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ABSTRACT

The widespread application of foundation models across various domains raises
significant concerns regarding fairness and bias. In this work, we focus on a spe-
cific notion of fairness, Counterfactual Fairness (CF), which posits that an individ-
ual’s outcome should remain consistent if they had belonged to a different sensi-
tive group. CF is grounded in an underlying causal model, and it typically neces-
sitates either access to the true causal model or the availability of counterfactual
pairs. While previous studies have made some progress when such information is
available, acquiring it is often challenging in real-world applications. In this paper,
we target at achieving CF in a more practical setting where limited causal knowl-
edge is available. We demonstrate that naive adaptations of existing methods are
inadequate in such contexts through extensive empirical studies. To bridge the
gap, we first introduce a more carefully designed approach for generating coun-
terfactuals in practice, compatible with existing methodologies. Subsequently, we
present a technique for utilizing estimated counterfactuals and potentially biased
pretraind models. The feasibility of our approaches is validated through both the-
ory and empirical investigation.

1 INTRODUCTION

Machine learning (ML) has been widely used in high-impact domains such as healthcare (Daneshjou
et al., 2021), hiring (Hoffman et al., 2018), criminal justice (Brennan et al., 2009), and loan assess-
ment (Khandani et al., 2010), bringing with it critical ethical and social considerations. This issue
is particularly alarming in an era where foundation models, commonly trained on noisy data from
the internet, are increasingly prevalent (Bommasani et al., 2021; Hellman, 2023). Such models, due
to their extensive reach and impact, amplify the potential for widespread and systemic biases. This
increasing awareness underscores the need for ML practitioners to integrate fairness considerations
into their work, extending their focus beyond merely maximizing prediction accuracy (Bolukbasi
et al., 2016; Calders & Verwer, 2010; Dwork et al., 2012; Grgic-Hlaca et al., 2016; Hardt et al.,
2016). Various fairness notions have been developed, ranging from group-level measures such as
group parity (Hardt et al., 2016) to individual-focused metrics like Individual Fairness (Dwork et al.,
2012). Recently, there has been a growing interest in approaches based on causal inference, particu-
larly in understanding the causal effects of sensitive attributes on decision-making (Chiappa, 2019;
Galhotra et al., 2022; Khademi et al., 2019). This has led to the proposal of Counterfactual Fairness
(CF), which states that prediction for an individual in hypothetical scenarios where their protected
attributes differ should remain unchanged (Kusner et al., 2017). Such an approach enables the
development of algorithms that do not just ignore protected attributes but also acknowledge and
compensate for social biases linked to ethically sensitive attributes effectively.

To achieve CF, Kusner et al. (2017) first propose a naive solution, suggesting that predictions should
only use non-descendants of the sensitive attribute in a causal graph. This approach only requires a
causal topological ordering of variables and achieves perfect CF by construction. However, it limits
the available features for downstream tasks and could be inapplicable in certain cases (Kusner et al.,
2017). To mitigate this, they further propose more practical algorithms that leverage exogenous
noise but must assume that the causal graph or full causal model are known. Extending this line
of work, Zuo et al. (2023) introduce a technique that incorporates additional information by mixing
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factual and counterfactual samples. Although CF has been theoretically and empirically established
in their work, the efficacy of such sample mixing in preserving prediction accuracy remains an
open question. Moreover, this approach requires access to the true causal model for the estimation
of counterfactual samples, which are often difficult to obtain in practical settings. Parallel to this,
another branch of research employs methods such as regularization and augmentation (Kim et al.,
2021; Garg et al., 2019; Stefano et al., 2020), but these cannot provide theoretical guarantees of
CF. More discussion on related works can be found in Appendix A. In summary, prior work on CF
either has weak machine learning efficacy or assumes knowledge of the underlying causal model
from which counterfactuals can be easily approximated.

However, in many practical contexts, the underlying causal model may be unknown. Thus, the ques-
tion arises: What if methods must estimate counterfactuals with limited knowledge of the underlying
causal model? To answer this, we illustrate in Figure 1 the difference in performance for the method
from Zuo et al. (2023) when ground truth counterfactuals are available compared to when they are
naively estimated.In this situation, the lack of ground truth counterfactuals significantly increases
both the error and unfairness as measured by Error and Total Effect defined in Section 2.2. These
issues are explored in more depth in Section 3.

Figure 1: Illustration of the error of CFR (Zuo et al., 2023) without access to the ground truth
counterfactual pairs. Different dots represent repetitive experiments. Total Effect is a metric for
Counterfactual Fairness, where a lower value indicates greater fairness. The estimation model (EST)
employs the same structure as the ground truth (GT) for approximating counterfactual samples. CFR
achieves almost 0 Total Effect and lower Error given ground truth (GT) counterfactual samples,
as per the original setup described in the referenced study. However, a significant performance
degradation is noted when CFR must rely on estimated counterfactuals, despite using a function class
that aligns with the GT model. This highlights the importance of practical approach for predicting
counterfactuals in practice.

In light of this, we aim to achieve CF while also preserving prediction accuracy in the practical
context where neither causal model nor even causal graph are known. In Section 4.1, we introduce
a refined approach for generating counterfactual samples, which could be integrated into existing
CF methods. Then, in Section 4.2, we introduce a simple post-processing method that effectively
combines these estimated counterfactuals and a (unfair) pretrained model to achieve better CF while
preserving the accuracy of the pretrained model. As this step can leverage any pretrained model, the
approach can follow the prevailing trend in the ML community that favors the use of off-the-shelf
pretrained models, such as foundation models. This integration represents a step towards efficiently
leveraging existing resources while advancing CF. We summarize our contributions as follows:

1. In the context of limited causal knowledge, we conduct empirical studies to illustrate the
ineffectiveness of naively applying previous CF methods.

2. We formalize a generic framework that decomposes prior CF methods, highlighting the
importance of effectively estimating counterfactauls. We further propose an approach that
leverages recent advancements in counterfactual estimation, which notably does not neces-
sitate identifiability of the causal model.

3. We introduce a simple yet effective CF algorithm that utilizes (estimated) counterfactual
samples and pretrained models such as foundation models.
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2 PRELIMINARIES

2.1 NOTATION

We use capital letter to represent random variables and lowercase letter to represent the realization
of random variables. Now we define a few variables that will be used frequently in this work. A
represents the sensitive attribute of an individual, Y represents the target variable to predict, X
represents observed features other than A and Y , and U represents unobserved variables which are
not caused by any observed variables while a, y, x, u represent their realization respectively. For
simplicity, we only consider 1-dimensional binary A and 1-dimensional Y , but the investigation and
our method can be naturally extended to multi-dimensional cases.

We assume all data are generated by a causal model (Pearl, 2009) such as the one in Figure 2a.
Following this causal graph, data is generated as below

A ∼ PA U ∼ PU X = FX(U,A) Y = FY (U,X)

where PA is typically a Bernoulli distribution and PU depends on the context. We further define
Counterfactual Generating Mechanism (CGM) as G(x, a, a′) = xa′ which typically contains two
steps: (1) Estimating posterior distribution of exogenous noise u ∼ P (U |X = a,A = a). This step
could be deterministic or stochastic and is typically approximated by u = E(x, a). (2) Generating
counterfactuals xa′ = D(u, a′). 1 We define ground truth counterfactual pairs as follows: given a
fixed u, factual and counterfactual sample are generated by xa = D(u, a) and xa′ = D(u, a′). We
generally do not consider Y as part of CGM.

2.2 COUNTERFACTUAL FAIRNESS

There are different fairness criteria such as Group Fairness (Calders et al., 2009; vZliobaitė, 2015)
, Individual Fairness (Dwork et al., 2012; Zemel et al., 2013) and Counterfactual Fairness (CF)
(Kusner et al., 2017). In this work, we focus on CF, which states that intervention on A should not
affect the prediction of Y and is formally defined as below.

Definition 2.1. (Counterfactual Fairness) We say a classifier is counterfactual fair if P (Ŷ (A =

a)|X = x,A = a) = P (Ŷ (A = a′)|X = x,A = a).

Now we introduce a few previous methods of CF that will be investigated in this paper.

Empirical Risk Minimization (ERM). Directly train a classifier on all features without any fainress
consideration. Specifically ŷ = ϕ(x, a), where ϕ represents the predictor.

Counterfactual Data Augmentation (CDA). The input form of classifer is the same as ERM, how-
ever, in the training set, we include counterfactual samples. The counterfactual samples is generated
by either ground truth or estimated CGM xa′ = G(x, a, a′). Multiple previous works have adopted
similar approaches. For example, Kim et al. (2021) proposes Disentangled Causal Effect Variational
Autoencoder (DCEVAE) to generate counterfactual pairs that are used to train classifier. Zuo et al.
(2023) extends their method by including real samples, and they explore the usage of both CVAE
(Sohn et al., 2015) and DCEVAE in the case of knowing ground truth causal models. A common
characteristic of these two works is that they include counterfactual ya′ . However, we argue that it
could be hard to estimate ya′ without access to ground truth model. Hence, in the following inves-
tigation, we keep ya′ the same as ya when we need to estimate the causal model. Specifically, the
training set is DD = {x(i), y(i), a(i)}Ni=1 ∪ {x

(i)
a′ , y(i), a′(i)}Ni=1.

Counterfactual Fairness with exogenous noise (CFE) (Kusner et al., 2017). To achieve Counter-
factual Fairness, CFE proposes to use U for prediction. Specifically, ŷ = ϕ(u) where u = E(x, a).

Counterfactual Fairness with fair representation (CFR) (Zuo et al., 2023). CFR proposes to use
U and a symmetric version of x, xa′ . Specifically, ŷ = ϕ(x+xa′

2 , u) where u = E(x, a), xa′ =
G(x, a, a′). Note that CFR would require access to xa′ in the test set as well while CDA does not
require anything special and CFE requires u.

1This follows the three steps Abduction, Action, and Prediction defined in Pearl (2009)
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(a) (b)

Figure 2: (a) This illustration provides an example of a causal graph. Not all data distributions
examined in our work follow this specific graph. Rather, it represents one of the commonly utilized
graphs in the field of fairness. (b) Causal structure of ILD.

Metrics We consider two metrics in this paper: Error and Total Effect (TE). The former evaluates
if each method can achieve its goal regardless of fair or not. This is important because we can achieve
perfect Counterfactual Fairness by always outputing fixed prediction given whatever input, but that
is not useful at all. The latter is a common metric to evaluate Counterfactual Fairness (Zuo et al.,
2023). Given a test set DDtest , Error is defined as Error = 1

|DDtest |
∑

x(i)∈DDtest
ℓ(ŷ(x(i)), y(i))

where y(i) is the ground truth target, ŷ(x(i)) is the prediction of x(i), and ℓ depends on the task. TE
is defined as TE = 1

|DDtest |
∑

x(i)∈DDtest
|ŷ(x(i)) − ŷ(x

(i)
a′ )| where xa′ is the ground truth counter-

factual corresponding to x(i). Since we only consider binary sensitive attribute, we further define
TE0 = 1

|{i:a(i)=0}|
∑

i:a(i)=0 |ŷ(x(i))− ŷ(x
(i)
a′ )| and TE1 = 1

|{i:a(i)=1}|
∑

i:a(i)=1 |ŷ(x(i))− ŷ(x
(i)
a′ )|

to evaluate Counterfactual Fairness for different group respectively.

2.3 ILD

Anonymous (2024) proposes Invertible Latent Domain Causal Model (ILD) which targets at estimat-
ing counterfactuals without fully identifying causal structures. ILD is proposed to deal with domain
counterfactuals. For example, what would a medical imaging look like if it had been taken from
another hospital? Interpreting A as the domain node in their paper, we can ask a similar question:
what would this sample look like if it had been in another sensitive group? ILD assumes invertible
latent SCM where all data are generated following the graph in Figure 2b and functions below

A ∼ PA U ∼ PU Z = FZ(U,A) X = FX(Z)

where FZ and FX are invertible functions and U serves as the exogenous noise of latent variables
Z. They propose a canonical form of model which pushes all effect of A to the last few nodes
2. This leads to a simpler optimization towards counterfactual equivalence models which, while
potentially differing in structure from the ground truth causal model, would generate exactly the
same counterfactuals. Thus, the only knowledge required here is sparsity, specifically the number of
variables that are directly affected by A.More details could be seen in Appendix C.

3 ISSUES WITH ESTIMATING COUNTERFACTUALS

The majority of previous research on CF assumes the availability of either the true causal model or a
set of counterfactual pairs. While in certain situations, constructing the causal graph may be feasible
with expert knowledge, determining the functional form of the causal model can often prove chal-
lenging. Moreover, even with such information, it is non-trivial to estimate counterfactuals, further
adding to the challenge of obtaining counterfactuals in practice. Here we undertake an empirical
investigation into the breakdown of CF methods when using estimated counterfactuals.

Experiment Setup For dataset, we consider UCI Adult Income (Kohavi et al., 1996) and Law
School Success (Wightman, 1998) following the choice of Zuo et al. (2023). However, since we
need to evaluate TE of each method which requires access to ground truth, we use the simulated
version of those datasets. Specifically, we first train a ground truth CGM G∗ = D∗ ◦ E∗ that
simulates the CGM of those datasets. Then we use E∗ and the real X to infer U . After getting
samples of U , we constructed the datasetD andDcounterfactual by sampling from marginal distribution
of A (based on actual distribution of real data), and using D∗ to get xa and xa′ . We want to
emphasize that Dcounterfactual, regardless of train or test set, are hidden from downstream models
and used for evaluation only. This way, we get access to the ground truth u∗ and can generate
ground truth counterfactuals without any error. In our investigation, exogenous noise, factual data
and counterfactual data are all actually the simulated version of original datasets. However they do
follow a fixed mechanism that is close to the real data. For clarity, we called them Adult-Sim and

2in terms of topological ordering
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(a) Error from estimat-
ing U .

(b) Error from estimat-
ing D.

(c) Error from estimat-
ing G.

(d) Investigation of CDA-
Ĝbest.

Figure 3: Error from estimating counterfactuals on Adult-Sim. (a) CFR-u∗ is much better than CFR-
û in terms of both metrics. Importantly, it achieves almost 0 TE. The difference between CDA-u∗

and CDA-û is not obvious. (b) D̂10, D̂100, D̂best represent checkpoints after 10 epochs, 100 epochs
and final checkpoint with best validation loss respectively. TE of CFR-D̂best gets closer to that of
CFR-D̂∗ but the gap still exists. Through the training process of CDA, we observe a U-shape change
of performance. Further analysis might be needed to fully understand how CDA could help or hurt
Counterfactual Fairness. (c) Similar to (a), the performance of CFR degrades in both metrics when
estimating G. For CDA, estimating Ĝ leads to a better TE but worse accuracy. (d) The number
represents the ratio of counterfactual samples being added to the training set. For example, 0.5
means 50% of the counterfactual samples are used in the training.

Law-Sim throughout the paper. For Adult-Sim, Error is evaluated as the ratio of wrong prediction
while for Law-Sim, Error is evaluated as the Root Mean Squared Error (RMSE).

To generate simulated “ground truth” Y , the training of ground truth G∗ involves Y , i.e., x =
D∗

X(u, a) and y = D∗
Y (u, x). Regarding model structure, we implement CVAE as used in Zuo et al.

(2023). We consider two previous methods: CDA and CFR. We do not include CFE here because it
only uses U . More details could be found in Appendix E. Due to space issue, results on Law-Sim
and numbers containing TE0 and TE1 can be found in Appendix F. All numbers are averaged over
5 repetitive experiments.

Error from estimation of U The first step of estimating counterfactuals is to infer the exogenous
noise, which models the randomness and unobserved effect in systems (Pearl, 2009). Even given
the true data generating mechanism, we cannot estimate perfect counterfactuals without being able
to identify U . Counterfactuals are generated as follows:

Oracle U : x∗
a′ = D∗(u∗, a′) Estimated U : û = Ê(x, a), x̂a′ = D∗(û, a′)

where u∗ is the exogenous noise used to generate the datasets and Ê is trained jointly in Ĝ. Note
that x∗

a′ is exactly the same as the counterfactual samples in Dcounterfactual.

Observation. In Figure 3a, we present a comparison of the Error and TE with CFE and CFR. The
results show that when ground truth u∗ is accessible, CFR achieves almost perfect CF, which is
also demonstrated in Zuo et al. (2023). However, despite utilizing the correct D∗, the efficacy
significantly diminishes when attempting to infer U , which lead to bad performance in terms of
both Error and TE. Besides, we find that the Error of CFR could get as bad as predicting a fixed
value (which would be around 0.24). 3 The difference between CDA-û and CDA-u∗ in unclear
which could because there is no guarantee if CDA will help or not. The performance degradation
of CFR highlights a practical challenge: even with knowledge of the data generating mechanism D,
reverse engineering the exogenous noise is not straightforward without certain assumptions, such as
invertibility. This simple yet important observation underscores the need for more cautious handling
of u in future algorithm design.

Error from estimation of D Here we investigate what if we have access to the ground truth
exogenous noise but not the ground truth D∗. In contrast with last section, here we generate coun-
terfactuals as follows:

Oracle D : x∗
a′ = D∗(u∗, a′) Estimated D : x̂a′ = D̂(u∗, a′)

3Note that in this case, it is not predicting fixed output, otherwise TE would become 0.
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where D̂ is trained jointly in Ĝ that has a same CVAE structure as G∗.

Observation. To investigate how CFR and CDA’s performance change through the training, we
show the performance with different D̂ checkpoints. As shown in Figure 3b, for CFR, as the model
is fitted better, TE could improve but can never perform as well as that with D∗. Besides, we notice
that despite the gap between estimated D̂ and D∗ still exists, it is relatively smaller than that with
estimated û. We conjecture this is because u is also an input to CFR. Since the algorithm sees the
ground truth u∗, the effect of bad estimation xa′ is less severe (in contrast, bad estimation of u∗

would also lead to bad xa′ even if we know D∗). For CDA, we observe that the final model tends
to predict fixed value regardless of input which is indicated by Error around 0.24 and very low TE.
This suggests it may not be optimal to naively use the same y for factual and counterfactual pair.

Error from estimation of G Finally, what if we don’t have knowledge of G∗ at all, i.e., a combi-
nation of previous errors? Counterfactuals are generated as follows:

Oracle G : x∗
a′ = D∗(u∗, a′) Estimated G : û = Ê(x, a), x̂a′ = D̂(û, a′)

Observation. In Figure 3c, we first notice that CFR completely fails with estimated Ĝ, which is
as expected based on previous observations. For CDA, the reason why CDA-G∗ gets better Error
but worse TE is still unclear. Essentially, we cannot prove whether CDA could really help with TE
given G∗. Besides, we notice that they are both much worse than the performance of CFR-G∗. To
further investigate the behavior of CDA, we add an investigation in Figure 3d where we add different
portion of augmented counterfactual data to the training set. Here we observe a trend of trade-off
between TE and Error. This makes sense as we use the same y for both xa and xa′ , and as we add
more samples to the training set, the downstream model would learn to predict the same output for
counterfactuals samples. However, this does not necessarily lead to a better prediction performance.

Conclusion The three exploratory studies discussed in this section demonstrate that the performance
of state-of-the-art method for CF is substantially compromised when there is incomplete understand-
ing of the CGM, including exogenous noise and causal models. This finding challenges the appli-
cability of previous methods that rely on such knowledge, indicating they may not be suitable for
practical scenarios. Besides, the observation that CDA outperforms CFR in the case of estimating
Ĝ also suggests the necessity of revaluating the performance of each method under this situation.
These two findings highlight the need for improvements in counterfactual estimation and usage.

4 FAIR ALGORITHM WITH ESTIMATED COUNTERFACTUALS

To get started, we propose a generic framework for achieving CF, facilitating a more clear com-
parison between our methods and previous work. This framework is detailed in Algorithm 1. It’s
important to note that not every algorithm within this framework requires all the inputs listed there
and discussion on how previous methods fits in this framework can be seen in Appendix D. While
most prior works assumes the availability of G∗ and skip Step 1, in the previous section, we iden-
tified significant challenges in applying current methods when such assumptions do not hold. To
tackle these issues, we propose two key solutions: (1) Development of enhanced methods for coun-
terfactual estimation. (2) Refinement of strategies for employing estimated counterfactuals. The
first solution alters the foundational step (Step 1), essential for establishing CF in real-world sce-
narios, while the second solution (Step 3), building upon this groundwork, facilitates the practical
application of pre-trained models, which may originally be unfair.

4.1 ESTIMATING COUNTERFACTUALS

ILD is one of the recent methods for generating counterfactuals (Anonymous, 2024). This section
will first explain why ILD is particularly apt for Step 1 in Algorithm 1. Following this, we will delve
into several challenges encountered when applying ILD to achieve CF.

Benefits of ILD for CF There are two major merits of ILD: (1) It is capable of handling latent
causal variables. (2) It does not need knowledge of the causal model or even the causal graph. ILD
was originally designed under the framework of latent causal models, where all causal variables lie
in a latent space and all observables are connected with latent causal factors via a shared observation
function. As depicted in Figure 2b, variables Z are causally significant yet unobserved while X

6



Navigating and Addressing Data Problems for Foundation Models (DPFM) Workshop, ICLR 2024

represents the set of observed variables. At first glance, this might seem less advantageous. In
contrast with image datasets investigated by the original ILD paper, on tabular datasets, where many
fairness concerns are concentrated, the setup of latent causal model appears less straightforward.
Nonetheless, it is important to first recognize that there are no theoretical constraints preventing the
use of ILD in such contexts. A naive way to address the gap would be to use trivial FX such as
identity or shuffling function. Furthermore, even though each observed variable in tabular datasets
is more interpretable than pixels in images, they are not necessarily the key variables in the causal
model. In other words, the features we observed could be the mixture of or noisy version of other
causal observables. For instance, blood pressure and heart rate measure the ”healthiness” of the heart
which is a latent variable. Thus, adopting the ILD framework makes it a more generic approach.

Algorithm 1 CF with counterfactuals

Input: Counterfactual Estimation Algorithm Acounterfactual, CF training algorithm ACF-Train, CF
inference algorithm ACF-Infer, training dataset for Ĝ Dcounterfactual-train = {(xi, ai)}ni=1, training
dataset for ϕ Dcf-train = {(xi, ai, yi)}n

′

i=1, test point (xDtest , aDtest)
Output: Prediction result
Step 1: Obtain CGM Ĝ

Ĝ← Acounterfactual(Dcounterfactual-train)
Step 2: Train the predictor ϕ
ϕ← ACF-Train(Dcf-train, Ĝ)
Step 3: Make the final prediction ŷ

ŷ ← ACF-Infer(xDtest , aDtest , ϕ, Ĝ)

The second benefit regarding true causal model is also crucial, as in practical scenarios, we often lack
such knowledge. Furthermore, identifying the causal graph itself can be challenging. These tasks
have been well studied in the field of causal discovery (Chickering, 2002; Colombo et al., 2014)
and causal representation learning (Schölkopf et al., 2021). Solutions to this problem typically rely
on strong assumptions, such as the linearity of Structural Causal Models (SCMs) or additive noise
(Shimizu et al., 2006; Hoyer et al., 2008; Peters et al., 2014). Since our focus is on generating ap-
propriate counterfactual samples rather than identifying the underlying causal model, ILD becomes
a natural fit by avoiding estimating causal models and estimating counterfactuals directly instead .

Challenges of ILD for CF Despite ILD’s benefits, its application in our context faces challenges.
Initially designed for image datasets, adapting ILD to tabular data is non-straightforward. Addition-
ally, ILD’s assumption of invertibility for functions FZ and FX poses a three-fold difficulty. First,
even though invertibility requirement is more practical than assumptions such as linearity or addi-
tive noise, it could still be restrictive in some sense. For example, FZ being invertible constrains
the randomness that U can handle, and could thus restrict it capability to model counterfactual dis-
tribution. However, as most prior works typically employ a lower dimensional U in practice, we
follow that trend and leave theoretical advancement of ILD for further work. Second, training an
invertible model, particularly as data dimensions increase, is a non-trivial task in practice. In our
case, we implement ILD using a pseudo-invertible VAE structure, where E and D are parameterized
by an encoder and decoder respectively as is done in Anonymous (2024). Finally, the prevalence
of categorical variables in tabular data presents another obstacle to the invertibility assumption. We
approach this by converting categorical variables using one-hot encoding and modeling them with
Gumbel-Softmax (Jang et al., 2016), in line with the methodology used in Xu et al. (2019).

4.2 POSTPROCESSING ALGORITHM WITH PRETRAINED MODELS

With a trained ILD or other counterfactual generation methods, we now explore the possibility
of leveraging (unfair) pretrained models to achieve CF while maintaining the performance of the
pretrained model. This approach saves resources from retraining a downstream model, especially
for complicated tasks. Additionally, this enables the use of off-the-shelf powerful pretrained models
such as foundations models. Foundation models are often trained on vast quantities of unstructured
and noisy internet data which could contain biases that adversely affect CF (Bommasani et al., 2021).
Towards this end, we first theoretically prove several results that will motivate our postprocessing
algorithm. All proofs are in Appendix B. For theoretical analysis, we assume that F ∗

X(u, a) 4 is

4FX corresponds to D∗ and we use this notation to distinguish theory and implementation.
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invertible w.r.t. u given a, i.e., ∃F ∗
X

−1, F ∗
X

−1(x, a) = F ∗
X

−1(F ∗
X(u, a), a) = u,∀(x, a). 5 This

ensures that CGM is a deterministic function as the exogenous noise can be recovered exactly from
x and a. The following lemma characterizes the constraint on ϕ that is equivalent to perfect TE.
Lemma 4.1. A predictor is perfectly counterfactually fair w.r.t. TE if and only if the predic-
tor returns the same value for a sample and its counterfactuals, i.e., TE(ϕ) = 0 ⇔ ϕ(x, a) =
ϕ(xa′ , a′), ∀(x, a, a′)

The proof is straightforward from the definition of TE(ϕ). Given this, we now prove that the optimal
fair predictor, i.e., the minimal loss under the constraint of perfect fairness, is a simple weighted
average of the optimal (unfair) predictor.
Theorem 4.2. If F ∗

X is invertible, the optimal fair predictor (w.r.t. square L2 loss for regression and
cross-entropy loss for classification), i.e., the best possible model under the constraint of perfect CF,
is the average of the optimal (unfair) predictor on all possible counterfactuals:

ϕ∗
CF(x, a) ≜ argmin

ϕ:TE(ϕ)=0

E[ℓ(ϕ(X,A), Y )] =
∑

ã∈{0,1} p(A = ã)ϕ∗(xã, ã)

where ϕ∗(x, a) is the optimal predictor without a fairness constraint, i.e., ϕ∗(x, a) ≜
argminϕ E[ℓ(ϕ(X,A), Y )]=E[Y |X=x,A=a]

This result suggests that, if G∗ could be estimated reasonably well, a simple postprocessing algo-
rithm of an unfair model could achieve strong fairness and accuracy. We propose a simple algorithm
as summarized in Algorithm 2, which serves as ACF-Infer in Step 3 of Algorithm 1. For general task

Algorithm 2 Postprocessing for CF (PCF)

Input: Pretrained probabilistic prediction model ϕ : X → Y , CGM G, factual test point (x, a),
prior distribution p of A
Output: Predicted output µ̂
for ã ∈ {0, 1} do
x̂ã ← G(x, a, ã)

end for
µ̂←

∑
ã∈{0,1} p(A = ã)ϕ(x̂ã, ã)

such as regression, µ̂ is the final output while for classification, µ̂ is equivalent to the probability of
Y = 1, i.e., p(Y = 1|X = x,A = a) = E[Y |X = x,A = a]. It is important to highlight that PCF
may use any model ϕ which may not depend on G or be trained in a fair manner. In fact, with access
to the oracle CGM G∗, PCF would achieve perfect CF as proved in the next result.
Proposition 4.3. If F ∗

X is invertible and G is the ground truth CGM, i.e., G(x, a, a′) =
xa′ ,∀(x, a, a′), then Algorithm 2 achieves perfect CF for any pretrained model ϕ.

This indicates that PCF could achieve perfect CF with ground truth CGM G∗ regardless of the pre-
trained model ϕ. And if ϕ achieves strong accuracy, then the corresponding PCF is likely to achieve
strong accuracy, which we empirically validate in our experiments. From another perspective, there
are consistent estimators for the optimal predictor.Thus, we also mention the case where we do have
access to the optimal (unfair) predictor, i.e., ϕ∗(x, a) and consider the TE and excess risk of Algo-
rithm 2 incurred by using an imperfect CGM Ĝ instead of the perfect CGM G∗. We conjecture that
simple bounds on TE and excess risk could be made based on the Lipschitz smoothness of ϕ∗ and the
amount of counterfactual error, i.e., ϵmax = maxx,a,a′ ∥G∗(x, a, a′) − Ĝ(x, a, a′)∥2. Intuitively, if
the counterfactuals are not too far away and ϕ∗ is smooth, then TE and accuracy will not be affected
significantly because µ̂ will be close to the ideal µ.

5 EXPERIMENTS

5.1 ESTIMATED COUNTERFACTUALS

Experiment Setup Here we empirically investigate if ILD method in Section 4.1 leads to better
performance when combined with CF algorithms. We consider two different G: (1) GCVAE: CVAE

5This simplifies the theoretic analysis but we conjecture similar results would hold for approximately in-
vertible F ∗

X as well though it would require different analysis tools.
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used in Section 3. (2) GILD: ILD. Details on model design and parameter choice can be found in
Appendix E. We investigate how CDA, CFE and CFR perform given counterfactuals provided by
(1) and (2). We also include ERM and Dummy as a baseline. For Dummy it always predict 0 on
Adult-Sim and always predict the mean of y in the training set on Law-Sim. Regarding dataset, for
a fair comparison, we use the G∗ used in Section 3, which has the same structure as GCVAE.

Observation In Figure 4a, we observe that on the Adult-Sim dataset, ILD and CVAE show a trade-
off between TE and Error for CDA and CFR while ILD outperforms CVAE in terms of both metrics
when integrated with CFE. It’s particularly noteworthy that CFR-CVAE exhibits significantly higher
error compared to CFR-ILD, with only a marginal gain in TE. In fact, its performance is even inferior
to predicting the fixed output. In Figure 4b, for the Law-Sim dataset, ILD demonstrates superior
performance over CVAE when integrated with CFE and CFR. For CFA, a similar trade-off pattern is
observed. In summary, ILD generally provides more effective counterfactual estimation than CVAE,
despite CVAE sharing the same model class as the ground truth G∗. Futhermore, even though being
more fair, all of them have higher Error than ERM, which suggests that we find better ways of
utilizing counterfactuals in this context. Results involving TE0 and TE1 can be seen in Appendix F.
5.2 POSTPROCESSING

Experiment Setup Here we investigate the effectiveness of PCF proposed in Section 4.2. Built
upon our investigation in last section, we only use ILD to generate counterfactual samples. We com-
pare the performance of CDA-ILD, CFE-ILD, CFR-ILD, and PCF-ILD. The pretrained prediction
models used in PCF-ILD is trained via ERM, and we also include performance of that model without
any postprocessing, marked as ERM.

(a) Adult-Sim (b) Law-Sim

Figure 4: Comparison between CVAE and ILD
integrated with CF algorithms. Color indicates
Ĝ and shape indicates algorithms.

(a) Adult-Sim (b) Law-Sim

Figure 5: Effectiveness of PCF in comparison to
previous CF algortihms with estimated counter-
factual samples via ILD on both dataset.

Observation In Figure 5a and Figure 5b, we observe that PCF achieves best TE. However, we
notice that PCF cannot achieve good ML performance. This could result from either predictor for
each group not being optimal or counterfactual estimation error. We leave further investigation as
future works. Additional results and expanded figures can be found in Appendix F.

6 CONCLUSION AND FUTURE WORKS

In our study, we evaluate the efficacy of existing CF algorithms in situations with limited causal
knowledge. As a first step, we enhance their performance using ILD for superior counterfactual
sample generation. These simple yet insightful empirical investigations highlight the importance
of refining counterfactual estimation methodologies for fairness. Inspired by a few theorems on the
optimal prediction model, we further propose a new algorithm that utilizes estimated counterfactuals
and off-the-shelf pretrained models.

Despite the merits of our method and investigations, there are limitations that present intriguing av-
enues for future research. For instance, while ILD’s effectiveness is evident in our study, it doesn’t
assure that we could always achieve counterfactual equivalence solely by fitting the observed distri-
bution. Investigating methods to further narrow down the search space of ILD is a promising direc-
tion for future work. Besides, our current empirical study does not incorporate foundation models.
Therefore, examining the practicality of our approach with actual foundation models presents an
intriguing pathway for future investigations. This might also close the gap in ML efficacy that we
observed in the empirical study.

9
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A RELATED WORKS

Fairness of Foundation Models Foundation models refer to the machine learning models that
are trained on broad data and can be adapted to a wide range of downstream tasks (Bommasani
et al., 2021). The significant impact of foundation models has led to increased focus on its social
implications regarding fairness and bias (Henderson et al., 2023; Bender et al., 2021; Weidinger
et al., 2022). Ali et al. (2023) use relaxed fair PCA as a postprocessing method for CLIP (Radford
et al., 2021). Their analysis is limited to CLIP-based models and does not address Counterfactual
Fairness. Hua et al. (2023) propose a Counterfactually-Fair-Prompting method for recommendation
systems based on Large Language Models. Similarly, this is specific to one type of foundation
models. In contrast with most prior works, our paper focuses on estimating counterfactual samples
and post-processing output, which could be broadly applied for different types of foundation models.

Counterfactual Fairness Counterfactual Fairness, first introduced by Kusner et al. (2017), has
recently gained traction (Nilforoshan et al., 2022; Rosenblatt & Witter, 2023), with many prior
studies relying on ground truth causal models. While Garg et al. (2019) regularize counterfactual
sample predictions, they depend on counterfactual pairs and lack solid fairness guarantees. Further-
more, their performance may be suboptimal, as shown by Zuo et al. (2023). Zuo et al. (2022) make
progress by not fully relying on the causal graph but still require a maximally partially directed
acyclic graph (Meek, 2013), contrasting with ILD relying solely on sparsity knowledge. Other re-
search, like Kim et al. (2021) and Grari et al. (2023), explore empirical methods such as fairness
loss in VAE training or adversarial loss, but their guarantee on CF remains uncertain.

Counterfactual Generation A main branch of research concentrates on identifying counterfac-
tual queries (Nasr-Esfahany et al., 2023; Shah et al., 2022). For instance, Nasr-Esfahany et al. (2023)
establish counterfactaul identifiability for certain type of causal structures. However, in comparison
to ILD, their approach doesn’t accommodate latent causal settings and require assumptions on the
causal structure. A less stringent approach to generating counterfactuals involves the use of genera-
tive models without explicit usage of causality (Zhu et al., 2017; Choi et al., 2018). Typically, these
models find a way to incorporate group information into the generative process and prioritize the
generation of high-quality samples. However, due to their lack of integration with causal reasoning
and the absence of guarantees on the generated samples, these approaches run the risk of introducing
significant bias concerns.

B PROOFS

B.1 PROOF OF THEOREM 4.1

Proof of Theorem 4.1.

TE(ϕ) = 0⇔ E[|ϕ(X,A)− ϕ(XA′ , A′)|] = 0⇔ ϕ(x, a)
a.s.
= ϕ(xa′ , a′), ∀(x, a, a′) , (1)

where the first equality is by definition and the second equality is because absolute value is always
non-negative for any (x, a, a′). Thus, the predictions must be almost surely equal for all (x, a, a′).
Similarly, if they are all equal on the non-zero metric set, then the expectation must be 0.

B.2 PROOF OF THEOREM 4.2

Before proving the main theorem, we first provide one well-known lemma that reminds the reader
of the well-known result of the optimal predictor, which is denoted by ϕ∗ in the theorem statement.

Lemma B.1 (Optimal Predictor is Conditional Mean). The conditional mean E[Y |X = x] is the
optimal predictor without fairness constraints for classification with cross entropy loss and for re-
gression with MSE loss.
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Proof. First, let’s establish that the optimal predictor without constraints is in fact E[Y |X = x]. For
squared error, we have that derivative :

E[ℓ(ϕ(X), Y )]

= EX [EY |X [(Y − ϕ(X))2]]

= EX [EY |X [Y 2]− 2EY |X [Y ϕ(X)] + EY |X [ϕ(X)2]]

= EX [EY |X [Y 2]− 2ϕ(X)EY |X [Y ] + ϕ(X)2EY |X [1]]

= EX [EY [Y
2]− 2ϕ(X)E[Y |X] + ϕ(X)2]

Taking the derivative of the inside expectation w.r.t. ϕ(X) and setting to 0 yields ϕ∗(X) = E[Y |X].

Now let’s look at cross entropy loss for classification:

E[ℓ(ϕ(X), Y )]

= EX [EY |X [−Y log(ϕ(X))− (1− Y ) log(1− ϕ(X))]]

= EX [− log(ϕ(X))E[Y |X]− log(1− ϕ(X))E[(1− Y )|X]]]

Again, if you take the derivative w.r.t. ϕ(X) and set to 0, we see that ϕ∗(X) = E[Y |X].

Now we seek to prove Theorem 4.2.

Proof. First, we decompose the factual error across the sensitive attribute A given the exogenous
noise U .

EX,A,Y [ℓ(ϕ(X,A), Y )]

= EU,A,Y [ℓ(ϕ(F
∗
X(U,A), A), Y )]

= EU [EA[EY |U,A[ℓ(ϕ(F
∗
X(U,A), A), Y )]]]

= EU [p(A = a)EY |U,A=a[ℓ(ϕ(F
∗
X(U, a), a), Y )] + p(A = a′)EY |U,A=a′ [ℓ(ϕ(F ∗

X(U, a′), a′), Y )]] .

Consider U = u, inside the expectation we have

p(A = a)EY |U=u,A=a[ℓ(ϕ(F
∗
X(u, a), a), Y )] + p(A = a′)EY |U=u,A=a′ [ℓ(ϕ(F ∗

X(u, a′), a′), Y )]

= p(A = a)EY |X=x,A=a[ℓ(ϕ(x, a), Y )] + p(A = a′)EY |X=xa′ ,A=a′ [ℓ(ϕ(xa′ , a′), Y )] ,

where w.l.o.g., x is viewed as the factual and xa′ is viewed as the counterfactual. Because of
invertibility, these two terms are unique for every (u, a) or correspondingly (x, a) combination and
thus the problem decomposes across U . Thus, the factual loss can be viewed as a combination of
the factual loss from one specific a plus the counterfactual loss for a′ for each point x.

We have the following subproblems indexed by u: The factual loss can be viewed as a combination
of the factual loss from one specific a plus the counterfactual loss for a′ for each point x. Notice
that the constraint is ϕ(x, a) a.s.

= ϕ(xa′ , a′) from Theorem 4.1. We can directly push the constraint
into the optimization problem by optimizing over ϕ0 ≜ ϕ(x, a)

a.s.
= ϕ(xa′ , a′):

argmin
ϕ

p(A = a)EY |X=x,A=a[ℓ(ϕ0, Y )] + p(A = a′)EY |X=xa′ ,A=a′ [ℓ(ϕ0, Y )] (2)

Taking ℓ as squared L2 loss: we have

argmin
ϕ

p(A = a)EY |X=x,A=a[(Y − ϕ0)
2] + p(A = a′)EY |X=xa′ ,A=a′ [(Y − ϕ0)

2]

= argmin
ϕ

p(A = a){EY |X=x,A=a[Y
2]− 2ϕ0EY |X=x,A=a[Y ] + ϕ2

0}

+ p(A = a′){EY |X=xa′ ,A=a′ [Y 2]− 2ϕ0EY |X=xa′ ,A=a′ [Y ] + ϕ2
0} .

Similarly, if we take ℓ as (binary) cross entropy loss: we have

argmin
ϕ

p(A = a)EY |X=x,A=a[−(Y log(ϕ) + (1− Y ) log(1− ϕ))]

+ p(A = a′)EY |X=xa′ ,A=a′ [−(Y log(ϕ) + (1− Y ) log(1− ϕ))]
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It is simple to see that both loss functions are convex, thus could obtain a unique solution by taking
the derivative. Thus, for each x, xa′ induced by U = u, we could get the optimal ϕ0:

ϕ0 =
∑

a′∈{0,1}

p(A = a′)ϕ∗(xa′ , a′) ,

where ϕ∗ is the optimal predictor from the lemma above. This result holds for every u and thus
gives the final result.

B.3 PROOF OF THEOREM 4.3

Proof.

E[Ŷ |X = x,A = a] = µ̂(x, a)

=
∑

ã∈{0,1}

p(A = ã)ϕ(G(x, a, ã))

=
∑

ã∈{0,1}

p(A = ã)ϕ(xã)

=
∑

ã∈{0,1}

p(A = ã)ϕ(G(xa′ , a′, ã))

= µ̂(xa′ , a′)

= E[Ŷ |X = xa′ , A = a′] ,

where the middle equalities are by the properties of the deterministic and ground truth CGM. Be-
cause the factual output for Algorithm 2 is the same as the counterfactual output, then the TE must
be 0 by Theorem 4.1.

C MORE DETAILS OF ILD

Invertible Latent Domain Causal Model (ILD) was originally proposed in Anonymous (2024) to
solve domain counterfactual problems. They assume all data are generated in the form of

A ∼ PA

X = FX(U,A)

U ∼ PU

Y = FY (U,X)

where FZ and FX are invertible functions.

Assumptions There are three main assumptions of ILD. (1) Invertibiltiy of the models. This is
key to estimating exogenous noise U from the observations. (2) Soft intervention. This states that
latent causal models belonging to different group are generated by soft intervention on another SCM,
which changes the causal mechanism without breaking the causal relationship with respect to their
exogenous noise. (3) Sparse Mechanism Shift (Schölkopf et al., 2021). This says that A change a
sparse number of causal mechanisms. Such an assumption makes sense in most cases as sentitive
attribute typically only affects a few certain features directly. Though it’s worth emphasizing that
this assumption only constrains the number of variables that are directly caused by A instead of all
its descendants.

Main Theorems Here we list two key theorems that will be useful for our task. We refer the
readers to their original paper for more careful theoretical discussion.
Theorem C.1. Given an ILD, there exists a canonical ILD that is both counterfactually and distri-
butionally equivalent while the sparsity is maintained.

Here distributional equivalence means the distribution of X matches while counterfactual equiva-
lence means given an observation, they will generate the same counterfactual sample. This theorem
provides insights on model design. Suppose the sparsity is k and latent dimension is d, Canonical
ILD means that group attribute only affects the last k nodes. Besides, the latent SCM belonging to
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one of the group will be identity function. Note that this implies that the first k − d nodes are iden-
tical to their corresponding exogenous noise. They further propose Relaxed Canonical ILD where
they remove the constraint on one of the latent SCM being identity.
Theorem C.2. Given an ILD, all ILDs that are counterfactually and distributionally equivalent
share the same sparsity.

This theorem further provides confidence in how ILD could improve counterfactual estimation by
just fitting the observed distribution.

D DISCUSSION OF PRIOR WORKS

In this section, we connect previous methods with our generic framework in Algorithm 1.

ERM ERM does not require any Ĝ so it can naturally skip Step 1. The second step uses a conven-
tional ERM algorithm ACF-Train(Dcf-train, ) = AERM(Dcf-train). It also skips the Step 3.

CDA There are multiple different ways of implementing CDA. Zuo et al. (2023) assumes access
to G∗ and thus skip Step 1. In Step 2, Dcf-train is augmented with Ĝ. They do nothing special in Step
3.

CFE Similarly, they skip Step 1 by assuming access to G∗. In Step 2 they generate u based on
Dcf-train and Ĝ. In Step 3, they need to convert the input x into u via Ĝ.

CFR They also skip Step 1 by assuming access to G∗. In Step 2 they generate counterfactual
samples based on Dcf-train and Ĝ. In Step 3, they also need to convert the input x into xa′ via Ĝ.

E EXPERIMENT DETAILS

For a fair investigation of previous methods, most setups follow the convention in the original CFR
paper (Zuo et al., 2023). We have also included the code to reproduce all results. All experiments
are run on RTX A5000.

E.1 MODEL AND TRAINING

There are several models used in the paper. We will explain each of them separately below.

CVAE On Adult-Sim, we use the same design as that in (Zuo et al., 2023). It maps from X and
A to U through an encoder in the form u = E(x, a) where the dimension of U is chosen to be 7.
It further maps from U to X via separate decoder. Specifically xα = Dα(u) and xβ = Dβ(u, a)
where xα and xβ represents features directly affected by A and features not directly affected by
A. Here they use expert knowledge to distinguish xα and xβ . In the case of Y being involved, the
encoder is in the form u = E(x, a, u) and there will be a separate decoder y = DY (u, a). The
training of CVAE follows the objective in beta-VAE (Higgins et al., 2017). When there is Y (i.e.
when training G∗), there is a fairness loss that enforces Y prediction to be the same for different
groups. The intuition behind this design could be found in Kim et al. (2021) and Zuo et al. (2023).
The regularization term of fairness loss is 0.15.

On Law-Sim, the model design remains the same, though we change the dimension of U from 7
to 3. The reason is that the dimension of X is only 3 for this dataset. Even though it becomes 10
after one-hot encodeing, we believe it makes less sense to use such a high dimensional latent space.
Besides, we remove fairness loss in the training of G∗ to increase the difficulty of the task. Note
that this won’t cause any issue to the validness of our experiment as G∗ is fixed and considered as
ground truth.

ILD We employ ILD-Relax-Can on Adult-Sim and ILD-Can for Law-Sim. The sparsity is chosen
as 1. The dimension of Z and U are 7 on Adult-Sim and 3 on Law-Sim, which is consistent with the
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choice for CVAE. Both of encoder and decoder are composed of two-layer multi-layer perceptrons
which are close to the model used for CVAE in terms of number of parameters. The training of ILD
follows the objective in Beta-VAE and β is chosen to be 1.

Prediction Model For Adult-Sim, the classifer is Logistic Regression, which follows the choice
in Zuo et al. (2023). For most results on Law-Sim, the regressor is Ridge Regression with Cross
Valiation over [0.1,1,10,100,1000,10000]. We also investigate different choices of regressor in Ap-
pendix F.

E.2 DATASETS

For dataset, we consider UCI Adult Income (Kohavi et al., 1996) and Law School Success (Wight-
man, 1998) following the choice of Zuo et al. (2023). For Adult, the sensitive attribute is sex and
the target is the whether the income is greater than 50K. Other features contain age, race, native
country, workclass, education, martial status, occupation, relationship, hours per week. For Law,
the sensitive attribute is gender and the target is first-year grade. Other features contain race, LSAT
and GPA. However, since we need to evaluate TE of each method which requires access to ground
truth, we use the simulated version of those datasets. Specifically, we first train a ground truth CGM
G∗ = D∗ ◦ E∗ that simulates the CGM of those datasets. Then we use E∗ and the real X to
infer U . After getting samples of U , we constructed the dataset D and Dcounterfactual by sampling
from marginal distribution of A (based on actual distribution of real data), and using D∗ to get xa

and xa′ . We want to emphasize that Dcounterfactual, regardless of train or test set, are hidden from
downstream models and used for evaluation only. This way, we get access to the ground truth u∗

and can generate ground truth counterfactuals without any error. In our investigation, exogenous
noise, factual data and counterfactual data are all actually the simulated version of original datasets.
However they do follow a fixed data generating mechanism that is close to the real data. For clarity,
we called them Adult-Sim and Law-Sim throughout the paper. For Adult-Sim, Error is evaluated as
the ratio of wrong prediction while for Law-Sim, Error is evaluated as the Root Mean Squared Error
(RMSE).

To generate simulated “ground truth” Y , the training of ground truth G∗ involves Y , i.e., x =
D∗

X(u, a) and y = D∗
Y (u, x). Regarding model structure, we implement CVAE as used in Zuo

et al. (2023). In this investigation we consider two previous methods: CDA and CFR. We do not
include CFE here because it only uses U . More details could be found in Appendix E. Due to space
constraint, results on Adult-Sim and numbers containing TE0 and TE1 can be found in Appendix F.
All numbers are averaged over 5 repetitive experiments.

F ADDITIONAL RESULTS

Here we include additional results on Adult-Sim and expanded figures with TE0, TE1 on Law-Sim.
In most cases, the trend with TE0 and TE1 is the same as that with TE, so we won’t explicitly discuss
about it unless there is anything special.

F.1 ADDITIONAL RESULTS FOR SECTION 3

Figure 6, Figure 8, Figure 10 and Figure 12 are the expanded figures of Figure 3a, Figure 3b,
Figure 3c and Figure 3d respectively. For Law-Sim, in Figure 7, we observe a similar trend as
that in Figure 3a. The trend in Figure 9 is similar to that in Figure 3b for CFR. One difference we
observe is that as we train the model, CDA seems to lead to better performance in terms of both
metric. Again, the relation between CDA-D∗ and CDA-D̂best is not clear. It’s important to note that
they are both much worse than CFR-D∗ and even CFR-D̂, which indicates that CDA might not fit
well for this task. The trends we observe in Figure 11 and Figure 13 are also very close to that in
Figure 3c and Figure 3d. Overall, our investigations on both datasets validate our claim that naively
estimating counterfactuals might lead to significant failure for prior works.
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(a) TE (b) TE0 (c) TE1

Figure 6: Error from estimating U on Adult-Sim

(a) TE (b) TE0 (c) TE1

Figure 7: Error from estimating U on Law-Sim

F.2 ADDITIONAL RESULTS FOR SECTION 5

Figure 14 and Figure 16 are the expanded figures of Figure 4a and Figure 5a. Figure 15 and Fig-
ure 17 are the expanded figures of Figure 4b and Figure 5b. As an extra investigation, we explore
how choices of different regressors would make a difference. In Figure 18, we test with Linear
Regression, Ridge Regression and MLP. We notice that the trend remains similar in most cases.

(a) TE (b) TE0 (c) TE1

Figure 8: Error from estimating D on Adult-Sim
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(a) TE (b) TE0 (c) TE1

Figure 9: Error from estimating D on Law-Sim

(a) TE (b) TE0 (c) TE1

Figure 10: Error from estimating G on Adult-Sim

(a) TE (b) TE0 (c) TE1

Figure 11: Error from estimating G on Law-Sim
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(a) TE (b) TE0 (c) TE1

Figure 12: Investigation of CDA-Ĝbest with different number of augmented counterfactual samples
on Adult-Sim.

(a) TE (b) TE0 (c) TE1

Figure 13: Investigation of CDA-Ĝbest with different number of augmented counterfactual samples
on Law-Sim.

(a) TE (b) TE0 (c) TE1

Figure 14: Comparison between CVAE and ILD integrated with different CF algorithms on Adult-
Sim.
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(a) TE (b) TE0 (c) TE1

Figure 15: Comparison between CVAE and ILD integrated with different CF algorithms on Law-
Sim.

(a) TE (b) TE0 (c) TE1

Figure 16: Effectiveness of PCF in comparison to previous CF algortihms with estimated counter-
factual samples on Adult-Sim.

(a) TE (b) TE0 (c) TE1

Figure 17: Effectiveness of PCF in comparison to previous CF algortihms with estimated counter-
factual samples on Law-Sim.
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(a) Linear Regression (b) Ridge Regression (c) MLP

Figure 18: Exploration of different regressors on Law-Sim.
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