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ABSTRACT

Robust Reinforcement Learning (RRL) is a promising Reinforcement Learning
(RL) paradigm aimed at training robust to uncertainty or disturbances models,
making them more efficient for real-world applications. Following this paradigm,
uncertainty or disturbances are interpreted as actions of a second adversarial agent,
and thus, the problem is reduced to seeking the agents’ policies robust to any op-
ponent’s actions. This paper is the first to propose considering the RRL problems
within the positional differential game theory, which helps us to obtain theoreti-
cally justified intuition to develop a centralized Q-learning approach. Namely, we
prove that under Isaacs’s condition (sufficiently general for real-world dynamical
systems), the same Q-function can be utilized as an approximate solution of both
minimax and maximin Bellman equations, and we also indicate conditions when
this Q-function can be decomposed. Based on these results, we present the Isaacs
Deep Q-Networks (IDQN) and Decomposed Isaacs Deep Q-Networks (DIDQN)
algorithms, respectively. We analyze their performance by comparing them with
other baseline RRL and Multi-Agent RL algorithms. We consider both simple
environments with known accurate solutions and complex large-dimensional Mu-
JoCo environments. In each experiment, we thoroughly evaluate the agents’ poli-
cies obtained after learning, training opponents against them using various RL
algorithms with various parameters. The experiment results demonstrate the su-
periority of the presented algorithms in all experiments under consideration.

1 INTRODUCTION

In the last ten years, neural network models trained by Reinforcement Learning (RL) algorithms
(Sutton & Barto (2018)) have demonstrated outstanding performance in various game and physics
simulators (see, e.g., Mnih et al. (2015); Silver et al. (2017); OpenAI (2018); Vinyals et al. (2019);
Liu et al. (2022)). However, the usage of such models for practical problems is still limited due to
their instability to uncertainty or disturbances occurring in the real world. One promising paradigm
to overcome these difficulties is Robust Reinforcement Learning (RRL) Morimoto & Doya (2000)
(see also Robust Adversarial RL Pinto et al. (2017)), in which such uncertainty or disturbances are
interpreted as actions of a second adversarial agent, and thus the problem is reduced to seeking the
agents’ policies robust to any opponent’s actions.

The fundamental difficulty of RRL problems, as a particular case of Multi-Agent RL (MARL) prob-
lems, is the non-stationarity of the environment (see, e.g., Busoniu et al. (2008); Zhang et al. (2021))
from the point of each agent’s view. Often, this leads to the failure (Lanctot et al. (2017)) of the
decentralized (independent) learning and the design of a centralized approach allowing agents to
exchange information during the learning (see, e.g., Lowe et al. (2017); Foerster et al. (2018)). The
exchange can utilize a shared memory, a shared policy, but more often, a shared Q-function, which
requires an adequate theory within which such a function exists.

According to the Markov game theory (see, e.g., Shapley (1953); Bertsekas (1976); Van Der Wal
(1980)), any zero-sum game has a value (Nash equilibrium) which can be used to construct such
shared Q-function (Littman (1994)). However, even in the simplest examples of Markov games
(e.g., paper-rock-scissors), optimal policies may not be pure (deterministic) and, therefore, can pro-
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vide only the expected value of a payoff. Thus, the Markov game theory may be inappropriate if,
according to the problem statement (for example, in the case of developing safe control systems), it
is required to seek robust policies guaranteeing a deterministic payoff value.

In this paper, we make the following contributions to the RRL research:

• We are the first to propose considering the RRL paradigm within the framework of the po-
sitional differential game theory (Krasovskii & Subbotin (1987); Subbotin (1995)), which
makes it possible to study pure agents’ policies and deterministic payoff values.

• We prove that under Isaacs’s condition (Isaacs (1965)) (sufficiently general and easily ver-
ifiable for real-world dynamical systems), the same Q-function can be utilized as an ap-
proximate solution of both minimax and maximin Bellman equations. We also indicate
a condition when this Q-function can be decomposed (Sunehag et al. (2017)). Thus, we
present a theoretically justified intuition for developing a centralized Q-learning approach.

• Taking this intuition into account, we present the Isaacs Deep Q-Networks (IDQN) and
Decomposed Isaacs Deep Q-Networks (DIDQN) algorithms as natural extensions of the
single-agent DQN algorithm (Mnih et al. (2015)). The experiment results demonstrate the
superiority of the presented algorithms compared to RRL and MARL baselines (see Fig. 3).

• We offer to test RRL algorithms on new environments originating from differential game
examples with known accurate solutions. Such environments can serve as additional reli-
able tests in future research of RRL algorithms.

• We consider a framework for thorough evaluating the robustness of trained policies based
on using various RL algorithms with various parameters (see Fig. 2). We hope this frame-
work will become the new standard in research of continuous RRL problems as well as
continuous MARL problems in zero-sum setting.

1.1 RELATED WORK

In recent years, the RRL paradigm has been successfully used as an effective tool for finding a policy
robust to various environment’s physical parameters (such as mass, friction, etc.) (see, e.g., Pinto
et al. (2017); Abdullah et al. (2019); Zhai et al. (2022)). This paper does not study such properties
of policies, focusing only on their robustness to dynamical uncertainty or disturbances interpreted
as an adversary agent.

As mentioned above, RRL problems can be naturally considered as non-cooperative Markov games
(Pinto et al. (2017)) and solved by the corresponding algorithms of decentralized (see Tampuu et al.
(2017); Gleave et al. (2019)) or centralized (see Lowe et al. (2017); Li et al. (2019); Kamalaruban
et al. (2020)) learning. We consider some of these algorithms as a baselines for the comparative
analysis in our experiments (see Experiments).

DQN extension to zero-sum Markov games was carried out in Fan et al. (2020); Zhu & Zhao (2020);
Phillips (2021); Ding et al. (2022), where the main idea was to solve minimax Bellman equations
in the class of mixed policies. The presented in this paper IDQN and DIDQN algorithms of solving
zero-sum differential games seek solutions of such equations in pure policies, significantly reducing
running time and improving performance (see the comparison with NashDQN in Experiments).

The first formalization of RRL problems within the framework of differential games was proposed in
fundamental paper Morimoto & Doya (2000), where a particular class of games called H∞-control
(Başar & Bernhard (1995); Zhou et al. (1996)) was considered. This approach was further developed
in Al-Tamimi et al. (2007); Han et al. (2019); Zhai et al. (2022). We do not consider the algorithms
from these papers in our experiments since the H∞-control theory represents another perspective on
optimality compared to the classical differential game theory (Isaacs (1965)). Nevertheless, we note
that Al-Tamimi et al. (2007) established the existence of shared Q-functions for linear differential
games, which can be interpreted as a particular case of our theoretical results (Theorem 1).

Applying RL algorithms to solve pursuit-evasion differential games within the classical theory was
studied in Wang et al. (2019); Jiang et al. (2020); Xu et al. (2022); Selvakumara & Bakolas (2022).
However, such a class of games seems the most complex for directly applying RL since the agent
has too little chance of reaching the aim (capture) in the exploration stage and may not have enough
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informative samples for further learning. To overcome these difficulties, these papers suggest mod-
ifying reward functions, which naturally increase the number of informative samples but, in fact,
change the problem statement. Finite-horizon differential games considered in this paper do not
have uninformative samples and seem more suitable for applying RL (Harmon et al. (1996)).

The closest study to our paper is Li et al. (2022) developing DQN for solving infinite-horizon reach-
avoid zero-sum differential games. The fundamental difference of the algorithm proposed in Li
et al. (2022) is that the second player knows the first agent’s next action in advance. Note that this
approach does not require a shared Q-function, and therefore we also test it in our experiments (see
CounterDQN) to assess the significance of the shared Q-function usage for performance.

There are extensive studies (see, e.g., Patsko (1996); Bardi & Dolcetta (1997); Cardaliaguet et al.
(1999); Kumkov et al. (2005); Kamneva (2019); Lukoyanov & Gomoyunov (2019)) on numerical
methods for solving zero-sum finite-horizon differential games. We use some results from these
papers for additional verification of algorithms’ performance in our experiments. Note that these
methods are mainly capable of solving low-dimensional differential games and cannot be scaled due
to the curse of dimensionality. Thus, the research presented in this paper contributes not only to
algorithms effectively solving RRL problems but also to the field of heuristic numerical methods for
solving complex zero-sum differential games.

2 POSITIONAL DIFFERENTIAL GAMES

Recent studies consider RRL problems within the framework of zero-sum Markov games in pure
or mixed policies. In the case of pure policies, it is known (e.g., paper-rock-scissors) that Markov
games may not have a value (Nash equilibrium), which conceptually prevents the development of
centralized learning algorithms based on shared q-functions. In the case of mixed policies, such for-
malization may also be inappropriate if, according to the problem statement (for example, in the case
of developing expensive or safe control systems), it is required to seek robust policies guaranteeing
a deterministic payoff value. In this section, we describe the framework of the positional differential
games, which allows us, on the one hand, to consider the pure agents’ policies and deterministic
values of payoffs and, on the other hand, to obtain the fact of the existence of a value in a reasonably
general case.

Let (τ, w) ∈ [0, T ) × Rn. Consider a finite-horizon zero-sum differential game described by the
differential equation

d

dt
x(t) = f(t, x(t), u(t), v(t)), t ∈ [τ, T ], (1)

with the initial condition x(τ) = w and the quality index

J = σ(x(T )) +

∫ T

τ

f0(t, x(t), u(t), v(t))dt. (2)

Here t is a time variable; x(t) ∈ Rn is a vector of the motion; u(t) ∈ U and v(t) ∈ V are control
actions of the first and the second agents, respectively; U ⊂ Rk and V ⊂ Rl are compact sets; the
function σ(x), x ∈ Rn is continuous; the functions f(t, x, u, v) and f0(t, x, u, v) satisfy conditions
(see Appendix A for details) sufficient to ensure the existence and uniqueness of a motion x(·) for
each pair of Lebesgue measurable functions (u(·), v(·)).
The first agent, utilizing the actions u(t), tends to minimize J (see (2)), while the second agent aims
to maximize J utilizing the actions v(t).

Following the positional approach to the differential game formalism (Krasovskii & Subbotin
(1987); Subbotin (1995)), let us define the following mathematical constructions. Denote

∆ =
{
ti : t0 = τ, ti < ti+1, i = 0, 1, . . . ,m, tm+1 = T

}
,

d(∆) = max
i=0,1,...,m

∆ti, ∆ti = ti+1 − ti, i = 0, 1, . . . ,m.
(3)

By a policy of the first agent, we mean an arbitrary function πu : [0, T ] × Rn 7→ U . Then the pair
{πu,∆} defines a control law that forms the piecewise constant (and therefore, measurable) function
u(·) according to the step-by-step rule

u(t) = πu(ti, x(ti)), t ∈ [ti, ti+1), i = 0, 1, . . . ,m.
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This law, together with a function v(·), uniquely determines the quality index value J (2). The
guaranteed result of the policy πu and the optimal guaranteed result of the first agent are defined as

V πu
u (τ, w) = lim

δ→0+
sup

∆: d(∆)≤δ

sup
v(·)

J, Vu(τ, w) = inf
πu

V πu
u (τ, w). (4)

Similarly, for the second agent, we consider a policy πv : [0, T ]×Rn 7→ V , control law {πv,∆} that
forms actions v(t) and define the guaranteed result of πv and the optimal guaranteed result as

V πv
v (τ, w) = lim

δ→0+
inf

∆: d(∆)≤δ
inf
u(·)

J, Vv(τ, w) = sup
πv

V πv
v (τ, w). (5)

The fundamental fact (presented as Theorem 12.3 in Subbotin (1995)) of the positional differential
game theory on which we rely to obtain our theoretical results (see Theorem 1 below) is as follows:
if the functions f and f0 satisfy Isaacs’s condition (or the saddle point condition in a small game
(Krasovskii & Subbotin (1987)) in other terminology)

min
u∈U

max
v∈V

(
⟨f(t, x, u, v), s⟩+ f0(t, x, u, v)

)
= max

v∈V
min
u∈U

(
⟨f(t, x, u, v), s⟩+ f0(t, x, u, v)

)
(6)

for any t ∈ [0, T ] and x, s ∈ Rn, then, differential game (1), (2) has a value (Nash equilibrium):

V (τ, w) = Vu(τ, w) = Vv(τ, w), (τ, w) ∈ [0, T ]× Rn.

Note that the important consequence from this fact is that if the equality (6) holds, then any additional
knowledge for agents, for example, about the history of the motion x(ξ), ξ ∈ [0, t], or opponent
current actions, does not improve their optimal guaranteed results. Thus, the control laws {πu,∆}
and {πv,∆} are sufficient to solve zero-sum differential games optimally.

We also note that in order to obtain further results, it is essential not only the existence of a value
but also the fulfilment of Isaacs’s condition as such.

3 SHARED Q-FUNCTION FOR APPROXIMATE BELLMAN EQUATIONS

First of all, to solve differential games by RL algorithms, it is necessary to discretize them in time.
In this section, we describe such a discretization, introduce the corresponding game-theoretic con-
structions, discuss their connection with the Markov game theory, and present the main theoretical
result of the paper (Theorem 1).

Let us fix a partition ∆ (3). For each (ti, x) ∈ ∆ × Rn, i ̸= m + 1, consider the discrete-time
differential game (Fleming (1961); Friedman (1971))

xi = x, xj+1 = xj +∆tjf(tj , xj , uj , vj), uj ∈ U , vj ∈ V, j = i, i+ 1, . . . ,m,

J∆ = σ(xm+1) +

m∑
j=i

∆tjf
0(tj , xj , uj , vj).

(7)

Note that this game can be formalized (see Appendix B) as a Markov game (S∆,U ,V,P∆,R∆, γ),
where S∆ is a state space consisting of the states s = (ti, x) ∈ ∆ × Rn, U and V are the action
spaces of the first and second agents, respectively, P∆ is the transition distribution which is a delta
distribution in the case under consideration, R∆ is the reward function, γ = 1 is a discount factor.

Define the pure agents’ policies as π∆
u : S∆ 7→ U and π∆

v : S∆ 7→ V , their guaranteed results as

V
π∆
u

u (ti, x) = max
vi,...,vm

{
J∆ : xi = x, xj+1 = xj +∆tjf(tj , xj , π

∆
u (tj , xj), vj), j = i, . . . ,m

}
,

V
π∆
v

v (ti, x) = min
ui,...,um

{
J∆ : xi = x, xj+1 = xj +∆tjf(tj , xj , uj , π

∆
v (tj , xj)), j = i, . . . ,m

}
,

and the optimal action-value functions (Q-functions) for each agent as

Q∆
u (ti, x, u, v) = r + inf

π∆
u

V
π∆
u

u (ti+1, x
′), Q∆

v (ti, x, u, v) = r + sup
π∆
v

V
π∆
v

v (ti+1, x
′),
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where r = ∆tif
0(ti, x, u, v) and x′ = x + ∆tif(ti, x, u, v). Due to this definition, one can show

these Q-functions satisfy the following Bellman optimality equations:

Q∆
u (ti, x, u, v) = r + min

u′∈U
max
v′∈V

Q∆
u (ti+1, x

′, u′, v′),

Q∆
v (ti, x, u, v) = r +max

v′∈V
min
u′∈U

Q∆
v (ti+1, x

′, u′, v′).
(8)

It is known that the equality V ∆
u (ti, z) = V ∆

v (ti, z) and as a consequence, the equality
Q∆

u (ti, x, u, v) = Q∆
v (ti, x, u, v) does not hold in even the simplest Markov game examples (e.g.,

paper-rock-scissors game). Nevertheless, the fact that this Markov game arises due to a time-
discretization of a differential game having a value allowed us to obtain the following crucial result.

Theorem 1. Let Isaacs’s condition (6) holds. Let the value function V (τ, w) be continuously
differentiable at every (τ, w) ∈ [0, T ]× Rn. Then the following statements are valid:

a) For every compact set D ⊂ Rn and ε > 0, there exists δ > 0 with the following property.
For every partition ∆ satisfying diam(∆) ≤ δ, there exists a continuous function Q∆(ti, x, u, v),
(ti, x, u, v) ∈ ∆× Rn × U × V , such that∣∣∣Q∆(ti, x, u, v)− r − min

u′∈U
max
v′∈V

Q∆(ti+1, x
′, u′, v′)

∣∣∣ ≤ ∆tiε,∣∣∣Q∆(ti, x, u, v)− r −max
v′∈V

min
u′∈U

Q∆(ti+1, x
′, u′, v′)

∣∣∣ ≤ ∆tiε
(9)

for any (ti, x) ∈ ∆ × D, i ̸= m + 1, u ∈ U , v ∈ V , where r = ∆tif
0(ti, x, u, v) and x′ =

x+∆tif(ti, x, u, v) and we put Q∆(tm+1, x
′, u′, v′) = σ(tm+1).

Moreover, if the functions f and f0 have the form

f(t, x, u, v) = fu(t, x, u) + fv(t, x, v), f0(t, x, u, v) = f0
u(t, x, u) + f0

v (t, x, v), (10)

then there exists the functions Q∆
1 (ti, x, u) and Q∆

2 (ti, x, v) such that

Q∆(ti, x, u, v) = Q∆
1 (ti, x, u) +Q∆

2 (ti, x, v), (ti, x, u, v) ∈ ∆× Rn × U × V.

b) Let (τ, w) ∈ [0, T ) × Rn and ε > 0. There exists a compact set D ⊂ Rn and δ > 0 with
the following property. For every partition ∆ satisfying diam(∆) < δ, there exists a continuous
function Q∆(ti, x, u, v), (ti, x, u, v) ∈ ∆× Rn × U × V satisfying (9), such that the policies

π∆
u (ti, x) = Argmin

u∈U
max
v∈V

Q∆(ti, x, u, v), π∆
v (ti, x) = Argmax

v∈V
min
u∈U

Q∆(ti, x, u, v), (11)

provide the inequalities V π∆
u

u (τ, w) ≤ V (τ, w) + εT and V
π∆
v

v (τ, w) ≥ V (τ, w)− εT .

Corollary 1. Let Isaacs’s condition (6) holds. Let the value function V (τ, w) be continuously
differentiable at every (τ, w) ∈ [0, T ]× Rn. If the finite sets U∗ and V∗ satisfy the equality

min
u∈U∗

max
v∈V∗

(
⟨f(t, x, u, v), s⟩+ f0(t, x, u, v)

)
= min

u∈U
max
v∈V

(
⟨f(t, x, u, v), s⟩+ f0(t, x, u, v)

)
,

max
v∈V∗

min
u∈U∗

(
⟨f(t, x, u, v), s⟩+ f0(t, x, u, v)

)
= max

v∈V
min
u∈U

(
⟨f(t, x, u, v), s⟩+ f0(t, x, u, v)

)
,

then these sets can be used instead of U and V in all statements of Theorem 1.

The proof of the theorem and the corollary are given in Appendix C

Theorem 1 shows that there exists a function Q∆ which is an approximate solution of both minimax
and maximin Bellman optimality equations (8), and this shared Q-function can be exploited to con-
struct policies providing near-optimal guaranteed results in differential games (1), (2). Besides, if
the condition (10) holds, then the dependence of Q∆ on the agents’ actions u and v can be separated.
Corollary 1 allows us to approximate the sets U and V by finite sets U∗ and V∗ without losing the
theoretical results of the theorem, which is essential for further developing algorithms.

4 TWO-AGENT DEEP Q-NETWORKS

In this section, we describe various approaches to extending the DQN algorithm (Mnih et al. (2015))
to differential games (1), (2), considering ideas from previous research and the results of Theorem 1.
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NashDQN. First, we consider the NashDQN (Ding et al. (2022)) (or the similar MinimaxDQN
(Fan et al. (2020))) algorithm naturally extending DQN to zero-sum Markov games. Both agents
utilize a shared Q-function approximated by a neural network Qθ(t, x, u, v). The input of the neural
network is (t, x), and the output is the matrix in which the rows correspond to u, and the columns
correspond to v. Agents act according to the ζ-greedy mixed policies

ui ∼ (1− ζ)πθ
u(· | ti, xi) + ζπuniform

u (·), vi ∼ (1− ζ)πθ
v(· | ti, xi) + ζπuniform

v (·),
where πθ

u(· | ti, xi) and πθ
v(· | ti, xi) are the optimal mixed policies in the matrix game Qθ(ti, xi, ·, ·),

ζ ∈ [0, 1] is an exploration parameter, and store (ti, xi, ui, vi, ri, ti+1, xi+1) into the buffer D.
Simultaneously, the minibatch {(tj , xj , uj , vj , rj , t

′
j , x

′
j)}

nbs
j=1 is taken from D and the loss function

L(θ) =
1

nbs

nbs∑
j=1

(
Qθ(tj , xj , uj , vj)− rj − γV θ(tj+1, xj+1)

)
,

is utilized to update θ, where V θ(tj+1, xj+1) is a Nash equilibrium of the matrix game
Qθ(tj+1, xj+1, ·, ·). During the learning, the exploration parameter ζ is decreasing from 1 to 0.
Thus, after learning, we obtain mixed policies πθ

u(· | t, x) and πθ
v(· | t, x).

Multi-agent DQN (MADQN). Next, we propose to consider another natural extension of the
DQN algorithm following the idea from Lowe et al. (2017). Each agent uses its own Q-function
approximated by neural networks Qθu(t, x, u, v) and Qθv (t, x, u, v) for the first agent and the second
agent, respectively, and act according to the ζ-greedy policies choosing greedy actions

ui = πθ
u(ti, xi) := Argmin

u∈U∗

max
v∈V∗

Qθu(ti, xi, u, v),

vi = πθ
v(ti, xi) := Argmax

v∈V∗

min
u∈U∗

Qθv (ti, xi, u, v)
(12)

with probability 1 − ζ and any action uniformly on U∗ and V∗ with probability ζ. For learning on
the minibatches {(tj , xj , uj , vj , rj , t

′
j , x

′
j)}

nbs
j=1, each of them uses its own loss function

Lu(θu) =
1

nbs

nbs∑
j=1

(
Qθu(tj , xj , uj , vj)− rj − γ min

u′∈U∗
max
v′∈V∗

Qθu(t′j , x
′
j , u

′, u′)
)2

,

Lv(θv) =
1

nbs

nbs∑
j=1

(
Qθv (tj , xj , uj , vj)− rj − γ max

v′∈V∗
min
u′∈U∗

Qθv (t′j , x
′
j , u

′, u′)
)2

.

(13)

In this case, we obtain pure agents’ policies πθ
u(t, x) and πθ

v(t, x). Note that this algorithm is also
centralized since the agents have a shared memory containing opponent actions.

CounterDQN. Following the idea from Li et al. (2022), we can complicate the first agent’s learn-
ing by assuming that the second agent knows its next action in advance. In this case, in contrast to
MADQN, the greedy second agent’s policy is πθ

v(ti, xi, ui) = Argmaxv∈V∗
Qθu(ti, xi, ui, v), and

hence, only the first Bellman equation in (8) needs to be solved, i.e., only the first loss function in
(13) must be minimized. After learning, we obtain the first agent’s pure policy πθ

u(t, x) and the sec-
ond agent’s counter policy πθ

v(t, x, u). Thus, if we want to obtain the second agent’s pure strategy
πθ
v(t, x), we must conduct symmetric learning for them.

Isaacs’s DQN (IDQN). Now, we modify MADQN utilizing the approximation Qθ(t, x, u, v) for
the shared Q-function Q∆(t, x, u, v) from Theorem 1. Then, the agents’ actions are chosen similar
to MADQN, in which Qθu and Qθu are replaced by Qθ, and the parameter vector θ is updated
according to the loss function

L(θ) =
1

nbs

nbs∑
j=1

(
Qθ(tj , xj , uj , vj)− yj

)2
,

where
yj = rj +

γ

2

(
min
u∈U∗

max
v∈V∗

Qθ(tj , xj , u, v) + max
v∈V∗

min
u∈U∗

Qθ(tj , xj , u, v)
)
. (14)

We use this formula to provide symmetrical learning for the agents since Qθ may not satisfy the
equality min

u∈U∗
max
v∈V∗

Qθ(tj , xj , u, v) = max
v∈V∗

min
u∈U∗

Qθ(tj , xj , u, v).
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Figure 1: Visualization of the second agent’s actions in the games based on the MuJoCo tasks

Decomposed Isaacs’s DQN (DIDQN) Finally, according to Theorem 1, we can approximate the
function Q∆(t, x, u, v) by the network Qθ(t, x, u, v) = Qθ1(t, x, u) + Qθ2(t, x, v), simplifying
calculations of minimums and maximums in (12) and (14) as well as the learning on the whole.

5 EXPERIMENTS

Algorithms. In our experiments, we test the following algorithms: the DDQN algorithm (van Has-
selt et al. (2016)) for decentralized (simultaneous) learning (2xDDQN) as the most straightforward
approach to solve any multi-agent tasks; the PPO algorithm (Schulman et al. (2017)) for alternat-
ing learning proposed in Pinto et al. (2017) as an approach for solving RARL problems (RARL);
the MADDPG algorithm from Lowe et al. (2017); the NashDQN, MADQN, CounterDQN, IDQN,
DIDQN algorithms described above. The algorithms’ parameters are detailed in Appendix D.

Environments. We consider the following five zero-sum differential games. EscapeFromZero
(S = R2, U ⊂ R2, V ⊂ R2) is presented in Subbotin (1995) as an example of a game where the
first agent can move away from zero more than 0.5 only utilizing a discontinuous policy (V=-0.5).
In GetIntoCircle (S = R3, U ⊂ R1, V ⊂ R1) from Kamneva (2019) and GetIntoSquare (S = R3,
U ⊂ R1, V ⊂ R1) from Patsko (1996), the first agent tends to be as close to zero as possible, but
these papers show that the best results it can guarantee to achieve are to be on the border of a circle
(V = 0) and a square (V = 1), respectively. HomicidalChauffeur (S = R5, U ⊂ R1, V ⊂ R1)
and Interception (S = R11, U ⊂ R2, V ⊂ R2) are the games from Isaacs (1965) and Kumkov et al.
(2005), in which the first player wants to be as close as possible to the second agent at the terminal
time. We also consider three games based on Mujoco tasks from Todorov et al. (2012), in which
we introduce the second agent acting on the tip of the rod in InvertedPendulum (S = R5, U ⊂ R1,
V ⊂ R1), on the tail of Swimmer (S = R9, U ⊂ R2, V ⊂ R1), or controlling the rear bottom joint
of HalfCheetah (S = R18, U ⊂ R5, V ⊂ R1) (see Fig. 1). A detailed description of all the above
games is provided in Appendix E.

Evaluation scheme. We consider the following evaluation scheme in our experiments (see Fig. 2).
In the first stage, agents learn (decentralized or centralized, depending on an algorithm). In the sec-
ond stage, we fix the trained first agent’s policy πu and solve the obtained single-agent RL problem
from the point of the second agent’s view using various baseline RL algorithms with various hyper-
parameters (see Appendix D for details). After that, we choose the maximum value of quality index
J (2) (sum of rewards) in these running and put it into the array “maximum values of the quality
index”. We believe this maximum value approximates the guaranteed result V πu

u (4). The third step
is symmetrical to the second one and is aimed at obtaining an approximation for V πv

v (5). We repeat
these three stages 5 times, accumulating “maximum values of the quality index” and “minimum
values of the quality index” arrays. Then, we illustrate the data of these arrays as shown in Fig. 2.
The boldest bar describes the best guaranteed results of the agents out of 5 runnings, the middle
bar gives us the mean values, and the faintest bar shows the worst results in 5 runnings. The width
of the bars illustrates the exploitability of both agents, that is, the difference between the obtained
approximations of V πu

u and V πv
v . If they are close to the optimal guaranteed results Vu and Vv , then

the width should be close to zero (if a value exists (Vu = Vv)). Thus, looking at such a visualization,
we can make conclusions about the stability (with respect to running) and efficiency (with respect
to exploitability) of the algorithms.

7
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Figure 2: Evaluation scheme.

Experimental results. Fig. 3 shows the experimental results of the algorithms and the accurate
values (dotted line) when we know them. First of all, we note that the 2xDDQN, RARL, and
NashDQN algorithms show the worst performance. In the case of 2xDDQN and RARL, the reason
is quite typical for decentralized learning. An agent overfits against a specific opponent and loses
the ability to resist other opponents. In the case of NashDQN, the reason, apparently, lies in the
stochasticity of the trained policies aimed at giving results on average but not guaranteed.

The MADDPG algorithm demonstrates the satisfactory borders of guaranteed results only in 2
games (GetInfoCircle and GetInfoSquare). Regarding average by runnings, the algorithm is also
well in HomicidalChauffeur, InvertedPendulum, and Swimmer, which reflects, on the one hand, the
potential ability of MADDPG to find policies close to optimal, but, on the other hand, its instability
with respect to running.

The MADQN algorithm is generally better than the algorithms discussed above, but it still inferiors
to IDQN and DIDQN in all games.

The CounterDQN algorithm gives worse results than MADQN in almost all games (except Homici-
dalChauffeur and InvertedPendulum), which apparently indicates that it is more efficient for agents
to have more learning time steps than information about the opponent’s actions.

The IDQN and DIDQN algorithms show the best performance in all games, reflecting the advantage
of utilizing a shared Q-function. These algorithms show similar performance except InvertedPendu-
lum where DIDQN is clearly better.

Thus, we conclude the following: centralized learning is much more efficient than decentralized
learning, solving the Bellman equation in pure policies gives better results than in mixed ones, a
shared Q-function makes learning more stable than two independent Q-functions, and the Q-function
decomposition can provide an advantage in some tasks.

6 LIMITATIONS

Although Isaacs’s condition is quite common and can often be verified by relying only on general
ideas about dynamics, there are cases when it is not fulfilled. In these cases, Theorem 1 is not valid,
and therefore, it seems more theoretically justified to use MADQN instead of IDQN and DIDQN.

8
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EscapeFromZero GetIntoCircle

GetIntoSquare HomicidalChauffeur

Interception InvertedPendulum

Swimmer HalfCheetah

Figure 3: Experimental results.

An essential limitation of MADQN, IDQN, and DIDQN, as well as the basic DQN, is the action
space’s finiteness. In our paper, we show (see Corollary 1) that the action space discretization
leaves the results of Theorem 1 valid under certain conditions. However, modifying the proposed
algorithms for continuous action space is a promising direction for further research that can improve
their performance, especially for high-dimensional action spaces.

The proposed IDQN and DIDQN algorithms can be interpreted not only as algorithms for solving
RRL problems but also as algorithms for solving zero-sum differential games. In this sense, it should
be emphasized that the development of the shared Q-function concept to the general case of multi-
agent differential games is non-trivial and is complicated by the fact that there are no simple and
sufficiently general conditions (analogous to Isaacs’s condition) under which such games have an
equilibrium in positional (feedback) policies. Nevertheless, in some classes of games in which the
existence of Nash equilibrium is established, such investigations can be promising.

9
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A APPENDIX

Typical conditions for the positional differential game theory (see, e.g., p. 116 in Subbotin (1995))
are the following:

• The functions f(t, x, u, v) and f0(t, x, u, v) are continuous.
• There exists cf > 0 such that∥∥f(t, x, u, v)∥∥+

∣∣f0(t, x, u, v)
∣∣ ≤ cf

(
1 + ∥x∥

)
, (t, x, u, v) ∈ [0, T ]× Rn × U × V.

• For every α > 0, there exists λf > 0 such that∥∥f(t, x, u, v)− f(t, y, u, v)
∥∥+

∣∣f0(t, x, u, v)− f0(t, y, u, v)
∣∣ ≤ λf∥x− y∥

for any t ∈ [0, T ], x, y ∈ Rn: max{∥x∥, ∥y∥} ≤ α, u ∈ U , and v ∈ V .

In particular, these conditions provide the existence and uniqueness of the motion x(·) for each
Lebesgue-measurable functions u(·) : [τ, T ] 7→ U and v(·) : [τ, T ] 7→ V , where we mean by the
motion a Lipschitz continuity function x(·) : [τ, T ] 7→ Rn satisfying condition x(τ) = w and equa-
tion (1) almost everywhere.

B APPENDIX

Let us show that game (7) can be formalized as a Markov game (S∆,U ,V,P∆,R∆, γ). First, put

S∆ =
(
∆× Rn

)
∪ sT ,

where sT is some fictional terminal state. Next, for every s = (ti, x) ∈ ∆×Rn, i ̸= m+1, u ∈ U ,
and v ∈ V , we define the transition distribution and the reward function by

P(s′|s, u, v) = δ(s′), R(s, u, v) = ∆tif
0(ti, x, u, v),

where s′ = (ti+1, x
′), x′ = x + ∆tif(ti, x, u, v), and δ is the Dirac delta distribution. For s =

(tm+1, x) ∈ ∆× Rn, we set

P(s′|s, u, v) = δ(s′ = sT ), R(s, u, v) = σ(x), u ∈ U , v ∈ V.

In order to make the game formally infinite, we put

P(s′|sT , u, v) = δ(s′ = sT ), R(sT , u, v) = 0, u ∈ U , v ∈ V.

C APPENDIX

Denote
χ(t, x, u, v, s) = ⟨f(t, x, u, v), s⟩+ f0(t, x, u, v).

Lemma 1. Let condition (6) hold. Let the value function V (τ, w) = Vu(τ, w) = Vv(τ, w) be
continuously differentiable at every (τ, w) ∈ [0, T ]× Rn. Then the equations

∂

∂τ
V (τ, w) +H(τ, w,∇wV (τ, w)) = 0, V (T,w) = σ(w), (15)

hold for any τ ∈ [0, T ) and w ∈ Rn, where we denote

H(t, x, s) = min
u∈U

max
v∈V

χ(t, x, u, v, s) = max
v∈V

min
u∈U

χ(t, x, u, v, s).

The lemma follows from two facts: the value function is a minimax (generalized) solution of Cauchy
problem (15) (see Theorem 11.4 in Subbotin (1995)) and a continuously differentiable minimax
solution is a classical solution (see Section 2.4 in Subbotin (1995)).

Let us prove a). Let ε > 0 and D ⊂ Rn. Let us define a compact set D′ so that{
x′ = x+ (t′ − t)f(t, x, u, v) : t, t′ ∈ [0, T ], x ∈ D, u ∈ U , v ∈ V

}
⊂ D′.
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Since the value function V is continuously differentiable, there exists δ > 0 such that∣∣∣V (t′, x′)− V (t, x)− (t′ − t)(∂/∂t)V (t, x)− ⟨x′ − x,∇xV (t, x)⟩
∣∣∣ ≤ ε(t′ − t)

for any t, t′ ∈ [0, T ] satisfying 0 < t − t′ ≤ δ and any x ∈ D, x′ ∈ D′ u ∈ U , v ∈ V . Let ∆ be
such that diam(∆) < δ. Define

Q∆(ti, x, u, v) = V (ti, x) + ∆ti

(
(∂/∂t)V (t, x) + χ(t, x, u, v,∇xV (t, x))

)
, (16)

where (ti, x, u, v) ∈ ∆ × Rn × U × V , i ̸= m + 1, and Q∆(tm+1, x, u, v) = σ(x). Then, using
Lemma 1, we derive ∣∣∣Q∆(ti, x, u, v)− r − min

u′∈U
max
v′∈V

Q∆(ti+1, x
′, u′, v′)

∣∣∣
=

∣∣∣V (ti, x) + ∆ti(∂/∂t)V (ti, x) + ⟨x′ − x,∇xV (ti, x)⟩ − V (ti+1, x
′)
∣∣∣ ≤ ε∆ti

for any (ti, x, u, v) ∈ ∆×Rn×U×V , where r = ∆tif
0(ti, x, u, v) and x′ = x+∆tif(ti, x, u, v).

The statement about decomposition of Q∆(t, x, u, v) follows from (16). Thus, a) has proved.

Let us prove b). Let (τ, w) ∈ [0, T )× Rn and ε > 0. Put

D =
{
(t, x) ∈ [0, T ]× Rn : ∥x∥ ≤ (∥w∥+ 1)ecf t − 1

}
.

Then, we have the inclusion (τ, w) ∈ D. Note also that, for every (t, x) ∈ D, the inclusion
(t′, x′) ∈ D holds for t′ ∈ [t, T ] and x′ = x + (t′ − t)f(t, x, u, v), u ∈ U , v ∈ V . Take δ > 0
according to a). Let us take a partition ∆ satisfying diam(∆) < δ and the function Q∆(ti, x, u, v)
from (16). Let vi ∈ V , i = 0, 1, . . . ,m be such that the equality

V πu
u (τ, w) = σ(xm+1) +

m∑
i=0

∆tif
0(ti, xi, π

∆
u (ti, xi), vi),

holds, where

xi = w xi+1 = xi +∆tif(ti, xi, π
∆
u (ti, xi), vi), i = 0, 1, . . . ,m.

Then, due to (9) and (11), we derive

V πu
u (τ, w) ≤ σ(xm+1) +

m∑
i=0

(
Q∆(ti, xi, πu(ti, xi), vi)−min

u∈U
max
v∈V

Q∆(ti+1, xi+1, u, v)
)
+ εT

≤ σ(xm+1) +

m∑
i=0

(
min
u∈U

max
v∈V

Q∆(ti, xi, u, v)−min
u∈U

max
v∈V

Q∆(ti+1, xi+1, u, v)
)
+ εT

≤ min
u∈U

max
v∈V

Q∆(τ, w, u, v) + εT

Form this estimate, taking into account the definition (16) of Q∆ and Lemma 1, we obtain the first
inequality in the statement b). The second inequality can be proved by the symmetric way.

The validity of Corollary 1 follows from the proof given above replacing

min
u∈U

max
v∈V

χ(t, x, u, v, s), max
v∈V

min
u∈U

χ(t, x, u, v, s)

with
min
u∈U∗

max
v∈V∗

χ(t, x, u, v, s), max
v∈V∗

min
u∈U∗

χ(t, x, u, v, s).

D APPENDIX

Two-agent algorithms’ parameters. We use pretty standard and the same parameters for the
2xDDQN, NasgDQN, MADQN, CounterDQN, IDQN, and DIDQN algorithms. We utilize the
ADAM optimazer with the learning rate lr = 0.001, the smoothing parameter τ = 0.01, and
the batch size nbs = 64. For the time-discretization, we use the uniform partitions ∆ = {i∆t : i =
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Envirenments U∗ V∗ ∆t Hidden NN Ley-
ers

EscapeFromZero BM(0, 2π, 10) BM(0, 2π, 10) 0.2 256, 128
GetIntoCircle LM(−0.5, 0.5, 10) LM(−1, 1, 10) 0.2 256, 128
GetIntoSquare LM(−1, 1, 10) LM(−1, 1, 10) 0.2 256, 128
HomicidalChauffeur LM(−1, 1, 10) BM(0, 2π, 10) 0.2 256, 128
Interception BM(0, 2π, 10) BM(0, 2π, 10) 0.2 512, 256, 128
InvertedPendulum LM(−1, 1, 9) LM(−0.2, 0.2, 9) 0.2 512, 256, 128
Swimmer SM(−1, 1, 4, 2) LM(−0.2, 0.2, 16) 1.0 512, 256, 128
HalfCheetah SM(−0.5, 0.5, 2, 5) LM(−0.5, 0.5, 32) 0.3 512, 256, 128

Table 1: Parameters for the two-agents’ learning algorithms

Parameters DDQN DDPG CEM A2C PPO SAC
learning timesteps 5e4 2.5e4 5e4 2.5e4 5e4 2.5e4
learning rate 1e-3 π : 1e-4,

q : 1e-3
1e-2 1e-3 1r-3 1e-3

batch size 64 64 — Def. 64 Def.
smooth param. τ 1e-2 1e-3 1e-2 Def. Def. 1e-2
discount factor γ 1 1 1 1 1 1
percentile param. — — 80 — — —
number of steps — — — — 64 —

Table 2: Parameters for the evaluating algorithms.

0, 1, . . . ,m + 1}. The parameter ∆t, the structure of the neural networks, and the discretization of
the continuous action spaces depend on the game and are indicated in Table 1, where we define the
linear mesh, square mesh, and ball mesh as

LM(a, b, k) =
{
a+ i(b− a)/k : i = 0, 1, . . . , k

}
, SM(a, b, k, n) = LM(a, b, k)n,

BM(a, b, k) =
{
(sin(α), cos(α)) ∈ R2 : α ∈ LM(a, b, k)

}
.

In particular, we use deeper neural networks in more complex games for better results. Agents learn
during 50000 timesteps, under the linear reduction of the exploration noise ζ from 1 to 0. In the
CounterDQN algorithm, each agent learns 25000 timesteps.

For the RARL approach, we apply the PPO algorithm from StableBaseline3 with the standard pa-
rameters and alternately teach the agents every 1000 timesteps.

Algorithms’ parameters for evaluation. Parameters of the algorithms used in the evaluation
stages (see Fig. 2) are described in Table 2.

E APPENDIX

EscapeFromZero. The game taken from (Subbotin, 1995, p. 164) describes the motion of a point
on a plane that is affected by two agents. The first agent aims to be as far away from zero as possible
at the terminal time T = 2, while the aim of the second agent is the opposite. The capabilities of
the first agent’s influence are constant and are described by a unit ball. In contrast, the capabilities
of the second agent are a ball with a decreasing radius as the terminal time is approached. Thus, the
differential game is described by the differential equation
d

dt
x(t) = u(t) + (2− t)v(t), t ∈ [0, 2], x(t) ∈ R2, u(t), v(t) ∈ B2 := {s ∈ R2 : ∥s∥ ≤ 1},

with the initial condition x(0) = x0 := (0, 0), and the quality index J = −∥x(2)∥. (Subbotin,
1995, p. 164) shows that V (0, x0) = −0.5. This means the first agent is able to move away from
zero by 0.5 at the terminal time T = 2 for any actions of the second agent.
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GetIntoCircle This game is taken from Kamneva (2019). The first and the second agents can
move a point on the plane vertically and horizontally, respectively. The first agent aims to drive the
point as close to zero as possible at the terminal time T = 4. The aim of the second agent is the
opposite. Thus, the differential game is described as follows:

d

dt
x1(t) = v(t),

d

dt
x2(t) = u(t), t ∈ [0, 4], x(t) ∈ R2, u(t) ∈ [−0.5, 0.5], v(t) ∈ [−1, 1],

x(0) = x0 = (0, 0.5), J = ∥x(4)∥ − 4.

This game has a value V (0, x0) = 0, which means the optimal first agent can lead the point only to
the border of a circle of the radius r = 4.

GetIntoSquare. In the game from Patsko (1996), The first agent aims to drive a point on the plane
as close to zero as possible at the terminal time T = 4. The aim of the second agent is the opposite.
The differential game is described as follows:

d

dt
x1(t) = x2(t) + v(t),

d

dt
x2(t) = −x1(t) + u(t),

t ∈ [0, 4], x(t) ∈ R2, u(t), v(t) ∈ [−1, 1],

x(0) = x0 := (0.2, 0), J = max{|x1(4)|, |x2(4)|}.

The game has the value V (0, x0) = 1, which means the optimal first agents can lead the point only
to the border of a square with the side a = 1.

HomicidalChauffeur is a well-studied example of a pursuit-evasion differential game (Isaacs
(1965)). However, to formalize this game within our class of differential games (1), 2) we con-
sider its finite-horizon version:

d

dt
x1(t) = 3 cos(x3(t)),

d

dt
x2(t) = 3 sin(x3(t)),

d

dt
x3(t) = u(t),

d

dt
x4(t) = v1(t),

d

dt
x5(t) = v2, t ∈ [0, 3], x(t) ∈ R5, u(t) ∈ [−1, 1], v(t) ∈

{
v ∈ R2 : ∥v∥ ≤ 1}

x(0) = (0, 0, 0, 2.5, 7.5), J =
√

(x1(4)− x4(t))2 + (x2(4)− x5(4))2.

Such a version of this game has been studied much less, and therefore, we do not know the exact
value in it.

Interception. This game is taken from Kumkov et al. (2005) and describes an air interception task.
At the terminal time T = 3, the first agent strives to be as close as possible to the second agent, but
unlike the second agent, the first agent has inertia in dynamics. The differential game is described
by the differential equation

d2

dt2
y(t) = F (t),

d

dt
F (t) = −F (t) + u(t),

d2

dt2
z(t) = v(t), t ∈ [0, 3],

x(t) =

(
y1(t), y2(t),

d

dt
y1(t),

d

dt
y2(t), F1(t), F2(t), z1(t), z2(t),

d

dt
z1(t),

d

dt
z2(t)

)
∈ R10,

u(t) ∈
{
u ∈ R2 :

u2
1

(0.67)2 + u2
2 ≤ (1.3)2

}
, v(t) ∈

{
v ∈ R2 :

v2
1

(0.71)2 + v22 ≤ 1
}
,

with the initial conditions x(0) = x0 := (1, 1.1, 0, 1, 1,−2, 0, 0, 1, 0) and the quality index J =
∥y(3) − z(3)∥. Due to the difference of the problem statement in Kumkov et al. (2005), we cannot
precisely set the value of this game. We can only state the inequality V (0, x0) ≥ 1.5.

InvertedPendulum. We take the InvertedPendulum task from the MuJoCo simulator (Todorov
et al. (2012)) described by

d

dt
x(t) = FIP (x(t), u(t)), t ∈ [0, Tf ), x(t) = (qpos0:1(t), qvel0:1(t)) ∈ R4, u(t) ∈ [−1, 1],
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where qpos0:1(t) = (qpos0(t), qpos1(t)), qvel0:1(t) = (qvel0(t), qvel1(t)), and Tf is a time until
which the restriction x(t) ∈ D holds. Violation of this restriction means the pendulum falls down.
Based on this task, we consider the differential game

d

dt
x(t) = FIP (x(t), u(t)) + e4v(t), t ∈ [0, 3], x(t) ∈ R4, u(t) ∈ [−1, 1], v(t) ∈ [−0.2, 0.2]

where e4 = (0, 0, 0, 1), with initial condition x(0) = x0 = (0, 0, 0, 0) and the quality index

J = −
∫ 3

0

[x(t) ∈ D]dt, [x(t) ∈ D] =

{
1, if x(t) ∈ D holds,
0, otherwise.

Thus, we introduced the second agent as a disturbance at the end of the rod and reformulated the
problem as differential game (1), (2), retaining the meaning.

Swimmer. In a similar way, we consider the Swimmer task from MuJoCo

d

dt
x(t) = FS(x(t), u(t)), t ∈ [0,+∞), x(t) = (qpos2:4(t), qvel0:4(t)) ∈ R8, u(t) ∈ [−1, 1]2,

x(0) = x0 = 0 ∈ R8, J =

∫ +∞

0

r(x(t))dt,

introduces the second agent as a disturbance on the tail, and reformulated this task as differential
game (1), (2)

d

dt
x(t) = FS(x(t), u(t)) + e3v(t), t ∈ [0, 20], x(t) ∈ R8, u(t) ∈ [−1, 1]2, v(t) ∈ [−0.2, 0.2],

x(0) = x0 = 0 ∈ R8, J = −
∫ 20

0

r(x(t))dt.

HalfCheetah is the third task from the MuJoCo simulator that we consider

d

dt
x(t) = FHC(x(t), a(t)), t ∈ [0,+∞), x(t) = (qpos1:8(t), qvel0:1(t)) ∈ R17, a(t) ∈ [−1, 1]6,

x(0) = x0 = 0 ∈ R17, J =

∫ +∞

0

r(x(t))dt.

In this task, we determine the agents’ actions as u(t) = a1:5(t) ∈ [−0.5, 0.5]5 and v(t) = a6(t) ∈
[−0.5, 0.5] and reformulated the task as differential game (1), (2)

d

dt
x(t) = FHC(x(t), u(t), v(t)), t ∈ [0, 3), x(t) ∈ R17, u(t) ∈ [−0.5, 0.5]5, v(t) ∈ [−0.5, 0.5],

x(0) = x0 = 0 ∈ R17, J = −
∫ 3

0

r(x(t))dt.

Here we reduce the capabilities of agents in order to make the game more interesting. Otherwise,
the second agent would always win by flipping the HalfCheetah.
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