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ABSTRACT

We study streaming algorithms for the outer (d − k)-radius estimation of a set
of points a1, . . . , an ∈ Rd. The problem asks to compute the minimum over all
k-dimensional flats F of maxi d(ai, F ), where d(u, F ) denotes the distance of a
point u from the flat F . This problem has been extensively studied in earlier works
(Varadarajan et al., SIAM J. Comput. 2006) over a wide range of values of d, k
and d − k. The earlier algorithms are based on SDP relaxations of the problem
and are not applicable in the streaming setting where we do not have space to
store all the rows that we see. We give an efficient streaming coreset algorithm that
selects poly(k, log n) rows and at the end outputs a poly(k, log n) approximation
to the outer (d− k)-radius. The algorithm only uses d · poly(k, log n) bits of space
and runs in an overall time of O(nnz(A) · log n+ poly(d, log n)), where nnz(A)
denotes the number of nonzero entries in the n× d matrix A with rows given by
a1, . . . , an ∈ Rd.
In a recent work, Woodruff and Yasuda (FOCS 2022), give streaming algorithms
for high-dimensional geometric problems such as width estimation, convex hull es-
timation, volume estimation etc. Their algorithms require Ω(d2) bits of space
and have an Ω(

√
d) multiplicative approximation factor even when the rows

a1, . . . , an are “almost” spanned by a k dimensional subspace. We show that
when the rows are a1, . . . , an are “almost” spanned by a k dimensional space,
our streaming coreset construction algorithm can be used to obtain algorithms
that use only O(d · poly(k, log n)) bits of space and have a multiplicative error of
O(poly(k, log n)). When k ≪ d, our algorithms use a much smaller amount of
space while guaranteeing a better approximation. We pay an additive error depend-
ing on how close the rows a1, . . . , an to being spanned by a rank k subspace.
As another application of our algorithm, we show that our streaming coreset can
also be used to obtain approximations to the ℓp subspace approximation problem
using exponential random variables to embed the ℓp subspace approximation
problem into an instance of the ℓ∞ subspace approximation problem.

1 INTRODUCTION

Modern datasets are usually very high dimensional and have a large number of data points. Storing
the entire dataset to analyze them is often impractical and in certain settings impossible. In recent
years, streaming algorithms have emerged as a way to process and understand the datasets in both a
space and time efficient manner. In a single-pass streaming setting, the algorithm is allowed to make
only a single pass over the entire dataset and is required to output a “summary” of the dataset that
is useful to solve a certain problem. In this work, we focus on streaming algorithms for geometric
problems such as subspace approximation, width estimation, etc. Suppose that we are given a set of
d-dimensional points a1, . . . , an and a dimension parameter k. Given a subspace V , we define d(a, V )
to be distance between the point a and subspace V given by minv∈V ∥a − v∥2. The ℓp subspace
approximation problem (Deshpande et al., 2011b), for p ∈ [1,∞], asks to find a k-dimensional
subspace that minimizes (

∑n
i=1 d(ai, V )p)1/p.

Note that for p = ∞, we want to find a k-dimensional subspace that minimizes the maximum
distance from the given set of points. Related to the ℓ∞ subspace approximation problem is the widely
studied outer (d− k) radius estimation problem (Varadarajan et al., 2007) which instead asks for a
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k-dimensional flat1 F that minimizes maxi∈[n] d(ai, F ). The outer (d − k) radius is a measure of
how far the point set is from being a k-dimensional flat. Varadarajan et al. (2007) give a polynomial
time algorithm for approximating the outer (d− k) radius up to a O(

√
log n) multiplicative factor.

Their algorithm is based on rounding of a semidefinite program (SDP) relaxation. When n and d are
very large, their algorithm is not practical and cannot be implemented in the streaming setting. We
give a time and space efficient single pass streaming algorithm that approximates the outer (d− k)
radius up to a poly(k, log n) factor. Typically, the value of k used is much smaller than n and d since
in many settings, we have that the n× d matrix A is a noisy version of the underlying rank k matrix.

Our algorithm is based on constructing a strong coreset for approximating maxi d(ai, V ) for any
k-dimensional subspace V . When run on the stream of points a1, . . . , an, our algorithm selects
a subset S ⊆ [n] of points, |S| = poly(k, log n) such that for all k dimensional subspace V ,
maxi∈S d(ai, V ) ≤ maxi∈[n] d(ai, V ) ≤ poly(k, log n)maxi∈S d(ai, V ) which implies that the op-
timal solution to the ℓ∞ subspace approximation problem on the point set (ai)i∈S is a poly(k, log n)
approximation to the ℓ∞ subspace approximation problem on the point set (ai)i∈[n]. We prove:

Theorem 1.1 (Informal). Given a parameter k and n points a1, . . . , an ∈ Rd, all with integer
coordinates bounded in absolute value by poly(n), there is a deterministic single-pass streaming
algorithm that selects a subset S ⊆ [n] of points, |S| = O(k3 log2 n) such that for all k-dimensional
subspaces V ,

max
i∈S

d(ai, V ) ≤ max
i∈[n]

d(ai, V ) ≤ O(k3/2 log n)max
i∈S

d(ai, V ).

The streaming algorithm uses only O(d · k3 log3 n) bits of space and can be implemented in time
O(nnz(A) log n+ dpoly(k, log n)).

In this result and its applications, the size of the set |S| can be replaced with O(k log2 κ) where κ is a
suitably defined rank-k condition number. For many practical datasets, κ is small and we accordingly
incur a distortion of only O(

√
k log κ) instead of O(k3/2 log n) in all our results.

Using a simple proof, we then show that if we run the coreset construction algorithm on the point
set 0 = a1 − a1, a2 − a1, . . . , an − a1 and if the algorithm selects a subset S ⊆ [n], then the ℓ∞
subspace approximation cost of the point set (ai − a1)i∈S is a poly(k, log n) approximation to
the outer (d − k) radius of the points (ai)i∈[n]. As the coreset is small, we can use any existing
algorithm to approximate the ℓ∞ subspace approximation cost of the points in the coreset. We show
that as the coreset only has poly(k, log n) points, the top rank-k singular subspace is a poly(k, log n)
approximation to the ℓ∞ subspace approximation problem. Hence, we can obtain a poly(k, log n)
approximation to the outer (d− k) radius without using any SDP relaxations.

We then turn to the ℓp subspace approximation for general p ∈ [1,∞). For p = 2, the ℓ2 subspace
approximation problem is equivalent to the Frobenius norm low rank approximation problem. There
are a wide variety of algorithms for this problem in the offline and streaming settings. For example,
the FrequentDirections sketch Ghashami et al. (2016) is a deterministic algorithm that uses only
O(ε−1dk log n) bits of space and outputs a 1 + ε approximation to the ℓ2 subspace approximation
problem. A downside of the FrequentDirections sketch is that it is not a weighted subset of the
input rows and hence is not preferred in some cases as it is harder to interpret the sketch, does not
preserve sparsity, etc. Braverman et al. (2020) give a randomized algorithm that samples and scales
poly(k, log n) rows in the stream and at the end outputs a Projection-Cost Preserving (PCP) sketch
(Cohen et al., 2015; Feldman et al., 2020). The algorithm uses ε−2dpoly(k, log n) bits of space and
the sketch can be used to obtain a 1 + ε approximation to the ℓ2-Subspace Approximation problem.
In addition, their procedure works even in the online setting where a selected row is never discarded.

For p /∈ { 2,∞}, much less is known in the streaming setting. In the offline setting, Deshpande and
Varadarajan (2007) gave a sampling based algorithm for all p ≥ 1 that outputs a bicriteria solution for
the ℓp subspace approximation problem. Later, in Deshpande et al. (2011a), they give a polynomial
time O(

√
p) factor approximation algorithm for the ℓp subspace approximation problem for all p ≥ 2.

Assuming the Unique Games Conjecture, they show that it is hard to approximate the cost to a
smaller than O(

√
p) factor. For 1 ≤ p ≤ 2, Clarkson and Woodruff (2015) gave an input sparsity

time algorithm that computes a 1 + ε approximation but they have an exp(poly(k/ε)) term in their

1A k dimensional flat is defined as a k dimensional subspace that is translated by some c.
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running time. The O(
√
p) factor approximation algorithm of Deshpande et al. (2011a) is based on

convex relaxations is not applicable in the streaming setting of this paper. In a recent work, Deshpande
and Pratap (2023) observed the lack of streaming algorithms for ℓp subspace approximation that
also have the subset selection property that our coresets have. They give a subset selection algorithm
for the ℓp subspace approximation problem but their results have a weaker additive error guarantee.
They leave open the subset selection algorithms that give a multiplicative approximation to the
ℓp subspace approximation problem. In a recent work, Woodruff and Yasuda (2023) answered the
question of Deshpande and Pratap (2023) in the affirmative by giving a subset selection algorithm the
computes a strong coreset with O((k/ε)O(p) polylog(n)) rows that can approximate the cost of any
k-dimensional space up to a 1± ε factor. Selecting kO(p) rows is prohibitive when p is large.

Towards resolving this issue, we show that the coreset construction algorithm from Theorem 1.1
can be used to obtain a streaming algorithm that selects a subset of (weighted) points which can
be used to obtain multiplicative approximations to the ℓp subspace approximation problem. We use
the min-stability property of exponential random variables to embed an instance of ℓp subspace
approximation to an instance of ℓ∞ subspace approximation. Then, we can directly use the coreset
for ℓ∞ subspace approximation to obtain a solution that has a multiplicative guarantee. The technique
of using exponential random variables to embed ℓp problems to ℓ∞ problems has been employed in
previous works, e.g., Cohen et al. (2014); Woodruff and Zhang (2013). While the algorithm (scale
by exponential random variables and run the coreset for ℓ∞ subspace approximation) turns out to
be fairly simple, the analysis that the algorithm works is involved and the net argument we apply
crucially uses the fact that the coreset is small to obtain good guarantees on the approximation factor.
We are not aware of any previous works exploring the use of exponential random variables in the
context of the ℓp subspace approximation problem. We obtain the following result:

Theorem 1.2 (Informal). Given p ≥ 1, a dimension parameter k, and n points a1, . . . , an ∈ Rd

with integer coordinates bounded in absolute value by poly(n), there is a randomized streaming
algorithm that selects a subset S ⊆ [n], |S| = O(k3 log2 n) and assigns a weight wi ≥ 0 for i ∈ S
such that if

Ṽ = argmin
k-dim V

max
i∈S

wi · d(ai, V ),

then (
∑n

i=1 d(ai, Ṽ )p)1/p ≤ k3/2+5/p poly(log n)mink-dim V(
∑n

i=1 d(ai, V )p)1/p. The algorithm
only uses O(d · k3 log3 n) bits of space and runs in O(nnz(A) log n+ dpoly(k, log n)) time.

We note that we give a weak coreset that can be used to compute an approximate solution whereas
Woodruff and Yasuda (2023) give a strong coreset which can be used to approximate the cost of any
k dimensional subspace.

We then show that recent algorithms of Woodruff and Yasuda (2022) can be improved using our
coreset construction algorithm when the data points a1, . . . , an are “approximately” spanned by a
low rank subspace. They give streaming algorithms for a host of geometric problems such as width
estimation, volume estimation, Löwner-John ellipsoid, etc. The main ingredient of their algorithms is
a deterministic ℓ∞ “subspace embedding”: their algorithm streams through rows of an n× d matrix
A and selects a subset of rows S ⊆ [n], |S| = O(d log n) with the property that for all x,

∥ASx∥∞ ≤ ∥Ax∥∞ ≤
√
d log n∥ASx∥∞.

Here ∥x∥∞
.
= maxi |xi| and AS is the matrix A restricted to only those rows in S. When the matrix

A has rank d, their algorithm necessarily needs Ω(d2) bits of space which is prohibitive when d is very
large. In practice, many datasets are very well represented by a matrix with far lower rank than d. Since
that algorithm of Woodruff and Yasuda (2022) aims for a strong subspace embedding guarantee, their
coreset construction algorithm selects Ω(d) rows even when the matrix can be approximated very well
by a low rank matrix. We show that if S is the coreset constructed by the algorithm in Theorem 1.1,
then for all unit vectors x, ∥ASx∥∞ ≤ ∥Ax∥∞ ≤ Ck3/2 log n∥ASx∥∞ + (Ck log n)∆, where ∆
denotes the optimal rank-k ℓ∞ subspace approximation cost of the matrix A. When all the rows of
the matrix A are close to a rank k subspace, then ∆ is small and the above guarantee directly leads to
improvements over their algorithm both in terms of space complexity and approximation ratios.

We include experiments to show that our algorithm works well in practice and that the coreset
computed by the algorithm gives accurate answers to various queries. We emphasize that our algorithm
is very efficient and can be implemented to run quickly on huge datasets (see Remark 3.4).
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Relevance to Machine Learning. Our work continues the long line of work in the area of subspace
approximation and low rank approximation with different error metrics that has been of interest in the
Machine Learning community. Previous works study problems such as ℓ1 subspace approximation
(Hardt and Moitra, 2013), entry wise ℓp low rank approximation (Chierichetti et al., 2017; Dan et al.,
2019), Column subset selection for entrywise ℓp norm and other error metrics (Song et al., 2019).

Our algorithms for geometric streaming problems such as convex hull estimation have applications
for robust classification (Provost and Fawcett, 2001; Fawcett and Niculescu-Mizil, 2007).

2 PRELIMINARIES

For integer n ≥ 1, we use [n] to denotes the set { 1, . . . , n }. For an n× d matrix A, we use ai ∈ Rd

to denote the i-th row. If S ⊆ [n], then AS denotes the submatrix formed by the rows in the set S. For
x ∈ Rd and p ≥ 1, ∥x∥p denotes the ℓp norm of x defined as (

∑d
i=1 |xi|p)1/p and ∥x∥∞

.
= maxi |xi|.

Given a matrix A, ∥A∥F to denote the Frobenius norm and ∥A∥p,2 to denote the ℓp norm of the
n-dimensional vector (∥a1∥2, . . . , ∥an∥2). Given a matrix A, we use [A]k to denote the best rank-
k approximation of A in Frobenius norm. This can be obtained by truncating the singular value
decomposition of A to the top k singular values.

For an arbitrary k dimensional subspace V ∈ Rd, we use PV to denote the orthogonal projection
matrix onto the subspace V , i.e., for any x ∈ Rd, PV · x is the closest (in Euclidean norm) vector to x
in V . So, d(x, V ) = ∥(I −PV )x∥2 and ∥A(I −PV )∥∞,2 = maxi ∥(I −PV )ai∥2 = maxi d(ai, V ).

3 ℓ∞ LOW RANK APPROXIMATION AND OUTER RADIUS

As discussed in the introduction, we want to compute a strong coreset, i.e., a subset S of rows of A
such that for all k-dimensional subspaces V ,

∥AS(I − PV )∥∞,2 ≤ ∥A(I − PV )∥∞,2 ≤ f · ∥AS(I − PV )∥∞,2

for a small factor f . Consider the following simple algorithm: we initiate S ← ∅ and stream
through the rows a1, . . . , an. When processing rows ai, if there exists a rank-k projection matrix
P such that ∥a⊤i (I − P )∥2 > ∥AS(I − P )∥F, then we update S ← S ∪ { i }. Otherwise, we
proceed to the next row. Now consider the set S at the end of the stream and let V be an arbitrary
k dimensional subspace. Let i be such that ∥A(I − PV )∥∞,2 = ∥a⊤i (I − PV )∥2. If i ∈ S, then we
already have ∥AS(I − PV )∥∞,2 = ∥A(I − PV )∥∞,2. If i /∈ S, then by the algorithm, we have that
∥a⊤i (I − PV )∥2 ≤ ∥AS<i(I − PV )∥F. Now, ∥AS<i(I − PV )∥2F ≤ |S|∥AS(I − PV )∥2∞,2. Hence,
∥A(I−PV )∥∞,2 = ∥a⊤i (I−PV )∥2 ≤

√
|S|∥AS(I−PV )∥∞,2. So, we have for all rank-k subspaces

V that ∥AS(I − PV )∥∞,2 ≤ ∥A(I − PV )∥∞,2 ≤
√
|S|∥AS(I − PV )∥∞,2. Now, if we can show

that S can not be too large, we obtain that AS is a strong coreset with a small distortion.

To show that S is not too large, we appeal to rank-k online ridge leverage scores. In the offline setting,
ridge leverage scores have been employed by Cohen et al. (2017) as a suitable modification of the
usual ℓ2-leverage scores to obtain fast algorithms for ℓ2 low rank approximation. Later, Braverman
et al. (2020) defined online ridge leverage scores and showed that they can be used to compute low
rank approximations in the online model. They also showed that for well-conditioned instances, the
sum of the online ridge leverage scores is small. Our main observation is that for the set S constructed
as described, the online ridge leverage score of every row in AS is large. As the sum of online ridge
leverage scores is not large, we obtain that there cannot be too many rows in AS .

One issue we have to solve to implement this algorithm is given ai and AS , how can we efficiently
know if there exists a rank-k subspace V such that ∥ai(I −PV )∥2 > ∥AS(I −PV )∥F? As we argued
above, for all the rows in AS , the online ridge leverage score is large. So, we instead modify the
algorithm to add a row ai if its online ridge leverage score with respect to AS is large.

3.1 EFFICIENT ALGORITHM

Our full algorithm is described in Algorithm 1. We will now describe the series of steps in our
proof. Let S be the subset of rows that have been selected by the algorithm and at+1 is the row
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Algorithm 1: Minimize Distance to a Subspace

Input: A matrix A as a stream of rows a1, . . . , an ∈ Rd, a rank parameter k
Output: A subset S ⊆ [n]

1 S ← ∅, λ← 0 // Algorithm stores AS

2 for t = 1, . . . , n do
3 if λ = 0 then
4 if at /∈ rowspace(AS) or a⊤t (A

⊤
SAS)

+at ≥ 1/(1 + 1/k) then
5 S ← S ∪ { t }
6 else
7 if a⊤t (A⊤

SAS + λI)+at ≥ 1/(1 + 1/k) then
8 S ← S ∪ { t }

9 λ← ∥AS − [AS ]k∥2F/k // Changes only when S is updated

10 return S

being processed. The following lemma shows that if there exists a rank k projection P such that
∥a⊤t+1(I − P )∥2 > ∥AS(I − P )∥F, then the algorithm adds at+1 to S.
Lemma 3.1. Let t be arbitrary and let St be the subset of rows selected by Algorithm 1 after
processing the rows a1, . . . , at. If there exists a rank k projection P such that ∥a⊤t+1(I − P )∥2 >
∥ASt

(I − P )∥F, then the algorithm adds the row t+ 1 to the set S that it maintains.

We use the following fact: if ai ∈ rowspace(B), then maxx:Bx̸=0 |⟨ai, x⟩|2/∥Bx∥22 = a⊤i (B
⊤B)+ai

where A+ denotes the Moore-Penrose pseudoinverse of A. We then argue that if there exists a rank-k
projection matrix P with ∥a⊤t+1(I − P )∥2 > ∥AS(I − P )∥F, then taking x∗ = (I − P )at+1, we

obtain that |⟨at+1,x⟩|2
∥x∗∥2

2∥AS−[AS ]k∥2
F/k+∥ASx∗∥2

2
≥ 1/(1 + 1/k) which then implies a⊤t+1(A

⊤
SAS + I ·

∥AS − [AS ]k∥2F/k)+at+1 ≥ 1/(1+ 1/k) which is exactly the condition in which the algorithm adds
the row t+ 1 to S.

From our discussion above, all we need to show now is that the size of the set S is small. We first
define online rank-k ridge leverage scores. Given a matrix A and a rank parameter k, define the online
rank-k ridge leverage score of the i-th row ai of A, denoted by τOL,k

i (A) as follows:
1 rank(A1:i−1) ≤ k and ai /∈ rowspace(A1:i−1)

min(1, a⊤i (A
⊤
1:i−1A1:i−1)

+ai) rank(A1:i−1) ≤ k and ai ∈ rowspace(A1:i−1)

min(1, a⊤i (A1:i−1A
⊤
1:i−1 +

∥A1:i−1−[A1:i−1]k∥2
F

k I)+ai) rank(A1:i) > k

Inspecting the algorithm, we see that it is evaluating the rank k online ridge leverage score of at+1

with respect to AS and if it is greater than 1/(1 + 1/k), the algorithm adds at+1 to S and proceeds.
Thus, we directly have that the rank-k online ridge leverage score of each row of AS is at least
1/(1 + 1/k). Now, the following lemma bounds the sum of rank-k online ridge leverage scores of
any matrix with bounded integer coordinates.
Lemma 3.2 (Sum of rank-k ridge leverage scores). Let A ∈ Rn×d be an arbitrary matrix with
integer entries bounded in absolute value by poly(n). Then the sum of online rank-k ridge leverage
scores of the rows of A is at most O(k3 log2 n).

The proof of this lemma is largely similar to that of Braverman et al. (2020). Hence, the sum of online
rank-k ridge leverage scores of any n× d matrix with integer coordinates bounded in absolute value
by poly(n) is at most O(k3 log2 n). Since we assumed that the entries of the original matrix are
bounded in absolute value by poly(n), we have that the entries of the coreset AS are also bounded in
absolute value by poly(n). Therefore, the coreset construction algorithm selects at most O(k3 log2 n)
rows. Thus, we have the following theorem.
Theorem 3.3. Given rows of any arbitrary n × d matrix A with integer coordinates bounded in
absolute value by poly(n), Algorithm 1 selects a subset S of size |S| ≤ O(k3 log2 n) such that for
any k dimensional subspace V , we have

∥AS(I − PV )∥∞,2 ≤ ∥A(I − PV )∥∞,2 ≤ Ck3/2 log n∥A(I − PV )∥∞,2
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for a large enough constant C. Additionally, the space requirement of the algorithm is bounded by
O(d · k3 log3 n) bits.

Remark 3.4. In Algorithm 1, the above theorem shows that the set S is updated at most O(k3 log2 n)
times. When the set S is updated we recompute the singular value decomposition of AS to obtain
USΣSV

⊤
S where ΣS has at most |S| nonzero entries. Now define λS as ∥AS − [AS ]k∥2F/k and we

then have that (A⊤
SAS+λSI)

+/2 = U(Σ2
S+λS)

−1/2U⊤+(1/
√
λS)(I−UU⊤). Now, a⊤i (A

⊤
SAS+

λSI)
+ai = ∥(A⊤

SAS + λSI)
+/2ai∥22. When we update the set S, we sample a Gaussian matrix G

with O(log n) rows and then approximate ∥(A⊤
SAS+λSI)

+/2ai∥22 with ∥G(A⊤
SAS+λSI)

+/2ai∥22.
By a union bound, for all rows ai that appear after S is updated, we have

∥G(A⊤
SAS + λSI)

+/2ai∥22 = (1± 1/5)∥(A⊤
SAS + λSI)

+/2ai∥22.

Now, we modify the algorithm to instead select rows for which ∥G(A⊤
SAS + λSI)

+/2ai∥22 ≥ 3/5.
Note that conditioned on above, we still have all the properties of Algorithm 1. Additionally each row
can be processed in O(nnz(ai) · log n) if the row is not added to S. Hence, the overall running time
of the algorithm is O(nnz(A) log n+ d · poly(k, log n)).
Remark 3.5. Once we compute the coreset, we can use algorithms from earlier works such as
Varadarajan et al. (2007) and their approximation ratio translates accordingly to the original matrix A
by the above theorem. Since, AS only has O(k3 log2 n) rows, even the top-k right singular subspace
of AS is a good solution for ℓ∞ approximation. Concretely, let V ∗ be the optimal ℓ∞ Subspace
approximation solution for A and Ṽ be the optimal solution for AS . Let Vk be the top k right singular
subspace of AS . We have

∥AS(I − VkV
⊤
k )∥∞,2 ≤ ∥AS(I − VkV

⊤
k )∥F ≤ ∥AS(I − Ṽ Ṽ ⊤)∥F ≤

√
|S|∥AS(I − Ṽ Ṽ ⊤)∥∞,2

and ∥AS(I − Ṽ Ṽ ⊤)∥∞,2 ≤ ∥AS(I − V ∗(V ∗)⊤)∥∞,2 ≤ ∥A(I − V ∗(V ∗)⊤)∥∞,2. Hence, ∥A(I −
VkV

⊤
k )∥∞,2 ≤ Ck3/2 log n

√
|S|∥A(I − V ∗(V ∗)⊤)∥∞,2 = O(k3 log2 n)∥A(I − V ∗(V ∗)⊤)∥∞,2.

Thus, we can obtain an O(k3 log2 n)-multiplicative approximate solution without using any SDP
based algorithms from previous works. We can additionally initialize an alternating minimization
algorithm on the coreset for ℓ∞ subspace approximation using the SVD subspace of the coreset and
use convex optimization solvers to further improve the quality of the solution. We do note that there
are no known bounds on the solution quality attained by the alternating minimization algorithm.

By a simple (lossy) reduction of outer (d− k) radius estimation problem to computing optimal ℓ∞
subspace approximation of the matrix B = A− a1 i.e., the matrix obtained by subtracting a1 from
each row of A, we obtain the following theorem.
Theorem 3.6 (Outer (d − k) radius estimation). There is a streaming algorithm, which given
an insertion only stream of d dimensional vectors a1, . . . , an with integer coordinates bounded
in absolute value by poly(n), uses O(d · k3 log2 n) bits of space and outputs an O(k3/2 log n)
approximation to the outer (d− k) radius of the points { a1, . . . , an }.

4 ℓp SUBSPACE APPROXIMATION

We now show that our coreset construction algorithm for the ℓ∞ subspace approximation problem,
extends to the ℓp subspace approximation problem. Fix a matrix A. For any k-dimensional subspace
V , let dV denote the nonnegative vector satisfying (dV )i = dist(ai, V ) = ∥a⊤i (I − PV )∥2. Hence,
the ℓp subspace approximation problem is to find the rank-k subspace V that minimizes ∥dV ∥p. We
use exponential random variables to embed ℓp low rank approximation problem into an ℓ∞ low rank
approximation problem. We then use the coreset construction algorithm for ℓ∞ LRA to obtain a
coreset for the ℓp LRA. First, we have the following lemma about exponential random variables that
has been used in various previous works to embed ℓp problems into an ℓ∞ problem.
Lemma 4.1. Let e1, . . . , en be independent exponential random variables. Then with probability
≥ 1 − δ, maxi⌈e−1/p

i ⌉|xi| ≥ ∥x∥p/(log 1/δ)1/p. We also have that with probability ≥ 1 − δ,
maxi⌈e−1/p

i ⌉|xi| ≤ (δ−1/p + 1)∥x∥p.

Given n, define D to be a random matrix with diagonal entries given by independent copies of the
random variable ⌈e−1/p⌉. For any fixed rank k projection matrix P , the above lemma implies that
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∥DA(I − P )∥∞,2 ≥ ∥A(I − P )∥p,2/(log 1/δ)1/p. But we can not union bound over the net of all k
dimensional subspace of Rd since the net can have as many as exp(dk) subspaces which leads to a
distortion of d1/p which is prohibitive. Here we crucially use the fact that Algorithm 1 only selects a
coreset with K = O(k3 log2 n) rows. So only those k dimensional subspaces spanned by at most K
rows of A are interest to us. Now, we can union bound over a net of exp(poly(k) log n) subspaces
and show the following lemma:

Lemma 4.2. Let D be an n × n diagonal matrix with each diagonal entry being an independent
copy of the random variable ⌈e−1/p⌉. Fix an n× d matrix A. With probability ≥ 98/100, for all k
dimensional subspaces that are in the span of at most m = O(k3 log2 n) rows of A, we have,

∥D · dV ∥∞ ≥ ∥dV ∥p/2(log 100 +m log n+ k2m log n)1/p.

If V ∗ is the optimal solution for the ℓp subspace approximation problem, we can also condition on
the event that ∥D · dV ∗∥∞ ≤ C∥dV ∗∥p for a large enough constant C1.

We can now argue that if S is the subset of rows selected by Algorithm 1 when run on the matrix DA,

V̂
.
= argmin

k-dim V
∥(DA)S(I − PV )∥∞,2

is also a good solution for the ℓp Subspace Approximation problem as follows: We first note that V̂ is
a k-dimensional subspace in the rowspace of AS . Hence, ∥dV̂ ∥p ≤ O(k5/p log3/p n)∥dV̂ ∥∞. Using
Theorem 3.3, we have ∥dV̂ ∥∞ = ∥DA(I − PV̂ )∥∞,2 ≤ Ck3/2 log n∥(DA)S(I − PV̂ )∥∞,2. Since
V̂ is optimal for the matrix (DA)S , we have ∥(DA)S(I − PV̂ )∥∞,2 ≤ ∥(DA)S(I − PV ∗)∥∞,2.
Now, ∥(DA)S(I−PV ∗)∥∞,2 ≤ ∥DA(I−PV ∗)∥∞,2 ≤ C1∥A(I−PV ∗)∥p,2. Thus overall, we have
∥dV̂ ∥p ≤ O(k5/p+3/2 log1+3/p n)∥dV ∗∥p. giving the following theorem.

Theorem 4.3. Let D be an n× n random matrix with each diagonal entry being an independent
copy of ⌈e−1/p⌉ where e is a standard exponential random variable. If S is the subset selected by
Algorithm 1 when run on the rows of the matrix D ·A and if V̂ is the optimal solution to the problem
mink-dim V ∥(DA)S(I − PV )∥∞,2, then with probability ≥ 9/10,

∥A(I − PV̂ )∥p,2 ≤ O(k3/2+5/p log1+3/p n) min
k-dim V

∥A(I − PV )∥p,2.

5 APPLICATIONS TO OTHER GEOMETRIC STREAMING PROBLEMS

Given a matrix A, suppose that the rows of A are close to a k-dimensional subspace in the following
sense: ∆ .

= mink-dim V ∥A(I − PV )∥∞,2 is small. We now show that if S is the subset of rows
selected by Algorithm 1, then for any vector x, ∥Ax∥∞ can be approximated using ∥ASx∥∞. Fix
any unit vector x. Let i be the index such that ∥Ax∥∞ = |⟨ai, x⟩|. If i ∈ S, we clearly have
∥Ax∥∞ = ∥ASx∥∞. If i /∈ S, by proof of Lemma 3.1, we obtain that

max
x

|⟨ai, x⟩|2

∥AS<ix∥22 + ∥AS<i − [AS<i]k∥2F/k
≤ 1

1 + 1/k

which implies ∥Ax∥2∞ = |⟨ai, x⟩|2 ≤ ∥AS<ix∥22 + ∥AS<i − [AS<i]k∥2F/k ≤ ∥ASx∥22 + ∥AS −
[AS ]k∥2F/k. Let V ∗ be the optimal solution for rank-k ℓ∞ subspace approximation of A. We then
have, ∥Ax∥2∞ ≤ ∥ASx∥22 + ∥AS(I − PV ∗)∥2F/k ≤ ∥ASx∥22 + |S|∆2/k. Using |S| = O(k3 log2 n),
we get the following lemma.

Lemma 5.1. If S is the subset of rows selected by Algorithm 1, for any k-dimensional subspace U
and any unit vector x,

∥ASx∥2/Ck3/2 log n ≤ ∥ASx∥∞ ≤ ∥Ax∥∞ ≤ ∥ASx∥2 + (Ck log n)∆. (1)

Additionally, as ∥ASx∥2 ≤
√
|S|∥ASx∥∞, we also have

∥ASx∥∞ ≤ ∥Ax∥∞ ≤ (Ck3/2 log n)∥ASx∥∞ + (Ck log n)∆. (2)
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Width Estimation. Given a point set a1, . . . , an ∈ Rd, then the width of the point set in the direction
x ∈ Rd, for a unit vector x is defined as w(x)

.
= maxi⟨ai, x⟩ − mini⟨ai, x⟩. Using a coreset for

estimating ∥Ax∥∞, Woodruff and Yasuda (2022) give an O(
√
d log n) approximation to the width

estimation problem. Using Lemma 5.1, we show that we get better approximations when ∆ is small.

We can equivalently write w(x) = maxi⟨ai − a1, x⟩ −mini⟨ai − a1, x⟩. Now, maxi⟨ai − a1, x⟩ ≥
⟨0, x⟩ = 0 and mini⟨ai − a1, x⟩ ≤ ⟨0, x⟩ ≤ 0 which implies that ∥(A − a1)x∥∞ ≤ w(x) ≤
2∥(A − a1)x∥∞. If S is the subset selected by the algorithm when run on the rows 0 = a1 −
a1, a2−a1, . . . , an−a1, then from Lemma 5.1, we have ∥(A−a1)Sx∥∞ ≤ ∥(A−a1)x∥∞ ≤ w(x)
and w(x) ≤ 2∥(A − a1)x∥∞ ≤ 2Ck3/2 log n∥(A − a1)Sx∥∞ + 2Ck log n∆. Thus, w′(x)

.
=

∥(A− a1)Sx∥∞ satisfies

w(x)/2Ck3/2 log n−∆/
√
k ≤ w′(x) ≤ w(x)

for a large enough constant C. When ∆ is very small, for the interesting directions where width is
large enough, we obtain a better multiplicative error of O(k3/2 log n) as compared to O(

√
d log n)

achieved by the algorithm of Woodruff and Yasuda (2022).
r-Robust Directional Width. The presence of some outliers in the direction x distorts the width in the
direction x by a lot. So a more robust version, parameterized by a positive integer r, called r-robust
directional width is studied. It is defined to be the r-th largest value among the set {|⟨ai, x⟩| | i ∈ [n]}.
The r-robust directional width in the direction x of a matrix A with rows given a1, . . . , an is denoted
by Er(x,A).
Using the peeling technique of Agarwal et al. (2008), Woodruff and Yasuda (2022) give an algorithm
for approximating the r-Robust Directional Width using their coreset. The same technique directly
implies that we can construct a coreset with O(r · k3 log2 n) rows such that for every x,

Er(x,A)/Ck3/2 log n−∆/
√
k ≤ Er(x,AS) ≤ Er(x,A)

If Er(x,A) is large enough compared to ∆, then Er(x,AS) is a better approximation for Er(x,A)
than the O(

√
d log n) approximation guaranteed by Woodruff and Yasuda (2022).

Löwner-John Ellipsoid. Given a symmetric convex body, the Löwner-John Ellipsoid is defined to be
the ellipsoid of minimum volume that encloses the convex body. We consider the case when the convex
body is defined as K = {x | ∥Ax∥∞ ≤ 1} where the streaming algorithm sees the rows of matrix
A one after the other. Woodruff and Yasuda (2022) show that their coreset can be used to compute
an ellipsoid E′ such that E′ ⊆ K ⊆ O(

√
d log n)E′ thereby obtaining a O(d

√
log n)-approximate

Löwner-John Ellipsoid.

When k ≪ d, Algorithm 1 selects≪ d number of rows and does not have the full d-dimensional
view of the point set and hence can not compute an ellipsoid that satisfies the above definition if
the points spans Rd. So we consider the set K ∩ B(0, 1) and give an algorithm that computes an
unbounded ellipsoid E′ such that E′ ∩B(0, 1) ⊆ K ∩B(0, 1) ⊆ (αE′) ∩B(0, 1).

By Lemma 5.1, we have that if ∥Ax∥∞ ≤ 1 and ∥x∥2 = 1, then ∥ASx∥2 ≤ Ck3/2 log n and if
∥ASx∥2 ≤ 1 − (Ck log n)∆ and ∥x∥2 ≤ 1, then ∥Ax∥∞ ≤ 1. Now assuming ∆ < 1/(Ck log n),
define E′ = {x | ∥ASx∥2 ≤ 1− (Ck log n)∆}.
Note that when rank(AS) < d, the set E′ is unbounded. From the above, we have that if x ∈
E′ ∩B(0, 1), then x ∈ K ∩B(0, 1). Additionally if x ∈ K ∩B(0, 1), then ∥ASx∥2 ≤ Ck3/2 log n

and therefore x ∈ Ck3/2 logn
1−(Ck logn)∆E′ ∩B(0, 1). Hence,
E′ ∩B(0, 1) ⊆ K ∩B(0, 1) ⊆ Ck3/2 log n

1− (Ck log n)∆
E′ ∩B(0, 1).

6 EXPERIMENTS

We implement our coreset construction algorithm (Algorithm 1) and show that the coreset constructed
has a low distortion both for the ℓ∞ low rank approximation and width estimation.

6.1 ℓ∞ LOW RANK APPROXIMATION

Theorem 3.3 shows that the coreset computed by Algorithm 1 lets us approximate ∥A(I − PV )∥∞,2

for any projection matrix V . We run our algorithm on a synthetic data set and a real world dataset. We
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construct our synthetic dataset as follows: we pick n = 40,000, d = 10,000 and k = 20. We sample
an n× k random matrix L and a k × d random matrix R each with i.i.d uniform random variables
drawn from {−100,−99, . . . , 100 }. We create an n× d matrix A

.
= L ·R+G where G is a noise

matrix with each entry being an i.i.d uniform random variable drawn from {−5000, . . . , 5000 }.
With parameter k = 20, when Algorithm 1 is run on the matrix A, the coreset AS computed by
the algorithm has only 28 rows. To measure the quality of the coreset, we consider the following
candidate subspaces: we define Vi to be the at most i dimensional subspace formed by the first i rows
of R. These are indeed the subspaces for which the rows of A have a low distance to. We obtain that

1 ≤ max
i∈[20]

∥A(I − PVi)∥∞,2

∥AS(I − PVi
)∥∞,2

≤ 1.3433

which shows that the ℓ∞ cost of the interesting subspaces estimated using the coreset is not too
small compared to the actual ℓ∞ cost of the subspace. Another important requirement is that we
do not underestimate the cost of uninteresting subspaces by a lot. To see this, we generate random
subspaces of k = 20 dimensions and observe that ∥A(I − PV )∥∞,2/∥AS(I − PV )∥∞,2 ≤ 1.05
with high probability when V is drawn at random. This can be explained by the fact that random
subspaces are so bad in that ∥A(I − PV )∥∞,2 ≈ ∥A∥∞,2 since a random subspace does not capture
a large part of the row of A with the largest norm. So essentially when V is a random matrix,
∥A(I − PV )∥∞,2/∥AS(I − PV )∥∞,2 = ∥A∥∞,2/∥AS∥∞ and since all the rows of A have similar
norms, we get that ∥A(I − PV )∥∞,2/∥AS(I − PV )∥∞,2 ≈ 1.

For the real world dataset, we consider a grayscale image Leung (2017) of dimensions 1836× 3264
and treat the image as a matrix A of the same dimensions. We observe that a rank 150 approximation
of the image computed using the SVD is very close to the original image (with some artifacts) and
therefore set k = 150 to be the parameter for which we want to solve the ℓ∞ low rank approximation
problem. We run the coreset construction algorithm on A and obtain a coreset AS with 312 rows. Note
that the number of rows in the coreset is ≈ 17% of the original matrix. Again, to measure the quality
of the coreset, we consider subspace Vi defined to the top i dimensional right singular subspace of A
and measure ∥A(I − PVi

)∥∞,2/∥AS(I − PVi
)∥. We obtain maxi∈[k] ∥A(I − PVi

)∥∞,2/∥AS(I −
PVi

)∥∞,2 ≤ 1.09 and hence the coreset gives very accurate cost estimates for these interesting
subspaces. We repeat the same experiment on a different grayscale image European Space Agency
and NASA (2006) of dimensions 4690×6000 and use k = 200. We obtain a coreset AS with 382 rows
and for Vi defined in the same way as before, maxi ∥A(I − PVi)∥∞,2/∥AS(I − PVi)∥∞,2 ≤ 1.12.

6.2 WIDTH ESTIMATION

Towards width estimation, Lemma 5.1 shows that if AS is the coreset computed by Algorithm 1,
then for any unit vector, ∥Ax∥∞ can be approximated up to a multiplicative/additive error. We
again consider synthetic/real-world datasets and use linear programs to obtain an upper bound
on ∥Ax∥∞/∥ASx∥∞ for x ∈ rowspace(AS). We note that when the rows of A are close to
a k-dimensional subspace, then AS computed using Algorithm 1 spans a subspace close to
this k-dimensional subspace by Theorem 3.3. Hence, all the important directions are already in
rowspace(AS) and bounding ∥Ax∥∞/∥ASx∥∞ for x ∈ rowspace(AS) verifies that the distortion in
the important directions is not large.

We construct a synthetic dataset A = L · R + G in a similar way to the previous section with
n = 40,000, d = 10,000 and k = 20. To avoid numerical issues when solving linear programs, we
now choose the coefficients of the matrices L and R to be i.i.d uniform random variables drawn
from {−10, . . . , 10 } and the coefficients of G to be i.i.d uniform random variables drawn from
{−50, . . . , 50 }. The coreset AS constructed by Algorithm 1 for the matrix A has 29 rows and by
solving n linear programs, we find that maxx∈rowspace(AS) ∥Ax∥∞/∥ASx∥∞ ≤ 4.8.

We also perform the same experiment on the images from previous section and find that
∥Ax∥∞/∥ASx∥∞ ≤ 1.005 for all x ∈ rowspace(AS) for the first image and ∥Ax∥∞/∥ASx∥∞ ≤
1.03 for all x ∈ rowspace(AS) for the second image. For real-world datasets, the coreset computed
is very accurate in approximating ∥Ax∥∞ for all the interesting directions x. This can be explained
by the fact that the value of k we picked is large and the noise at that value of k is small enough that
many directions are covered by the coreset and hence the coreset has a very small error in estimating
∥Ax∥∞.
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A MISSING PROOFS FROM SECTION 3

A.1 PROOF OF LEMMA 3.1

Proof. Let St be the set S after the algorithm processes rows a1, . . . , at. Suppose ∥ASt(I−P )∥F ̸= 0.
Define x∗ = (I − P )at+1/∥(I − P )at+1∥2. Now,

|⟨at+1, x
∗⟩|2 =

(a⊤t+1(I − P )at+1)
2

∥(I − P )at+1∥22
= ∥(I − P )at+1∥22.

We also have

∥ASt
x∗∥22 =

∥ASt
(I − P )at+1∥22

∥(I − P )at+1∥22
≤ ∥ASt

(I − P )∥2F∥(I − P )at+1∥22
∥(I − P )at+1∥22

= ∥ASt
(I − P )∥2F.

Additionally, when processing the row at+1, we have λ = ∥ASt − [ASt ]k∥2F/k ≤ ∥ASt(I −P )∥2F/k
since P is a rank k projection. Overall if either λ ̸= 0 or AStx

∗ ̸= 0 , we have λ∥x∗∥22+∥AStx
∗∥22 ̸=

0 and

|⟨at+1, x
∗⟩|2

λ∥x∗∥22 + ∥ASt
x∗∥22

≥ ∥(I − P )at+1∥22
∥ASt

(I − P )∥2F/k + ∥ASt
(I − P )∥2F

≥ 1

1 + 1/k

where we used the assumption that ∥(I − P )at+1∥2 > ∥ASt(I − P )∥F. Now, we note that for any
matrix B if at+1 ∈ rowspace(B),

max
x:Bx̸=0

|⟨at+1, x⟩|2

∥Bx∥22
= a⊤t+1(B

⊤B)+at+1.

If λ ̸= 0, then at+1 ∈ rowspace(λI) using which we obtain that a⊤t+1(A
⊤
St
ASt

+ λI)+at+1 ≥
1/(1 + 1/k) which implies that the algorithm adds the row at+1 to the set S. Suppose that λ = 0.
We then have that rank(ASt

) ≤ k. In this case, if at+1 /∈ rowspace(ASt
), then the algorithm adds

at+1 to S and we are done. If at+1 ∈ rowspace(ASt), then we claim that AStx
∗ ̸= 0. Suppose

AStx
∗ = 0. Since at+1 ∈ rowspace(ASt), by taking appropriate linear combination of the rows of

AStx
∗, we obtain that ⟨at+1, x

∗⟩ = 0 which then implies ∥(I−P )at+1∥2 = 0 which contradicts our
assumption. We now have |⟨at+1, x

∗⟩|2/∥AStx
∗∥22 ≥ 1/(1+1/k) and since at+1 ∈ rowspace(ASt),

we obtain that a⊤t+1(A
⊤
St
ASt

)+at+1 ≥ 1/(1 + 1/k) and therefore the algorithm adds at+1 to S.

Suppose ASt
(I − P ) = 0. Then λ = ∥ASt

− [ASt
]k∥2F/k = 0 and that rowspace(ASt

) ⊆
rowspace(P ). Now, ∥a⊤t+1(I − P )∥2 > 0 implies that at+1 /∈ rowspace(ASt

) and therefore the
algorithm adds at+1 to the set S.

A.2 PROOF OF LEMMA 3.2

First we prove the following lemma.

Lemma A.1. If A is an n × d matrix with integer entries bounded by poly(n) and rank(A) ≥ t,
then σt(A) ≥ (poly(n))−(t−1)/2.

Proof. Let rank(A) = r and note that σi(A)2 = λi(A
⊤A) where λi denotes the i-th largest

eigenvalue of the matrix A⊤A. We have that the nonzero roots of the degree d polynomial det(A⊤A−
λI) = 0 are exactly equal to λ1(A

⊤A), . . . , λr(A
⊤A) and that

det(A⊤A− λI) = (λ1(A
⊤A)− λ1) · · · (λr(A

⊤A)− λ)λd−r.

Hence the coefficient of λd−r in the polynomial det(A⊤A − λI) is exactly equal to
(−1)r

∏r
i=1 λi(A

⊤A) ̸= 0. We now observe that the entries of the matrix A⊤A are all integers
and therefore all the coefficients in the polynomial det(A⊤A− λI) are also integers. Hence,

r∏
i=1

λi(A
⊤A) ̸= 0 =⇒

r∏
i=1

λi(A
⊤A) ≥ 1.

12
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Now we either have λt(A
⊤A) ≥ 1 in which case we are done or λt(A

⊤A) < 1. From here on
assume for now that λt(A

⊤A) < 1 which implies
∏t

i=1 λi(A
⊤A) ≥

∏r
i=1 λi(A

⊤A) ≥ 1. We now
have λ1(A

⊤A) ≤ ∥A⊤A∥F ≤ poly(n) using which we obtain

λt(A
⊤A) ≥ 1

λ1(A⊤A) · · ·λt−1(A⊤A)
≥ 1

(poly(n))t−1
.

Hence, σt(A) =
√

λt(A⊤A) ≥ (poly(n))−(t−1)/2.

Now we prove Lemma 3.2

Proof. Let i∗ ∈ [n] be the largest index such that rank(A1:i∗) = k. If no such index exists, then
set i∗ = n. For all i ≤ i∗ + 1, by definition, we have that τOL,k

i (A) is exactly equal to the online
leverage score of the row i. Since rank(A1:i∗+1) = k + 1, by Theorem 1.5 of Woodruff and Yasuda
(2022), we obtain that

i∗+1∑
i=1

τOL,k
i (A) ≤ O(k log n).

We now bound
∑n

i=i∗+2 τ
OL,k
i (A). Note that for all i ≥ i∗ + 2,

∥A1:i−1 − [A1:i−1]k∥2F > 0

since rank(A1:i−1) > k. Now define λi
.
= ∥A1:i− [A1:i]k∥2F/k and partition the interval [λi∗+1, λn]

into intervals of the form [2jλi∗+1, 2
j+1λi∗+1) for j = 0, 1, . . . . Note that there are at most

O(log(λn/λi∗+1))) such intervals. Define λ(j) = 2jλi∗+1 and note that if λ(j) ≤ λi−1 < λ(j+1)

then

a⊤i (A
⊤
1:i−1A1:i−1 + λi−1I)

+ai ≤ 2a⊤i (A
⊤
1:i−1A1:i−1 + λ(j+1)I)+ai.

Hence, ∑
i:λ(j)≤λi−1<λ(j+1)

τOL,k
i (A) ≤ 2

∑
i:λ(j)≤λi−1<λ(j+1)

max(1, a⊤i (A
⊤
1:i−1A1:i−1 + λ(j+1)I)+ai)

Let ij be the largest index such that λij < λ(j+1). Hence,

∑
i:λ(j)≤λi−1<λ(j+1)

max(1, a⊤i (A
⊤
1:i−1A1:i−1 + λ(j+1)I)+ai) ≤ 1 +

ij∑
i=1

max(1, a⊤i (A
⊤
1:i−1A1:i−1 + λijI)

+ai).

From the proof of Lemma 2.11 of Braverman et al. (2020), we obtain that

ij∑
i=1

max(1, a⊤i (A
⊤
1:i−1A1:i−1 + λijI)

+ai) = O

(
k log

k∥A1:ij∥2F
∥A1:ij − [A1:ij ]k∥2F

)
.

From the assumption that the entries of matrix A are bounded by poly(n), we get ∥A1:ij∥2F ≤ poly(n).
Now,

∥A1:ij − [A1:ij ]∥2F ≥ σk+1(A1:ij )
2.

Using Lemma A.1, we obtain that ∥A1:ij − [A1:ij ]k∥2F ≥ 1/(poly(n))k/2 and therefore have

k log
k∥A1:ij∥2F

∥A1:ij − [A1:ij ]k∥2F
≤ O(k2 log n).

We similarly have O(log λn/λi∗+1) ≤ O(k log n) and therefore there are at most O(k log n) intervals
into which [λi∗+1, λn] is partitioned which overall implies

n∑
i=i∗+2

τOL,k
i (A) ≤ O(k3 log2 n).

13
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A.3 PROOF OF THEOREM 3.6

Proof. If V is a k-dimensional subspace and c is arbitrary, then the set V + c is defined as a k-
dimensional flat. Recall that the outer d − k radius of a point set { a1, . . . , an } ⊆ Rd is defined
as

min
k-dim flat F

max
i

d(ai, F ).

Using the fact that flats are translations of k dimensional subspaces, we equivalently have that the
outer d− k radius is equal to

min
k-dim subspace V

min
c∈Rd

max
i

d(ai − c, V ) = min
k-dim subspace V

min
c
∥(A− c)(I − PV )∥∞,2.

Here we abuse the notation and use A− c to denote the matrix with rows given by ai − c for i ∈ [n].
Now define a matrix B

.
= A− a1 with n rows given by 0 = a1 − a1, a2 − a1, a3 − a2, . . . , an − a1.

For any k-dimensional subspace V and any c ∈ Rd, we have

∥B(I − PV )∥∞,2 = ∥(A− a1)(I − PV )∥∞,2 = ∥(A− c+ c− a1)(I − PV )∥∞,2

≤ ∥(A− c)(I − PV )∥∞,2 + ∥(I − PV )(a1 − c)∥2
≤ 2∥(A− c)(I − PV )∥∞,2.

Hence, ∥B(I − PV )∥∞,2 ≤ 2minc ∥(A − c)(I − PV )∥∞,2. We also have ∥B(I − PV )∥∞,2 =
∥(A − a1)(I − PV )∥∞,2 ≥ minc ∥(A − c)(I − PV )∥∞,2. Thus, minV ∥B(I − PV )∥∞,2 is a 2-
approximation for mink-dim flat F maxi d(ai, F ) and if S is the set of rows selected by Algorithm 1
when run on the rows of the matrix B = A− a1, then

min
V
∥BS(I − PV )∥∞,2

is an O(k3/2 log n) approximation for outer (d− k)-radius estimation of the point set { a1, . . . , an }.

B MISSING PROOFS FROM SECTION 4

B.1 PROOF OF LEMMA 4.1

Proof. By min-stability of exponential random variables, we have that the distribution of
maxi e

−1|xi|p is the same as the distribution of e−1∥x∥pp where e is also a standard exponen-
tial random variable. With probability ≥ 1− δ, we have e ≤ log 1/δ. And hence we have that with
probability ≥ 1− δ,

max
i

e
−1/p
i |xi| = (max

i
e−1
i |xi|p)1/p ≥

∥x∥p
(log 1/δ)1/p

.

As ⌈e−1/p
i ⌉ ≥ e

−1/p
i , we have that with probability≥ 1−δ, maxi⌈e−1/p

i ⌉|xi| ≥ ∥x∥p/(log 1/δ)1/p.

With probability ≥ 1 − δ, we also have that e ≥ δ which implies that with probability
≥ 1 − δ, maxi e

−1/p
i |xi| = (maxi e

−1
i |xi|p)1/p ≤ ∥x∥pδ−1/p. Conditioned on this event, we

have maxi⌈e−1/p
i ⌉|xi| ≤ maxi(e

−1/p
i +1)|xi| ≤ maxi e

−1/p
i |xi|+∥x∥∞ ≤ (1+δ−1/p)∥x∥p.

B.2 PROOF OF LEMMA 4.2

Proof. Let S be an arbitrary set of m .
= O(k3 log2 n) rows of A and let VS

.
= rowspace(AS). Let

NS be a γ net for the set VS ∩ Sd−1 i.e., the set of vectors in the subspace VS with euclidean norm
1. As the subspace VS has dimension at most m, we have that there is a set NS with size at most
exp(O(m log 1/γ)). Let V be an arbitrary k dimensional subspace of VS and let { v1, . . . , vk } be an
orthonormal basis for V .

Let Ṽ be the subspace spanned by { ṽ1, . . . , ṽk }, where ṽi ∈ NS and ∥vi− ṽi∥2 for all i ∈ [n]. Let a
be an arbitrary vector. By abusing the notation let V (resp. Ṽ ) also denote the matrix with v1, . . . , vk
(resp. ṽ1, . . . , ṽk) as columns. We have

d(a, V ) = ∥a− V V ⊤a∥2 and d(a, Ṽ ) = ∥a− Ṽ Ṽ +a∥2

14
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and therefore |d(a, V ) − d(a, Ṽ )| ≤ ∥Ṽ Ṽ + − V V ⊤∥2∥a∥2. If γ ≤ 1/4
√
k, we can show that

∥V V ⊤ − Ṽ Ṽ +∥2 ≤ 4
√
kγ and therefore have that for any a, |d(a, V ) − d(a, Ṽ )| ≤

√
kγ∥a∥2.

Hence,

∥dV − dṼ ∥∞ ≤ max
i
|d(ai, V )− d(ai, Ṽ )| ≤ 4

√
kγmax

i
∥ai∥2 = 4

√
kγ∥A∥∞,2.

Overall, this implies that for any arbitrary k dimensional subspace V in the span of rows of AS , there
is a k dimensional subspace Ṽ spanned by some k vectors in the net NS satisfying

∥dV − dṼ ∥∞ ≤ 4
√
kγ∥A∥∞,2.

As dV ∈ Rn, we have ∥dV − dṼ ∥p ≤ n1/p∥dV − dṼ ∥∞ ≤ 4
√
kγn1/p∥A∥∞,2. Now, let

VS := {Ṽ = span(ṽ1, . . . , ṽk) | ṽi ∈ NS}.

We have |VS | ≤ |NS |k ≤ exp(O(km log 1/γ)) since |Ns| ≤ exp(O(m log 1/γ)). As there are
(
n
m

)
choices for S, the total number of subspaces in the set ∪

S∈([n]
m)VS is upper bounded by exp(m log n+

km log 1/γ). Using Lemma 4.1, using a union bound over all exp(m log n+ km log 1/γ) choices
of Ṽ , we have that with probability ≥ 99/100, for all Ṽ ∈ ∪([n]

m)VS ,

∥D · dṼ ∥∞ ≥
∥dṼ ∥p

(log 100 +m log n+ km log 1/γ)1/p
.

Using Lemma 4.1 again, we also have that maxi |Di| ≤ C3n
1/p for a large enough constant C1 with

probability ≥ 99/100. Condition on both these events. We have that for any k dimensional subspace
V in the span of any set of m rows of A,

∥D · dV ∥∞ ≥ ∥D · dṼ ∥∞ − ∥D · (dV − dṼ )∥∞

≥
∥dṼ ∥p

(log 100 +m log n+ km log 1/γ)1/p
− C1n

1/p∥dV − dṼ ∥∞

≥ ∥dV ∥p
(log 100 +m log n+ km log 1/γ)1/p

− 4
√
kn1/pγ∥A∥∞,2

(log 100 +m log n+ km log 1/γ)1/p

− 4C1n
1/p
√
kγ∥A∥∞,2.

For any Q, we have that ∥dV ∥p ≥ ∥dV ∥2/
√
n ≥ ∥A − [A]k∥F/

√
n using the fact that Q is a k

dimensional subspace. Hence, if γ ≤ poly(∥A− [A]k∥F/∥A∥∞,2, 1/n), then

∥D · dV ∥∞ ≥
∥dV ∥p

2(log 100 +m log n+ km log 1/γ)1/p
.

Assuming rank(A) ≥ k, we have that for any n× d matrix A integer entries bounded by poly(n),
∥A − [A]k∥F ≥ poly(n)−(k−1)/2. Hence, γ can be taken as 1/ poly(n)k and we obtain that with
probability ≥ 98/100,

∥D · dV ∥∞ ≥
∥dV ∥p

2(log 100 +m log n+ k2m log n)1/p
.

for all k-dimensional subspaces V that lie in the span of AS for some S ⊆ [n], |S| ≤ m =
O(k3 log2 n).

B.3 WRAP-UP

Let

V ∗ = argmin
k-dim subspaces V

∥dV ∥p.

Condition on the event that ∥D1/pvP∗∥∞ ≤ C1∥vP∗∥p for a large enough constant C1. The event
holds with probability ≥ 99/100 by Lemma 4.1. Finally, by a union bound, we have all the following
events hold simultaneously with probability ≥ 9/10:
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1. Algorithm 1, when run on the rows of the matrix D ·A, selects at most m = O(k3 log2 n)
rows.

2. For any k dimensional subspace V contained in the span of any at most m rows of A,

∥D · dV ∥∞ ≥
∥dv∥p

C2k5/p log
2/p n

.

3. If V ∗ is the optimal subspace that minimizes the ℓp norm of the distance vector to a k
dimensional subspace, then

∥D · dV ∗∥∞ ≤ C1∥dV ∗∥p.

Conditioned on the above events, let S ⊆ [n] be the coreset computed for the matrix D · A by
Algorithm 1. From Theorem 3.3, we have that for any rank k projection matrix P ,

∥(DA)S(I − P )∥∞,2 ≤ ∥(DA)(I − P )∥∞,2 ≤ Ck3/2 log n∥(DA)S(I − P )∥∞,2.

Let V̂ be the k dimensional subspace defined as V̂ .
= argmink-dim V ∥(DA)S(I − PV )∥∞,2. Without

loss of generality, we can assume that V̂ is contained in the rowspace of (D1/pA)S and hence the
row space of AS . Therefore,

∥A(I − PV̂ )∥p,2 = ∥dV̂ ∥p
≤ C2k

5/p log2/p n∥D · dV̂ ∥∞
= C2k

5/p log2/p n∥(D ·A)(I − PV̂ )∥∞,2

≤ C2 · C · k5/p+3/2 log1+2/p n∥(DA)S(I − PV̂ )∥∞,2

≤ C2 · C · k5/p+3/2 log1+2/p n∥(DA)S(I − PV ∗)∥∞,2

= C2 · C · k5/p+3/2 log1+2/p n∥D · dV ∗∥∞,2

≤ C1 · C2 · C · k3/2+5/p log1+2/p n∥dV ∗∥p.

Thus, V̂ is an O(k5/p+3/2 log1+2/p n) approximate solution for the ℓp low rank approximation
problem over the matrix A.

Algorithm 2: Minimize the ℓp norm of the vector of distances to a k dimensional subspace

Input: A matrix A as a stream of rows a1, . . . , an ∈ Rd, p ≥ 1 and a rank parameter k
Output: Rank k projection matrix P̂

1 Feed the stream ⌈e−1/p
1 ⌉a1, . . . , ⌈e−1/p

n ⌉an to Algorithm 1 and obtain the set S ⊆ [n]

2 V̂ ← argmin rank-k
subspace V

∥(D ·A)S(I − PV )∥∞,2

3 return V̂

Theorem B.1. Given a stream of rows a1, . . . , an, Algorithm 2 uses space necessary to store
O(k3 log2 n) rows and outputs a rank k subspace V̂ satisfying

∥A(I − PV̂ )∥p,2 ≤ C1 · C2 · C · k3/2+5/p log1+2/p n min
k-dim V

∥A(I − PV )∥p,2.

C MISSING DETAILS ABOUT EXPERIMENTS

C.1 MEASURING DISTORTION WITH IN THE SUBSPACE

Given a matrix A and a parameter k, Algorithm 1 returns a coreset S. In our experiments
we measure the maximum distortion defined as maxx∈rowspace(AS) ∥Ax∥∞/∥ASx∥∞. Since any
vector in the rowspace of AS can be written as A⊤

S y for some y, we want to measure
maxy ∥AA⊤

S y∥∞/∥ASA
⊤
S y∥∞. Let the distortion be maximized at y∗ and that

∥AA⊤
S y

∗∥∞
∥ASA⊤

S y
∗∥∞

= ϕ ≥ 1.
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Further let i be the coordinate such that ∥AA⊤
S y

∗∥∞ = (AA⊤
S y

∗)i. Now for each j ∈ [n], consider
the following linear program:

min
(y,t)

t

s.t. a⊤j A
⊤
S y = 1

ASA
⊤
S y ≤ t · 1

−ASA
⊤
S y ≤ t · 1.

If (yj , tj) is the optimum solution for the above problem, we note that tj = ∥ASA
⊤
S yj∥∞. Since we

have a⊤j A
⊤
S yj = 1, we have that ∥AA⊤

S yj∥∞ ≥ 1 and therefore we have that tj = ∥ASA
⊤
S yj∥∞ ≥

∥AA⊤
S yj∥∞/ϕ ≥ 1/ϕ. Thus for each j ∈ [n], 1/tj gives a lower bound on the maximum distortion

ϕ.

Now consider the linear program corresponding to i ∈ [n] is defined above. Consider the vector
y = y∗/(AA⊤

S y
∗)i. By definition, we have a⊤i A

⊤
S y = a⊤i A

⊤
S y

∗/(AA⊤
S y

∗)i = 1 and ∥ASA
⊤
S y∥∞ =

∥ASA
⊤
S y

∗∥∞/(AA⊤
S y

∗)i = ∥ASA
⊤
S y

∗∥∞/∥AA⊤
S y

∗∥∞ = 1/ϕ. Hence, (y, 1/ϕ) is a feasible solu-
tion for the linear program corresponding to index i. Since we proved above that tj ≥ 1/ϕ for all j,
we get that ti = 1/ϕ and hence maxj 1/tj = ϕ = maxx∈rowspace(AS) ∥AA⊤

S y∥∞/∥ASA
⊤
S y∥∞. In

our experiments, we solve these linear programs and find the max-distortion within the rowspace of
AS .

C.2 GRAYSCALE IMAGES USED

We use images from Leung (2017) and European Space Agency and NASA (2006) for our experiments.
The compressed versions of the images used are in Figure 1. We include the full version of the images
and our code which can be used to reproduce the results in the Supplementary material.
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(a) Chessboard image from Leung (2017)

(b) Image of Pinwheel galaxy from European Space Agency and
NASA (2006)

Figure 1: Images used for experiments
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