
Published as a conference paper at ICLR 2025

DISCOVERING GROUP STRUCTURES VIA UNITARY
REPRESENTATION LEARNING

Dongsung Huh
IBM Research
huh@ibm.com

ABSTRACT

Discovering group structures within data poses a fundamental challenge across di-
verse scientific domains. A key obstacle is the non-differentiable nature of group
axioms, hindering their integration into deep learning frameworks. To address
this, we introduce a novel differentiable approach leveraging the representation
theory of finite groups. Our method features a unique network architecture that
models interactions between group elements via matrix multiplication of their rep-
resentations, along with a regularizer promoting the unitarity of these representa-
tions. The interplay between the network architecture and the unitarity condi-
tion implicitly encourages the emergence of valid group structures. Evaluations
demonstrate our method’s ability to accurately recover group operations and their
unitary representations from partial observations, achieving significant improve-
ments in sample efficiency and a ×1000 speedup over the state of the art. This
work lays the foundation for a promising new paradigm in automated algebraic
structure discovery, with potential applications across various domains, including
automatic symmetry discovery for geometric deep learning.

1 INTRODUCTION

Identifying algebraic structures, particularly groups, has been a cornerstone of progress across di-
verse scientific fields. In mathematics, groups formalize the concepts of symmetry and transfor-
mation, underpinning abstract algebra, geometry, topology, and number theory. In physics, group
theory is indispensable for understanding the fundamental laws of nature, from classifying elemen-
tary particles to formulating quantum field theory. Within computer science, groups play key roles
in cryptography, coding theory, and algorithm design. Furthermore, in deep learning, group theory
informs the design of symmetry-aware architectures (e.g., convolutional and equivariant neural net-
works), enhancing parameter efficiency, generalization, and enabling applications on non-Euclidean
domains (Bronstein et al., 2021).

Despite their profound significance, uncovering group structures within data remains a significant
challenge, traditionally requiring substantial domain expertise and human intuition. A key obstacle
is the inherent non-differentiability of the defining criteria for groups — the group axioms — which
impedes their direct integration into gradient-based learning frameworks. In this work, we introduce
a novel method for automatically discovering groups and their unitary representations, leveraging the
representation theory of finite groups. Our approach uses a novel network architecture that models
interactions between group elements through the product of their matrix representations, along with
a regularizer promoting their unitarity. This interplay naturally encourages the emergence of valid
group structures, without direct evaluation of the non-differentiable group axioms.

This work demonstrates the effective embedding of fundamental group structure criteria within the
differentiable learning framework, paving the way for automated discovery of algebraic structures.

2 GROUPS AND REPRESENTATIONS

Algebraic structures — sets endowed with operations satisfying specific axioms — offer a powerful
framework for studying abstract mathematical objects and their interactions. Among these struc-
tures, groups are foundational building blocks of abstract algebra, underpinning the construction of

1

Published as a conference paper at ICLR 2025

more complex entities like rings and fields. Furthermore, the well-established theory of group repre-
sentations provides a crucial tool for analyzing group structures by mapping their abstract properties
to the concrete domain of linear algebra. In this section, we present a concise overview of groups
and their representations, emphasizing key concepts pertinent to our work.

Groups A group (G, ◦) is a set G with a binary operation ◦ that satisfies four axioms: Closure:
∀a, b ∈ G, a ◦ b ∈ G. Associativity: (a ◦ b) ◦ c = a ◦ (b ◦ c). Identity: There exists an identity
element e ∈ G such that for all g ∈ G, g ◦ e = e ◦ g = g. Inverse: For every g ∈ G, there exists a
unique inverse element g−1 such that g ◦ g−1 = g−1 ◦ g = e.

Representations A representation of a group (G, ◦) on a vector space V is a group homomorphism
ϱ : G → GL (V) that preserves the group structure: i.e.

ϱ(g1 ◦ g2) = ϱ(g1)ϱ(g2), ∀g1, g2 ∈ G. (1)

In essence, it maps each group element to an invertible linear transformation on the vector space, en-
suring that the composition of transformations mirrors the group operation. For a finite-dimensional
vector space of dimension n, we can choose a basis to identify GL(V) as GL(n,K), the group of
n× n invertible matrices over the field K.

Unitary Representations A representation ϱ of a group (G, ◦) is called unitary if for every g ∈ G,
ϱ(g) is a unitary transformation, i.e. preserves the inner product. This property makes unitary
representations particularly well-behaved and amenable to analysis. Notably, the Unitarity Theorem
guarantees that for many important classes of groups, such as compact and finite groups, every
finite-dimensional representation is equivalent to a unitary one. Unitary representations naturally
arise in the study of quantum systems, and have deep connections to other areas of mathematics,
e.g., harmonic analysis and operator algebras.

Irreducible Representations A representation is considered reducible if it can be decomposed
into a direct sum of smaller representations via a similarity transform, leading to a block-diagonal
matrix form where each block corresponds to a simpler representation. Irreducible representations
(irreps), on the other hand, cannot be further decomposed and serve as the fundamental building
blocks for constructing all possible group representations.

Regular Representations Every group (G, ◦) possesses an inherent action on itself that can be
viewed as a permutation, where each group element rearranges the other elements. The regular
representation uses the permutation’s basis vectors to construct a linear representation. It is decom-
posible into a direct sum of the complete set of irreps, where each irrep appears with a multiplicity
equal to its dimension. Moreover, its trace, also known as character, is a simple function:

Tr[ϱ(g)] = n if g = e, 0 otherwise. (2)

Real vs Complex Representations Complex representations (K = C) provide a rich mathemati-
cal framework for analyzing group structures in representation theory. We utilize this framework to
establish the theoretical foundations of our approach in Sections 4 and 5. However, for finite groups,
real representations (K = R) often suffice in practice,1offering advantages in implementation and
visualization. Our empirical results in Sections 6 and 7 thus utilize real representations.

3 BACKGROUND

Binary Operation Completion In this study, we adopt the Binary Operation Completion (BOC)
problem (Power et al., 2022) as our experimental setting. BOC entails completing the Cayley table
of a binary operation over a finite set of abstract symbols. This problem isolates the fundamental
challenge of discovering group structures solely from interactions between elements, eliminating
the confounding influence of extraneous factors. Consequently, BOC provides a crucial theoretical
framework for analyzing structure learning within the discrete symbolic domain, serving a role
analogous to that of matrix completion in the continuous domain.

1For finite groups, every complex representation can be realized over the real numbers with a doubling of
the dimension.

2

Published as a conference paper at ICLR 2025

Figure 1: Illustration of matrix and tensor products. Nodes are factors and edges are indices. (Left)
Matrix product. (Middle) Matrix product with trace operation. (Right) HyperCube product.

Matrix Completion Matrix completion aims to infer missing entries of a partially observed ma-
trix, assuming an underlying low-rank structure. Classical methods typically enforce this assump-
tion by either imposing explicit rank constraints (Burer and Monteiro, 2003) or by minimizing the
nuclear norm as a convex proxy for rank (Fazel et al., 2001; Candès and Recht, 2009; Recht et al.,
2010; Candes and Tao, 2010). Matrix completion provides a theoretical foundation for numerous
applications, spanning recommender systems, data imputation, compressed sensing.

Implicit Complexity Metric Recent research has revealed that deep matrix factorization net-
works, when regularized with L2 regularization (or initialized with small weights), implicitly define
a complexity metric that approximates rank, such as the nuclear norm or Schatten norm (Srebro
et al., 2004; Gunasekar et al., 2017). Furthermore, these implicit approaches have demonstrated
superior performance in matrix completion, especially with limited data (Arora et al., 2019).

Our Contributions: Bridging the Gap While Binary Operation Completion (BOC) shares con-
ceptual similarities with matrix completion, its discrete symbolic nature poses distinct challenges.
To bridge this gap, we reformulate the BOC problem into a tensor completion problem. We then
propose a novel solution rooted in the representation theory of finite groups: a specialized tensor-
factorization architecture coupled with a novel regularizer. This approach implicitly defines a com-
plexity metric that acts as a differentiable proxy for the group criterion, thus providing a learning-
based methodology for discovering group structures directly from data.

4 MODELING FRAMEWORK

Notations and Definitions We use the following capital symbols for order-3 tensor factors:
A,B,C. Aa denotes the matrix slice of A at the first index a and A†

a denotes its conjugate transpose.
AaBb denotes the matrix product of Aa and Bb. Einstein convention is used throughout, where a
repeated index implies contraction: e.g., AaA

†
a ≡

∑
a AaA

†
a, unless otherwise specified.

4.1 LINEARIZED FRAMEWORK: BINARY OPERATIONS AS BILINEAR MAPS

Consider a binary operation ◦ : S × S → S over a finite set S containing n elements: i.e. a ◦ b = c,
where a, b, c ∈ S. To facilitate modeling, we linearize the problem by considering a homomorphism
ϕ : (S, ◦) → (V,D), where V is a vector space and D : V × V → V is a bilinear map over V , such
that D(ϕ(a), ϕ(b)) = ϕ(a ◦ b). Concretely, by choosing the vector space V = Cn with a basis (for
instance, encoding each element as a one-hot vector), the bilinear map D can be represented by an
order-3 tensor D ∈ Cn×n×n, whose entries are

Dabc = 1 if a ◦ b = c, 0 otherwise. (3)

where the elements of S are used as tensor indices for clarity. Hereafter, we will use D to denote
the ground-truth data tensor to be learned by the model.

The linearized framework reveals that any binary operation over a finite set can be fully modeled by
a bilinear map, or equivalently, by its tensor representation. Crucially, this framework transforms
BOC into a tensor completion problem, where we recover the missing entries of D from the observed
entries in the training set.

3

Published as a conference paper at ICLR 2025

4.2 HYPERCUBE PARAMETERIZATION

To solve the tensor completion problem, we train a model tensor T to recover the data tensor D.
However, treating the entries of T as independent model parameters would prevent the model from
leveraging the structural relationships between observed and unobserved entries, limiting its ability
to generalize.

To address this, we introduce HyperCube factorization (Fig. 1), a structured parameterization that
factorizes the model tensor as a product of three order-3 factors (i.e. cubes) A,B,C ∈ Cn×n×n:

Tabc =
1

n
Tr[AaBbCc] =

1

n

∑
ijk

AakiBbijCcjk. (4)

This architecture employs matrix embeddings to represent the elements of the set S. Factors A and
B serve as embedding dictionaries, mapping each element a and b to their respective matrix embed-
dings: Aa and Bb.2 The interaction between a and b is then modeled as the matrix multiplication:
AaBb. Factor C then acts as an unembedding dictionary, mapping the result back to the space of S.

This architecture is inspired by the representation theory of finite groups, which also employs ma-
trix multiplication to model group operations (eq (1)). A key advantage of this approach is that
it directly encodes the associativity axiom of groups through the inherent associativity of matrix
multiplication, providing a strong inductive bias for capturing group structures. In contrast, conven-
tional tensor factorization methods typically use lower-order factors to reduce model complexity but
lack this useful inductive bias. As a result, they are less effective at modeling group structures (see
Appendix D for a detailed comparison).

4.3 HYPERCUBE REGULARIZER

The model is trained by minimizing the following regularized objective:
L = Lo(T ;D) + ϵH(A,B,C), (5)

where Lo is a differentiable loss on the model tensor T (e.g., squared error over the training data) and
H is the HyperCube regularizer, which penalizes the Jacobian of T with respect to the parameters:

H ≡
∥∥∥∥∂T∂A

∥∥∥∥2
F

+

∥∥∥∥ ∂T∂B
∥∥∥∥2
F

+

∥∥∥∥∂T∂C
∥∥∥∥2
F

=
1

n
Tr
[
A†

aAaBbB
†
b +B†

bBbCcC
†
c + C†

cCcAaA
†
a

]
, (6)

which can be viewed as a dual to standard L2 regularization: ∥A∥2F + ∥B∥2F + ∥C∥2F . In subse-
quent sections, we demonstrate that eq (6) encourages the factors to learn full-rank, unitary matrix
embeddings, contrasting with L2 regularization, which promotes low-rank solutions.

The Unitarity Theorem of representation theory guarantees that for compact and finite groups, every
finite-dimensional representation is equivalent to a unitary representation. Therefore, the unitarity
bias of the HyperCube regularizer can leverage this theorem to promote solutions within the space
of unitary matrix embeddings without loss of generality. This focused learning within a relevant
subspace of representations leads to faster convergence and improved sample complexity.

4.4 INTERNAL SYMMETRY OF MODEL

The over-parameterized eq (4) implies the presence of internal symmetries that leave the model
unchanged. For instance, one can introduce arbitrary invertible matrices MI ,MJ ,MK and their in-
verses between the factors as Ãa = M−1

K AaMI , B̃b = M−1
I BbMJ , and C̃c = M−1

J CcMK . These
yield an equivalent parameterization of T , since Tr[ÃaB̃bC̃c] = Tr[AaBbCc]. These symmetry
transformations can be understood as changing the internal basis coordinate to represent the factors.

Note that while the model loss Lo(T) is invariant under such coordinate changes, the regularizer
H(A,B,C) is not. However, the regularizer is invariant under unitary basis changes, in which the
introduced matrices are unitary, such that MM† = M†M = I . Therefore, the regularizer imposes
a stricter form of symmetry. This leads to the following Proposition.
Proposition 4.1. If A,B,C form an optimal solution of the regularized loss eq (5), then any unitary
basis changes leave the solution optimal, but non-unitary basis changes generally increase the loss.

2This embedding process is closely related to the generalized Fourier transform on groups (See Appendix I).

4

Published as a conference paper at ICLR 2025

A B C D

Figure 2: ”Multiplication” tables (i.e. Cayley tables) of small binary operations: symmetric group
S3, modular addition, subtraction, and squared addition. Elements of S3 are illustrated in Figure 8.

5 ANALYZING HYPERCUBE’S INDUCTIVE BIAS

While HyperCube eq (4) does not explicitly restrict the model’s hypothesis space, the regularizer
eq (6) induces a strong implicit bias on the model. In this section, we introduce key concepts for
analyzing this inductive bias. See Appendix G for proofs.
Lemma 5.1 (Balanced Condition). At stationary points of eq (5), imbalance terms vanish to zero:

ξI = ξJ = ξK = 0, (7)

where ξI = A†
a(C

†
cCc)Aa − Bb(CcC

†
c)B

†
b , ξJ = B†

b(A
†
aAa)Bb − Cc(AaA

†
a)C

†
c , and ξK =

C†
c (B

†
bBb)Cc −Aa(BbB

†
b)A

†
a are the imbalances across edge i, j, and k, respectively.

The following statements demonstrate that the regularizer promotes a unitarity condition.
Definition 5.2 (Contracted Unitarity). A factor A is C-unitary if it satisfies the following:
AaA

†
a, A

†
aAa ∝ I (with contracting the repeated index a).

Proposition 5.3. C-unitary factors satisfy the balanced condition eq (7), given that they share a
common scalar multiple of the identity matrix: i.e.

AaA
†
a = A†

aAa = BbB
†
b = B†

bBb = CcC
†
c = C†

cCc ≡ nα2I, (8)

Lemma 5.4. Under the fixed Frobenius norm, all C-unitary factors are stationary points of the
regularizer H.

Remarkably, we also observe a stronger form of unitarity in the converged solutions.
Definition 5.5 (Slice Unitarity). A factor A is S-unitary if every matrix slice of A is a scalar multiple
of an unitary matrix: i.e. AaA

†
a = A†

aAa ≡ α2
Aa

I (without contracting the repeated index a).
Observation 5.6. When optimizing the regularized loss eq (5), C-unitary solutions are consistently
achieved via S-unitarity, in which eq (8) reduces to

∑
a α

2
Aa

=
∑

b α
2
Bb

=
∑

c α
2
Cc

= nα2.

Although the exact mechanism driving S-unitarity remains an open question, this observation em-
phasizes the strong unitarity bias induced by the HyperCube regularizer. In Section 6, we rigorously
demonstrate the learning dynamics, revealing a consistent reduction in imbalance and unitarity mea-
sures during optimization with HyperCube regularization. These findings compellingly suggest that
unitarity is not merely a byproduct, but a fundamental attribute of HyperCube’s optimal solutions.

6 ANALYSIS ON SMALL-SCALE BOC EXPERIMENTS

We begin with a detailed qualitative analysis of how HyperCube learns small-scale binary opera-
tions. First, we examine the model’s learning dynamics on the group operation in S3 (Section 6.1),
followed by analysis of the learned matrix embeddings (Section 6.2). Finally, we extend these results
to other operations from Figure 2 (Section 6.3).

6.1 LEARNING DYNAMICS ON SYMMETRIC GROUP S3

Figure 3 compares the effect of different regularization strategies on the model’s learning dynam-
ics on the symmetric group S3 with 60% of the Cayley table sampled as training data. (See also

5

Published as a conference paper at ICLR 2025

U
nr

eg
ul

ar
iz

ed
 L

2
 re

gu
la

ri
ze

d
re

gu
la

ri
ze

d

Unitarity

Figure 3: Optimization trajectories on the S3 dataset with 60% training data fraction. (Top) Un-
regularized, (Middle) L2-regularized, and (Bottom) H-regularized training. Column 3 shows the
average imbalance (∥ξI∥2F + ∥ξJ∥2F + ∥ξK∥2F)1/2, and column 4 shows deviation from C-unitarity
∥
∑

a AaA
†
a/n − α2I∥2F and S-unitarity ∥AaA

†
a − α2

Aa
I∥2F , averaged over all factors and slices.

Column 5 shows normalized singular values of unfolded factors A,B,C.

Figure 15 for a direct visualization of the evolution of the model tensor and parameters.) Similar
analysis on the learning of the modular addition operation is presented in Figure 18 and 19.

In the absence of regularization, the model quickly memorizes the training dataset, achieving perfect
training accuracy, but fails to generalize to the test dataset. Also, the singular values of the unfolded
factors remain largely unchanged during training, indicating minimal internal structural changes.

Under H regularization, the model also first memorizes the training data, but then continues to
improve on the test set. A critical turning point is observed around t ≈ 200, marked by a sud-
den collapse of the singular values towards a common value, signifying convergence to a unitary
solution. Simultaneously, the C/S-unitarity and imbalance measures rapidly decrease to zero. This
internal restructuring coincides with a substantial improvement in test performance, achieving 100%
test accuracy, highlighting its crucial role in enabling generalization. Notably, when the regulariza-
tion coefficient ϵ drops to 0 around t = 450, both the train and test losses plummet to 0, confirming
perfect recovery of D.

re
gu

la
ri

ze
d

L2
 re

gu
la

ri
ze

d
U

nr
eg

ul
ar

iz
ed

D
at

a

D D D D D D

Figure 4: Model tensor T trained on the S3 dataset.
Training data are marked by stars (1s) and circles (0s).

In contrast, under L2 regularization, the
model converges to a low-rank solution,
as evidenced by a portion of the singu-
lar values decaying to zero. Although it
manages to achieve perfect test accuracy
in this specific case,3 L2 regularization
fails to reduce test loss to zero, indicat-
ing imperfect recovery of D. Figure 4 fur-
ther confirms these findings, demonstrat-
ing that only H-regularization accurately
recovers the group operation, while the
L2-regularized solution significantly devi-
ates from D. This result underscores the
importance of learning full-rank, unitary
solutions in recovering group operations.

3This is not always the case. For example, L2 regularization only achieves ∼60% test accuracy in the
modular addition task. See Figure 18.

6

Published as a conference paper at ICLR 2025

6.2 HYPERCUBE LEARNS UNITARY GROUP REPRESENTATIONS

We analyze the structure of the learned factors by applying the unitary basis change described in
Section 4.4. The results are visualized in Figure 16. While the raw factor values may appear un-
structured (top panel), a simple basis change reveals remarkable properties (middle panel).

First, the learned factors share a common embedding: Ag = Bg = C†
g , for all g ∈ G. Furthermore,

as illustrated in Figure 17, multiplication of the factor slices respects the underlying group operation:
Ag1Ag2 = Ag1◦g2 , demonstrating the group homomorphism property from eq (1). The slices are
also verifiably unitary matrices. These properties collectively imply that the learned factors form a
unitary matrix representation ϱ of the group:

Ag = Bg = C†
g = ϱ(g). (9)

Further structures are revealed in a block-diagonalizing basis (bottom panel of Figure 16), where
the factors show the complete set of irreducible representations (irreps) contained in the regular
representation of the group, including the trivial (1-dim), sign (1-dim), and duplicate standard rep-
resentations (2-dim). The trace of the factor slices also satisfies eq (2), confirming that ϱ is indeed a
regular representation of the group. Notably, this representation is unique up to similarity transfor-
mations.

Key Operating Mechanism These results reveal the operating mechanism of HyperCube on
groups. Applying eq (9) and the homomorphism property of ϱ, the model eq (4) can be expressed as

Tabc =
1

n
Tr[ϱ(a)ϱ(b)ϱ(c)

†
] =

1

n
Tr[ϱ(a ◦ b ◦ c−1)], (10)

where the unitarity of ϱ is used for the unembedding map: Cg = ϱ(g)† = ϱ(g−1). Applying eq (2)
for regular representations yields the exact reconstruction of the data tensor, Tabc = Dabc, since
a ◦ b ◦ c−1 = e is equivalent to a ◦ b = c in eq (3). Notably, this mechanism universally applies for
all finite groups. This insight leads to the following conjecture:
Conjecture 6.1. Subject to the constraint T = D, where D represents a group operation table, the
unitary group representation eq (9) is the unique minimizer of HyperCube Regularizer eq (6) up to
unitary basis changes, and the minimum value is H∗(D) = 3∥D∥2F = 3n2.

Shared-Embedding Eq (9) reveals that, for group operations, the same embedding is used across
all symbol positions. This motivates tying the embeddings across factors, resulting in a parameter-
efficient model tailored for learning group operations: HyperCube-SE (shared embedding).

6.3 DISCOVERING UNITARY REPRESENTATIONS BEYOND TRUE GROUPS

We extend our analysis to HyperCube trained on the remaining small operation tasks from Figure 2.
In each case, the model accurately recovers the underlying operations from a small subset (60%) of
training examples. Remarkably, the model learns closely related representations across these tasks
(Figure 20), even though the operations deviate from strict group axioms.

Modular Addition (a + b = c) forms the cyclic group C6. As expected, HyperCube learns the
regular representation ϱ(g) of C6 in its factors, as described by eq (9).

Modular Subtraction (a−b = c) violates associativity and therfore is not a true group. Surprisingly,
HyperCube still learns the same representation as addition but with transposed factors: A†

g = Bg =
Cg = ϱ(g). This reflects the equivalence: a− b = c ⇔ a = b+ c.

Modular Squared Addition (a2 + b2 = c) violates the inverse axiom. Still, HyperCube learns
the same representation as addition for elements with unique inverses (e.g., 0, 3). For others, it
learns duplicate representations reflecting the periodicity of squaring modulo: e.g., A2 = A4 since
22 = 42(mod 6).

These results highlight the remarkable flexibility of HyperCube’s inductive bias: Even for group-like
operations (i.e., those deviating from strict group axioms), HyperCube often discovers meaningful
unitary representations and recovers the full Cayley table. This finding highlights the potential of
unitary representations as a powerful tool for understanding binary operations in broader contexts
than group theory.

7

Published as a conference paper at ICLR 2025

Te
st

 A
cc

ur
ac

y
(%

)

Training data fraction

Transformer
HyperCube
HyperCube-SE

Figure 5: Generalization performance (test accuracy) of HyperCube and HyperCube-SE shown as
functions of training data fraction across a diverse set of BOC tasks. The results of the Transformer
baseline from Power et al. (2022) are also shown for comparison.

7 RESULTS ON DIVERSE BOC TASKS

We evaluate HyperCube and HyperCube-SE on diverse BOC datasets from Power et al. (2022),
encompassing a wide spectrum of group and non-group operations (details in Appendix B). These
problems are significantly larger than our previous examples, with dimensions ranging from n = 97
to 120. Figure 5 plots the test accuracy of models as functions of training data fraction over various
BOC tasks.

7.1 HYPERCUBE PRIORITIZES GROUPS OVER NON-GROUP OPERATIONS

HyperCube exhibits a clear preference for learning operations that admit unitary representations. For
these “simple” tasks, including group (a+b and S5) and group-like operations (a−b, a/b and a2+b2),
HyperCube demonstrates remarkable generalization, achieving perfect test accuracy with ∼18% of
the data. This strong generalization extends even to the group conjugation operation (aba−1 in
S5), despite its lack of unitary representations. Conversely, for more ”complex” operations, such as
aba in S5, conditional operations, and high-order polynomials, HyperCube necessitates significantly
more data for effective generalization.

HyperCube-SE exhibits similar behavior, but with an even stronger emphasis on prioritizing group
structures. It further differentiates between group and group-like operations, requiring even less data
(∼5%) for group operations to attain perfect test accuracy on group operations.

For group-like operations, HyperCube-SE remains competitive with HyperCube in terms of test
accuracy, despite its inherent limitation in recovering unitary representations due to the shared-
embedding constraint (Eq. (9)). Moreover, HyperCube-SE shows a further reduction in generaliza-
tion performance compared to HyperCube on “complex” operations like high-order polynomials,
consistent with its heightened prioritization of group structures.

7.2 HYPERCUBE’S IMPLICIT COMPLEXITY METRIC

In the previous section, we categorized tasks as “simple” or “complex” without a rigorous definition.
To address this, we now leverage the intrinsic complexity metric implicitly defined by HyperCube.
We formally define the complexity of an operation as the minimum regularizer loss, denoted H∗,
attained when fitting the fully observed Cayley table D (i.e., under the constraint T = D).

This metric closely aligns with the intuitive notion of complexity (Figure 6). Group operations
achieve the minimum complexity of H∗ = 3∥D∥2F , signifying their inherent simplicity within the

8

Published as a conference paper at ICLR 2025

HyperCube
HyperCube-SE

Figure 6: Complexity vs Generalizability
(AUC ≡ Area Under Curve).

Transformer
HyperCube
HyperCube-SE

Training data fraction

St
ep

s
to

 P
er

fe
ct

 Te
st

 A
cc

ur
ac

y
Figure 7: Number of training steps to achieve perfect
test accuracy on the S5 task.

HyperCube framework. In contrast, more “complex” tasks, such as high-order polynomials, incur
substantially higher complexity costs.

Figure 6 illustrates the generalization trend as a function of complexity, revealing a clear monotonic
relationship: as task complexity increases, generalizability (measured by the total area under the
test accuracy curve in Figure 5) decreases. This observation parallels the well-known relationship
in matrix completion, where higher matrix rank (analogous to higher complexity) generally leads
to poorer generalization and requires more data for effective learning. This underscores the critical
role of our proposed complexity metric in determining the generalization bound for BOC.

7.3 COMPARISON TO TRANSFORMER

To rigorously evaluate HyperCube, we compare against a Transformer baseline from Power et al.
(2022). Crucially, this Transformer baseline was meticulously tuned for peak performance due to its
inherent sensitivity to hyperparameters. 4 In contrast, HyperCube demonstrates notable robustness
across a broade range of hyperparameter configurations (see Appendix C).

Test Accuracy Performance Figure 5 illustrates that Transformer accuracy trends mirror Hyper-
Cube’s, requiring more data for increasingly “complex” tasks. However, Transformers favor com-
mutative operations (e.g., a+b, a2+ab+b2) over non-commutative ones (e.g., a−b, S5 tasks). This
likely stems from Transformers’ shared vector embeddings across all input locations (Power et al.,
2022; Liu et al., 2022), which misaligns their inductive bias with group structure learning. Overall,
HyperCube achieves comparable or slightly better generalization than Transformers in test accuracy
across most tasks.

Learning Speed HyperCube drastically outperforms Transformers in learning speed (Figure 7).
As reported by Power et al. (2022), Transformer’s learning progress on BOC is remarkably slow,
requiring orders of magnitude more time to generalize to the test set than to fit the training set. This
phenomenon, known as “grokking,” becomes exacerbated with less training data. This has been
widely observed in subsequent works across various deep learning architectures (Nanda et al., 2022;
Liu et al., 2022; Chughtai et al., 2023).

In contrast, HyperCube exhibits exceptional learning speed, converging to perfect test accuracy 100
times faster than the Transformer baseline in most cases, while also requiring less data. HyperCube-
SE, which employs shared-embedding of symbols similarly to Transformers, achieves an additional

4These include learning rate, batch size, weight decay, dropout, update noise level, and optimizer type. See
Section 3.3 and A.1.2 of Power et al. (2022) for further details.

9

Published as a conference paper at ICLR 2025

10× speedup and requires only 5% of the data for perfect generalization. This dramatic 1000×
improvement in learning speed demonstrates the effectiveness of HyperCube’s inductive bias toward
group structures.

8 CONCLUSION

This work introduced a novel differentiable framework for discovering the structure of finite groups
and their representations. Through theoretical analysis and empirical validation, we demonstrated
that our proposed model exhibits a strong inductive bias towards learning group structures and their
unitary representations. Furthermore, we have elucidated an implicit complexity metric inherent in
our model, which quantifies the model’s prioritization for discovering group structures and provides
insights into the generalization properties in recovering binary operations. Crucially, this inductive
bias is universal, directed towards the general algebraic structure of all groups, rather than being
specific to any particular group or symmetry.

This research pioneers new opportunities for employing deep learning to automatically uncover
group structures from data — a challenge with far-reaching implications across diverse scientific
domains. Prominent potential applications include: Automatic Symmetry Discovery: Identifying
symmetries in complex systems, such as physical systems or molecular structures. Representation
Learning: Learning meaningful representations of data that capture underlying algebraic relation-
ships. Algorithmic Reasoning: Developing deep learning models capable of symbolic reasoning
and algorithmic problem-solving.

Related Works Prior works on group discovery, particularly symmetry-focused approaches, are
related to our work. However, existing symmetry-based methods typically require external infor-
mation specifying the symmetry structure. For instance, Anselmi et al. (2019) leverage data aug-
mentation with known orbit information, while Forestano et al. (2023) similarly presume an oracle
providing orbit information. Yang et al. (2023) employs a semi-supervised approach to infer orbit
information, and Zhou et al. (2021) utilizes meta-learning, assuming a shared group convolution
structure across tasks. In contrast, our approach uniquely derives a universal inductive bias to-
wards the general algebraic structure of groups, independent of specific symmetries. Consequently,
our method is complementary to, and potentially synergistic with, these existing symmetry-focused
techniques.

Scalability HyperCube’s tensor-factorization architecture can lead to substantial memory and
computational costs, scaling as O(n3). However, efficient parallelization of einsum operations
enables near-constant runtime complexity on GPUs (Appendix F). Moreover, we demonstrate that
constraining embeddings to band-diagonal matrices can effectively reduce memory and computa-
tional costs to O(n2) (Appendix E), underscoring the potential for scaling HyperCube to larger
problem sizes.

Limitations Our analysis is primarily focused on Binary Operation Completion (BOC) tasks and
currently necessitates prior knowledge of the group size, n. Furthermore, while our method is not
directly applicable to continuous Lie groups in its present form, we anticipate that an analogous
differentiable approach can be developed to encode the axioms of Lie algebras.

Open Questions This work naturally leads to several open questions for future research. Promi-
nent among these are deriving rigorous generalization bounds for BOC tasks and formally proving
the optimality of unitary representations, as suggested by Observation 5.6 and Conjecture 6.1. Fur-
thermore, extending our methodology to accommodate multiple symbols and operations beyond
binary operations would significantly broaden its scope and applicability.

ACKNOWLEDGMENTS

The authors thank Nima Dehmamy and Ken Clarkson for their helpful discussions, which greatly
benefited this work.

10

Published as a conference paper at ICLR 2025

REFERENCES

Anselmi, F., Evangelopoulos, G., Rosasco, L., and Poggio, T. (2019). Symmetry-adapted represen-
tation learning. Pattern Recognition, 86:201–208.

Arora, S., Cohen, N., Hu, W., and Luo, Y. (2019). Implicit Regularization in Deep Matrix Factor-
ization. arXiv:1905.13655 [cs, stat].

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P. (2021). Geometric Deep Learning: Grids,
Groups, Graphs, Geodesics, and Gauges. arXiv:2104.13478 [cs, stat].

Burer, S. and Monteiro, R. D. (2003). A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical Programming, 95(2):329–357.

Candes, E. J. and Tao, T. (2010). The Power of Convex Relaxation: Near-Optimal Matrix Comple-
tion. IEEE Transactions on Information Theory, 56(5):2053–2080.

Candès, E. J. and Recht, B. (2009). Exact Matrix Completion via Convex Optimization. Foundations
of Computational Mathematics, 9(6):717–772.

Chughtai, B., Chan, L., and Nanda, N. (2023). Neural Networks Learn Representation Theory:
Reverse Engineering how Networks Perform Group Operations. In ICLR 2023 Workshop on
Physics for Machine Learning.

Fazel, M., Hindi, H., and Boyd, S. (2001). A rank minimization heuristic with application to min-
imum order system approximation. In Proceedings of the 2001 American Control Conference.
(Cat. No.01CH37148), volume 6, pages 4734–4739 vol.6. ISSN: 0743-1619.

Forestano, R. T., Matchev, K. T., Matcheva, K., Roman, A., Unlu, E., and Verner, S. (2023). Deep
Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras from First Principles.
arXiv:2301.05638 [hep-ph, physics:physics].

Gunasekar, S., Woodworth, B. E., Bhojanapalli, S., Neyshabur, B., and Srebro, N. (2017). Implicit
Regularization in Matrix Factorization. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Kawaguchi, K. (2016). Deep learning without poor local minima. In Advances in neural information
processing systems, pages 586–594.

Liu, Z., Kitouni, O., Nolte, N., Michaud, E. J., Tegmark, M., and Williams, M. (2022). Towards Un-
derstanding Grokking: An Effective Theory of Representation Learning. In Advances in Neural
Information Processing Systems.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Steinhardt, J. (2022). Progress measures for
grokking via mechanistic interpretability. In The Eleventh International Conference on Learning
Representations.

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and Misra, V. (2022). Grokking: Generalization
Beyond Overfitting on Small Algorithmic Datasets.

Recht, B., Fazel, M., and Parrilo, P. A. (2010). Guaranteed Minimum-Rank Solutions of Linear
Matrix Equations via Nuclear Norm Minimization. SIAM Review, 52(3):471–501.

Srebro, N., Rennie, J., and Jaakkola, T. (2004). Maximum-Margin Matrix Factorization. In Advances
in Neural Information Processing Systems, volume 17. MIT Press.

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika,
31(3):279–311.

Yang, J., Walters, R., Dehmamy, N., and Yu, R. (2023). Generative Adversarial Symmetry Discov-
ery. arXiv:2302.00236 [cs].

Zhou, A., Knowles, T., and Finn, C. (2021). Meta-Learning Symmetries by Reparameterization.
arXiv:2007.02933 [cs, stat].

11

Published as a conference paper at ICLR 2025

A TRAINING PROCEDURE

The factor tensors are initialized with entries randomly drawn from a normal distribution:
N (0, 1/

√
n). We employ full-batch gradient descent to optimize the regularized loss with learn-

ing rate of 0.5 and momentum of 0.5. For the small scale experiments in Section 6, the HyperCube
regularizer coefficient is set to ϵ = 0.1. For the larger scale experiments in Section 7, we use
ϵ = 0.05 for HyperCube and ϵ = 0.01 for HyperCube-SE. See Appendix C for a discussion of
hyperparameter sensitivity. Each experiment quickly runs within a few minutes on a single GPU.

ϵ-scheduler To overcome the limitations in standard regularized optimization, which often pre-
vents full convergence to the ground truth (D), we employ ϵ-scheduler: Once the model demon-
strates sufficient convergence (e.g., the average imbalance falls below a threshold of 10−5), the
scheduler sets the regularization coefficient ϵ to 0. This allows the model to fully fit the training
data. The effect of ϵ-scheduler on convergence is discussed in Appendix G.3.

The main implementation of HyperCube is shown below.

1 import torch
2

3 def HyperCube_product(A,B,C):
4 return torch.einsum(’aij,bjk,cki->abc’, A,B,C) / A.shape[0]
5

6 def HyperCube_regularizer(A,B,C):
7 def helper(M,N):
8 MM = torch.einsum(’aim,aij->mj’, M,M)
9 NN = torch.einsum(’bjk,bmk->jm’, N,N)

10 return torch.einsum(’mj,jm->’, MM, NN)
11 return (helper(A,B) + helper(B,C) + helper(C,A)) / A.shape[0]

B LIST OF BINARY OPERATIONS

Here is the list of binary operations from Power et al. (2022) that are used in Section 7 (with p = 97).

• (add) a ◦ b = a+ b (mod p) for 0 ≤ a, b < p. (Cyclic Group)

• (sub) a ◦ b = a− b (mod p) for 0 ≤ a, b < p.

• (div) a ◦ b = a/b (mod p) for 0 ≤ a < p, 0 < b < p.

• (cond) a ◦ b = [a/b (mod p) if b is odd, otherwise a− b (mod p)] for 0 ≤ a, b < p.

• (quad1) a ◦ b = a2 + b2 (mod p) for 0 ≤ a, b < p.

• (quad2) a ◦ b = a2 + ab+ b2 (mod p) for 0 ≤ a, b < p.

• (quad3) a ◦ b = a2 + ab+ b2 + a (mod p) for 0 ≤ a, b < p.

• (cube1) a ◦ b = a3 + ab (mod p) for 0 ≤ a, b < p.

• (cube2) a ◦ b = a3 + ab2 + b (mod p) for 0 ≤ a, b < p.

• (ab in S5) a ◦ b = a · b for a, b ∈ S5. (Symmetric Group)

• (aba−1 in S5) a ◦ b = a · b · a−1 for a, b ∈ S5.

• (aba in S5) a ◦ b = a · b · a for a, b ∈ S5.

Figure 8: Elements of the symmetric group S3 illustrated as permutations of 3 items. Green color
indicates odd permutations, and white indicates even permutations. Adapted from https://en.
wikipedia.org/wiki/Symmetric_group.

12

https://en.wikipedia.org/wiki/Symmetric_group
https://en.wikipedia.org/wiki/Symmetric_group

Published as a conference paper at ICLR 2025

C HYPERPARAMETER SENSITIVITY ANALYSIS

We tested HyperCube across a wide range of hyperparameter settings, including learning rate, reg-
ularization coefficient, and weight initialization scale. Figure 9 shows the final test accuracy and
Figure 10 shows the number of training steps to achieve 100% test accuracy across a subset of tasks
from Appendix B under a fixed training budget of 1000 training steps.

HyperCube exhibits robust performance over the range of hyperparameter settings. Notably, in-
creasing the learning rate or regularization coefficient primarily raises the convergence speed with-
out significantly affecting the final test accuracy. The learning dynamics starts to become unstable at
large learning rate (lr = 1.5) or regularization coefficient (ϵ = 0.1). The weight initialization scale
has no effect on either the final test accuracy or the convergence speed.

This robustness, particularly to weight initialization scale and regularization strength, is noteworthy.
Deep neural networks exhibit a saddle point with zero Hessian at zero weights (Kawaguchi, 2016)
which becomes a local minimum under L2 regularization. This local minimum can cause the net-
work weights to collapse to zero when initialized with small values or under strong regularization.
(This mechanism also promotes low-rank solutions in L2-regularized deep neural networks.)

In contrast, HyperCube’s quartic regularization loss, also featuring zero Hessian at zero weights,
maintains the saddle point at zero. The absence of local minimum at zero prevents weight collapse,
contributing to significantly robust learning dynamics and promoting the emergence of full-rank
unitary representations in HyperCube.

Figure 9: Test accuracy vs Hyperparameters : (Top) learning rate, (Middle) regularization
strength, and (Bottom) weight initialization scale. Trained under a fixed training budget of 1000
steps. Default hyperparameter setting: lr = 0.5, reg coeff ϵ = 0.05, init scale = 1.0.

Figure 10: Steps to 100% accuracy vs Hyperparameters : Same settings as Fig 9, but showing
the number of training steps to achieve 100% test accuracy.

13

Published as a conference paper at ICLR 2025

D ALTERNATIVE TENSOR FACTORIZATIONS

HyperCube distinguishes itself from conventional tensor factorization architectures, which typically
employ lower-order, matrix factors for decomposition: e.g., Tucker and CP decomposition. This
difference is crucial for capturing the rich structure of binary operations.

Tucker Decomposition (Tucker, 1966) employs a core tensor M and three matrix factors:

Tabc =
1

n

∑
i,j,k

MijkAaiBbjCck, (11)

While flexible, Tucker decomposition suffers from a critical limitation: In eq (11), the role of ma-
trix factors is limited to simply mapping individual external indices to individual internal indices
(e.g. A maps a to i). This presents a recursive challenge, since learning the algebraic relationships
between the external indices (a, b, c) in T requires learning the relationships between the internal
indices(i, j, k) in M , which is not inherently simplifying the core learning problem. Consequently,
Tucker decomposition severely overfits the training data and fails to generalize to unseen examples
(Figure 11).

CP Decomposition CP decomposition utilizes only matrix factors for decomposition:

Tabc =
1

n

∑
k

AakBbkCck. (12)

This is equivalent to5 HyperCube with diagonal embeddings (i.e. Aaki = Aakδki, Bbij = Bbiδij ,
Ccjk = Ccjδjk), since∑

ijk

AakiBbijCcjk =
∑
ijk

AakBbiCcjδkiδijδjk =
∑
k

AakBbkCck. (13)

Therefore, while CP decomposition can fully capture commutative Abelian groups (e.g modular
addition), which admit diagonal representations (i.e., 1× 1 irreps) in K = C, it lacks the expressive
power to capture more complex operations. In experiments (Figure 11), CP decomposition indeed
shows reasonable performance only for the modular addition task, struggling to generalize to other
structures in data.

Tu
ck

er
 d

ec
om

po
si

tio
n

CP
 d

ec
om

po
si

tio
n

Figure 11: Alternative Tensor Factorization Methods: Test accuracy of (Top) Tucker and (Bot-
tom) CP decomposition methods, trained across a range of L2 regularization strengths.

5CP decomposition can also be viewed as a special case of Tucker decomposition with a fixed core tensor

Mijk = 1 if i = j = k, 0 otherwise.

14

Published as a conference paper at ICLR 2025

E BAND-DIAGONAL HYPERCUBE

As mentioned above, HyperCube with diagonal embeddings lacks the capacity to effectively capture
general group structures. However, the regular representation of a group generally decomposes into
a direct sum of smaller irreducible representations, resulting in a sparse, block-diagonal matrix
structure. Such block-diagonal structure can be effectively captured within the parameter space of
band-diagonal matrices.

Therefore, to enhance the scalability of HyperCube, we explore the band-diagonal variant where
the factor matrices are constrained to have a fixed bandwidth around the diagonal. This reduces the
model’s parameter count from O(n3) to O(n2), offering significant computational advantages.

Figure 12 compares the performance of the full HyperCube and the band-diagonal HyperCube with
a bandwidth of 8 on a subset of tasks from Appendix B (n = 97 or 120). Remarkably, the band-
diagonal version exhibits comparable performance to the full HyperCube model, demonstrating its
effectiveness in capturing group structures even with a significantly reduced number of parameters.
This result highlights the potential of band-diagonal HyperCube for scaling to larger problems.

te
st

Figure 12: Full HyperCube vs Band-diagonal HyperCube model. (Top) final test accuracy, and
(Bottom) steps to 100% test accuracy. lr = 0.5, reg coeff ϵ = 0.05, init scale = 1.0.

15

Published as a conference paper at ICLR 2025

F RUN-TIME COMPLEXITY

We empirically evaluate the run-time complexity of HyperCube. As expected, CPU execution time
scales as O(n3). However, due to the efficient parallelization of einsum operations in PyTorch (See
Appendix A), GPU execution time remains nearly constant with increasing n (up to n = 200, the
maximum size that fits in the 16GB memory of a Tesla V100 GPU). This demonstrates the practical
efficiency of HyperCube when leveraging GPU acceleration.

101 102

n

10 5

10 4

10 3

10 2

10 1

100

101
Run-time complexity (CPU, sec)

CP
Tucker
HyperCube
O(n3)

101 102

n

10 5

10 4

10 3

10 2

10 1

100

101
Run-time complexity (GPU, sec)

CP
Tucker
HyperCube
O(n3)

Figure 13: Run-time complexity for computing the HyperCube architecture (eq (4)) as functions
of n. Other tensor decomposition methods (CP and Tucker) are also shown. (Left) Run-time on
CPU. (Right) Run-time on GPU (Tesla V100 16GB). Results are averaged over 10 runs.

101 102

n

10 5

10 4

10 3

10 2

10 1

100

101
Run-time complexity Regularizer (CPU, sec)

CP
Tucker
HyperCube
O(n3)

101 102

n

10 5

10 4

10 3

10 2

10 1

100

101
Run-time complexity Regularizer (GPU, sec)

CP
Tucker
HyperCube
O(n3)

Figure 14: Same as above but for computing the regularizers.

16

Published as a conference paper at ICLR 2025

G DEFERRED PROOFS

G.1 PROOF OF LEMMA 5.1 ON BALANCED CONDITION OF HYPERCUBE

Here, we derive the balanced condition eq (7). The gradient of the regularized loss L = Lo(T ;D)+
ϵH(A,B,C) is

∇Aa
L =

1

n
((∇Tabc

Lo)C
†
cB

†
b + 2ϵ(Aa(BbB

†
b) + (C†

cCc)Aa)), (14)

∇Bb
L =

1

n
((∇Tabc

Lo)A
†
aC

†
c + 2ϵ(Bb(CcC

†
c) + (A†

aAa)Bb)),

∇CcL =
1

n
((∇Tabc

Lo)B
†
bA

†
a + 2ϵ(Cc(AaA

†
a) + (B†

bBb)Cc)),

where ∇Aa
L ≡ ∂L/∂Aa, ∇Bb

L ≡ ∂L/∂Bb, ∇Cc
L ≡ ∂L/∂Cc, and ∇Tabc

Lo ≡ ∂Lo/∂Tabc.

Define the imbalances as the differences of loss gradients:

ξI ≡ n

2ϵ
(A†

a(∇AaL)− (∇Bb
L)B†

b) = A†
a(C

†
cCc)Aa −Bb(CcC

†
c)B

†
b

ξJ ≡ n

2ϵ
(B†

b(∇Bb
L)− (∇CcL)C†

c) = B†
b(A

†
aAa)Bb − Cc(AaA

†
a)C

†
c

ξK ≡ n

2ϵ
(C†

c (∇Cc
L)− (∇Aa

L)A†
a) = C†

c (B
†
bBb)Cc −Aa(BbB

†
b)A

†
a

Setting the gradient to zero yields the balanced condition at stationary points, ξI = ξJ = ξK = 0,
which proves Lemma 5.1. Note that imbalance terms are defined to cancel out the ∇Tabc

Lo terms.
Therefore, the balanced condition is independent of the loss function Lo.

G.2 PROOF OF LEMMA 5.4

Proof. The constraint on Frobenius norm can be integrated with the regularizer into an augmented
loss via the Lagrange multiplier λ

H+ λ(F − constant), (15)

where F ≡ 1
n Tr

[
A†

aAa +B†
bBb + C†

cCc

]
is the Frobenius norm .

The gradient of eq (15) with respect to Aa is proportional to

∇Aa
(H+ λF) ∝ Aa(BbB

†
b) + (C†

cCc)Aa + λAa. (16)

In the case of C-unitary factors B and C, all terms in eq (16) become aligned to Aa, i.e.

∇Aa
(H+ λF) ∝ (α2

B + α2
C + λ)Aa. (17)

and thus an appropriate value for the Lagrange multiplier λ can be found to vanish the gradient,
which confirms stationarity. This result also applies to gradient with respect to Bb and Cc by the
symmetry of parameterization.

G.3 PERSISTENCE OF GROUP REPRESENTATION

The following lemma demonstrates a key property of our model’s convergence behavior: once a
group representation is learned, the solution remains within this representational form throughout
optimization.

Lemma G.1. Let D represent a group operation table. Once gradient descent of the regularized
loss eq (5) converges to a group representation (including scalar multiples), i.e.

Aa = αAa
ϱ(a), Bb = αBb

ϱ(b), Cc = αCc
ϱ(c)†, (18)

the solution remains within this representation form.

17

Published as a conference paper at ICLR 2025

Proof. For the squared loss

Lo(T ;D) =
∑

(a,b,c)∈Ωtrain

(Tabc −Dabc)
2, (19)

the gradient with respect to Aa eq (14) becomes

∇Aa
L =

1

n
(∆abcMabcC

†
cB

†
b + ϵ(Aa(BbB

†
b) + (C†

cCc)Aa)) (20)

where ∆ ≡ T −D is the constraint error, and M is the mask indicating observed entries in the train
set.

Substituting the group representation form eq (18) into eq (20), we get:

1

n
ϵ(Aa(BbB

†
b) + (C†

cCc)Aa) = 2ϵαAaα
2ϱ(a), (21)

for the last two terms, where α2 =
∑

b α
2
Bb

/n =
∑

c α
2
Cc
/n.

Since the product tensor is

Tabc =
1

n
Tr[AaBbCc] =

1

n
αAaαBb

αCc Tr[ϱ(a)ϱ(b)ϱ(c)
†] = αAaαBb

αCcDabc,

and Dabc = δa◦b,c = δa,c◦b−1 (δ is the Kronecker delta function), the first term in eq (20) becomes

1

n

∑
b,c

∆abcMabcC
†
cB

†
b =

1

n

∑
b,c

δa◦b,cMabc(αAa
αBb

αCc
− 1)αBb

αCc
ϱ(c ◦ b−1)

=
1

n

∑
b

Mab(a◦b)(αAaαBb
αCa◦b − 1)αBb

αCa◦bϱ(a). (22)

Note that both eq (22) and eq (21) are proportional to ϱ(a). Consequently, we have ∇Aa
L ∝ ϱ(a).

Similar results for other factors can also be derived: ∇Bb
L ∝ ϱ(b), and ∇Cc

L ∝ ϱ(c)†. This
implies that gradient descent preserves the form of the group representation (eq (18)), only updating
the coefficients αAa , αBb

, αCc .

Effect of ϵ-Scheduler Lemma G.1 holds true even when ϵ gets modified by ϵ-scheduler, which
reduces ϵ to 0. In this case, the coefficients converge to αAa

= αBb
= αCc

= 1, resulting in the
exact group representation form eq (9).

18

Published as a conference paper at ICLR 2025

H GROUP CONVOLUTION AND FOURIER TRANSFORM

H.1 FOURIER TRANSFORM ON GROUPS

The Fourier transform of a function f : G → R at a representation ϱ : G → GL(dϱ,R) of G is

f̂(ϱ) =
∑
g∈G

f(g)ϱ(g). (23)

For each representation ϱ of G, f̂(ϱ) is a dϱ × dϱ matrix, where dϱ is the degree of ϱ.

H.2 DUAL GROUP

Let Ĝ be a complete set indexing the irreducible representations of G up to isomorphism, called
the dual group, thus for each ξ we have an irreducible representation ϱξ : G → U(Vξ), and every
irreducible representation is isomorphic to exactly one ϱξ.

H.3 INVERSE FOURIER TRANSFORM

The inverse Fourier transform at an element g of G is given by

f(g) =
1

|G|
∑
ξ∈Ĝ

dϱξ
Tr
[
ϱξ(g

−1)f̂(ϱξ)
]
. (24)

where the summation goes over the complete set of irreps in Ĝ.

H.4 GROUP CONVOLUTION

The convolution of two functions over a finite group f, g : G → R is defined as

(f ∗ h)(c) ≡
∑
b∈G

f
(
c ◦ b−1

)
h(b) (25)

H.5 FOURIER TRANSFORM OF GROUP CONVOLUTION

Fourier transform of a convolution at any representation ϱ of G is given by the matrix multiplication

f̂ ∗ h(ϱ) = f̂(ϱ)ĥ(ϱ). (26)

In other words, in Fourier representation, the group convolution is simply implemented by the matrix
multiplication.

Proof.

f̂ ∗ h(ϱ) ≡
∑
c

ϱ(c)
∑
b

f(c ◦ b−1)h(b) (27)

=
∑
c

ϱ(c)
∑
a,b

f(a)h(b)δ(a,c◦b−1) (28)

=
∑
a,b

f(a)h(b)
∑
c

ϱ(c)δ(a◦b,c) (29)

=
∑
a,b

f(a)h(b)ϱ(a ◦ b) (30)

=
∑
a

f(a)ϱ(a)
∑
b

h(b)ϱ(b) (31)

= f̂(ϱ)ĥ(ϱ). (32)

where δ is the Kronecker delta function, and the equivalence between a = c ◦ b−1 and a ◦ b = c is
used between the second and the third equality.

19

Published as a conference paper at ICLR 2025

I GROUP CONVOLUTION AND FOURIER TRANSFORM IN HYPERCUBE

HyperCube shares a close connection with group convolution and Fourier transform. On finite
groups, the Fourier transform generalizes classical Fourier analysis to functions defined on the
group: f : G → R. Instead of decomposing by frequency, it uses the group’s irreducible repre-
sentations {ϱξ}, where ξ indexes the irreps (See Appendix H.2). A function’s Fourier component at
ξ is defined as:

f̂ξ ≡
∑
g∈G

f(g)ϱξ(g). (33)

Fourier Transform in HyperCube The Fourier transform perspective offers a new way to under-
stand how HyperCube with a group representation eq (9) processes general input vectors. Consider
a vector f representing a function, i.e., fg = f(g). Contracting f with a model factor A (or B)
yields:

f̂ ≡ fgAg =
∑
g∈G

f(g)ϱ(g), (34)

which calculates the Fourier transform of f using the regular representation ϱ. As ϱ contains all
irreps of the group, f̂ holds the complete set of Fourier components. Conversely, contracting f̂ with
ϱ† (i.e. factor C) performs the inverse Fourier transform:

1

n
Tr[f̂Cg] =

1

n

∑
g′∈G

fg′ Tr[ϱ(g′)ϱ(g)†] = fg, (35)

where eq (2) is used. This reveals that the factor tensors generalize the discrete Fourier transform
(DFT) matrix, allowing the model to map signals between the group space and its Fourier (fre-
quency) space representations.

Through the lens of Fourier transform, we can understand how the model eq (10) processes general
input vectors (f and h): it calculates their Fourier transforms (f̂ , ĥ), multiplies them in the Fourier
domain (f̂ ĥ), and applies the inverse Fourier transform. Remarkably, this process is equivalent to
performing group convolution (f ∗ h). This is because the linearized group operation (Section 4.1)
naturally entails group convolution (see Appendix I.1,??).

This connection reveals a profound discovery: HyperCube’s ability to learn symbolic operations is
fundamentally the same as learning the core structure of group convolutions. This means HyperCube
can automatically discover the essential architecture needed for equivariant networks, without the
need to hand-design them. This finding highlights the broad potential of HyperCube’s inductive
bias, extending its applicability beyond the realm of symbolic operations.

I.1 REINTERPRETING HYPERCUBE’S COMPUTATION

HyperCube equipped with group representation eq (10) processes general input vectors f and h as

fahbTabc =
1

n

∑
a

∑
b

f(a)h(b)Tr
[
ϱ(a)ϱ(b)ϱ(c)†

]
=

1

n
Tr

[(∑
a

ϱ(a)f(a)

)(∑
b

ϱ(b)h(b)

)
ϱ(c)†

]

=
1

n
Tr[(f̂ ĥ)ϱ(c)†] =

1

n
Tr[f̂ ∗ h ϱ(c)†]

= (f ∗ h)c. (36)

Therefore, the model calculates the Fourier transform of the inputs (f̂ and ĥ), multiplies them in
the Fourier domain (f̂ ĥ), and applies the inverse Fourier transform, which is equivalent to the group
convolution, as shown in Appendix H.5.

20

Published as a conference paper at ICLR 2025

J SUPPLEMENTARY FIGURES FOR SECTION 6

Pr
od

uc
t T

en
so

r S
lic

es
Unregularized regularized

Fa
ct

or
 A

 S
lic

es

Figure 15: Visualization of the end-to-end model tensor T and the factor A over the training
iteration steps on the symmetric group S3 task in Sec 6. Only the first three slices of the tensors
are shown. (Top) End-to-end model tensor T : In the un-regularized case, the model tensor quickly
converges to fit the observed data tensor entries in the training dataset (marked by stars and circles),
but not in the test dataset. The H-regularized model converges to a generalizing solution around
t = 200. It accurately recovers D when the regularization diminishes around t = 400 (ϵ → 0).
(Bottom) Factor tensor A. The unregularized model shows minimal changes from random initial
values, while H-regularized model shows significant internal restructuring. Shown in the block-
diagonalizing coordinate. See Fig 16 (Bottom). (color scheme: red=1, white=0, blue=-1.)

21

Published as a conference paper at ICLR 2025

Ra
w

A
0 =

 B
0 =

 C
0 =

 I
Bl
oc

k-
D
ia
go

na
l

Figure 16: Learned factors of the H regularized model trained on the S3 group. (Top) Raw factor
weights shown in their native coordinate representation. (Middle) Unitary basis change as described
in Sec 4.4 with MI = I , MK = A0, MJ = B†

0, such that Ã0 = B̃0 = C̃0 = I . Note that
the factors share same weights (up to transpose in factor C̃). (Bottom) Factors represented in a
block-diagonalizing basis coordinate, revealing the decomposition into direct sum of irreducible
representations (irreps). (color scheme: red=1, white=0, blue=-1.)

22

Published as a conference paper at ICLR 2025

Figure 17: Multiplication table of matrix slices of factor A from the mid panel of Fig 16. Note that
this table share the same structure as the Cayley table of the symmetric group S3 in Fig 2A. (color
scheme: red=1, white=0, blue=-1.)

23

Published as a conference paper at ICLR 2025

re
gu

la
ri

ze
d

 L
2

 re
gu

la
ri

ze
d

U
nr

eg
ul

ar
iz

ed

Figure 18: Optimization trajectories on the modular addition (cyclic group C6) dataset, with 60%
of the Cayley table used as train dataset (see Fig 19). (Top) Unregularized, (Middle) L2-regularized,
and (Bottom) H-regularized training. The L2-regularized model only achieves ∼60% test accuracy.

U
nr

eg
ul

ar
iz

ed
L2

 re
gu

la
ri

ze
d

re
gu

la
ri

ze
d

Figure 19: Visualization of end-to-end model tensor T trained on the modular addition (cyclic group
C6) under different regularization strategies (see Fig 18). The observed training data are marked by
asterisks (1s) and circles (0s). Only the H-regularized model perfectly recovers the data tensor D.
(color scheme: red=1, white=0, blue=-1.)

24

Published as a conference paper at ICLR 2025

Figure 20: Visualization of factors trained on small Cayley tables from Figure 2. (Top) c = a + b
mod 6, satisfying Ag = Bg = C†

g = ϱ(g). (Middle) c = a− b mod 6, satisfying A†
g = Bg = Cg =

ϱ(g). (Bottom) c = a2 + b2 mod 6, which exhibits the same representation as modular addition
for elements with unique inverses (e.g., g = 0, 3). For others, it learns duplicate representations
reflecting the periodicity of squaring modulo 6: e.g., A2 = A4 and A1 = A5, since 22 = 42 and
12 = 52. (color scheme: red=1, white=0, blue=-1.)

25

	Introduction
	Groups and Representations
	Background
	Modeling Framework
	 Linearized Framework: Binary Operations as Bilinear Maps
	HyperCube Parameterization
	HyperCube Regularizer
	Internal Symmetry of Model

	Analyzing HyperCube's Inductive Bias
	Analysis on Small-Scale BOC Experiments
	Learning Dynamics on Symmetric Group S3
	HyperCube Learns Unitary Group Representations
	Discovering Unitary Representations Beyond True Groups

	Results on Diverse BOC Tasks
	HyperCube Prioritizes Groups over Non-Group Operations
	HyperCube's Implicit Complexity Metric
	Comparison to Transformer

	Conclusion
	Training Procedure
	List of Binary Operations
	Hyperparameter Sensitivity Analysis
	Alternative Tensor Factorizations
	Band-diagonal HyperCube
	Run-time Complexity
	Deferred Proofs
	Proof of Lemma 5.1 on Balanced Condition of HyperCube
	Proof of Lemma 5.4
	Persistence of Group Representation

	Group Convolution and Fourier Transform
	Fourier transform on groups
	Dual group
	Inverse Fourier transform
	Group Convolution
	Fourier Transform of Group Convolution

	Group Convolution and Fourier Transform in HyperCube
	Reinterpreting HyperCube's computation

	Supplementary Figures for Section 6

