by introducing a nonlinear interaction term, enhancing
separation between the patterns. We derive novel scaling laws for sequence capacity
with respect to network size, significantly outperforming existing scaling laws for
models based on traditional Hopfield networks, and verify these theoretical results
with numerical simulation. Moreover, we introduce a generalized pseudoinverse
rule to recall sequences of highly correlated patterns. Finally, we extend this model
to store sequences with variable timing between states’ transitions and describe a
biologically-plausible implementation, with connections to motor neuroscience.

1 Introduction

Memory is an essential ability of intelligent agents that allows them to encode, store, and retrieve
information and behaviors they have learned throughout their lives. In particular, the ability to recall
sequences of memories is necessary for a large number of cognitive tasks with temporal or causal
structure, including navigation, reasoning, and motor control [1–9].

Computational models with varying degrees of biological plausibility have been proposed for how
neural networks can encode sequence memory [1–3, 10–22]. Many of these are based on the concept
of associative memory, also known as content-addressable memory, which refers to the ability of a
system to recall a set of objects or ideas when prompted by a distortion or subset of them. Modeling
associative memory has been an extremely active area of research in computational neuroscience and
deep learning for many years, with the Hopfield network becoming the canonical model [23–25].

Unfortunately, a major limitation of the traditional Hopfield Network and related associative memory
models is its capacity: the number of memories it can store and reliably retrieve scales linearly
with the number of neurons in the network. This limitation is due to interference between different
memories during recall, also known as crosstalk, which decreases the signal-to-noise ratio. Large
amounts of crosstalk results in the recall of undesired attractor states of the network [26–29].
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Figure 1: SeqNet and Polynomial DenseNet (d = 2) are simulated with N = 300 neurons and
P = 100 patterns. One hundred curves are plotted as a function of time, each representing the overlap
of the network state at time t with one of the patterns, mµ = (1/N)

∑N
i=1 ξ

µ
i Si. The curves are

ordered using the color code described on the right (patterns in the beginning and end of the sequence
are shaded in yellow and red respectively). A. SeqNet quickly loses the correct sequence, indicated
by the lack of alignment of the network state with the correct pattern in the sequence (mµ ≪ 1). B.
The Polynomial DenseNet faithfully recalls the entire sequence and maintains alignment with one of
the patterns at any moment in time, mµ ≈ 1.

Recent modifications of the Hopfield Network, known as Dense Associative Memories or Modern
Hopfield Networks (MHNs), overcome this limitation by introducing a strong nonlinearity when
computing the overlap between the state of the network and memory patterns stored in the network
[30, 31]. This leads to greater separation between partially overlapping memories, thereby reducing
crosstalk, increasing the signal-to-noise ratio, and increasing the probability of successful recall [32].

Most models based on the Hopfield Network are autoassocative, meaning they are designed for the
robust storage and recall of individual memories. Thus, they are incapable of storing sequences of
memories. In order to adapt these models to store sequences, one must utilize asymmetric weights in
order to drive the network from one activity pattern to the next. Many such models use temporally
asymmetric Hebbian learning rules to strengthen synaptic connections between neural activity at
one time state and the next time state, thereby learning temporal association between patterns in a
sequence [1, 3, 10, 11, 16, 17, 22].

In this paper, we extend Dense Associative Memories to the setting of asymmetric weights in order
to store and recall long sequences of memories. We work directly with the update rule for the state of
the network, allowing us to provide an analytical derivation for the sequence capacity of our proposed
network. We find a close match between theoretical calculation and numerical simulation, and further
establish the ability of this model to store and recall sequences of correlated patterns. Additionally,
we examine the dynamics of a model containing both symmetric and asymmetric terms. Finally, we
describe applications of our network as a model of biological motor control.

2 DenseNets for Sequence Storage

Traditional Hopfield Networks and MHNs, as described in Appendix B, are capable of storing
individual memories. What about storing sequences? Assume that we want to store a sequence of
P patterns, ξ1 → ξ2 → · · · → ξP , where ξµj ∈ {±1} is the jth neuron of the µth pattern and the
network will transition from pattern ξµ to ξµ+1. Let N be the number of neurons in the network and
S(t) ∈ {−1,+1}N be the state of the network at time t. We want to design a network with dynamics
such that when the network is initialized in pattern ξ1, it will traverse the entire sequence.1 We define
a network, SeqNet, which follows a discrete-time synchronous update rule2:

TSN (S)i := sgn

∑
j ̸=i

JijSj

 = sgn

[
P∑

µ=1

ξµ+1
i mµ

i

]
, mµ

i :=
1

(N − 1)

∑
j ̸=i

ξµj Sj , (1)

1We impose periodic boundary conditions and define ξP+1 ≡ ξ1. Boundary terms have a sub-leading
contribution to the crosstalk, so a model with open boundary conditions will have the same scaling of capacity.

2One can also consider an asynchronous update rule in which one neuron is updated at a time [23, 26].
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where S(t+ 1) = TSN (S) and Jij =
1
N

∑P
µ=1 ξ

µ+1
i ξµj is an asymmetric matrix connecting pattern

ξµ to ξµ+1. Note that we are excluding self-interaction terms i = j. We also rewrote the dynamics in
terms of mµ

i , the overlap of the network state S with pattern ξµ. When the network is aligned most
closely with pattern ξµ, the overlap mµ

i is the largest contribution in the sum and pushes the network
to pattern ξµ+1. When multiple patterns have similar overlaps, meaning they are correlated, then
there will be low signal-to-noise ratio. This correlation between patterns limits the capacity of the
network, limiting the SeqNet’s capacity to scale linearly relative to network size.

To overcome the capacity limitations of the SeqNet, we use inspiration from Dense Associative
Memories [30] to define the DenseNet update rule:

TDN (S)i := sgn

[
P∑

µ=1

ξµ+1
i f (mµ

i )

]
(2)

where f is a nonlinear monotonically increasing interaction function. Similar to MHNs, f reduces
the crosstalk between patterns and, as we will analyze in detail, leads to improved capacity. Figure 1
demonstrates this improvement for f(x) = x2.

2.1 Sequence capacity

To derive analytical results for the capacity, we must choose a distribution to generate the patterns.
As is standard in studies of the classic HN and MHNs [26–31, 33–36], we choose this to be the
Rademacher distribution, where ξµj ∈ {−1,+1}with equal probability for all neurons j in all patterns
µ, and calculate the capacity for different update rules. If one is allowed to specially engineer the
patterns, even the SeqNetcan store a sequence of length 2N [37], but this construction is not relevant
to associative recall of realistic sequences. Rademacher patterns are a more appropriate model for
generic patterns while remaining theoretically tractable.

We consider both the robustness of a single transition, and the robustness of propagation through the
full sequence. For a fixed network size N ∈ {2, 3, . . .} and an error tolerance c ∈ [0, 1), we define
the single-transition and sequence capacities by

PT (N, c) = max
{
P ∈ {2, . . . , 2N} : P

[
TDN (ξ1) = ξ2

]
≥ 1− c

}
(3)

and

PS(N, c) = max
{
P ∈ {2, . . . , 2N} : P

[
∩Pµ=1{TDN (ξµ) = ξµ+1}

]
≥ 1− c

}
, (4)

respectively, where the probability is taken over the random patterns. Note that for the single-
transition capacity we could focus on any pair of subsequent patterns due to translation invariance
arising from periodic boundary conditions. Also note that the full sequence capacity is defined by
demanding that all transitions are correct. For perfect recall, we want to take the threshold c ↓ 0.
In the thermodynamic limit in which N,P → ∞, we expect for there to exist a sharp transition
in the recall probabilities as a function of P , with almost-surely perfect recall below the threshold
value and vanishing probability of recall above [26–29, 31, 33–36]. Thus, we expect the capacity
to become insensitive to the value of c in the thermodynamic limit; this is known rigorously for the
classic Hopfield network from the work of Bovier [34].

As we detail in Appendix C, all of our theoretical results are obtained under two approximations. We
will validate the accuracy of the resulting capacity predictions through comparison with numerical
experiments. First, following Petritis [33]’s analysis of the classic Hopfield network, we use union
bounds to control the single-transition and full-sequence capacities in terms of the single-bitflip error
probability P[TDN (ξ1)1 ̸= ξ21 ]. Using the fact that the patterns are i.i.d., this gives P[TDN (ξµ) =
ξµ+1] ≥ 1−NP[TDN (ξ1)1 ̸= ξ12 ] and P[∩Pµ=1{TDN (ξµ) = ξµ+1}] ≥ 1−NPP[TDN (ξ1)1 ̸= ξ12 ],
respectively, resulting in the lower bounds

PT (N, c) ≥ max
{
P ∈ {2, . . . , 2N} : NP[TDN (ξ1)1 ̸= ξ12 ] ≤ c

}
, (5)

PS(N, c) ≥ max
{
P ∈ {2, . . . , 2N} : NPP[TDN (ξ1)1 ̸= ξ12 ] ≤ c

}
. (6)

From studies of the classic Hopfield network, we expect for these bounds to be tight in the thermody-
namic limit (N →∞), but we will not attempt to prove that this is so [33, 34]. Second, our theoretical
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results are obtained under the approximation of P[THN (ξ1)1 ̸= ξ21 ] in the regime N,P ≫ 1 by a
Gaussian tail probability. Concretely, we write the single-bitflip probability as

P[TDN (ξ1)1 ̸= ξ21 ] = P[C < −f(1)] (7)
in terms of the crosstalk

C =

P∑
µ=2

ξ21ξ
µ+1
1 f

(
1

N − 1

N∑
j=2

ξµj ξ
1
j

)
, (8)

which represents interference between patterns that can lead to a bitflip. Then, as the crosstalk is the
sum of P − 1 i.i.d. random variables, we approximate its distribution as Gaussian. We then extract
the capacity by determining how P should scale with N such that the error probability tends to zero
as N →∞, corresponding to taking c ↓ 0 with increasing N . Within the Gaussian approximation,
we can also estimate the capacity at fixed c by using the asymptotics of the inverse Gaussian tail
distribution function to determine how P should scale with N such that the error probability is
asymptotically bounded by c as N → ∞. This predicts that the effect of non-negligible c should
vanish as N →∞.

For P large but finite, this Gaussian approximation amounts to retaining only the leading term in the
Edgeworth expansion of the tail distribution function [38–41]. We will not endeavour to rigorously
control the error of this approximation in the regime of interest in which N is also large. To convert
our heuristic results into fully rigorous asymptotics, one would want to construct an Edgeworth-type
series expansion for the tail probability P[C < −f(1)] that is valid in the joint limit with rigorously-
controlled asymptotic error, accounting for the fact that the crosstalk is a sum of discrete random
variables [38–41]. As a simple probe of Gaussianity, we will consider the excess kurtosis of the
crosstalk distribution, which determines the leading correction to the Gaussian approximation in the
Edgeworth expansion, and describes whether its tails are heavier or narrower than Gaussian [38–41].

2.2 Polynomial DenseNet

Consider the DenseNet with polynomial interaction function, f(x) = xd, which we will call the
Polynomial DenseNet. In Appendix C.1, we argue that the leading asymptotics of the transition and
sequence capacities for perfect recall are given by

PT ∼
Nd

2(2d− 1)!! log(N)
, PS ∼

Nd

2(d+ 1)(2d− 1)!! log(N)
. (9)

Note that this polynomial scaling of the single-transition capacity with network size coincides with
the capacity scaling of the symmetric MHN [30]. Indeed, as we have excluded self-interaction terms
in the update rule, the single-bitflip probabilities for these two models coincide exactly for unbiased
Radamacher patterns (Appendix C.1). This allows us to adapt arguments from Demircigil et al. [31]
to show that (9) is in fact a rigorous asymptotic lower bound on the capacity (Appendix D). We
compare our results for the single-transition and sequence capacities to numerical simulation in Figure
2. The simulation matches theoretical prediction for large network size N . For smaller N , there are
finite-size effects that result in deviation from theoretical prediction. The crosstalk has non-negligible
kurtosis in finite size networks which leads to deviation from the Gaussian approximation.

Furthermore, we point out that for fixed N , the network capacity does not monotonically increase
in the degree d. Since the factorial function grows faster than the exponential function, every finite
network of size N has a polynomial degree dmax after which the capacity will actually decrease.
This is also true for the standard MHN. We demonstrate this numerically in Figure 2B, again noting
mild deviations between theory and simulation due to finite-size effects.

2.3 Exponential DenseNet

We have shown the DenseNet’s capacity can scale polynomially with network size. Can it scale
exponentially? Consider the DenseNet with exponential interaction function, f(x) = e(N−1)(x−1),
which we call the Exponential DenseNet. This function reduces crosstalk dramatically: f(mµ(S)) =
1 when mµ(S) = 1 and is otherwise sent to zero exponentially fast. In Appendix C.2, we show that
under the abovementioned approximations one has the leading asymptotics

PT ∼
βN−1

2 logN
and PS ∼

βN−1

2 log(β)N
, where β =

exp(2)

cosh(2)
≃ 1.964 . . . (10)
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Figure 2: Testing the transition and sequence capacities of DenseNets with polynomial and ex-
ponential nonlinearities. A. Scaling of transition capacity (log10(PT ), left) and sequence capacity
(log10(PS), right) with network size. As network size increases, the variance of the crosstalk de-
creases and the theoretical approximations become more accurate, resulting in a tight match between
theory (solid lines) and simulation (points with error bars). The theory curves are given by Equations
9 and 10. Error bars are computed across realizations of the random patterns (see Appendix G). There
is significant deviation between theory and simulation for the sequence capacity of the Exponential
DenseNet. We show that this is due to finite-size effects in Section 2.3. B. Transition capacity of
Polynomial DenseNets as a function of degree. For any finite network size N , there is a degree d that
maximizes the transition capacity. The same would be true for the sequence capacity. C. Crosstalk
variance (left) and excess kurtosis (right) for the Exponential DenseNet as a function of P and N .
Variance is proportional to P and inversely proportional to N , while the opposite is true for excess
kurtosis. See Appendix G for details of our numerical methods.

In Figure 2, numerical simulations confirm this model scales significantly better than the Polynomial
DenseNet and enables one to store exponentially long sequences relative to network size. While
the ratio between transition and sequence capacities remains bounded for the Polynomial DenseNet,
where PT /PS ∼ d+ 1, the gap for the Exponential DenseNet diverges with network size.

However, we can see in Figure 2A that the empirically measured capacity—particularly the sequence
capacity—of the Exponential DenseNet deviates substantially from the predictions of our approxi-
mate Gaussian theory. Due to computational constraints, our numerical simulations are limited to
small network sizes (Appendix G). Computing the excess kurtosis of the crosstalk distribution with a
number of patterns comparable to the capacity predicted by the Gaussian theory reveals that, for the
range of system sizes we can simulate, the distribution should deviate strongly from a Gaussian. In
particular, if take P ∼ βN−1/(αN) for some constant factor α, then the excess kurtosis increases
with network size up to around N ≈ 56 (Appendix C.2). Increasing the size of an Exponential
DenseNet therefore has competing effects: for a fixed sequence length P , increasing network size N
decreases the crosstalk variance, which should reduce the bitflip probability, but also increases the
excess kurtosis, which reflects a fattening of the crosstalk distribution tails that should increase the
bitflip probability. This is illustrated in Figure 2C.

The competition between increasing P and N for the Exponential DenseNet is easy to understand
intuitively. For a fixed N , increasing P means that the crosstalk is equal in distribution to the sum
of an increasingly large number of i.i.d. random variables, and thus by the central limit theorem
should become increasingly Gaussian. Conversely, for a fixed P , increasing N means that each of the
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Figure 3: A. Recall of a sequence of 200000 correlated images from the MovingMNIST dataset
using DenseNets of size N = 784. We showcase a 10 image subsequence. The top row depicts the
true sequence, the second row depicts SeqNet’s performance, the next rows depict the Polynomial
DenseNets’ performance which increases with degree d, and the final row depicts the Exponen-
tial DenseNet’s performance which yields perfect recall. B. Transition capacity of Polynomial
DenseNets of size N = 100 relative to pattern bias ϵ. Increasing ϵ monotonically decreases capacity.
Networks with stronger nonlinearities maintain high capacity for large correlation strength. Imple-
menting the generalized pseudoinverse rule decorrelates these patterns and maintains high sequence
capacity for much larger correlation. See Appendix G for details of numerical methods.

P − 1 contributions to the crosstalk is equal in distribution to the product of an increasing number of
i.i.d. random variables—as f

(
1

N−1

∑N
j=2 ξ

µ
j ξ

1
j

)
=
∏N

j=2 exp(ξ
µ
j ξ

1
j )—and thus by the multiplicative

central limit theorem each term should tend to a lognormal distribution. In this regime, then, the
crosstalk is roughly a mixture of lognormals, which is decidedly non-Gaussian. In contrast, for a
Polynomial DenseNet, memorization is easy in the limit where N tends to infinity for fixed P , as
the crosstalk should tend almost surely to zero as each term f

(
1

N−1

∑N
j=2 ξ

µ
j ξ

1
j

)
→ 0 almost surely.

2.4 Recalling Sequences of Correlated Patterns

The full-sequence capacity scaling laws for these models were derived under the assumption of
i.i.d Rademacher random patterns. While theoretically convenient, this is unrealistic for real-world
data. We therefore test these networks in more realistic settings by storing correlated sequences of
patterns, which will lead to greater crosstalk in each transition and thus smaller single-transition
and full-sequence capacities relative to network size [26, 36]. However, the nonlinear interaction
functions should still assist in separating correlated patterns to enable successful sequence recall.

For demonstration, we store a sequence of 200000 highly-correlated images from the MovingMNIST
dataset and attempt to recall this sequence using DenseNets with different nonlinearities [42]. The
entire sequence is composed of 10000 unique subsequences concatenated together, where each
subsequence is composed of 20 images of two hand-written digits slowly moving through one another.
This means there is significant correlation between patterns which will result in large amounts of
crosstalk. The results of the DenseNets are shown in Figure 3A, where increasing the nonlinearity of
the Polynomial DenseNets slowly improves recall but not entirely, while the exponential network
achieves perfect recall. The SeqNet and DenseNets, up until approximately d = 50, are entirely
unable to recall any part of any image, despite the DenseNets being well within the capacity limits
predicted by theoretical calculations on uncorrelated patterns.

2.5 Generalized pseudoinverse rule

Can we overcome the DenseNet’s limited ability to store correlated patterns? Drawing inspiration
from the pseudoinverse learning rule introduced by Kanter and Sompolinsky [43] for the classic
Hopfield network, we propose a generalized pseudoinverse (GPI) transition rule

TGPI(S)i := sgn

[
P∑

µ=1

ξµ+1
i f

(
P∑

ν=1

(O+)µνmν(S)

)]
, Oµν =

1

N

N∑
j=1

ξµj ξ
ν
j , (11)
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where the overlap matrix Oµν is positive-semidefinite, so we can define its pseudoinverse O+ by
inverting the non-zero eigenvalues. With f(x) = x, this reduces to the pseudoinverse rule of [43].

If the patterns are linearly independent, such that O is full-rank, we can see that this rule can
perfectly recall the full sequence (Appendix E). This matches the classic pseudoinverse rule’s ability
to perfectly store any set of linearly independent patterns; this is why we choose to sum over ν inside
the separation function in (11). For i.i.d. Rademacher patterns, linear independence holds almost
surely in the thermodynamic limit provided that P < N .

In Figure 3B, we demonstrate the effect of correlation on the Polynomial DenseNet through studying
the recall of biased patterns ξµi with P(ξµi = ±1) = 1

2 (1 ± ϵ) for ϵ ∈ [0, 1).3 We see that the
Polynomial DenseNet has better recall at all levels of bias ϵ as degree d increases, although we still
expect there to be a maximum degree as described before. However, at large correlation values, they
all have low recall, suggesting the need for alternative methods to decorrelate these patterns. This
failure is easy to understand theoretically, following van Hemmen and Kühn [44]’s analysis of the
classic Hopfield model: for patterns with bias ϵ, the Polynomial DenseNet update rule expands as

TDN (ξµ)i = sgn[ξµ+1
i + (P − 1)ϵ2d+1 +O(

√
P/N)]. (12)

Therefore, even if N is large, for ϵ ̸= 0 there must be some value of P for which the constant bias
overwhelms the signal. If N → ∞ for any fixed P , then we must have P < ϵ−(2d+1) + 1 for
the signal to dominate. In Figure 3B, we show the generalized pseudoinverse update rule is more
robust to large correlations than the Polynomial DenseNet. While this rule can also be applied to the
Exponential DenseNet, simulations fail due to numerical instability coming from small values in the
pseudoinverse.

3 MixedNets for variable timing

Thus far, we have considered sequence recall in purely asymmetric networks. These networks
transition to the next pattern in the sequence at every timestep, preventing the network from storing
sequences with longer timing between elements. In this section, we aim to construct a model where
the network stays in a pattern for τ steps. Our starting model will be an associative memory model
for storing sequences known as the Temporal Association Network (TAN) [1, 10], defined as:

TTAN (S)i := sgn

[
P∑

µ=1

[
ξµi m

µ
i + λξµ+1

i m̄µ
i

]]
, m̄µ

i :=
1

N − 1

∑
j ̸=i

ξµj S̄j (13)

where m̄µ
i represents the normalized overlap of each pattern ξµ with a weighted time-average of

the network over the past τ timesteps, S̄i(t) =
∑τ

ρ=0 w(ρ)Si(t− ρ). The weight function, w(t), is
generally taken to be a low-pass convolutional filter (e.g. Heaviside step function, exponential decay).

This network combines a symmetric and asymmetric term for robust recall of multiple sequences.
The symmetric term containing mµ

i (t), also referred to as a “fast" synapse, stabilizes the network
in pattern ξµ for a desired amount of time. The asymmetric term containing m̄µ

i (t), also referred
to as a “slow" synapse, drives the network transition to pattern ξµ+1. The λ parameter controls the
strength of the transition signal. If λ is too small, no transitions will occur since the symmetric term
will overpower it. If λ is too large, transitions will occur too quickly for the network to stabilize in a
desired pattern and the sequence will quickly destabilize.

For TAN, Sompolinsky and Kanter [10] used numerical simulations to estimate the capacity as
approximately PTAN ∼ 0.1N , defining capacity as the ability to recall the sequence in correct order
with high overlap (meaning that a small propotion of incorrect bits are allowed in each transition).
Note that this model can fail in two ways: (i) it can fail to recall the correct sequence of patterns, or
(ii) it can fail to stay in each state for the desired amount of time.

To address these issues, we consider the following dynamics:

TMN (S)i := sgn

[ P∑
µ=1

[
ξµi fS (mµ

i ) + λξµ+1
i fA (m̄µ

i )

]]
(14)

3At ϵ = 1, the patterns will be deterministic with ξµi = +1.
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Figure 4: Capacity of the Polynomial MixedNet. A. We simulate MixedNets with N = 100, τ = 5,
and attempt to store P = 40 patterns. The Temporal Association Network (left), corresponding to
a linear MixedNet with dS = 1 = dA, fails to recover the sequence. Increasing the nonlinearities
to dS = 2 = dA (center) recovers the correct sequence order, but not the timing. Increasing the
nonlinearities to dS = 10 = dA (right) recovers the correct sequence order and timing. B. Transition
capacity log10(PT ) of the Polynomial MixedNet as a function of network size. Each panel has a
fixed symmetric nonlinearity fS(x) = xdS indicated by the panel’s title. As network size increases,
crosstalk variance decreases and theoretical approximations in Equation 3 become more accurate to
tightly match the simulations. Note that as expected, the capacity scales according to the minimum of
dS and dA. C. As in B, but for the sequence capacity log10(PS).

We call this model the MixedNet, and seek to analyze the relationship between the symmetric and
asymmetric terms in driving network dynamics and their impact on sequence capacity. As before, the
asymmetric term will try to push the network to the next state at every timestep, while the symmetric
term tries to maintain it in its current state for τ timesteps. We will allow different nonlinearities for
fS and fA, and analyze their effect on transition and sequence capacity.

We demonstrate the effectiveness of the Polynomial MixedNet, where for simplicity we set fS(x) =
fA(x) = xd, in Figure 4A. While TAN fails completely, a polynomial nonlinearity of d = 2 enables
recall of pattern order but the network does not stay in each pattern for τ = 5 timesteps. Further
increasing the nonlinearity to d = 10 recovers the desired sequence with correct order and timing.

Theoretical analysis of the capacity of the MixedNet (14) for general memory length τ is challenging
due to the extended temporal interactions. We therefore consider single-step memory (τ = 1), and
show that even in this relatively tractable special case new complications arise relative to our analysis
of the DenseNet. Alternatively, we can interpret the MixedNet with τ = 1 as an imperfectly-learned
DenseNet. If one imagines the network learns its weights through a temporally asymmetric Hebbian
rule with an extended plasticity kernel, and its state is not perfectly clamped to the desired transition,
the coupling from ξµ to ξµ+1 could be corrupted by coupling ξµ to itself [22].

We first consider the setting where both interaction functions are polynomial, fS(x) = xdS and
fA(x) = xdA , and refer to this network as the Polynomial MixedNet. This model is analyzed in
detail in Appendix F.1. Interestingly, this model’s crosstalk variance forms a bimodal distribution, as
shown in Figure F.1. This complicates the analysis, but once bimodality is accounted for one can
approximate the capacity using a similar argument to that of the DenseNet. We find that

PT ∼
(λ− 1)2

2γdS ,dA

Nmin{dS ,dA}

logN
, PS ∼

(λ− 1)2

2(min{dS , dA}+ 1)γdS ,dA

Nmin{dS ,dA}

logN
, (15)
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where γdS ,dA
is a multiplicative factor defined as

γdS ,dA
=


(2dS − 1)!! , if dS < dA

(λ2 + 1)(2dS − 1)!! + 2λ[(dS − 1)!!]21{dS even} , if dS = dA

λ2(2dA − 1)!! , if dS > dA.

(16)

In Figure 4B-C, we show that simulations match the theory curves well as N increases. We demon-
strate theoretical and simulations results for the Exponential MixedNet in Appendix F.2.

4 Biologically-Plausible Implementation

Since biological neural networks must store sequence memories [2, 5–8], one naturally asks if these
results can be generalized to biologically-plausible neural networks. A straightforward biological
interpretation of the DenseNet is problematic, as a network with polynomial interaction function of
degree d is equivalent to having a neural network with many-body synapses between d+ 1 neurons.
This can be seen by expanding the Polynomial DenseNet in terms of a weight tensor of d+1 neurons:

Si(t+ 1) = sgn

 ∑
j1,...,jd

Jij1...jdSj1(t) . . . Sjd(t)

 , Ji,j1,...,jd =
1

Nd

P∑
µ=1

ξµ+1
i ξµj1 · · · ξ

µ
jd

(17)

This is biologically unrealistic as synaptic connections usually occur between two neurons [45]. In
the case of the Exponential DenseNet, one can interpret its interaction function via a Taylor series
expansion, implying synaptic connections between infinitely many neurons which is even more
problematic. Similar difficulties arise in models with sum of terms with different powers [46].

Figure 5: Biologically-plausible implementation
of DenseNet with two-body synapses.

To address this issue, we again take inspiration
from earlier work in MHNs. Krotov and Hop-
field [47] addressed this concern for symmet-
ric MHNs by reformulating the network using
two-body synapses, where the network was par-
titioned into a bipartite graph with visible and
hidden neurons (see [48] for an extension of this
idea to deeper networks). The visible neurons
correspond to the neurons in our network dynam-
ics, Sj , while the hidden neurons correspond to
the individual memories stored within the net-
work. They are connected through a weight
matrix. Since we are working with an asym-
metric network, we modify their approach and
define two sets of synaptic weights: Wjµ con-
nects visible neuron vj to hidden neuron hµ,
Mµj connects hidden neuron hµ to visible neuron vj . This yields the same dynamics exhibited in
Equation (2), absorbing the nonlinearity into the hidden neurons’ dynamics.

For the DenseNet, we define the weights as Wjµ := 1
N ξµj and Mµj := ξµ+1

j . For the MixedNet, we
redefine the weight matrix Mµj = ξµj + λξµ+1

j . The update rules for the neurons are as follows:

hµ(t) := f

[∑
j

Wjµvj(t)

]
, vj(t+ 1) := sgn

[∑
µ

Mµjhµ(t)

]
(18)

Note that these networks’ transition and sequence capacities, PT and PS , now scale linearly with
respect to the total number of neurons in this model, N visible neurons and P hidden neurons.
However, the network capacity still scales nonlinearly with respect to the number of visible neurons.

Finally, we remark that this network is reminiscent of recent computational models for motor action
selection and control via the cortico-basal ganglia-thalamo-cortical loop, in which the basal ganglia
inhibits thalamic neurons that are bidirectionally connected to a recurrent cortical network [5, 49, 50].
This relates to our model as follows: the motor cortex (visible neurons) executes an action, each
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thalamic unit (hidden neurons) encodes a motor motif, and the basal ganglia silences thalamic
neurons (external network modulating context). In particular, the role of the basal ganglia in this
network suggests a novel mechanism of context-dependent gating within Hopfield Networks [51].
Rather than modulating synapses or feature neurons in a network, one can directly inhibit (activate)
memory neurons in order to decrease (increase) the likelihood of transitioning to the associated state.
Similarly, thalamocortical loops have been found to be important to song generation in zebra finches
[52]. Thus, the biological implementation of the DenseNet can provide insight into how biological
agents reliably store and generate complex sequences.

5 Discussion and Future Directions

We introduced the DenseNet for the reliable storage and recall of long sequences of patterns, derived
the scaling of its single-transition and full-sequence capacity, and verified these results in numerical
simulation. We found that depending on the choice of nonlinear interaction function, the DenseNet
could scale polynomially or exponentially. We tested the ability of these models to recall sequences
of correlated patterns, by comparing the recall of a sequence of MovingMNIST images with different
nonlinearities. As expected, the network’s reconstruction capabilities increased with the nonlinearity
power d, with perfect recall achieved by the exponential nonlinearity. To further increase the capacity,
we introduced the generalized pseudoinverse rule and demonstrated in simulation its ability to
maintain high capacity for highly correlated patterns. We also introduced and analyzed the MixedNet
to maintain patterns within sequences for longer periods of time. Finally, we described a biologically
plausible implementation of the models with connections to motor control.

There has recently been a renewed interest in storing sequences of memories. Steinberg and Som-
polinsky [53] store sequences in Hopfield networks by using a vector-symbolic architecture to bind
each pattern to its temporal order in the sequence, thus storing the entire sequence as a single attractor.
However, this model suffers from the same capacity limitations as the Hopfield Network. Whittington
et al. [54] suggest a mechanism to control sequence retrieval via an external controller, analogous to
the role we ascribe to the basal ganglia for context-dependent gating. Herron et al. [55] investigate a
mechanism for robust sequence recall within complex systems more broadly, reducing crosstalk by
directly modulating interactions between neurons rather than the inputs into neurons. Tang et al. [56]
propose a model for sequential recall akin to SeqNet with an implicit statistical whitening process.
Karuvally et al. [57] introduce a model closely related to the biologically-plausible implementation
of our MixedNet and analyze it in the setting of continuous-time dynamics, allowing for intralayer
synapses within the hidden layer and different timescales between the hidden and feature layers.

While we have focused on a generalization of the fixed-point capacity for sequence memory, this is
not the only notion of capacity one could consider. In other studies of MHNs, instead of considering
stability as the probability of staying at a fixed point, researchers quantify the probability that the
network will reach a fixed point within a single transition [31, 58, 59]. This approach allows one
to quantify noise-robustness and the size of each memory’s basin of attraction [35]. More broadly,
one could consider other definitions of associative memory capacity not addressed here, including
those that depend only on network architecture and not on the assumption of a particular learning rule
[60, 61]. However, as compared to the relatively simple analysis that is possible for the fixed-point
capacity of a Hopfield network using a Hebbian learning rule, analyzing these alternative notions of
capacity in nonlinear networks can pose significant technical challenges [61–63].

In this work, we limited ourselves to theoretical analysis of discrete-time networks storing binary
patterns. An important direction for future research would be to go beyond the Gaussian theory
in order to develop accurate predictions of the Exponential DenseNet capacity. There are also
many potential avenues for extending these models and methods to continuous-time networks,
continuous-valued patterns, computing capacity for correlated patterns, testing different weight
functions, and examining different network topologies. Finally, we hope to take inspiration from the
recent resurgence of RNNs in long sequence modeling to use this model for real-world tasks [64, 65].
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A Review of Modern Hopfield Networks

Here we review the Hopfield network and its modern generalization as an auto-associative memory
model. These ideas will be helpful for storing sequences in network dynamics.

A.1 The Hopfield Network

We first introduce the classic Hopfield Network [23]. Let N be the number of neurons in the network
and S(t) ∈ {−1,+1}N be the state of the network at time t. The task is to store P patterns,
{ξ1, . . . , ξµ}, where ξµj ∈ {±1} is the jth neuron of the µth pattern. The goal is to design a network
with dynamics such that when the network is initialized with a pattern, it will converge to one of the
stored memories.

The Hopfield Network [23] attempts this by following the discrete-time synchronous update rule4:

S(t+ 1) = THN (S(t)), (A.1)

where the transition operator THN (·)i for neuron i is defined in terms of symmetric Hebbian weights:

THN (S)i = sgn

∑
j ̸=i

JijSj

 , Jij =
1

N

P∑
µ=1

ξµi ξ
µ
j . (A.2)

Note that we are excluding self-interaction terms (Jii) in Equation A.2. To interpret this dynamics
from another useful point of view, we define the overlap, or Mattis magnetization, mµ

i of the network
state S with pattern ξµ. We can then rewrite the update rule for the Hopfield Network as

THN (S)i := sgn

[
P∑

µ=1

ξµi m
µ
i

]
, mµ

i :=
1

(N − 1)

∑
j ̸=i

ξµj Sj (A.3)

We interpret this as at every time t, the network tries to identify the pattern ξµ it is closest to and
updates neuron i to the value for that pattern. A natural question to ask about the associative memory
networks is their capacity: how many patterns can be stored and recalled with minimal error? This
question has been the subject of many studies [23, 27–29, 33–36]. Intuitively, in recalling a pattern
ξν , what limits the network’s capacity is the overlap between the pattern ξν and other patterns,
referred to as the crosstalk [26, 36].

A precise answer to the storage capacity question can be given under the assumption that the patterns
{ξµ} are sampled from some probability distribution. While different notions of capacity have
been considered in the literature [23, 27–29, 33–36], we focus on the fixed-point capacity, which
characterizes the probability that, when initialized at a given pattern, the network dynamics do not
move the state away from that point. To render the problem analytically tractable, it is usually assumed
that the pattern components are i.i.d. Rademacher random variables, i.e., P(ξµj = ±1) = 1/2 for all
j and µ. Then, at finite network size one can define the capacity as

PHN (N, c) = max
{
P ∈ {2, . . . , 2N} : P

[
∩Pµ=1{THN (ξµ) = ξµ}

]
≥ 1− c

}
, (A.4)

where c ∈ [0, 1) is a fixed error tolerance. As we review in detail in Appendix B, one finds an
asymptotic capacity estimate PHN ∼ N

4 log(N) for c = 0, which can be shown to be a sharp threshold
[33–35].

A.2 Modern Hopfield Networks

Recent work from Krotov and Hopfield [30, 66] reinvigorated a line of research into generalized
Hopfield Networks with larger capacity [67–72], resulting in what are now called Dense Associative
Memories or Modern Hopfield Networks:

TMHN (S)i := sgn

[
P∑

µ=1

ξµi f (mµ
i )

]
(A.5)

4For the Hopfield network, one can also consider an asynchronous update rule in which only one neuron is
updated at each timestep [23, 26].
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where f , referred to as the interaction function, is a nonlinear monotonically increasing function
whose purpose is to separate the pattern overlaps for better signal to noise ratio. Since mµ

i (t) has a
maximum value of 1, this means contributions from patterns with partial overlaps will be reduced
by the interaction function. This diminishes the crosstalk and thereby increases the probability of
transitioning to the correct pattern. If the interaction function is chosen to be f(x) = xd, then the
MHN’s capacity has been shown to scale polynomially with network size as P ∼ βd

Nd

log(N) , where βd

is a numerical constant depending on the degree d [30, 73–75]. Using a different definition of capacity,
Demircigil et al. [31] have also shown that an exponential nonlinearity can lead to exponential scaling
of the capacity. See [32] for a recent review of these results.

B Review of Hopfield network fixed-point capacity

In this Appendix, we review the computation of the classical Hopfield network fixed-point capacity.
Our approach will follow—but not exactly match—that of Petritis [33]. Though these results are
standard, we review them in detail both because this approach will inspire in part our approach to
the DenseNet, and because several important steps of the analysis are significantly simpler than the
corresponding steps for the DenseNet.

We begin by recalling that the Hopfield network update can be written as

THN (S)i := sgn

 P∑
µ=1

ξµi

 1

N − 1

∑
j ̸=i

ξµj Sj

 , (B.1)

and that our goal is to determine

PHN (N, c) = max
{
P ∈ {2, . . . , 2N} : P

[
∩Pµ=1{THN (ξµ) = ξµ}

]
≥ 1− c

}
(B.2)

for some absolute constant 0 ≤ c < 1, at least in the regime where N,P ≫ 1 [33–36]. As is standard
in theoretical studies of Hopfield model capacity [26–29, 33–36], we take in these probabilities the
pattern components ξµk to be independent and identically distributed Rademacher random variables.
We can expand the memorization probability as a union of single-bitflip events:

P

[
P⋂

µ=1

{THN (ξµ) = ξµ}

]
= 1− P

[
P⋃

µ=1

N⋃
i=1

{THN (ξµ)i ̸= ξµi }

]
. (B.3)

This illustrates why analyzing the memorization probability is complicated: the single-pattern events
THN (ξµ) = ξµ are not independent across patterns µ, and each single-pattern event is itself the
intersection of non-independent single-neuron events THN (ξµ)i = ξµi . However, as the single-bitflip
probabilities P[THN (ξµ)j ̸= ξµj ] are identical for all µ and j, we can obtain a straightforward union
bound

P

[
P⋂

µ=1

{THN (ξµ) = ξµ}

]
= 1− P

[
P⋃

µ=1

N⋃
i=1

{THN (ξµ)i ̸= ξµi }

]
(B.4)

≥ 1−
P∑

µ=1

N∑
i=1

P [THN (ξµ)i ̸= ξµi ] (B.5)

= 1−NPP[THN (ξ1)1 ̸= ξ11 ], (B.6)

where we focus without loss of generality on the first element of the first pattern. Therefore, if we
can control the single-bitflip probability P[THN (ξ1)1 ̸= ξ11 ], we can obtain a lower bound on the true
capacity. In particular,

PHN (N, c) ≥ max
{
P ∈ {2, . . . , 2N} : NPP[THN (ξ1)1 ̸= ξ11 ] ≤ c

}
(B.7)
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From the definition of the Hopfield network update rule, we have

P[THN (ξ1)1 ̸= ξ11 ] = P

sgn

 1

N − 1

P∑
µ=1

∑
j ̸=i

ξµ1 ξ
µ
j ξ

1
j

 ̸= ξ11

 (B.8)

= P

 1

N − 1

P∑
µ=1

∑
j ̸=i

ξ11ξ
µ
1 ξ

1
j ξ

µ
j < 0

 (B.9)

= P [C > 1] , (B.10)

where we have defined

C =
1

N − 1

P∑
µ=2

∑
j ̸=i

ξ11ξ
µ
1 ξ

1
j ξ

µ
j (B.11)

and used the fact that the distribution of C is symmetric. C is referred to as the crosstalk, because it
represents the effect of interference between the first pattern and the other P − 1 patterns on recall
of the first pattern. We can simplify the crosstalk using the fact that, since we have assumed i.i.d.
Rademacher patterns, we have the equality in distribution

ξ1j ξ
µ
j

d
= ξµj (B.12)

for all µ = 2, . . . , P and j = 1, . . . , N , yielding

C
d
=

1

N − 1

P∑
µ=2

∑
j ̸=i

ξµ1 ξ
µ
j . (B.13)

Similarly, we have

ξµ1 ξ
µ
j

d
= ξµj (B.14)

for all µ = 2, . . . , P and j = 2, . . . , N , which finally yields

C
d
=

1

N − 1

P∑
µ=2

∑
j ̸=i

ξµj . (B.15)

Therefore, for the classic Hopfield network the crosstalk is equal in distribution to the sum of
(P − 1)(N − 1) i.i.d. Rademacher random variables.

B.1 Approach 1: Hoeffding’s inequality

Now, we can immediately apply Hoeffding’s inequality [76], which implies that for any t > 0

P

[
P∑

µ=2

N∑
k=2

ξµk > t

]
≤ exp

(
−1

2

t2

(P − 1)(N − 1)

)
. (B.16)

We then have that

P

[
P∑

µ=2

N∑
k=2

ξµk > N − 1

]
≤ exp

(
−1

2

N − 1

P − 1

)
. (B.17)

We then have the bound

PHN (N, c) ≥ max

{
P ∈ {2, . . . , 2N} : NP exp

(
−1

2

N − 1

P − 1

)
≤ c

}
. (B.18)

We now want to consider the regime N ≫ 1, and demand that the error probability should tend to
zero as we increase N . If we substitute in the Ansatz

P ∼ N

α logN
, (B.19)
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the bound is easily seen to tend to zero for all α ≥ 4, yielding an estimated capacity of

PHN ∼
N

4 logN
. (B.20)

As this estimates follows from a sequence of lower bounds on the memorization probability, it is a
lower bound on the true capacity of the model [33]. However, via a more involved argument that
accounts for the associations between the events THN (ξµ) = ξµ, it was shown by Bovier [34] to be
tight.

For the classical Hopfield network, the single bitflip probability P[C > 1] is easy to control using
elementary concentration inequalities because the crosstalk can be expressed as a sum of (P −
1)(N − 1) i.i.d. random variables. Therefore, we expect the crosstalk to concentrate whenever N
or P or both together are large. However, for the DenseNet, we will find in Appendix C that the
crosstalk is given as the sum of P − 1 i.i.d. random variables, each of which is a nonlinear function
applied to the sum of N − 1 i.i.d. Rademacher random variables. Naïve application of Hoeffding’s
inequality is then not particularly useful. We will therefore take a simpler, though less rigorously
controlled approach, which can also be applied to the classical Hopfield network: we approximate
the distribution of the crosstalk as Gaussian [26].

B.2 Approach 2: Gaussian approximation

For the classical Hopfield network, the fact that the crosstalk can be expressed as a sum of (P −
1)(N − 1) i.i.d. Rademacher random variables means that the classical central limit theorem implies
that it tends in distribution to a Gaussian whenever (P − 1)(N − 1) tends to infinity. By symmetry,
the mean of the crosstalk is zero, while its variance is easily seen to be

var(C) =
P − 1

N − 1
. (B.21)

If we approximate the distribution of the crosstalk for N and P large but finite by a Gaussian, we
therefore have

P[C > 1] ≈ H

(√
N − 1

P − 1

)
(B.22)

where H(x) = erfc(x/
√
2)/2 is the Gaussian tail distribution function. We want to have P[C >

1]→ 0, so we must have (P − 1)/(N − 1)→ 0. Then, we can use the asymptotic expansion [26]

H(
√
z) =

1√
2πz

exp
(
−z

2

)[
1 +O

(
1

z

)]
as z →∞ (B.23)

to obtain the heuristic Gaussian approximation

P[C > 1] ≈

√
(P − 1)

2π(N − 1)
exp

(
− (N − 1)

2(P − 1)

)
. (B.24)

If we use this Gaussian approximation instead of the Hoeffding bound applied above, we can easily
see that we will obtain identical estimates for the capacity with an error tolerance tending to zero.
However, we have given up the rigor of the bound from Hoeffding’s inequality, since we have not
controlled the rate of convergence to the Gaussian tail probability. In particular, the Berry-Esseen
theorem would give in this case a uniform additive error bound of 1/

√
(P − 1)(N − 1), which in

the regime P ∼ N/[α logN ] cannot compete with the factors of N or NP which we want P[C > 1]
to overwhelm. We will not worry about this issue, as we are concerned more with whether we can
get accurate capacity estimates that match numerical experiment than whether we can prove those
estimates completely rigorously.

We can also use the Gaussian approximation to estimate the capacity for a non-zero error threshold c
at finite N . Concretely, if we demand that the union bound is saturated, i.e.,

NP P[THN (ξ1)1 ̸= ξ11 ] = c, (B.25)

S4



under the Gaussian approximation for the bitflip probability we have the self-consistent equation

NPH

(√
N − 1

P − 1

)
= c (B.26)

for P , which we can re-write as

P − 1 =
N − 1

[H−1(c/NP )]2
. (B.27)

This is a transcendental self-consistent equation, which is not easy to solve analytically. However,
we can make some progress at small c/(NP ). Using the asymptotic expansion of the inverse of the
complementary error function [77], we have

[H−1(x)]2 = 2 inverfc(2x)2 (B.28)

∼ − log

[
4πx2 log

(
1

2x

)]
(B.29)

= −2 log(x)− log(4π)− log log

(
1

2x

)
(B.30)

∼ −2 log(x) (B.31)
as x→ 0. Then, assuming c is such that − log(c) is negligible relative to log(NP ), we have

P ∼ N

2 log(NP )
, (B.32)

which we can solve for P as

P ∼ N

2W0(N2/2)
, (B.33)

where W0 is the principal branch of the Lambert-W function [77]. But, at large N , we can use the
asymptotic W0(N) ∼ log(N) to obtain the approximate scaling

P ∼ N

4 log(N)
, (B.34)

which agrees with our earlier result. Conceptually, this intuition is consistent with there being a sharp
transition in the thermodynamic limit, as proved rigorously by Bovier [34].

C DenseNet Capacity

In this Appendix, we analyze the capacity of the DenseNet. As introduced in Section 2.1 of the main
text, there are two notions of robustness to consider: the robustness of a single transition and the
robustness of the full sequence. For a fixed N ∈ {2, 3, . . .} and an error tolerance c ∈ [0, 1), we
define these two notions of capacity as

PT (N, c) = max
{
P ∈ {2, . . . , 2N} : P

[
TDN (ξ1) = ξ2

]
≥ 1− c

}
(C.1)

and
PS(N, c) = max

{
P ∈ {2, . . . , 2N} : P

[
∩Pµ=1{TDN (ξµ) = ξµ+1}

]
≥ 1− c

}
, (C.2)

respectively.

Our goal is to approximately compute the capacity in the regime in which N and P are large.
Following Petritis [33]’s approach to the HN, to make analytical progress, we can use a union bound
to control the single-step error probability in terms of the probability of a single bitflip:

P
[
TDN (ξµ) = ξµ+1

]
= 1− P

[
N⋃
i=1

{TDN (ξµ)i ̸= ξµ+1
i }

]
(C.3)

≥ 1−
N∑
i=1

P
[
TDN (ξµ)i ̸= ξµ+1

i

]
(C.4)

= 1−NP[TDN (ξ1)1 ̸= ξ12 ]. (C.5)
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where we use the fact that all elements of all patterns are i.i.d. by assumption. We use a similar
approach to control the sequence error probability in terms of the probability of a single bitflip:

P

[
P⋂

µ=1

{TDN (ξµ) = ξµ+1}

]

= 1− P

[
P⋃

µ=1

N⋃
i=1

{TDN (ξµ)i ̸= ξµ+1
i }

]
(C.6)

≥ 1−
P∑

µ=1

N∑
i=1

P
[
TDN (ξµ)i ̸= ξµ+1

i

]
(C.7)

= 1−NPP[TDN (ξ1)1 ̸= ξ12 ]. (C.8)

Thus, as claimed in the main text, we have the lower bounds

PT (N, c) ≥ max
{
P ∈ {2, . . . , 2N} : NP[TDN (ξ1)1 ̸= ξ12 ] ≤ c

}
(C.9)

and

PS(N, c) ≥ max
{
P ∈ {2, . . . , 2N} : NPP[TDN (ξ1)1 ̸= ξ12 ] ≤ c

}
. (C.10)

As introduced in the main text, for perfect recall, we want to take the threshold c to be zero, or at least
to tend to zero as N and P tend to infinity. The capacities estimated through this argument are lower
bounds on the true capacities, as they are obtained from lower bounds on the true recall probability.
However, we expect for these bounds to in fact be tight in the thermodynamic limit [33, 34].

By the definition of the DenseNet update rule with interaction function f given in Equation (2), we
have

TDN (ξ1)1 = sgn

 P∑
µ=1

ξµ+1
1 f

 1

N − 1

N∑
j=2

ξµj ξ
1
j

 (C.11)

and therefore the single-bitflip probability is

P[TDN (ξ1)1 ̸= ξ21 ] = P

sgn
 P∑
µ=1

ξµ+1
1 f

 1

N − 1

N∑
j=2

ξµj ξ
1
j

 ̸= ξ21

 (C.12)

= P

ξ21 P∑
µ=1

ξµ+1
1 f

 1

N − 1

N∑
j=2

ξµj ξ
1
j

 < 0

 (C.13)

= P

f(1) + ξ21

P∑
µ=2

ξµ+1
1 f

 1

N − 1

N∑
j=2

ξµj ξ
1
j

 < 0

 (C.14)

For both the polynomial (f(x) = xd) and exponential (f(x) = e(N−1)(x−1)) interaction functions,
f(1) = 1, and so

P[TDN (ξ1)1 ̸= ξ21 ] = P

 P∑
µ=2

ξ21ξ
µ+1
1 f

 1

N − 1

N∑
j=2

ξµj ξ
1
j

 < −1

 . (C.15)

We refer to the random variable

C =

P∑
µ=2

ξ21ξ
µ+1
1 f

 1

N − 1

N∑
j=2

ξµj ξ
1
j

 (C.16)

on the left-hand-side of this inequality as the crosstalk, because it represents the effect of interference
between the first pattern and all other patterns [26, 36].
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We now observe that, as we have excluded self-interactions (i.e., the sum over neurons inside the
interaction function does not include j = 1), we can use the periodic boundary conditions to shift
indices as ξµ1 ← ξµ+1

1 for all µ, yielding

C
d
=

P∑
µ=2

ξ11ξ
µ
1 f

 1

N − 1

N∑
j=2

ξµj ξ
1
j

 (C.17)

Thus, the single-bitflip probability for this DenseNet is identical to that for the corresponding MHN
with symmetric interactions. Then, we can use the fact that ξµj ξ

1
j

d
= ξµj for all µ = 2, . . . , P to obtain

C
d
=

P∑
µ=2

ξµ1 f

 1

N − 1

N∑
j=2

ξµj

 . (C.18)

Now, define the P − 1 random variables

χµ = ξµ1 f

 1

N − 1

N∑
j=2

ξµj

 (C.19)

for µ = 2, . . . , P , such that the crosstalk is their sum,

C =

P∑
µ=2

χµ. (C.20)

As the patterns ξµj are i.i.d., χµ are i.i.d. random variables of mean

E[χµ] = E[ξµ1 ]E

f
 1

N − 1

N∑
j=2

ξµj

 = 0 (C.21)

and variance

var(χµ) = E

f
 1

N − 1

N∑
j=2

ξµj

2
 , (C.22)

which is bounded from above for any sensible interaction function. We observe also that the
distribution of each χµ is symmetric because of the symmetry of the distribution of ξµ1 . We will
therefore simply write χ for any given χµ.

Then, the classical central limit theorem implies that the crosstalk tends in distribution to a Gaussian
of mean zero and variance (P − 1) var(χ) as P → ∞, at lease for any fixed N . However, we are
interested in the joint limit in which N,P → ∞ together. We will proceed by approximating the
distribution of C as Gaussian, and will not attempt to rigorously control its behavior in the joint limit.

Approximating the distribution of the crosstalk for N,P ≫ 1 by a Gaussian, we then have

P[TDN (ξ1)1 ̸= ξ21 ] ≈ H

(
1√

(P − 1) var(χ)

)
(C.23)

where H(x) = erfc(x/
√
2)/2 is the Gaussian tail distribution function. We want to have

P[TDN (ξ1)1 ̸= ξ21 ] → 0, so we must have (P − 1) var(χ) → 0. Then, we can use the asymp-
totic expansion [26]

H(
√
z) =

1√
2πz

exp
(
−z

2

)[
1 +O

(
1

z

)]
as z →∞ (C.24)

to obtain

P[TDN (ξ1)1 ̸= ξ21 ] ≈
√

(P − 1) var(χ)

2π
exp

(
− 1

2(P − 1) var(χ)

)
. (C.25)
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For each model, we can evaluate var(χ) and then determine the resulting predicted capacity.

As we did for the classic Hopfield network in Appendix B, we can estimate the capacity at finite c
within the Gaussian approximation by inverting the Gaussian tail distribution function. Concretely,
under the union bound, we can estimate the transition capacity by solving

c = NH

(
1√

(PT − 1) var(χ)

)
, (C.26)

which yields

PT − 1 =
1

var(χ)[H−1(c/N)]2
, (C.27)

and the sequence capacity by solving the transcendental self-consistent equation

c = NPSH

(
1√

(PS − 1) var(χ)

)
, (C.28)

which we can re-write as

PS − 1 =
1

var(χ)[H−1(c/NPS)]2
. (C.29)

As in the classic Hopfield case, we can simplify these complicated equations somewhat by assuming
that c/N and c/(NPS) are small. Concretely, using the asymptotic

[H−1(x)]2 ∼ −2 log(x) (C.30)

for x→ 0, the transition capacity simplifies to

PT − 1 ∼ 1

2 var(χ) log(N)
(C.31)

under the assumption that − log(c) is negligible relative to log(N). For the sequence capacity,
we can follow an identical argument to that used for the classic Hopfield network to simplify the
self-consistent equation to

PS ∼
1

2 var(χ) log(NPS)
(C.32)

under the assumption that − log(c) is negligible relative to log(NPS), which we can solve to obtain

PS ∼
1

2 var(χ)W0[N/2 var(χ)]
. (C.33)

Assuming that N/ var(χ)→∞ as N →∞, we can use the asymptotic W0(N) ∼ log(N) to obtain
the asymptotic

PS ∼
1

2 var(χ) log[N/ var(χ)]
. (C.34)

Our first check on the accuracy of the Gaussian approximation will be comparison of the resulting
predictions for capacity with numerical experiment. As another diagnostic, we will consider the
excess kurtosis κ = κ4(C)/κ2(C) for κn(C) the n-th cumulant of C. If the distribution is indeed
Gaussian, the excess kurtosis vanishes, while large values of the excess kurtosis indicate deviations
from Gaussianity. By the additivity of cumulants, we have

κn(C) = (P − 1)κn(χ). (C.35)

By symmetry, all odd cumulants of χ—and therefore all odd cumulants of C—are identically zero.
As noted above, we have

var(χ) = κ2(χ) = E

f
 1

N − 1

N∑
j=2

ξµj

2
 . (C.36)
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If C is indeed Gaussian, then all cumulants above the second should vanish. As the third cumulant
vanishes by symmetry, the leading possible correction to Gaussianity is the fourth cumulant, which
as χ has zero mean is given by

κ4(χ) = E[(χ)4]− 3E[(χ)2]2 (C.37)

= E

f
 1

N − 1

N∑
j=2

ξµj

4
− 3E

f
 1

N − 1

N∑
j=2

ξµj

2

2

. (C.38)

Rather than considering the fourth cumulant directly, we will consider the excess kurtosis

κ =
κ4(C)

κ2(C)2
=

1

P − 1

κ4(χ)

κ2(χ)2
, (C.39)

which is a more useful metric because it is normalized.

C.1 Polynomial DenseNet Capacity

We first consider the Polynomial DenseNet, with interaction function f(x) = xd for d ∈ N>0. To
compute the capacity, our goal is then to evaluate

var(χ) = E


 1

N − 1

N∑
j=2

ξ1j

2d
 (C.40)

at large N . From the central limit theorem, we expect

E


 1

N − 1

N∑
j=2

ξ1j

2d
 ∼ (2d− 1)!!

(N − 1)d
. (C.41)

We can make this quantitatively precise through the following straightforward argument. Let

Ξ =
1√

N − 1

N∑
j=2

ξ2j . (C.42)

We then have immediately that the moment generating function of Ξ is

M(t) = E[etΞ] = cosh

(
t√

N − 1

)N−1

, (C.43)

hence the cumulant generating function is

K(t) = logM(t) = (N − 1) log cosh

(
t√

N − 1

)
. (C.44)

The function x 7→ log cosh(x) is an even function of x, and is analytic near the origin, with the first
few orders of its MacLaurin series being

log cosh(x) =
x2

2
− x4

12
+O(x6). (C.45)

Then, the odd cumulants of Ξ vanish—as we expect from symmetry—while the even cumulants obey

κ2k =
C2k

(N − 1)k−1
(C.46)

for combinatorial factors C2k that do not scale with N . We have, in particular, C2 = 1 and C4 = −2.
By the moments-cumulants formula, we have

E[Ξ2k] = B2k(0, κ2, 0, κ4, · · · , κ2k) (C.47)

S9



for B2k the 2k-th complete exponential Bell polynomial. From this, it follows that

E[Ξ2k] = (2k − 1)!! +O(N−1), (C.48)

as all cumulants other than κ2 = 1 are O(N−1). Therefore, neglecting subleading terms, we have

var(χ) = E


 1

N − 1

N∑
j=2

ξ1j

2d
 =

(2d− 1)!!

Nd

[
1 +O

(
1

N

)]
. (C.49)

Following the general arguments above, we then approximate

P[TDN (ξ1)1 ̸= ξ21 ] ∼
√

P (2d− 1)!!

2πNd
exp

(
− Nd

2P (2d− 1)!!

)
. (C.50)

To determine the single-transition capacity following the argument in Section 2.1, we must determine
how large we can take P = P (N) such that NP[TDN (ξ1)1 ̸= ξ21 ]→ 0. Following the requirement
that P var(χ)→ 0, we make the Ansatz

P ∼ Nd

α(2d− 1)!! logN
(C.51)

for some α. We then have

NP[TDN (ξ1)1 ̸= ξ21 ] ∼
√

1

2πα logN
N1−α/2. (C.52)

This tends to zero if α ≥ 2, meaning that the predicted capacity in this case is

PT ∼
Nd

2(2d− 1)!! logN
. (C.53)

We now want to determine the sequence capacity, which requires the stronger condition
NPP[TDN (ξ1)1 ̸= ξ21 ]→ 0. Again making the Ansatz

P ∼ Nd

α(2d− 1)!! logN
(C.54)

for some α, we then have

NPP[TDN (ξ1)1 ̸= ξ21 ] ∼
1√

2π(2d− 1)!! (α logN)3/2
Nd+1−α/2, (C.55)

which tends to zero if α ≥ 2d+ 2. Then, the predicted sequence capacity is

PS ∼
Nd

2(d+ 1)(2d− 1)!! logN
. (C.56)

If we consider the alternative asymptotic formulas obtained above from the finite-c argument, we
have

PT ∼
1

2 var(χ) log(N)
∼ Nd

2(2d− 1)!! log(N)
(C.57)

and

PS ∼
1

2 var(χ) log[N/ var(χ)]
∼ Nd

2(2d− 1)!! log[Nd+1/(2d− 1)!!]
∼ Nd

2(d+ 1)(2d− 1)!! log(N)
,

(C.58)

which agree with these results. For evidence of the finite-c argument for the polynomial DenseNet,
observe Figure C.1.
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Figure C.1: The transition capacity of the polynomial DenseNet is demonstrated for different values
of error tolerance c. We see that even for c ̸= 0, we get similar scaling curves although the capacities
slightly increase consistently as we increase c, indicated by a transition from dark to light. We
plot from c = 0.0 to c = 0.5 for each degree d, with the legend labeling curves up to c = 0.3 to
demonstrate the general trend.

Using the Gaussian approximation for moments of χ given above, we can easily work out that

κ4(χ) = E[(χ)4]− 3E[(χ)2] (C.59)

= E

f
 1

N − 1

N∑
j=2

ξµj

4
− 3E

f
 1

N − 1

N∑
j=2

ξµj

2

2

(C.60)

=
1

N2d
{(4d− 1)!!− 3[(2d− 1)!!]2}

[
1 +O

(
1

N

)]
. (C.61)

Then, the excess kurtosis of the Polynomial DenseNet’s crosstalk is

κ =
1

P − 1

[
(4d− 1)!!

[(2d− 1)!!]2
− 3

] [
1 +O

(
1

N

)]
. (C.62)

Thus, for the Polynomial DenseNet, we expect the excess kurtosis to be small for any fixed d so
long as P and N are both fairly large, without any particular requirement on their relationship. In
particular, under the Gaussian approximation we predicted above that the transition and sequence
capacities should both scale as

P ∼ Nd

αd logN
, (C.63)

where αd depends on d but not on N . This gives an excess kurtosis of

κ =
αd logN

Nd

[
(4d− 1)!!

[(2d− 1)!!]2
− 3

] [
1 +O

(
1

N

)]
(C.64)

which for any fixed d rapidly tends to zero with increasing N . This suggests that the Gaussian
approximation should be reasonably accurate even at modest N , but of course does not constitute a
proof of its accuracy because we have not considered higher cumulants. However, this matches the
results of numerical simulations shown in Figure 2.
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C.2 Exponential DenseNet capacity

We now turn our attention to the Exponential DenseNet, with separation function f(x) =
e(N−1)(x−1). In this case, we have

var(χ) = exp[−2(N − 1)]E

exp
2

N∑
j=2

ξ2j

 (C.65)

= exp[−2(N − 1)]

N∏
j=2

E
[
exp

(
2ξ2j
)]

(C.66)

= exp[−2(N − 1)] cosh(2)N−1 (C.67)

=
1

βN−1
, (C.68)

where we have defined the constant

β =
exp(2)

cosh(2)
≃ 1.96403. (C.69)

Then, we have the Gaussian approximation

P[TDN (ξ1)1 ̸= ξ21 ] ∼

√
P

2πβN−1
exp

(
−βN−1

2P

)
. (C.70)

As in the polynomial case, we first determine the single-transition capacity by demanding that
NP[TDN (ξ1)1 ̸= ξ21 ]→ 0. We plug in the Ansatz

P ∼ βN−1

α logN
(C.71)

for some α, which yields

NP[TDN (ξ1)1 ̸= ξ21 ] ∼
√

1

2πα logN
N1−α/2. (C.72)

This tends to zero if α ≥ 2, which gives a predicted capacity of

PT ∼
βN−1

2 logN
. (C.73)

Considering the sequence capacity, which again requires that NPP[TDN (ξ1)1 ̸= ξ21 ]→ 0, we plug
in the Ansatz

P ∼ βN−1

αN
, (C.74)

which yields

NPP[TDN (ξ1)1 ̸= ξ21 ] ∼
1

αβ

√
1

2παN
exp

[(
log β − α

2

)
N
]
. (C.75)

This tends to zero for α ≥ 2 log β, meaning that the predicted capacity is in this case

PS ∼
βN−1

2 log(β)N
. (C.76)

Therefore, while the ratio of the predicted single-transition to sequence capacities is finite for the
Polynomial DenseNet—it is simply PS/PT ∼ d + 1—for the Exponential DenseNet it tends to
zero as PS/PT ∼ logN/[log(β)N ].

Using the asymptotic formulas obtained above from the finite-c argument, we have

PT ∼
1

2 var(χ) log(N)
=

βN−1

2 log(N)
(C.77)
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Figure C.2: The transition capacity of the exponential DenseNet is demonstrated for different values
of error tolerance c. We see that even for c ̸= 0, we get similar scaling curves although the capacities
slightly increase consistently as we increase c.

and

PS ∼
1

2 var(χ) log[N/ var(χ)]
=

βN−1

2 log[NβN−1]
∼ βN−1

2 log(β)N
, (C.78)

which agree with these results. For evidence of the finite-c argument for the exponential DenseNet,
observe Figure C.2.

Now considering the fourth cumulant, we can easily compute

κ4(χ) =

(
cosh(4)

exp(4)

)N−1

− 3

(
cosh(2)2

exp(4)

)N−1

, (C.79)

which yields an excess kurtosis of

κ =
1

P − 1

[(
cosh(4)

cosh(2)2

)N−1

− 3

]
. (C.80)

For this to be small, P must be exponentially large in N , which contrasts with the situation for
the Polynomial DenseNet, in which the excess kurtosis is small for any reasonably large P . If we
consider taking

P ∼ βN−1

α logN
, (C.81)

for a constant α, as the Gaussian theory predicts for the Exponential DenseNet transition capacity,
we have

κ ∼ α logN

βN−1

[(
cosh(4)

cosh(2)2

)N−1

− 3

]
(C.82)

∼ α logN

(
cosh(4)

exp(2) cosh(2)

)N−1

(C.83)

≃ α log(N)(0.9823)N−1. (C.84)

This tends to zero as N increases, but only very slowly. In particular, log(N)(0.9823)N−1 increases
with N up to around N ≃ 19, where it attains a maximum value around 2, before decreasing towards
zero. The situation is even worse for the sequence capacity, for which the Gaussian theory predicts

P ∼ βN−1

αN
, (C.85)
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yielding

κ ∼ αN

βN−1

[(
cosh(4)

cosh(2)2

)N−1

− 3

]
(C.86)

∼ αN

(
cosh(4)

exp(2) cosh(2)

)N−1

(C.87)

≃ αN(0.9823)N−1. (C.88)
N(0.9823)N−1 increases with N up to around N ≃ 56, where it attains a value of approximately 21.

Taken together, these results suggest that we might expect substantial finite-size corrections to the
Gaussian theory’s prediction for the capacity. In particular, as the excess kurtosis of the crosstalk is
positive, the tails of the crosstalk distribution should be heavier-than-Gaussian, suggesting that the
Gaussian theory should overestimate the true capacity. This holds provided that the lower bound on
the memorization probability resulting from the union bound is reasonably tight.

D Bounding the polynomial DenseNet capacity

Here, we adapt Demircigil et al. [31]’s proof of a rigorous asymptotic lower bound on the polynomial
MHN’s capacity to obtain a rigorous asymptotic lower bound on the DenseNet capacity. This proof is
a step-by-step adaptation of the proof of Theorem 1.2 of Demircigil et al. [31], which we spell out in
detail for clarity.

Our objective is to obtain an upper bound on the single-bitflip probability
P[TDN (ξ1)1 ̸= ξ12 ] (D.1)

which we have argued can be expressed in terms of the crosstalk C as
P[TDN (ξ1)1 ̸= ξ12 ] = P[C < −1] (D.2)

for

C
d
=

P∑
µ=2

ξµ1

 1

N − 1

N∑
j=2

ξµj

d

. (D.3)

Our goal is to prove the following: First, letting α > 2(2d− 1)!! and P = Nd/(α logN), we have
NP[TDN (ξ1)1 ̸= ξ12 ]→ 0 (D.4)

as N →∞. Second, letting α > 2(d+ 1)(2d− 1)!! and P = Nd/(α logN), we have
NPP[TDN (ξ1)1 ̸= ξ12 ]→ 0 (D.5)

as N →∞.

By Chernoff’s inequality (also known as the exponential Chebyschev inequality) [76], we then have

P[TDN (ξ1)1 ̸= ξ12 ] = P

 P∑
µ=2

ξµ1

 N∑
j=2

ξµj

d

< −(N − 1)d

 (D.6)

≤ e−t(N−1)dE exp

−t P∑
µ=2

ξµ1

 N∑
j=2

ξµj

d
 (D.7)

for any t > 0. Using the fact that the pattern elements are i.i.d., we have

E exp

−t P∑
µ=2

ξµ1

 N∑
j=2

ξµj

d
 =

E exp

−tξµ1
 N∑

j=2

ξµj

d



P−1

(D.8)

=

E cosh

t
 N∑

j=2

ξµj

d



P−1

. (D.9)
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Now, let

M =
1√

N − 1

N∑
j=2

ξµj , (D.10)

and expand the expectation as a sum over the possible values m ∈ {0,±(N − 1)−1/2, . . . ,±(N −
1)1/2} of M :

E cosh

t
 N∑

j=2

ξµj

d
 =

∑
m

cosh
[
t(N − 1)d/2md

]
P[M = m]. (D.11)

For N ≫ 1, the distribution of M is nearly Gaussian. We thus split the sum over m to allow us to
treat tail events separately. We fix β > 0, and split the sum at log(N)β :∑

m

cosh
[
t(N − 1)d/2md

]
P[M = m] =

∑
|m|≤log(N)β

cosh
[
t(N − 1)d/2md

]
P[M = m]

+
∑

log(N)β<|m|≤
√
N

cosh
[
t(N − 1)d/2md

]
P[M = m],

(D.12)

where we have used the fact that M ≤
√
N − 1.

We first consider the tail sum over |m| > log(N)β . As cosh is even and non-decreasing in the
modulus of its argument, we have∑

log(N)β<|m|≤
√
N

cosh
[
t(N − 1)d/2md

]
P[M = m] (D.13)

≤ 2 cosh
[
t(N − 1)d

]
P[M > log(N)β ] (D.14)

≤ 2 cosh
[
t(N − 1)d

]
exp

(
−1

2
log(N)2β

)
(D.15)

≤ 2 exp

[
t(N − 1)d − 1

2
log(N)2β

]
, (D.16)

where in the second line we have applied Hoeffding’s inequality to bound P[M > log(N)β ] from
above, and in the third line we have used the bound cosh(z) ≤ exp(z) for any z > 0.

We now consider the sum over |m| ≤ log(N)β . Using the bound cosh(z) ≤ exp(z2/2), we have∑
|m|≤log(N)β

cosh
[
t(N − 1)d/2md

]
P[M = m] ≤

∑
|m|≤log(N)β

exp

[
1

2
t2(N − 1)dm2d

]
P[M = m].

(D.17)

Using the series expansion of the exponential, we have∑
|m|≤log(N)β

exp

[
1

2
t2(N − 1)dm2d

]
P[M = m] (D.18)

=
∑

|m|≤log(N)β

{
1 +

1

2
t2(N − 1)dm2d +

∞∑
k=2

(t2(N − 1)dm2d)k

2kk!

}
P[M = m] (D.19)

= P[|M | ≤ log(N)β ] +
1

2
t2(N − 1)d

∑
|m|≤log(N)β

m2dP[M = m]

+
∑

|m|≤log(N)β

{ ∞∑
k=2

(t2(N − 1)dm2d)k

2kk!

}
P[M = m] (D.20)

S15



where on the third line we have used the linearity of summation. We will now bound each of the three
contributions. The first term is trivially bounded from above by 1:

P[|M | ≤ log(N)β ] ≤ 1. (D.21)

To handle the second, we first observe that∑
|m|≤log(N)β

m2dP[M = m] ≤ E[m2d]. (D.22)

Then, we observe that as m is the normalized sum of N − 1 Rademacher random variables, its
moments tend to those of a standard normal from below as N → ∞, and are for any N strictly
bounded from above by those of the standard normal. Therefore, we have

E[m2d] ≤ (2d− 1)!!. (D.23)

To handle the third term, we first use the fact that for any |m| ≤ log(N)β we have m2d ≤ log(N)2βd,
which gives ∑

|m|≤log(N)β

{ ∞∑
k=2

(t2(N − 1)dm2d)k

2kk!

}
P[M = m]

≤
∑

|m|≤log(N)β

{ ∞∑
k=2

(t2(N − 1)d log(N)2βd)k

2kk!

}
P[M = m] (D.24)

≤ P[|M | ≤ log(N)β ]

∞∑
k=2

(t2(N − 1)d log(N)2βd)k

2kk!
(D.25)

≤
∞∑
k=2

(t2(N − 1)d log(N)2βd)k

2kk!
(D.26)

At this point, [31] uses the bound
∞∑
k=2

(t2(N − 1)d log(N)2βd)k

2kk!
≤ 1

4
(e− 2)(t2(N − 1)d log(N)2βd)2 (D.27)

which holds provided that we choose the arbitrary parameter t such that

t2(N − 1)d log(N)2βd ≤ 2. (D.28)

Assuming that condition is satisfied, we can then combine these results to obtain∑
|m|≤log(N)β

cosh
[
t(N − 1)d/2md

]
P[M = m] (D.29)

≤ 1 +
1

2
t2(N − 1)d(2d− 1)!! +

1

4
(e− 2)(t2(N − 1)d log(N)2βd)2 (D.30)

≤ 1 +
1

2
t2(N − 1)d(2d− 1)!! +

1

4
(t2(N − 1)d log(N)2βd)2 (D.31)

≤ exp

[
1

2
t2(N − 1)d(2d− 1)!! +

1

4
(t2(N − 1)d log(N)2βd)2

]
, (D.32)

where on the the second line we have used the fact that e− 2 ≃ 0.718 . . . < 1 and on the third line
we have used the bound 1 + x ≤ exp(x) for x ≥ 0.

Combining this result with the bound on the tail sum obtained previously, we have that

E cosh

t
 N∑

j=2

ξµj

d
 ≤ exp

[
1

2
t2(N − 1)d(2d− 1)!! +

1

4
(t2(N − 1)d log(N)2βd)2

]

+ 2 exp

[
t(N − 1)d − 1

2
log(N)2β

]
(D.33)
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for any β > 1/2 and

0 < t ≤

√
2

(N − 1)d log(N)2βd
. (D.34)

Therefore, we have

P[TDN (ξ1)1 ̸= ξ12 ] ≤ e−t(N−1)d

{
exp

[
1

2
t2(N − 1)d(2d− 1)!! +

1

4
(t2(N − 1)d log(N)2βd)2

]

+ 2 exp

[
t(N − 1)d − 1

2
log(N)2β

]}P−1

(D.35)

subject to these conditions on β and t.

We now want to determine the single-transition and full-sequence capacities. To do so, we fix α > 0,
and let P = Nd/(α logN). As t is arbitrary, fix γ > 0, and let t = γ/P . For our choice of P , this
gives

t2(N − 1)d log(N)2βd = γ2α2 (N − 1)d

N2d
log(N)2(βd+1) (D.36)

which is clearly less than 2 for N sufficiently large. Therefore, we can apply the bound obtained
above, which for this choice of t simplifies to

P[TDN (ξ1)1 ̸= ξ12 ]

≤ e−t(N−1)d

{
exp

[
1

2
γ2α2(2d− 1)!!

log(N)2

Nd
+

1

4
γ4α4 log(N)4(βd−1)

N2d

]
[1 + o(1)]

+ 2 exp

[(
γα− 1

2
log(N)2β−1

)
log(N)

]
[1 + o(1)]

}P−1

. (D.37)

We can see that the first term in the curly braces tends to 1 with increasing N—as its exponent tends
to zero—while the second term tends to zero as the term in the round brackets within the exponent is
negative for sufficiently large N provided that β > 1/2. We may therefore neglect the second term,
which gives the simplification

P[TDN (ξ1)1 ̸= ξ12 ] ≤ exp

[
−αγ

(
1− 1

2
γ(2d− 1)!!

)
log(N)

]
[1 + o(1)]. (D.38)

To determine the single-transition capacity under the union bound, we want NP[TDN (ξ1)1 ̸= ξ12 ] to
tend to zero. We have

NP[TDN (ξ1)1 ̸= ξ12 ] ≤ exp

{[
1− αγ

(
1− 1

2
γ(2d− 1)!!

)]
log(N)

}
[1 + o(1)]. (D.39)

For this bound to tend to zero, we should have

1− αγ

(
1− 1

2
γ(2d− 1)!!

)
< 0. (D.40)

As γ is arbitrary, we may let γ = 1/(2d− 1)!!, hence the required condition is clearly satisfied if

α > 2(2d− 1)!!, (D.41)

as predicted by the Gaussian approximation. Next, to determine the sequence capacity, we want
NPP[TDN (ξ1)1 ̸= ξ12 ] to tend to zero. We have

NPP[TDN (ξ1)1 ̸= ξ12 ] ≤
1

α logN
exp

{[
d+ 1− αγ

(
1− 1

2
γ(2d− 1)!!

)]
log(N)

}
[1 + o(1)],

(D.42)

hence an identical line of reasoning to that used for the single-transition capacity shows that we must
have

α ≥ 2(d+ 1)(2d− 1)!!. (D.43)

Again, this agrees with the Gaussian theory.
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E Generalized pseudoinverse rule capacity

Here, we show that the generalized pseudoinverse rule can perfectly recall any sequence of linearly-
independent patterns. We recall from (11) that the GPI update rule is

TGPI(S)i = sgn

[
P∑

µ=1

ξµ+1
i f

(
P∑

ν=1

(O+)µνmν(S)

)]
(E.1)

for

Oµν =
1

N

N∑
j=1

ξµj ξ
ν
j (E.2)

the Gram matrix of the patterns. If the patterns are linearly independent, then O is full rank, and the
pseudoinverse reduces to the ordinary inverse: O+ = O−1. Under this assumption, we have

TGPI(ξ
µ)i = sgn

[
P∑

ν=1

ξν+1
i f(δµν)

]
(E.3)

= sgn

f(1)ξµ+1
i + f(0)

∑
ν ̸=µ

ξν+1
i

 , (E.4)

for all µ and i, hence for separation functions satisfying f(1) > 0 and |f(0)| < f(1)/(P − 1) we are
guaranteed to have TGPI(ξ

µ)i = ξµ+1
i as desired. For f(x) = xd, this condition is always satisfied

as f(0) = 0 and f(1) = 1. For f(x) = e(N−1)(x−1), we have f(0) = e−(N−1) and f(1) = 1; the
condition P − 1 < eN−1 must therefore be satisfied. However, as P ≤ N is required for linear
independence, this condition is satisfied so long as N > 3.

F MixedNet Capacity

In this Appendix, we compute the capacity of the mixed network, which from the update rule defined
in (14) has

TMN (ξ1)1 = sgn


P∑

µ=1

ξµ1 fS
 1

N − 1

N∑
j=2

ξµj ξ
1
j

+ λξµ+1
1 fA

 1

N − 1

N∑
j=2

ξµj ξ
1
j

 . (F.1)

Then, assuming that fS(1) = fA(1) = 1 as is true for the interaction functions considered here, we
have

P[TMN (ξ1)1 ̸= ξ21 ] (F.2)

= P

ξ21

 P∑
µ=1

ξµ1 fS

 1

N − 1

N∑
j=2

ξµj ξ
1
j

+ λ

P∑
µ=1

ξµ+1
1 fA

 1

N − 1

N∑
j=2

ξµj ξ
1
j

 < 0

 (F.3)

= P {C < −λ} , (F.4)

where we have defined the crosstalk

C = ξ21ξ
1
1 +

P∑
µ=2

ξ21ξ
µ
1 fS

 1

N − 1

N∑
j=2

ξµj ξ
1
j

+ λ

P∑
µ=2

ξ21ξ
µ+1
1 fA

 1

N − 1

N∑
j=2

ξµj ξ
1
j

 . (F.5)

For j = 2, . . . , N and µ = 2, . . . , P , we have the equality in distribution ξµj ξ
1
j

d
= ξµj , hence

C
d
= ξ21ξ

1
1 +

P∑
µ=2

ξ21ξ
µ
1 fS(Ξ

µ) + λ

P∑
µ=2

ξ21ξ
µ+1
1 fA(Ξ

µ). (F.6)
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where to lighten our notation we define

Ξµ =
1

N − 1

N∑
j=2

ξµj . (F.7)

However, unlike in the DenseNet, we cannot similarly simplify the terms outside the separation
functions. Recalling that we have assumed periodic boundary conditions, we have

C = ξ21ξ
1
1 + λξ21ξ

1
1fA(Ξ

P ) + fS(Ξ
2) +

P∑
µ=3

ξ21ξ
µ
1 fS(Ξ

µ) + λ

P−1∑
µ=2

ξ21ξ
µ+1
1 fA(Ξ

µ) (F.8)

d
= ξ11 + C1 + C2 + C3 + C4, (F.9)

where we have defined

C1 = fS(Ξ
2) + λ ξ31fA(Ξ

2), (F.10)

C2 = ξP1 fS(Ξ
P ) + λξ11fA(Ξ

P ), (F.11)

C3 =

P−1∑
µ=3

ξµ1 fS(Ξ
µ), and (F.12)

C4 = λ

P−1∑
µ=3

ξµ+1
1 fA(Ξ

µ). (F.13)

Importantly, in this case the influence of ξ11 on the crosstalk is O(1), and the distribution is not
well-approximated by a single Gaussian. Instead, as shown in Figure F.1, it is bimodal. We will
therefore approximate it by a mixture of two Gaussians, one for each value of ξ11 . This approximation
can be justified by noting that the boundary terms in C1 and C2 should be negligible at large N and
P , while C3 and C4 should give a Gaussian contribution at sufficiently large P . We now observe
that, for any fS and fA, the conditional means of each term are

E[C1 | ξ11 ] = E[fS(Ξ)] (F.14)

E[C2 | ξ11 ] = λξ11E[fA(Ξ)] (F.15)

E[C3 | ξ11 ] = 0 (F.16)

E[C4 | ξ11 ] = 0, (F.17)

where we note that all Ξµs are identically distributed, so we can simply write Ξ for any one of them.
Then, the conditional mean of the crosstalk is

E[C | ξ11 ] = ξ11 +

4∑
j=1

E[Cj | ξ11 ] (F.18)

= ξ11{1 + λE[fA(Ξ)]}+ E[fS(Ξ)]. (F.19)

Considering the variance of C, the variances of the different contributions are

var[C1 | ξ11 ] = var[fS(Ξ)] + λ2E[fA(Ξ)2] (F.20)

var[C2 | ξ11 ] = E[fS(Ξ)2] + λ2 var[fA(Ξ)] (F.21)

var[C3 | ξ11 ] = (P − 3)E[fS(Ξ)2] (F.22)

var[C4 | ξ11 ] = λ2(P − 3)E[fA(Ξ)2], (F.23)

while the covariances are

cov[C1, C2 | ξ11 ] = 0 (F.24)

cov[C1, C3 | ξ11 ] = λE[fA(Ξ)]E[fS(Ξ)] (F.25)

cov[C1, C4 | ξ11 ] = 0, (F.26)
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Figure F.1: Crosstalk of Polynomial MixedNet where N = 100, λ = 2.5, dS = dA = 3 and
P = 1000 patterns are stored. Histograms are generated for patterns drawn from 5000 randomly
sequences and theoretical curves are plotted. Green represents the full crosstalk for the MixedNet.
Blue and red represent the asymmetric and symmetric terms of the crosstalk, respectively. Observe
that the bimodality in the full model comes from bimodality in the symmetric term.

cov[C2, C3 | ξ11 ] = 0 (F.27)

cov[C2, C4 | ξ11 ] = λE[fS(Ξ)]E[fA(Ξ)], (F.28)

and

cov[C3, C4 | ξ11 ] = λ

P−1∑
µ,ν=3

E[ξµ1Ξ
ν+1
1 ]E[fS(Ξµ)fA(Ξ

ν)] (F.29)

= λ

P∑
µ=3

E[fS(Ξµ)]E[fA(Ξµ−1)] (F.30)

= λ(P − 3)E[fS(Ξ)]E[fA(Ξ)]. (F.31)

Therefore, the conditional variance of the crosstalk is

var[C | ξ11 ] =
4∑

j=1

var[Cj | ξ11 ] + 2

4∑
j=1

∑
k>j

cov[Cj , Ck | ξ1] (F.32)

= (P − 3){E[fS(Ξ)2] + 2λE[fS(Ξ)]E[fA(Ξ)] + λ2E[fA(Ξ)2]}
+ var[fS(Ξ)] + λ2E[fA(Ξ)2] + E[fS(Ξ)2] + λ2 var[fA(Ξ)] + 4λE[fA(Ξ)]E[fS(Ξ)]

(F.33)

= (P − 1){E[fS(Ξ)2] + 2λE[fS(Ξ)]E[fA(Ξ)] + λ2E[fA(Ξ)2]}
− E[fS(Ξ)]2 − λ2E[fA(Ξ)]2. (F.34)

For large P and N , the two terms on the second line of this result will be subleading, as they do not
scale with P and have identical or subleading scaling with N to the terms that do scale with P . That
is, we have

var[C | ξ11 ] ∼ P{E[fS(Ξ)2] + 2λE[fS(Ξ)]E[fA(Ξ)] + λ2E[fA(Ξ)2]}. (F.35)
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Collecting these results, we have

E[C | ξ11 ] = ξ11{1 + λE[fA(Ξ)]}+ E[fS(Ξ)] (F.36)

and

var[C | ξ11 ] ∼ P{E[fS(Ξ)2] + 2λE[fS(Ξ)]E[fA(Ξ)] + λ2E[fA(Ξ)2]}. (F.37)

By the law of total probability, we have

P[TMN (ξ1)1 ̸= ξ21 ] = P[C < −λ] (F.38)

=
1

2
P[C < −λ | ξ11 = −1] + 1

2
P[C < −λ | ξ11 = +1] (F.39)

∼ 1

2
H

(
λ+ E[C | ξ11 = −1]√

var[C | ξ11 = −1]

)
+

1

2
H

(
λ+ E[C | ξ11 = +1]√

var[C | ξ11 = +1]

)
(F.40)

under the bimodal Gaussian approximation to the crosstalk distribution. To have P[TMN (ξ1)1 ̸= ξ21 ],
both of these conditional probabilities must tend to zero. By basic concentration arguments, we
expect to have

E[C | ξ11 ] ∼ ξ11 (F.41)

up to corrections that are small in an absolute sense. Moreover, we have

E[C | ξ11 = +1]− E[C | ξ11 = −1] = 2{1 + λE[fA(Ξ)]} (F.42)

which for the separation functions considered here is strictly positive. As we keep λ constant with N
and P , we must have

E[C | ξ11 = −1] > −λ (F.43)

and var[C | ξ11 = −1] → 0 in order to have P[TMN (ξ1)1 ̸= ξ21 ] → 0. But, given the formula
above, var[C | ξ11 = −1] = var[C | ξ11 = +1], so this implies that the ξ11 = +1 contribution to the
probability will be exponentially suppressed. hen, we can apply an identical argument to that which
we used for the DenseNet in Appendix C to obtain the asymptotic behavior of P[C < −λ | ξ11 = −1],
yielding

P[TMN (ξ1)1 ̸= ξ21 ] ∼
1

2
H

(
λ+ E[C | ξ11 = −1]√

var[C | ξ11 = −1]

)
(F.44)

∼ 1

2
√
2π

√
var[C | ξ11 = −1]

λ+ E[C | ξ11 = −1]
exp

(
−1

2

(λ+ E[C | ξ11 = −1])2

var[C | ξ11 = −1]

)
. (F.45)

For this to work, we must clearly have λ > 1.

We could in principle compute the excess kurtosis of the crosstalk for the MixedNet as we did for
the DenseNet, but we will not do so here as the computation would be tedious and would not yield
substantial new insight beyond that for the DenseNet.

F.1 Polynomial MixedNet

We first consider the polynomial mixed network, with fS(x) = xdS and fA(x) = xdA for two
possibly differing degrees dS , dA ∈ N>0. We can apply the same reasoning as in Appendix C.1 to
obtain the required moments at large N , which yields the first moments

E[fS(Ξ)] = E[ΞdS ] =


0 dS odd,
(dS − 1)!!

NdS/2

[
1 +O

(
1

N

)]
dS even

(F.46)

and

E[fA(Ξ)] = E[ΞdA ] =


0 dA odd,
(dA − 1)!!

NdA/2

[
1 +O

(
1

N

)]
dA even,

(F.47)
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and the second moments

E[fS(Ξ)2] = E[Ξ2dS ] =
(2dS − 1)!!

NdS

[
1 +O

(
1

N

)]
(F.48)

and

E[fA(Ξ)2] = E[Ξ2dA ] =
(2dA − 1)!!

NdA

[
1 +O

(
1

N

)]
. (F.49)

Then, the conditional mean of the crosstalk is given by

E[C | ξ11 ] ∼ ξ11 (F.50)

up to corrections which vanish in an absolute, not a relative, sense, while the conditional variance is
asymptotic to

var[C | ξ11 ] ∼ P

{
(2dS − 1)!!

NdS
+ 2λ

(dS − 1)!! (dA − 1)!!

N (dS+dA)/2
1{dS , dA even}+ λ2 (2dA − 1)!!

NdA

}
.

(F.51)

We must now determine the storage capacity. We recall that, in all case, we want P to tend to infinity
slowly enough that var[C | ξ11 ] tends to zero. Then, we can see that what matters is which of the terms
inside the curly brackets in the expression for the conditional variance above tends to zero with N
the slowest. This is of course determined by min{dS , dA}, but the constant factor multiplying the
leading term will depend on which is smaller, or if they are equal. First, consider the case in which
dS = dA = d. Then, we have

var[C | ξ11 ] ∼
P

Nd

{
(2d− 1)!! + 2λ(d− 1)!! (d− 1)!!1{d even}+ λ2(2d− 1)!!

}
. (F.52)

Now, consider the case in which dS < dA. Then, (dS + dA)/2 > dS , hence the N−dS term
dominates and we have

var[C | ξ11 ] ∼
P

NdS
(2dS − 1)!!. (F.53)

Similarly, if dA > dS , the N−dA term dominates, and we have

var[C | ξ11 ] ∼
P

NdA
λ2(2dA − 1)!!. (F.54)

We can summarize these results as

var[C | ξ11 ] ∼ γdS ,dA

P

Nmin{dS ,dA} , (F.55)

where

γdS ,dA
=


(2dS − 1)!! if dS < dA,

(λ2 + 1)(2dS − 1)!! + 2λ[(dS − 1)!!]21{dS even} if dS = dA,

λ2(2dA − 1)!! if dS > dA.

(F.56)

Using the general arguments presented above, we then have

P[TMN (ξ1)1 ̸= ξ21 ] ∼
1

2
√
2π

√
γdS ,dA

P

(λ− 1)2Nmin{dS ,dA} exp

(
− (λ− 1)2

2

Nmin{dS ,dA}

γdS ,dA
P

)
. (F.57)

for any λ > 1. We must first determine the single-transition capacity, which requires that
NP[TMN (ξ1)1 ̸= ξ21 ] → 0. Recalling that our argument requires us to take P → ∞ slowly
enough that var[C | ξ11 ]→ 0, we make the Ansatz that

P ∼ (λ− 1)2

αγdS ,dA

Nmin{dS ,dA}

logN
(F.58)
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for some α. This yields

NP[TMN (ξ1)1 ̸= ξ21 ] ∼
1

2
√
2πα logN

N1−α/2, (F.59)

which tends to zero if α ≥ 2, yielding a predicted capacity of

PT ∼
(λ− 1)2

2γdS ,dA

Nmin{dS ,dA}

logN
. (F.60)

We now consider the sequence capacity, which requires that NPP[TMN (ξ1)1 ̸= ξ21 ] → 0. Then,
making the same Ansatz for P as above, we have

NPP[TMN (ξ1)1 ̸= ξ21 ] ∼
1

2
√
2π

(λ− 1)2

γdS ,dA

1

(α logN)3/2
Nmin{dS ,dA}+1−α/2, (F.61)

which tends to zero provided that α ≥ 2(min{dS , dA}+ 1), yielding a predicted capacity of

PS ∼
(λ− 1)2

2(min{dS , dA}+ 1)γdS ,dA

Nmin{dS ,dA}

logN
. (F.62)

F.2 Exponential MixedNet

We now consider the Exponential MixedNet, with fS(x) = fA(x) = e(N−1)(x−1). With this, we
have the first moments

E[fS(Ξ)] = E[fA(Ξ)] = exp[−(N − 1)]E

exp
 N∑

j=2

ξj

 (F.63)

= exp[−(N − 1)]

N∏
j=2

E[exp(ξj)] (F.64)

=

(
cosh(1)

exp(1)

)N−1

(F.65)

and the second moments

E[fS(Ξ)2] = E[fA(Ξ)2] =
(
cosh(2)

exp(2)

)N−1

=
1

βN−1
, (F.66)

where as in Appendix C.2 we let

β =
exp(2)

cosh(2)
≃ 1.96403. (F.67)

Noting that
exp(1)

cosh(1)
≃ 1.76159, (F.68)

the conditional mean of the crosstalk is then
E[C | ξ11 ] = ξ11{1 + λE[fA(Ξ)]}+ E[fS(Ξ)] (F.69)

= ξ11

{
1 + λ

(
cosh(1)

exp(1)

)N−1
}

+

(
cosh(1)

exp(1)

)N−1

(F.70)

∼ ξ11 , (F.71)
where the corrections are exponentially small in an absolute sense. The leading part of the conditional
variance of the crosstalk is

var[C | ξ11 ] ∼ P{E[fS(Ξ)2] + 2λE[fS(Ξ)]E[fA(Ξ)] + λ2E[fA(Ξ)2]} (F.72)

∼ P

βN−1

{
1 + 2λ

(
cosh(1)2

cosh(2)

)N−1

+ λ2

}
(F.73)

∼ P

βN−1
(1 + λ2), (F.74)
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where we note that

cosh(1)2

cosh(2)
≃ 0.632901 (F.75)

hence the other contribution is exponentially suppressed in a relative sense.

We thus have

E[C | ξ11 ] ∼ ξ11 (F.76)

var[C | ξ11 ] ∼
P

βN−1
(1 + λ2), (F.77)

hence from the general argument above we have

P[TMN (ξ1)1 ̸= ξ21 ] ∼
1

2
√
2π

√
(1 + λ2)

λ− 1

√
P

βN−1
exp

(
−1

2

(λ− 1)2

1 + λ2

βN−1

P

)
(F.78)

for λ > 1. We now want to determine the capacity, starting with the single-transition capacity, for
which we must have NP[TMN (ξ1)1 ̸= ξ21 ]→ 0. Recalling that we want to have var[C | ξ11 ]→ 0, we
make the Ansatz

P ∼ 1

α

(λ− 1)2

λ2 + 1

βN−1

logN
(F.79)

for some α, which yields

NP[TMN (ξ1)1 ̸= ξ21 ] ∼
1

2
√
2πα logN

N1−α/2. (F.80)

This tends to zero if α ≥ 2, hence we conclude that the Gaussian theory predicts

PT ∼
1

2

(λ− 1)2

λ2 + 1

βN−1

logN
. (F.81)

We now want to determine the sequence capacity, which requires that NPP[TMN (ξ1)1 ̸= ξ21 ]→ 0.
Following our analysis of the Exponential DenseNet in Appendix C.2, we make the Ansatz that

P ∼ 1

α

(λ− 1)2

λ2 + 1

βN−1

N
, (F.82)

which yields

NPP[TMN (ξ1)1 ̸= ξ21 ] ∼
1

2
√
2παN

1

αβ

(λ− 1)2

λ2 + 1
exp

[(
log β − α

2

)
N
]
. (F.83)

This tends to zero if α ≥ 2 log β, giving a predicted sequence capacity of

PS =
1

2 log β

(λ− 1)2

λ2 + 1

βN−1

N
. (F.84)

Thus, for both definitions of capacity, the Gaussian theory’s prediction of the capacity of the Expo-
nential MixedNet is

(λ− 1)2

λ2 + 1
(F.85)

times the capacity of the Exponential DenseNet analyzed in Appendix C.2. This factor tends to
zero from above as λ ↓ 1, and gradually increases to 1 as λ→∞. Note that even without explicitly
computing the excess kurtosis, we expect the intuition from the Exponential DenseNet to carry over
to this setting. Indeed, the numerical simulations in Figure F.2 show that the transition capacity is
well captured by the Gaussian theory while the sequence capacity shows significant deviation for
small MixedNets.
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Figure F.2: The capacities of Exponential MixedNets with λ = 2.5 are plotted as a function
of network size. (A) Transition capacity for the Exponential MixedNet, which closely matches
theoretical prediction. The predicted capacity is shown by the solid line with dots, while square error
bars show the results of numerical experiment. (B) Sequence capacity for the Exponential MixedNet,
which diverges from theoretical prediction.

G Numerical implementation

Source code is available on GitHub at https://github.com/Pehlevan-Group/
LongSequenceHopfieldMemory. Experiments were run on the Harvard University FAS
RC Cannon HPC cluster (https://www.rc.fas.harvard.edu/), using Nvidia A100 80GB
GPUs. This limited the maximum number of patterns we could store in memory simultaneously to
approximately 106 patterns, restricting our experimental evaluation of the Exponential DenseNet to
approximately N = 25 neurons.

G.1 Transition capacity

Numerical simulations for transition capacity were conducted as follows: For a given model of
size N , start by initializing 100 sequences of Rademacher distributed patterns of length P0, where
P0 = 2P ∗ is well above the model’s predicted capacity P ∗. This initialization for P0 was found
through trial and error, where the method detects if you start below capacity. The model’s update rule
is applied in parallel across all patterns and across all sequences. If errors are made for any pattern in
any sequence, 100 new random sequences are generated with smaller length P1 = 0.99P0. This is
repeated, with the new sequence length being Pt+1 = 0.99Pt, until 100 sequences are generated for
which no error is made in any transition. This entire process is repeated 20 times starting from P0 in
order to obtain error bars.

G.2 Sequence capacity

Numerical simulations for sequence capacity were conducted in a similar fashion. For a given model
of size N , start by initializing 100 sequences of Rademacher distributed patterns of length P0, where
P0 is well above the model’s capacity. Starting from the first pattern of each sequence, the model’s
update rule is applied serially for each sequence. As soon as an error is obtained within any sequence,
100 new random sequences are generated with smaller length P1 = 0.99P0. This is repeated, with
the new sequence length being Pt+1 = 0.99Pt, until 100 sequences are generated for which no error
is made. This entire process is repeated 20 times starting from P0 in order to obtain error bars.

G.3 MovingMNIST

For the MovingMNIST experiments in Section 2.4, the images were pre-processed to have binarized
pixel values. There were 10000 subsequences, each containing 2 handwritten digits from the MNIST
dataset moving through each other across 20 images, that were concatenated to construct the entire
sequence of 200000 images [78]. Then, different models were run from initialization and their output
for different time steps was displayed in Figure 3.
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G.4 Generalized pseudoinverse rule

For numerical simulations of the generalized pseudoinverse rule in 2.5, the transition capacity of
the Polynomial DenseNet was simulated in a similar method as described above. However, the
Exponential DenseNet suffered from numerical instability when calculating the pseudoinverse of the
overlap matrix, resulting in floating point error. Therefore, we showed results only for the Polynomial
DenseNet.
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