
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

DIFFERENTIABLE METRIC FOR DISCOVERING FINITE
GROUPS AND THEIR UNITARY REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Discovering group structures within data is a significant challenge with broad im-
plications across various scientific domains. The main hurdle stems from the non-
differentiable nature of group axioms, hindering their seamless integration into
deep learning frameworks. To address this, we introduce a novel differentiable
approach that leverages the representation theory of finite groups. Our method
employs a unique neural network architecture that models interactions between
group elements as multiplications of their matrix representations, coupled with a
regularizer that promotes unitarity of these matrices. Furthermore, our model im-
plicitly defines a complexity metric that prioritizes the discovery of group struc-
tures. In numerical evaluation, our method successfully recovers group operations
from a limited number of observations as well as accurately learning their unitary
representations. This work establishes a new avenue for uncovering groups within
data, with potential applications in diverse fields, including automatic symmetry
discovery in deep learning.

1 INTRODUCTION

The discovery of algebraic structures, and particularly groups, has been foundational to advance-
ments across numerous scientific disciplines. In mathematics, groups offer a powerful language for
expressing symmetries and transformations, underpinning fields such as abstract algebra, geometry,
topology, and number theory. In physics, group theory is indispensable for understanding the funda-
mental laws of nature, from classifying elementary particles to formulating quantum field theory. In
computer science, groups play a key role in cryptography, coding theory, and algorithm design. Even
within deep learning, group theory finds practical applications in designing symmetry-respecting
architectures (e.g., convolutional and equivariant neural networks), resulting in models with fewer
parameters and enhanced generalization, as well as extending deep learning to non-Euclidean spaces
(Bronstein et al., 2021).

Despite their pervasive significance, uncovering group structures within data remains a challenge,
often demanding expert human insight and intuition. A central hurdle is that the defining criterion
for groups — the group axioms — is inherently non-differentiable, hindering its direct integration
into deep learning frameworks.

In this work, we present a differentiable method for discovering groups and their representations by
leveraging the representation theory of finite groups. We employ a novel architecture that models
interactions between set elements as multiplications of their matrix representations, and a regularizer
that promotes unitarity of these matrices. This approach inherently encodes the axioms of group op-
erations, which instills a strong inductive bias towards discovering groups. This work demonstrates
that the criterion for groups can be effectively embedded within a differentiable framework, opening
new avenues for discovering algebraic structures within data.

2 GROUPS AND REPRESENTATIONS

Algebraic structures, i.e. sets equipped with operations adhering to specific axioms, offer a power-
ful framework for studying abstract mathematical objects and their interactions. Among these struc-
tures, groups serve as foundational building blocks in abstract algebra, underpinning the construction
of more complex algebraic entities such as rings and fields. Additionally, the well-developed theory

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

of group representations offers a powerful tool for analyzing and understanding group structures.
In this section, we provide a concise overview of groups and their representations, focusing on key
concepts relevant to our work.

Groups A group (G, ◦) is a set G with a binary operation ◦ that satisfies four axioms: Closure:
∀a, b ∈ G, a ◦ b ∈ G. Associativity: (a ◦ b) ◦ c = a ◦ (b ◦ c). Identity: There exists an identity
element e ∈ G such that for all g ∈ G, g ◦ e = e ◦ g = g. Inverse: For every g ∈ G, there exists a
unique inverse element g−1 such that g ◦ g−1 = g−1 ◦ g = e.

Representations A representation of a group (G, ◦) on a vector space V is a group homomorphism
ϱ : G → GL (V) that preserves the group structure: i.e.

ϱ(g1 ◦ g2) = ϱ(g1)ϱ(g2), ∀g1, g2 ∈ G. (1)

In essence, it maps each group element to an invertible linear transformation on the vector space, en-
suring that the composition of transformations mirrors the group operation. For a finite-dimensional
vector space of dimension n, we can choose a basis to identify GL(V) as GL(n,K), the group of
n× n invertible matrices over the field K.

Unitary Representations A representation ϱ of a group (G, ◦) is called unitary if for every g ∈ G,
ϱ(g) is a unitary transformation, i.e. preserves the inner product. This property makes unitary
representations particularly well-behaved and amenable to analysis. Notably, the Unitarity Theorem
guarantees that for many important classes of groups, such as compact and finite groups, every
finite-dimensional representation is equivalent to a unitary one. Unitary representations naturally
arise in the study of quantum systems, and have deep connections to other areas of mathematics,
e.g., harmonic analysis and operator algebras.

Irreducible Representations A representation is considered reducible if it can be decomposed
into a direct sum of smaller representations via a similarity transform, leading to a block-diagonal
matrix form where each block corresponds to a simpler representation. Irreducible representations
(irreps), on the other hand, cannot be further decomposed and serve as the fundamental building
blocks for constructing all possible group representations.

Regular Representations Every group (G, ◦) possesses an inherent action on itself that can be
viewed as a permutation, where each group element rearranges the other elements. The regular
representation uses the permutation’s basis vectors to construct a linear representation. It is decom-
posible into a direct sum of the complete set of irreps, where each irrep appears with a multiplicity
equal to its dimension. Moreover, its trace, also known as character, is a simple function:

Tr[ϱ(g)] = n if g = e, 0 otherwise. (2)

Real vs Complex Representations Complex representations (K = C) provide a rich mathemati-
cal framework for analyzing group structures in representation theory. We utilize this framework to
establish the theoretical foundations of our approach in Sections 4 and 5. However, for finite groups,
real representations (K = R) often suffice in practice,1offering advantages in implementation and
visualization. Our empirical results in Sections 6 and 7 thus utilize real representations.

3 BACKGROUND

Binary Operation Completion (BOC) We employ BOC (Power et al., 2022) as the setting for our
study. BOC involves completing a “multiplication” table (Cayley table) of a binary operation over a
finite set of abstract symbols. This problem setting isolates the core challenge of discovering group
structures solely from element interactions, without confounding influence of other factors. This
provides a crucial theoretical framework for analyzing structure learning in the discrete symbolic
domain, analogous to the role of matrix completion in the continuous domain.

1For finite groups, every complex representation can be realized over the real numbers with a doubling of
the dimension.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 1: Illustration of matrix and tensor products. Nodes are factors and edges are indices. (Left)
Matrix product. (Middle) Matrix product with trace operation. (Right) HyperCube product.

Matrix Completion Matrix completion involves filling in missing entries of a partially observed
matrix with low-rank assumption on the underlying complete matrix. Classical approaches often
leverage this assumption through explicit rank constraints (Burer and Monteiro, 2003) or by mini-
mizing the nuclear norm as a convex surrogate for rank (Fazel et al., 2001; Candès and Recht, 2009;
Recht et al., 2010; Candes and Tao, 2010). Matrix completion serves as a theoretical foundation for
a wide array of applications, including recommender systems, data imputation, compressed sensing,
and signal processing.

Implicit Complexity Metric Recent works demonstrated that deep matrix factorization networks
with L2 regularization (or small weight initialization) implicitly define a complexity metric that
approximates rank: e.g., nuclear or Schatten norm (Srebro et al., 2004; Gunasekar et al., 2017).
Moreover, such implicit approaches have demonstrated superior performance in matrix completion
compared to classical methods, particularly when dealing with limited data (Arora et al., 2019).

Our Contributions: Bridging the Gap While BOC shares many similarities with matrix com-
pletion, its discrete symbolic nature presents unique challenges. To bridge this gap, we linearize
the problem into a tensor completion problem, and propose a novel solution grounded in the rep-
resentation theory of finite groups: a tailored tensor-factorization architecture paired with a novel
regularizer. This approach implicitly defines a complexity metric that serves as a differentiable sur-
rogate for the group criterion, offering a learning-based approach for discovering group structures
within data.

4 MODELING FRAMEWORK

Notations and Definitions We use the following capital symbols for order-3 tensor factors:
A,B,C. Aa denotes the matrix slice of A at the first index a and A†

a denotes its conjugate transpose.
AaBb denotes the matrix product of Aa and Bb. Einstein convention is used throughout, where a
repeated index implies contraction: e.g., AaA

†
a ≡

∑
a AaA

†
a, unless otherwise specified.

4.1 LINEARIZED FRAMEWORK: BINARY OPERATIONS AS BILINEAR MAPS

Consider a binary operation ◦ : S × S → S over a finite set S containing n elements with closure:
i.e. a ◦ b = c, where a, b, c ∈ S. To facilitate modeling, we linearize the problem by considering a
homomorphism ϕ : (S, ◦) → (V,D), where V is a vector space and D : V × V → V is a bilinear
map over V , such that D(ϕ(a), ϕ(b)) = ϕ(a ◦ b). Concretely, by choosing the vector space V = Cn

with a basis (for instance, encoding each element as a one-hot vector), the bilinear map D can be
represented by an order-3 tensor D ∈ Cn×n×n, whose entries are

Dabc = 1 if a ◦ b = c, 0 otherwise. (3)

where the elements of S are used as tensor indices for clarity. Hereafter, we will use D to denote
the ground-truth data tensor to be learned by the model.

The linearized framework reveals that any binary operation over a finite set can be fully modeled by
a bilinear map, or equivalently, by its tensor representation. Crucially, this framework transforms
BOC into a tensor completion problem, where we recover the missing entries of D from the observed
entries in the training set.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

4.2 HYPERCUBE PARAMETERIZATION

To solve the tensor completion problem, we train a model tensor T to recover the data tensor D.
However, the entries of T shouldn’t be treated as independent model parameters. This would prevent
the entries from utilizing the information of the other entries, leading to poor generalization.

To address this, we introduce HyperCube factorization (Fig. 1), which parameterizes the model
tensor T as a product of three order-3 factors (i.e. cubes) A,B,C ∈ Cn×n×n:

Tabc =
1

n
Tr[AaBbCc] =

1

n

∑
ijk

AakiBbijCcjk. (4)

This architecture employs matrix embeddings to represent the elements of the set S. Factors A and
B serve as embedding dictionaries, mapping each element a and b to their respective matrix embed-
dings: Aa and Bb.2 The interaction between a and b is then modeled as the matrix multiplication:
AaBb. Finally, factor C acts as an unembedding dictionary, mapping this result back to S.

This architecture is inspired by the representation theory of finite groups, which similarly employs
matrix multiplication to model group operations: eq (1). This has the key advantage of directly
encoding the associativity axiom of groups through the associative property of matrix multiplication.
This inherent encoding provides a crucial advantage for effectively capturing group structures.

Appendix F compares HyperCube to other common tensor factorization methods and demonstrates
their limitations in capturing group structure, further highlighting the strengths of our approach.

4.3 HYPERCUBE REGULARIZER

The model is trained by minimizing the following regularized objective:
L = Lo(T ;D) + ϵH(A,B,C), (5)

where Lo is a differentiable loss on the model tensor T (e.g., squared error over the training data) and
H is the HyperCube regularizer, which penalizes the Jacobian of T with respect to the parameters:

H ≡
∥∥∥∥∂T∂A

∥∥∥∥2
F

+

∥∥∥∥ ∂T∂B
∥∥∥∥2
F

+

∥∥∥∥∂T∂C
∥∥∥∥2
F

=
1

n
Tr
[
A†

aAaBbB
†
b +B†

bBbCcC
†
c + C†

cCcAaA
†
a

]
, (6)

which can be viewed as a dual to the standard L2 regularization: ∥A∥2F + ∥B∥2F + ∥C∥2F . In
subsequent sections, we demonstrate that eq (6) encourages the factors to learn full-rank, unitary
matrix embeddings. This stands in contrast to L2 regularization, which promotes low-rank solutions.

This bias toward unitary embeddings leverages the Unitarity Theorem of representation theory,
which guarantees that for compact and finite groups, every finite-dimensional representation is
equivalent to a unitary representation. Therefore, by biasing the model to consider only unitary
matrix embeddings, we significantly reduce the search space of possible solutions without loss of
generality. This bias aids in faster convergence and enhances the model’s ability to generalize, as it
focuses the learning process on a smaller, more relevant space of representations.

4.4 INTERNAL SYMMETRY OF MODEL

The over-parameterized eq (4) implies the presence of internal symmetries that leave the model
unchanged. For instance, one can introduce arbitrary invertible matrices MI ,MJ ,MK and their in-
verses between the factors as Ãa = M−1

K AaMI , B̃b = M−1
I BbMJ , and C̃c = M−1

J CcMK . These
yield an equivalent parameterization of T , since Tr[ÃaB̃bC̃c] = Tr[AaBbCc]. These symmetry
transformations can be understood as changing the internal basis coordinate to represent the factors.

Note that while the model loss Lo(T) is invariant under such coordinate changes, the regularizer
H(A,B,C) is not. However, the regularizer is invariant under unitary basis changes, in which the
introduced matrices are unitary, such that MM† = M†M = I . Therefore, the regularizer imposes
a stricter form of symmetry. This leads to the following Proposition.
Proposition 4.1. If A,B,C form the optimal solution of the regularized loss eq (5), then any unitary
basis changes leave the solution optimal, but non-unitary basis changes generally increase the loss.

2This embedding process is closely related to the generalized Fourier transform on groups (See Appendix J).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

A B C D

Figure 2: Multiplication tables (i.e. Cayley tables) of small binary operations: symmetric group
S3, modular addition, subtraction, and squared addition. Elements of S3 are illustrated in Figure 8.

5 ANALYZING HYPERCUBE’S INDUCTIVE BIAS

While HyperCube eq (4) does not explicitly restrict the model’s hypothesis space, the regularizer
eq (6) induces a strong implicit bias on the model. In this section, we introduce key concepts for
analyzing this inductive bias. See Appendix H for proofs.
Lemma 5.1 (Balanced Condition). At stationary points of eq (5), imbalance terms vanish to zero:

ξI = ξJ = ξK = 0, (7)

where ξI = A†
a(C

†
cCc)Aa − Bb(CcC

†
c)B

†
b , ξJ = B†

b(A
†
aAa)Bb − Cc(AaA

†
a)C

†
c , and ξK =

C†
c (B

†
bBb)Cc −Aa(BbB

†
b)A

†
a are the imbalances across edge i, j, and k, respectively.

The following statements demonstrate that the regularizer promotes a unitarity condition.
Definition 5.2 (Contracted Unitarity). A factor A is C-unitary if it satisfies the following:
AaA

†
a, A

†
aAa ∝ I (with contracting the repeated index a).

Proposition 5.3. C-unitary factors satisfy the balanced condition eq (7), given that they share a
common scalar multiple of the identity matrix: i.e.

AaA
†
a = A†

aAa = BbB
†
b = B†

bBb = CcC
†
c = C†

cCc ≡ nα2I, (8)

Lemma 5.4. Under the fixed Frobenius norm, all C-unitary factors are stationary points of the
regularizer H.

Lemma 5.4 indicates that H effectively promotes C-unitarity as well as minimizing the Frobenius
norm. Remarkably, we also observe a stronger form of unitarity in the converged solutions.
Definition 5.5 (Slice Unitarity). A factor A is S-unitary if every matrix slice of A is a scalar multiple
of an unitary matrix: i.e. AaA

†
a = A†

aAa ≡ α2
Aa

I (without contracting the repeated index a).
Observation 5.6. When optimizing the regularized loss eq (5), C-unitary solutions are consistently
achieved via S-unitarity, in which eq (8) reduces to

∑
a α

2
Aa

=
∑

b α
2
Bb

=
∑

c α
2
Cc

= nα2.

Although the exact mechanism driving S-unitarity remains an open question, this observation high-
lights the strong inductive bias towards unitarity imposed by the HyperCube regularizer.

6 ANALYSIS ON SMALL-SCALE EXPERIMENTS

We begin by evaluating HyperCube on the small-scale binary operations shown in Figure 2. We pro-
vide detailed analysis of the learning process (Section 6.1) and the learned embedding (Section 6.2).
This analysis reveals the central role of unitarity bias in uncovering group structures and the exact
matrix representations of the underlying groups.

6.1 LEARNING DYNAMICS ON SYMMETRIC GROUP S3

Figure 3 compares the effect of different regularization strategies on the model’s learning dynam-
ics on the symmetric group S3 with 60% of the Cayley table sampled as training data. (See also
Figure 15 for a direct visualization of the evolution of the model tensor and parameters.) Similar
analysis on the learning of the modular addition operation is presented in Figure 18 and 19.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

U
nr

eg
ul

ar
iz

ed
 L

2
 re

gu
la

ri
ze

d
re

gu
la

ri
ze

d

Unitarity

Figure 3: Optimization trajectories on the S3 dataset with 60% training data fraction. (Top) Un-
regularized, (Middle) L2-regularized, and (Bottom) H-regularized training. Column 3 shows the
average imbalance (∥ξI∥2F + ∥ξJ∥2F + ∥ξK∥2F)1/2, and column 4 shows deviation from C-unitarity
∥
∑

a AaA
†
a/n − α2I∥2F and S-unitarity ∥AaA

†
a − α2

Aa
I∥2F , averaged over all factors and slices.

Column 5 shows normalized singular values of unfolded factors A,B,C.

In the absence of regularization, the model quickly memorizes the training dataset, achieving perfect
training accuracy, but fails to generalize to the test dataset. Also, the singular values of the unfolded
factors remain largely unchanged during training, indicating minimal internal structural changes.

Under H regularization, the model also rapidly memorizes the training data, but then continues to
improve on the test set. A critical turning point is observed around t ≈ 200, marked by a sudden col-
lapse of the singular values towards a common value, signifying convergence to a unitary solution.
Simultaneously, the C/S-unitarity and imbalance measures rapidly decrease to zero. This internal
restructuring coincides with a substantial improvement in test performance, achieving 100% test
accuracy, highlighting its crucial role in enabling generalization. Notably, when the regularization
coefficient ϵ drops to 0 around t = 450, both the train and test losses plummet to 0, confirming
perfect recovery of D.

re
gu

la
ri

ze
d

L2
 re

gu
la

ri
ze

d
U

nr
eg

ul
ar

iz
ed

D
at

a

D D D D D D

Figure 4: Model tensor T trained on the S3 dataset.
Training data are marked by stars (1s) and circles (0s).

In contrast, under L2 regularization, the
model converges to a low-rank solution,
as evidenced by a portion of the singu-
lar values decaying to zero. Although it
manages to achieve perfect test accuracy
in this specific case,3 L2 regularization
fails to reduce the test loss to zero, indi-
cating imperfect recovery of D. Figure 4
further confirms these findings, demon-
strating that only H-regularization accu-
rately recovers the group operation, while
the L2-regularized solution deviates sig-
nificantly from D. This result underscores
the importance of learning full-rank solu-
tions in recovering group operations.

6.2 HYPERCUBE LEARNS UNITARY GROUP REPRESENTATIONS

3This is not always the case. For example, L2 regularization only achieves ∼60% test accuracy in the
modular addition task. See Figure 18.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

We analyze the structure of the learned factors by utilizing unitary basis change (Section 4.4). The
results are visualized in Figure 16. While the raw factor values may appear unstructured (top panel),
a simple basis change reveals remarkable properties (middle panel).

First, the learned factors share the same embedding: Ag = Bg = C†
g , ∀g ∈ G. Furthermore,

multiplication of the factor slices respects the underlying group operation (Figure 17): Ag1Ag2 =
Ag1◦g2 , demonstrating the group homomorphism property from eq (1). The slices are also verifiably
unitary matrices. These properties collectively imply that the learned factors form a unitary matrix
representation ϱ of the group:

Ag = Bg = C†
g = ϱ(g). (9)

Further structures are revealed in a block-diagonalizing basis (bottom panel), where the factors
reveal the complete set of irreps contained in the regular representation of the group, including the
trivial (1-dim), sign (1-dim), and duplicate standard representations (2-dim). The trace of the factor
slices also satisfies eq (2), confirming that ϱ is indeed a regular representation of the group.

Key Operating Mechanism These results reveal the operating mechanism of HyperCube on
groups. Applying eq (9) and the homomorphism property of ϱ, the model eq (4) can be expressed as

Tabc =
1

n
Tr[ϱ(a)ϱ(b)ϱ(c)

†
] =

1

n
Tr[ϱ(a ◦ b ◦ c−1)]. (10)

Due to the unitarity of ϱ, slices of factor C correspond to the inverse representation: Cg = ϱ(g)† =
ϱ(g−1). Notably, since ϱ is a regular representation of the group eq (2), this result exactly reproduces
the data tensor, Tabc = Dabc, because a ◦ b ◦ c−1 = e is equivalent to a ◦ b = c in eq (3). This
mechanism universally applies for all finite groups. This insight leads to the following conjecture:

Conjecture 6.1. Let D represent a group operation table. Then, given the constraint T = D, the
unitary group representation eq (9) describes the unique minimizer of HyperCube Regularizer eq (6)
up to unitary basis changes, whose minimum value is H∗(D) = 3∥D∥2F = 3n2.

Shared-Embedding Eq (9) reveals that, for group operations, the same embedding is used across
all symbol positions. This motivates tying the embeddings across factors, resulting in a parameter-
efficient model tailored for learning group operations: HyperCube-SE (shared embedding).

6.3 DISCOVERING UNITARY REPRESENTATIONS BEYOND TRUE GROUPS

We analyze HyperCube trained on the remaining small operation tasks from Figure 2. The model
accurately recovers the underlying operations from a small subset of examples in each case. Inter-
estingly, the model learns closely related representations across these tasks (Figure 20), even when
the operations deviate from strict group axioms.

Modular Addition (a + b = c) forms the cyclic group C6. As expected, HyperCube learns the
regular representation ϱ(g) of C6 in its factors, as described by eq (9).

Modular Subtraction (a−b = c) violates associativity and therfore is not a true group. Surprisingly,
HyperCube still learns the same representation as addition but with transposed factors: A†

g = Bg =
Cg = ϱ(g). This reflects the equivalence: a− b = c ⇔ a = b+ c.

Modular Squared Addition (a2 + b2 = c) violates the inverse axiom. Still, HyperCube learns
the same representation as addition for elements with unique inverses (e.g., 0, 3). For others, it
learns duplicate representations reflecting the periodicity of squaring modulo: e.g., A2 = A4 since
22 = 42(mod 6).

These results highlight the remarkable flexibility of HyperCube’s inductive bias: Even for group-like
operations (i.e., those deviating from strict group axioms), HyperCube often discovers meaningful
unitary representations and recovers the full Cayley table. This finding highlights the potential of
unitary representations as a powerful tool for understanding binary operations beyond the confines
of traditional group theory.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Te
st

 A
cc

ur
ac

y
(%

)

Training data fraction

Transformer
HyperCube
HyperCube-SE

Figure 5: Generalization performance (test accuracy) of HyperCube and HyperCube-SE shown as
functions of training data fraction across a diverse set of BOC tasks. The results of the Transformer
baseline from Power et al. (2022) are also shown for comparison.

7 RESULTS ON DIVERSE BOC TASKS

We evaluate HyperCube and HyperCube-SE on diverse BOC datasets from Power et al. (2022),
encompassing a wide spectrum of group and non-group operations (details in Appendix B). These
problems are significantly larger than our previous examples, with dimensions ranging from n = 97
to 120. Figure 5 plots the test accuracy of models as functions of training data fraction over various
BOC tasks.

7.1 HYPERCUBE PRIORITIZES GROUPS OVER NON-GROUP OPERATIONS

HyperCube exhibits a clear prioritization for learning operations that admit unitary representations.
For these “simple” tasks, including group (a+ b and S5) and group-like operations (a− b, a/b and
a2 + b2), HyperCube demonstrates remarkable generalization, achieving perfect test accuracy with
∼18% of the data. This strong performance also extends to group conjugation operation (aba−1 in
S5), even though it lacks unitary representations. In contrast, for more “complex” operations, such
as aba in S5, conditional operations and high-order polynomials, HyperCube requires more data for
effective generalization.

HyperCube-SE shows similar behavior with an even more focused prioritization on group structures.
It distinguishes between group and group-like operations, requiring even less data for group opera-
tions to achieve perfect test accuracy (∼5%). On group-like operations, it remains competitive with
HyperCube in terms of test accuracy performance, despite being unable to recover the unitary rep-
resentations due to the shared-embedding eq (9). Furthermore, HyperCube-SE exhibits even further
diminished generalization than HyperCube on “complex” operations like high-order polynomials,
which aligns with its focused prioritization of groups.

7.2 HYPERCUBE’S IMPLICIT COMPLEXITY METRIC

In the above analysis, we qualitatively categorized tasks as “simple” or “complex” without a con-
crete definition. To address this, we leverage the intrinsic metric implicitly defined by HyperCube.
We formally define the complexity of an operation as the minimum regularizer loss, denoted H∗,
achieved when fitting its full Cayley table D (i.e., under the constraint T = D).

This metric closely aligns with the intuitive notion of complexity (Figure 6). Group operations
achieve the minimum complexity of H∗ = 3∥D∥2F , indicating their inherent simplicity within Hy-
perCube. Group-like operations also achieve this minimum in HyperCube but incur increased com-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

HyperCube
HyperCube-SE

Figure 6: Complexity vs Generalizability
(AUC ≡ Area Under Curve).

Transformer
HyperCube
HyperCube-SE

Training data fraction

St
ep

s
to

 P
er

fe
ct

 Te
st

 A
cc

ur
ac

y
Figure 7: Number of training steps to achieve perfect
test accuracy on the S5 task.

plexity in HyperCube-SE, highlighting its focused inductive bias towards pure group structures. In
contrast, more “complex” tasks, such as high-order polynomials, incur substantially higher com-
plexity costs.

Figure 6 illustrates the generalization trend as a function of complexity, revealing a clear monotonic
relationship: as task complexity increases, generalizability (measured by the total area under the
test accuracy curve in Figure 5) decreases. This observation parallels the well-known relationship
in matrix completion, where higher matrix rank (analogous to higher complexity) generally leads
to poorer generalization and requires more data for effective learning. This underscores the critical
role of our proposed complexity metric in determining the generalization bound for BOC.

7.3 COMPARISON TO TRANSFORMER

To assess the performance of HyperCube, we compare it against a Transformer baseline, as reported
by Power et al. (2022). Notably, this baseline has been extensively tuned with various hyperparame-
ters and regularization schemes for best performance, due to the highly sensitivity to these settings.4
In contrast, HyperCube demonstrates robustness across a wider range of hyperparameter settings
(see Appendix D).

Test accuracy performance Figure 5 shows that Transformer exhibits a similar trend to Hyper-
Cube, requiring more data for more “complex” tasks. However, it tends to favor commutative oper-
ations (e.g., a + b, a2 + ab + b2) over non-commutative ones (e.g., a − b, a2 + ab + b2 + a, and
all S5 tasks). This is likely due to Transformers sharing the vector embedding of symbols across
all input locations (Power et al., 2022; Liu et al., 2022). Thus, unlike HyperCube, Transformer’s
inductive bias is not fully aligned with learning group structures. Overall, in terms of test accuracy,
HyperCube exhibits comparable or slightly superior generalization to Transformer baselines across
most tasks.

Learning speed In terms of learning speed, however, HyperCube exhibits a dramatic advantage
over Transformer (Figure 7). As reported by Power et al. (2022), Transformer’s learning progress
on BOC is remarkably slow, requiring orders of magnitude more time to generalize to the test set
than to fit the training set. This phenomenon, known as “grokking,” becomes exacerbated with less
training data. This observation has been reproduced in several subsequent works exploring various
deep learning architectures (Nanda et al., 2022; Liu et al., 2022; Chughtai et al., 2023).

4These include learning rate, batch size, weight decay, dropout, update noise level, and optimizer type. See
Section 3.3 and A.1.2 of Power et al. (2022) for details.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

In contrast, HyperCube exhibits exceptional learning speed, converging to perfect test accuracy 100
times faster than the Transformer baseline in most cases, while also requiring less data. HyperCube-
SE, which employs shared-embedding of symbols similarly to Transformers, achieves an additional
10× speedup and requires only 5% of the data for perfect generalization. This dramatic 1000×
improvement in learning speed demonstrates the effectiveness of HyperCube’s inductive bias toward
group structures.

8 CONCLUSION

In this work, we introduced a novel differentiable framework for discovering the structure of finite
groups and their unitary representations. We demonstrated, via analysis and experiments, that our
proposed model exhibits a strong priority towards learning group structures and their unitary repre-
sentations. Furthermore, we identified an implicit complexity metric that emerges from our model,
which quantifies the model’s priority for discovering group structures and offers insights into the
generalization capabilities of BOC learning. Crucially, this inductive bias is a universal one, di-
rected towards the general algebraic structure of all groups, rather than being tailored to any specific
group or symmetry.

This research opens new avenues for utilizing deep learning to automatically uncover group struc-
tures within data, a problem with significant implications across various scientific domains. Poten-
tial applications include: Automatic Symmetry Discovery: Identifying symmetries in complex
systems, such as physical systems or molecular structures. Representation Learning: Learn-
ing meaningful representations of data that capture underlying algebraic relationships. Algorith-
mic Reasoning: Developing deep learning models capable of symbolic reasoning and algorithmic
problem-solving.

Related Works Related to our work are prior works on group discovery, mostly in the context
of discovering symmetries. However, most of them require an external source of information that
provides the given symmetry structure. For example, Anselmi et al. (2019) utilize data augmentation
with known orbit information; Forestano et al. (2023) similarly assumes an oracle that provides
the orbit information; Yang et al. (2023) uses semi-supervised approach to infer orbit information;
and Zhou et al. (2021) employ a meta-learning framework with the assumption of a shared group
convolution structure across tasks. In contrast, our approach derives a universal bias towards the
general algebraic structure of groups, rather than being tailored to specific symmetries. Therefore,
it is complementary to and can be used in conjunction with these other methods.

Scalability HyperCube’s use of tensor factors can incur substantial memory and computational
costs, scaling as O(n3). However, efficient parallelization of einsum operations allows for near-
constant run-time complexity on GPUs (Appendix E). Furthermore, we demonstrate that the mem-
ory and compute cost can be effectively reduced to O(n2) by constraining the embeddings to band-
diagonal matrices (Appendix G), highlighting the potential for scaling HyperCube to larger prob-
lems.

Limitations Our analysis primarily focused on BOC tasks and requires knowing the size of the
group, n. While not directly applicable to continuous Lie groups, we believe an analogous method
can be developed to encode the axioms of Lie algebras in a differentiable way.

Open Questions This work raises several open questions for future studies, such as deriving exact
generalization bounds for BOC and formally proving the optimality of unitary representations (Ob-
servation 5.6 and Conjecture 6.1). Extending our approach to handle multiple symbols and types of
operations beyond binary operations would further broaden its applicability.

ACKNOWLEDGMENTS

REFERENCES

Anselmi, F., Evangelopoulos, G., Rosasco, L., and Poggio, T. (2019). Symmetry-adapted represen-
tation learning. Pattern Recognition, 86:201–208.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Arora, S., Cohen, N., Hu, W., and Luo, Y. (2019). Implicit Regularization in Deep Matrix Factor-
ization. arXiv:1905.13655 [cs, stat].

Burer, S. and Monteiro, R. D. (2003). A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical Programming, 95(2):329–357.

Candes, E. J. and Tao, T. (2010). The Power of Convex Relaxation: Near-Optimal Matrix Comple-
tion. IEEE Transactions on Information Theory, 56(5):2053–2080.

Candès, E. J. and Recht, B. (2009). Exact Matrix Completion via Convex Optimization. Foundations
of Computational Mathematics, 9(6):717–772.

Chughtai, B., Chan, L., and Nanda, N. (2023). Neural Networks Learn Representation Theory:
Reverse Engineering how Networks Perform Group Operations. In ICLR 2023 Workshop on
Physics for Machine Learning.

Fazel, M., Hindi, H., and Boyd, S. (2001). A rank minimization heuristic with application to min-
imum order system approximation. In Proceedings of the 2001 American Control Conference.
(Cat. No.01CH37148), volume 6, pages 4734–4739 vol.6. ISSN: 0743-1619.

Forestano, R. T., Matchev, K. T., Matcheva, K., Roman, A., Unlu, E., and Verner, S. (2023). Deep
Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras from First Principles.
arXiv:2301.05638 [hep-ph, physics:physics].

Gunasekar, S., Woodworth, B. E., Bhojanapalli, S., Neyshabur, B., and Srebro, N. (2017). Implicit
Regularization in Matrix Factorization. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Kawaguchi, K. (2016). Deep learning without poor local minima. In Advances in neural information
processing systems, pages 586–594.

Liu, Z., Kitouni, O., Nolte, N., Michaud, E. J., Tegmark, M., and Williams, M. (2022). Towards Un-
derstanding Grokking: An Effective Theory of Representation Learning. In Advances in Neural
Information Processing Systems.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Steinhardt, J. (2022). Progress measures for
grokking via mechanistic interpretability. In The Eleventh International Conference on Learning
Representations.

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and Misra, V. (2022). Grokking: Generalization
Beyond Overfitting on Small Algorithmic Datasets.

Recht, B., Fazel, M., and Parrilo, P. A. (2010). Guaranteed Minimum-Rank Solutions of Linear
Matrix Equations via Nuclear Norm Minimization. SIAM Review, 52(3):471–501.

Saxe, A. M., McClelland, J. L., and Ganguli, S. (2014). Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks. arXiv:1312.6120 [cond-mat, q-bio, stat].

Srebro, N., Rennie, J., and Jaakkola, T. (2004). Maximum-Margin Matrix Factorization. In Advances
in Neural Information Processing Systems, volume 17. MIT Press.

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika,
31(3):279–311.

Yang, J., Walters, R., Dehmamy, N., and Yu, R. (2023). Generative Adversarial Symmetry Discov-
ery. arXiv:2302.00236 [cs].

Zhou, A., Knowles, T., and Finn, C. (2021). Meta-Learning Symmetries by Reparameterization.
arXiv:2007.02933 [cs, stat].

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

A TRAINING PROCEDURE

The factor tensors are initialized with entries randomly drawn from a normal distribution:
N (0, 1/

√
n). We employ full-batch gradient descent to optimize the regularized loss with learn-

ing rate of 0.5 and momentum of 0.5. For the small scale experiments in Section 6, the HyperCube
regularizer coefficient is set to ϵ = 0.1. For the larger scale experiments in Section 7, we use
ϵ = 0.05 for HyperCube and ϵ = 0.01 for HyperCube-SE. See Appendix D for a discussion of
hyperparameter sensitivity. Each experiment quickly runs within a few minutes on a single GPU.

ϵ-scheduler To overcome the limitations in standard regularized optimization, which often pre-
vents full convergence to the ground truth (D), we employ ϵ-scheduler: Once the model demon-
strates sufficient convergence (e.g., the average imbalance falls below a threshold of 10−5), the
scheduler sets the regularization coefficient ϵ to 0. This allows the model to fully fit the training
data. The effect of ϵ-scheduler on convergence is discussed in Appendix H.3.

The main implementation of HyperCube is shown below. Code repository is available at https:
//anonymous.4open.science/r/DeepTensorFactorization4GroupRep-EB92/

1 import torch
2

3 def HyperCube_product(A,B,C):
4 return torch.einsum(’aij,bjk,cki->abc’, A,B,C) / A.shape[0]
5

6 def HyperCube_regularizer(A,B,C):
7 def helper(M,N):
8 MM = torch.einsum(’aim,aij->mj’, M,M)
9 NN = torch.einsum(’bjk,bmk->jm’, N,N)

10 return torch.einsum(’mj,jm->’, MM, NN)
11 return (helper(A,B) + helper(B,C) + helper(C,A)) / A.shape[0]

B LIST OF BINARY OPERATIONS

Here is the list of binary operations from Power et al. (2022) that are used in Section 7 (with p = 97).

• (add) a ◦ b = a+ b (mod p) for 0 ≤ a, b < p. (Cyclic Group)
• (sub) a ◦ b = a− b (mod p) for 0 ≤ a, b < p.
• (div) a ◦ b = a/b (mod p) for 0 ≤ a < p, 0 < b < p.
• (cond) a ◦ b = [a/b (mod p) if b is odd, otherwise a− b (mod p)] for 0 ≤ a, b < p.
• (quad1) a ◦ b = a2 + b2 (mod p) for 0 ≤ a, b < p.
• (quad2) a ◦ b = a2 + ab+ b2 (mod p) for 0 ≤ a, b < p.
• (quad3) a ◦ b = a2 + ab+ b2 + a (mod p) for 0 ≤ a, b < p.
• (cube1) a ◦ b = a3 + ab (mod p) for 0 ≤ a, b < p.
• (cube2) a ◦ b = a3 + ab2 + b (mod p) for 0 ≤ a, b < p.
• (ab in S5) a ◦ b = a · b for a, b ∈ S5. (Symmetric Group)
• (aba−1 in S5) a ◦ b = a · b · a−1 for a, b ∈ S5.
• (aba in S5) a ◦ b = a · b · a for a, b ∈ S5.

Figure 8: Elements of the symmetric group S3 illustrated as permutations of 3 items. Green color
indicates odd permutations, and white indicates even permutations. Adapted from https://en.
wikipedia.org/wiki/Symmetric_group.

12

https://anonymous.4open.science/r/DeepTensorFactorization4GroupRep-EB92/
https://anonymous.4open.science/r/DeepTensorFactorization4GroupRep-EB92/
https://en.wikipedia.org/wiki/Symmetric_group
https://en.wikipedia.org/wiki/Symmetric_group

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

C UNDERSTANDING HYPERCUBE REGULARIZER

To gain an intuitive understanding of the HyperCube regularizer, consider a simplified, scalar Hy-
perCube model t = abc with a, b, c ∈ R. Minimizing the L2 regularizer a2 + b2 + c2 subject to the
data constraint t = 1 yields the usual balanced condition:

a = b = c = 1. (11)

In contrast, the HyperCube regularizer eq (6) becomes:

H(a, b, c) =

(
∂t

∂a

)2

+

(
∂t

∂b

)2

+

(
∂t

∂c

)2

=

(
t

a

)2

+

(
t

b

)2

+

(
t

c

)2

= ã2 + b̃2 + c̃2, (12)

where, given the constraint t = 1, we defined the substitute variables as ã ≡ 1/a, b̃ ≡ 1/b, and
c̃ ≡ 1/c. Minimizing eq (12) subject to the constraint ãb̃c̃ = 1 yields the balanced condition
ã = b̃ = c̃ = 1, or equivalently,

1

a
=

1

b
=

1

c
= 1. (13)

This is the reciprocal of the L2 regularizer’s balanced condition eq (11), although the solutions are
identical in this scalar case. This example demonstrates that the HyperCube regularizer instills a
“reciprocal” bias compared to the L2 regularizer.

C.0.1 BALANCED CONDITION FOR L2 REGULARIZATION

In contrast to the balanced condition of HyperCube regularizer eq (7), L2 Regularization yields a
simpler balanced condition

ξL2

I = ξL2

J = ξL2

K = 0, (14)

where ξL2

I = A†
aAa −BbB

†
b , ξL2

J = B†
bBb −CcC

†
c , and ξL2

K = C†
cCc −AaA

†
a. Analogous matrix-

version of this balanced condition has been derived in prior works for deep linear networks (Arora
et al., 2019; Saxe et al., 2014), which leads to balanced singular modes across the layers: i.e. the
adjacent layers share the same singular values and singular vector matrices. Crucially, this result
shows how L2 regularization promotes low-rank solutions, since the L2 loss on individual factors
is equivalent to penalizing

∑
i |σi|2/L, where σi is the singular value of the end-to-end input-output

map, and L is the number of layers. This is called the Schatten norm minimization.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

D HYPERPARAMETER SENSITIVITY ANALYSIS

We tested HyperCube across a wide range of hyperparameter settings, including learning rate, reg-
ularization coefficient, and weight initialization scale. Figure 9 shows the final test accuracy and
Figure 10 shows the number of training steps to achieve 100% test accuracy across a subset of tasks
from Appendix B under a fixed training budget of 1000 training steps.

HyperCube exhibits robust performance over the range of hyperparameter settings. Notably, in-
creasing the learning rate or regularization coefficient primarily raises the convergence speed with-
out significantly affecting the final test accuracy. The learning dynamics starts to become unstable at
large learning rate (lr = 1.5) or regularization coefficient (ϵ = 0.1). The weight initialization scale
has no effect on either the final test accuracy or the convergence speed.

This robustness, particularly to weight initialization scale and regularization strength, is noteworthy.
Deep neural networks exhibit a saddle point with zero Hessian at zero weights (Kawaguchi, 2016)
which becomes a local minimum under L2 regularization. This local minimum can cause the net-
work weights to collapse to zero when initialized with small values or under strong regularization.
(This mechanism also promotes low-rank solutions in L2-regularized deep neural networks.)

In contrast, HyperCube’s quartic regularization loss, also featuring zero Hessian at zero weights,
maintains the saddle point at zero. The absence of local minimum at zero prevents weight collapse,
contributing to significantly robust learning dynamics and promoting the emergence of full-rank
unitary representations in HyperCube.

Figure 9: Test accuracy vs Hyperparameters : (Top) learning rate, (Middle) regularization
strength, and (Bottom) weight initialization scale. Trained under a fixed training budget of 1000
steps. Default hyperparameter setting: lr = 0.5, reg coeff ϵ = 0.05, init scale = 1.0.

Figure 10: Steps to 100% accuracy vs Hyperparameters : Same settings as Fig 9, but showing
the number of training steps to achieve 100% test accuracy.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

E RUN-TIME COMPLEXITY

We empirically evaluate the run-time complexity of HyperCube. As expected, CPU execution time
scales as O(n3). However, due to the efficient parallelization of einsum operations in PyTorch (See
Appendix A), GPU execution time remains nearly constant with increasing n (up to n = 200, the
maximum size that fits in the 16GB memory of a Tesla V100 GPU). This demonstrates the practical
efficiency of HyperCube when leveraging GPU acceleration.

101 102

n

10 5

10 4

10 3

10 2

10 1

100

101
Run-time complexity (CPU, sec)

CP
Tucker
HyperCube
O(n3)

101 102

n

10 5

10 4

10 3

10 2

10 1

100

101
Run-time complexity (GPU, sec)

CP
Tucker
HyperCube
O(n3)

Figure 11: Run-time complexity for computing the HyperCube architecture (eq (4)) as functions
of n. Other tensor decomposition methods (CP and Tucker) are also shown. (Left) Run-time on
CPU. (Right) Run-time on GPU (Tesla V100 16GB). Results are averaged over 10 runs.

101 102

n

10 5

10 4

10 3

10 2

10 1

100

101
Run-time complexity Regularizer (CPU, sec)

CP
Tucker
HyperCube
O(n3)

101 102

n

10 5

10 4

10 3

10 2

10 1

100

101
Run-time complexity Regularizer (GPU, sec)

CP
Tucker
HyperCube
O(n3)

Figure 12: Same as above but for computing the regularizers.

F ALTERNATIVE TENSOR FACTORIZATIONS

HyperCube distinguishes itself from conventional tensor factorization architectures, which typically
employ lower-order, matrix factors for decomposition: e.g., Tucker and CP decomposition. This
difference is crucial for capturing the rich structure of binary operations.

Tucker Decomposition (Tucker, 1966) employs a core tensor M and three matrix factors:

Tabc =
1

n

∑
i,j,k

MijkAaiBbjCck, (15)

While flexible, Tucker decomposition suffers from a critical limitation: In eq (15), the role of matrix
factors is limited to simply mapping individual external indices to individual internal indices (e.g. A
maps a to i). This presents a recursive challenge, since learning the algebraic relationships between
(a, b, c) in T requires learning the relationships between (i, j, k) in M , which is not inherently
simplifying the core learning problem. Consequently, Tucker decomposition severely overfits the
training data and fails to generalize to unseen examples (Figure 13).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Tu
ck

er
 d

ec
om

po
si

tio
n

CP
 d

ec
om

po
si

tio
n

Figure 13: Alternative Tensor Factorization Methods: Test accuracy of (Top) Tucker and (Bot-
tom) CP decomposition methods, trained across a range of L2 regularization strengths.

CP Decomposition CP decomposition utilizes only matrix factors for decomposition:

Tabc =
1

n

∑
k

AakBbkCck. (16)

This is equivalent to5 HyperCube with diagonal embeddings (i.e. Aaki = Aakδki, Bbij = Bbiδij ,
Ccjk = Ccjδjk), since∑

ijk

AakiBbijCcjk =
∑
ijk

AakBbiCcjδkiδijδjk =
∑
k

AakBbkCck. (17)

Therefore, while CP decomposition can fully capture commutative Abelian groups (e.g modular
addition), which admit diagonal representations (i.e., 1× 1 irreps) in K = C, it lacks the expressive
power to capture more complex operations. In experiments (Figure 13), CP decomposition indeed
shows reasonable performance only for the modular addition task, struggling to generalize to other
structures in data.

G BAND-DIAGONAL HYPERCUBE

As mentioned above, HyperCube with diagonal embeddings lacks the capacity to effectively capture
general group structures. However, the regular representation of a group generally decomposes into
a direct sum of smaller irreducible representations, resulting in a sparse, block-diagonal matrix
structure. Such block-diagonal structure can be effectively captured within the parameter space of
band-diagonal matrices.

Therefore, to enhance the scalability of HyperCube, we explore the band-diagonal variant where
the factor matrices are constrained to have a fixed bandwidth around the diagonal. This reduces the
model’s parameter count from O(n3) to O(n2), offering significant computational advantages.

Figure 14 compares the performance of the full HyperCube and the band-diagonal HyperCube with
a bandwidth of 8 on a subset of tasks from Appendix B (n = 97 or 120). Remarkably, the band-
diagonal version exhibits comparable performance to the full HyperCube model, demonstrating its
effectiveness in capturing group structures even with a significantly reduced number of parameters.
This result highlights the potential of band-diagonal HyperCube for scaling to larger problems.

5CP decomposition can also be viewed as a special case of Tucker decomposition with a fixed core tensor

Mijk = 1 if i = j = k, 0 otherwise.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

te
st

Figure 14: Full HyperCube vs Band-diagonal HyperCube model. (Top) final test accuracy, and
(Bottom) steps to 100% test accuracy. lr = 0.5, reg coeff ϵ = 0.05, init scale = 1.0.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

H DEFERRED PROOFS

H.1 PROOF OF LEMMA 5.1 ON BALANCED CONDITION OF HYPERCUBE

Here, we derive the balanced condition eq (7). The gradient of the regularized loss L = Lo(T ;D)+
ϵH(A,B,C) is

∇Aa
L =

1

n
((∇Tabc

Lo)C
†
cB

†
b + 2ϵ(Aa(BbB

†
b) + (C†

cCc)Aa)), (18)

∇Bb
L =

1

n
((∇Tabc

Lo)A
†
aC

†
c + 2ϵ(Bb(CcC

†
c) + (A†

aAa)Bb)),

∇CcL =
1

n
((∇Tabc

Lo)B
†
bA

†
a + 2ϵ(Cc(AaA

†
a) + (B†

bBb)Cc)),

where ∇Aa
L ≡ ∂L/∂Aa, ∇Bb

L ≡ ∂L/∂Bb, ∇Cc
L ≡ ∂L/∂Cc, and ∇Tabc

Lo ≡ ∂Lo/∂Tabc.

Define the imbalances as the differences of loss gradients:

ξI ≡ n

2ϵ
(A†

a(∇AaL)− (∇Bb
L)B†

b) = A†
a(C

†
cCc)Aa −Bb(CcC

†
c)B

†
b

ξJ ≡ n

2ϵ
(B†

b(∇Bb
L)− (∇CcL)C†

c) = B†
b(A

†
aAa)Bb − Cc(AaA

†
a)C

†
c

ξK ≡ n

2ϵ
(C†

c (∇Cc
L)− (∇Aa

L)A†
a) = C†

c (B
†
bBb)Cc −Aa(BbB

†
b)A

†
a

Setting the gradient to zero yields the balanced condition at stationary points, ξI = ξJ = ξK = 0,
which proves Lemma 5.1. Note that imbalance terms are defined to cancel out the ∇Tabc

Lo terms.
Therefore, the balanced condition is independent of the loss function Lo.

H.2 PROOF OF LEMMA 5.4

Proof. The constraint on Frobenius norm can be integrated with the regularizer into an augmented
loss via the Lagrange multiplier λ

H+ λ(F − constant), (19)

where F ≡ 1
n Tr

[
A†

aAa +B†
bBb + C†

cCc

]
is the Frobenius norm .

The gradient of eq (19) with respect to Aa is proportional to

∇Aa
(H+ λF) ∝ Aa(BbB

†
b) + (C†

cCc)Aa + λAa. (20)

In the case of C-unitary factors B and C, all terms in eq (20) become aligned to Aa, i.e.

∇Aa
(H+ λF) ∝ (α2

B + α2
C + λ)Aa. (21)

and thus an appropriate value for the Lagrange multiplier λ can be found to vanish the gradient,
which confirms stationarity. This result also applies to gradient with respect to Bb and Cc by the
symmetry of parameterization.

H.3 PERSISTENCE OF GROUP REPRESENTATION

The following lemma demonstrates a key property of our model’s convergence behavior: once a
group representation is learned, the solution remains within this representational form throughout
optimization.

Lemma H.1. Let D represent a group operation table. Once gradient descent of the regularized
loss eq (5) converges to a group representation (including scalar multiples), i.e.

Aa = αAa
ϱ(a), Bb = αBb

ϱ(b), Cc = αCc
ϱ(c)†, (22)

the solution remains within this representation form.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Proof. For the squared loss

Lo(T ;D) =
∑

(a,b,c)∈Ωtrain

(Tabc −Dabc)
2, (23)

the gradient with respect to Aa eq (18) becomes

∇Aa
L =

1

n
(∆abcMabcC

†
cB

†
b + ϵ(Aa(BbB

†
b) + (C†

cCc)Aa)) (24)

where ∆ ≡ T −D is the constraint error, and M is the mask indicating observed entries in the train
set.

Substituting the group representation form eq (22) into eq (24), we get:

1

n
ϵ(Aa(BbB

†
b) + (C†

cCc)Aa) = 2ϵαAaα
2ϱ(a), (25)

for the last two terms, where α2 =
∑

b α
2
Bb

/n =
∑

c α
2
Cc
/n.

Since the product tensor is

Tabc =
1

n
Tr[AaBbCc] =

1

n
αAaαBb

αCc Tr[ϱ(a)ϱ(b)ϱ(c)
†] = αAaαBb

αCcDabc,

and Dabc = δa◦b,c = δa,c◦b−1 (δ is the Kronecker delta function), the first term in eq (24) becomes

1

n

∑
b,c

∆abcMabcC
†
cB

†
b =

1

n

∑
b,c

δa◦b,cMabc(αAa
αBb

αCc
− 1)αBb

αCc
ϱ(c ◦ b−1)

=
1

n

∑
b

Mab(a◦b)(αAaαBb
αCa◦b − 1)αBb

αCa◦bϱ(a). (26)

Note that both eq (26) and eq (25) are proportional to ϱ(a). Consequently, we have ∇Aa
L ∝ ϱ(a).

Similar results for other factors can also be derived: ∇Bb
L ∝ ϱ(b), and ∇Cc

L ∝ ϱ(c)†. This
implies that gradient descent preserves the form of the group representation (eq (22)), only updating
the coefficients αAa , αBb

, αCc .

Effect of ϵ-Scheduler Lemma H.1 holds true even when ϵ gets modified by ϵ-scheduler, which
reduces ϵ to 0. In this case, the coefficients converge to αAa

= αBb
= αCc

= 1, resulting in the
exact group representation form eq (9).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

I GROUP CONVOLUTION AND FOURIER TRANSFORM

I.1 FOURIER TRANSFORM ON GROUPS

The Fourier transform of a function f : G → R at a representation ϱ : G → GL(dϱ,R) of G is

f̂(ϱ) =
∑
g∈G

f(g)ϱ(g). (27)

For each representation ϱ of G, f̂(ϱ) is a dϱ × dϱ matrix, where dϱ is the degree of ϱ.

I.2 DUAL GROUP

Let Ĝ be a complete set indexing the irreducible representations of G up to isomorphism, called
the dual group, thus for each ξ we have an irreducible representation ϱξ : G → U(Vξ), and every
irreducible representation is isomorphic to exactly one ϱξ.

I.3 INVERSE FOURIER TRANSFORM

The inverse Fourier transform at an element g of G is given by

f(g) =
1

|G|
∑
ξ∈Ĝ

dϱξ
Tr
[
ϱξ(g

−1)f̂(ϱξ)
]
. (28)

where the summation goes over the complete set of irreps in Ĝ.

I.4 GROUP CONVOLUTION

The convolution of two functions over a finite group f, g : G → R is defined as

(f ∗ h)(c) ≡
∑
b∈G

f
(
c ◦ b−1

)
h(b) (29)

I.5 FOURIER TRANSFORM OF GROUP CONVOLUTION

Fourier transform of a convolution at any representation ϱ of G is given by the matrix multiplication

f̂ ∗ h(ϱ) = f̂(ϱ)ĥ(ϱ). (30)

In other words, in Fourier representation, the group convolution is simply implemented by the matrix
multiplication.

Proof.

f̂ ∗ h(ϱ) ≡
∑
c

ϱ(c)
∑
b

f(c ◦ b−1)h(b) (31)

=
∑
c

ϱ(c)
∑
a,b

f(a)h(b)δ(a,c◦b−1) (32)

=
∑
a,b

f(a)h(b)
∑
c

ϱ(c)δ(a◦b,c) (33)

=
∑
a,b

f(a)h(b)ϱ(a ◦ b) (34)

=
∑
a

f(a)ϱ(a)
∑
b

h(b)ϱ(b) (35)

= f̂(ϱ)ĥ(ϱ). (36)

where δ is the Kronecker delta function, and the equivalence between a = c ◦ b−1 and a ◦ b = c is
used between the second and the third equality.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

J GROUP CONVOLUTION AND FOURIER TRANSFORM IN HYPERCUBE

HyperCube shares a close connection with group convolution and Fourier transform. On finite
groups, the Fourier transform generalizes classical Fourier analysis to functions defined on the
group: f : G → R. Instead of decomposing by frequency, it uses the group’s irreducible repre-
sentations {ϱξ}, where ξ indexes the irreps (See Appendix I.2). A function’s Fourier component at
ξ is defined as:

f̂ξ ≡
∑
g∈G

f(g)ϱξ(g). (37)

Fourier Transform in HyperCube The Fourier transform perspective offers a new way to under-
stand how HyperCube with a group representation eq (9) processes general input vectors. Consider
a vector f representing a function, i.e., fg = f(g). Contracting f with a model factor A (or B)
yields:

f̂ ≡ fgAg =
∑
g∈G

f(g)ϱ(g), (38)

which calculates the Fourier transform of f using the regular representation ϱ. As ϱ contains all
irreps of the group, f̂ holds the complete set of Fourier components. Conversely, contracting f̂ with
ϱ† (i.e. factor C) performs the inverse Fourier transform:

1

n
Tr[f̂Cg] =

1

n

∑
g′∈G

fg′ Tr[ϱ(g′)ϱ(g)†] = fg, (39)

where eq (2) is used. This reveals that the factor tensors generalize the discrete Fourier transform
(DFT) matrix, allowing the model to map signals between the group space and its Fourier (fre-
quency) space representations.

Through the lens of Fourier transform, we can understand how the model eq (10) processes general
input vectors (f and h): it calculates their Fourier transforms (f̂ , ĥ), multiplies them in the Fourier
domain (f̂ ĥ), and applies the inverse Fourier transform. Remarkably, this process is equivalent to
performing group convolution (f ∗ h). This is because the linearized group operation (Section 4.1)
naturally entails group convolution (see Appendix J.1,J.2).

This connection reveals a profound discovery: HyperCube’s ability to learn symbolic operations is
fundamentally the same as learning the core structure of group convolutions. This means HyperCube
can automatically discover the essential architecture needed for equivariant networks, without the
need to hand-design them. This finding highlights the broad potential of HyperCube’s inductive
bias, extending its applicability beyond the realm of symbolic operations.

J.1 REINTERPRETING HYPERCUBE’S COMPUTATION

HyperCube equipped with group representation eq (10) processes general input vectors f and h as

fahbTabc =
1

n

∑
a

∑
b

f(a)h(b) Tr
[
ϱ(a)ϱ(b)ϱ(c)†

]
=

1

n
Tr

[(∑
a

ϱ(a)f(a)

)(∑
b

ϱ(b)h(b)

)
ϱ(c)†

]

=
1

n
Tr[(f̂ ĥ)ϱ(c)†] =

1

n
Tr[f̂ ∗ h ϱ(c)†]

= (f ∗ h)c. (40)

Therefore, the model calculates the Fourier transform of the inputs (f̂ and ĥ), multiplies them in
the Fourier domain (f̂ ĥ), and applies the inverse Fourier transform, which is equivalent to the group
convolution, as shown in Appendix I.5.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

J.2 GROUP CONVOLUTION BY D

Here we show that the linearized group operation D in Section 4.1 is equivalent to the group convo-
lution in Appendix I.5.

Consider contracting the data tensor D with two functions f, h ∈ G, as

fahbDabc =
∑
ab

f(a)h(b)δ(a,c◦b−1) =
∑
b

f(c ◦ b−1)h(b) ≡ (f ∗ h)(c), (41)

which computes the group convolution between f and h, similar to eq (40). Here, we used Dabc =
δ(a◦b,c) = δ(a,c◦b−1).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

K SUPPLEMENTARY FIGURES FOR SECTION 6

Pr
od

uc
t T

en
so

r S
lic

es
Unregularized regularized

Fa
ct

or
 A

 S
lic

es

Figure 15: Visualization of the end-to-end model tensor T and the factor A over the training
iteration steps on the symmetric group S3 task in Sec 6. Only the first three slices of the tensors
are shown. (Top) End-to-end model tensor T : In the un-regularized case, the model tensor quickly
converges to fit the observed data tensor entries in the training dataset (marked by stars and circles),
but not in the test dataset. The H-regularized model converges to a generalizing solution around
t = 200. It accurately recovers D when the regularization diminishes around t = 400 (ϵ → 0).
(Bottom) Factor tensor A. The unregularized model shows minimal changes from random initial
values, while H-regularized model shows significant internal restructuring. Shown in the block-
diagonalizing coordinate. See Fig 16 (Bottom). (color scheme: red=1, white=0, blue=-1.)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Ra
w

A
0 =

 B
0 =

 C
0 =

 I
Bl
oc

k-
D
ia
go

na
l

Figure 16: Learned factors of the H regularized model trained on the S3 group. (Top) Raw factor
weights shown in their native coordinate representation. (Middle) Unitary basis change as described
in Sec 4.4 with MI = I , MK = A0, MJ = B†

0, such that Ã0 = B̃0 = C̃0 = I . Note that
the factors share same weights (up to transpose in factor C̃). (Bottom) Factors represented in a
block-diagonalizing basis coordinate, revealing the decomposition into direct sum of irreducible
representations (irreps). (color scheme: red=1, white=0, blue=-1.)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 17: Multiplication table of matrix slices of factor A from the mid panel of Fig 16. Note that
this table share the same structure as the Cayley table of the symmetric group S3 in Fig 2A. (color
scheme: red=1, white=0, blue=-1.)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

re
gu

la
ri

ze
d

 L
2

 re
gu

la
ri

ze
d

U
nr

eg
ul

ar
iz

ed

Figure 18: Optimization trajectories on the modular addition (cyclic group C6) dataset, with 60%
of the Cayley table used as train dataset (see Fig 19). (Top) Unregularized, (Middle) L2-regularized,
and (Bottom) H-regularized training. The L2-regularized model only achieves ∼60% test accuracy.

U
nr

eg
ul

ar
iz

ed
L2

 re
gu

la
ri

ze
d

re
gu

la
ri

ze
d

Figure 19: Visualization of end-to-end model tensor T trained on the modular addition (cyclic group
C6) under different regularization strategies (see Fig 18). The observed training data are marked by
asterisks (1s) and circles (0s). Only the H-regularized model perfectly recovers the data tensor D.
(color scheme: red=1, white=0, blue=-1.)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 20: Visualization of factors trained on small Cayley tables from Figure 2. (Top) c = a + b
mod 6, satisfying Ag = Bg = C†

g = ϱ(g). (Middle) c = a− b mod 6, satisfying A†
g = Bg = Cg =

ϱ(g). (Bottom) c = a2 + b2 mod 6, which exhibits the same representation as modular addition
for elements with unique inverses (e.g., g = 0, 3). For others, it learns duplicate representations
reflecting the periodicity of squaring modulo 6: e.g., A2 = A4 and A1 = A5, since 22 = 42 and
12 = 52. (color scheme: red=1, white=0, blue=-1.)

27

	Introduction
	Groups and Representations
	Background
	Modeling Framework
	 Linearized Framework: Binary Operations as Bilinear Maps
	HyperCube Parameterization
	HyperCube Regularizer
	Internal Symmetry of Model

	Analyzing HyperCube's Inductive Bias
	Analysis on Small-Scale Experiments
	Learning Dynamics on Symmetric Group S3
	HyperCube Learns Unitary Group Representations
	Discovering Unitary Representations Beyond True Groups

	Results on Diverse BOC Tasks
	HyperCube Prioritizes Groups over Non-Group Operations
	HyperCube's Implicit Complexity Metric
	Comparison to Transformer

	Conclusion
	Training Procedure
	List of Binary Operations
	Understanding HyperCube Regularizer
	Balanced Condition for L2 Regularization

	Hyperparameter Sensitivity Analysis
	Run-time Complexity
	Alternative Tensor Factorizations
	Band-diagonal HyperCube
	Deferred Proofs
	Proof of Lemma 5.1 on Balanced Condition of HyperCube
	Proof of Lemma 5.4
	Persistence of Group Representation

	Group Convolution and Fourier Transform
	Fourier transform on groups
	Dual group
	Inverse Fourier transform
	Group Convolution
	Fourier Transform of Group Convolution

	Group Convolution and Fourier Transform in HyperCube
	Reinterpreting HyperCube's computation
	Group Convolution by D

	Supplementary Figures for Section 6

