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Fig. 1: Versatile manipulation of cloth-like deformable objects: Our work contributes benchmarking, modeling, perception,
and control techniques for deformable objects, which together enable the robot to dynamically adapt the manipulation trajectory
(in orange) to unseen variations in real-world object properties, enhancing generalization across diverse environments.

I. RESEARCH PROBLEM

In spite of the rapid advancements in AI [31, 1], tasks
like laundry, tidying, and general household assistance re-
main challenging for robots to scale due to their limited
ability to generalize manipulation skills across diverse environ-
ments [43]. Fundamental for these tasks is the manipulation
of deformable objects, which is particularly difficult due to
their non-linear dynamics and infinite degrees of freedom [39].
Yet, improving robotic manipulation of deformables has far-
reaching benefits, from assisting aging populations to enhanc-
ing efficiency and sustainability in industries such as health-
care, manufacturing, food preparation, and logistics [12, 9].

Current methods for manipulating deformable objects are
largely dominated by either open-loop planning pipelines or
end-to-end data-driven approaches [27]. These methods tend
to overfit to specific training distributions and object instances,
and they typically require large datasets due to the high-
dimensional state space of deformables. As a result, these
approaches lack the flexibility to adapt online, especially when
faced with unseen variations. We argue that the missing piece
is a sample-efficient methodology to effectively close the
action-perception loop, enabling real-time sensory feedback
and adaptive control. While recent advances in generative
AI and imitation learning have shown improvements in cloth
manipulation [42, 4], these solutions rely on costly human
demonstrations and still lack generalization across variations
in object properties and environments.

This research seeks to enhance the versatility of robotic
manipulation for deformable objects, that is, in this context, the
ability to generalize across diverse objects and environmental
conditions [4]. We propose a structured, model-based approach
to manipulation that explicitly leverages feedback for online

adaptation. Cloth-like deformable objects, such as textiles, will
serve as testbeds for developing new methodologies.

II. CONTRIBUTIONS

Achieving versatility in manipulation requires robots to
perceive, interpret, and adapt to dynamic environments. This,
in turn, demands a comprehensive characterization and un-
derstanding of deformable object properties and dynamics,
alongside advanced perception tools for real-time feedback.
Integrating these elements within a closed action-perception
loop enables robots to refine their strategies, ensuring adaptive
and robust deformable object manipulation.

Characterization: Effective characterization of textile
properties is essential for benchmarking tasks like folding
and dressing, yet existing approaches lack a standardized
taxonomy to thoroughly assess generalization. Most prior work
categorizes objects (e.g., t-shirts, pants) [22, 44, 11] or consid-
ers material properties [34], but overlooks the role of textile
construction techniques in defining physical behavior during
manipulation. In our work [23], we introduced a taxonomy that
integrates fiber material and construction techniques, providing
a more comprehensive framework for textile characterization.
However, precise mechanical property measurements remain
a challenge due to the lack of accessible, non-destructive
tools [16, 8]. To address this, in a follow-up work [10],
we contributed a measurement framework grounded in textile
industry standards to facilitate accurate property assessments
and more robust benchmarking for cloth manipulation.

Modeling and Perception: A key challenge in deformable
object manipulation is modeling deformation dynamics, where
existing approaches fall into two categories: physics-based
models, which allow long-horizon simulations but suffer from
the sim-to-real gap [5], and data-driven models, which offer



flexible state representations but are prone to accumulation
errors [39]. Most prior work on data-driven models assumes
fixed textile properties [30, 21, 14, 36, 7], limiting general-
ization across object variations. Our work tackled this lim-
itation by integrating interactive perception with data-driven
dynamics models, addressing two key challenges: property
identification (inferring elasticity, friction, and stiffness) and
state estimation (providing real-time feedback for adaptation).

For property identification, in [25], we leveraged textile
industry knowledge to encode force measurements as indi-
cators of elasticity, improving model generalization. However,
this method required a closed-form solution for each property,
limiting scalability. To overcome this, in [24], we introduced
a self-supervised adaptation module that learned a latent rep-
resentation of textile properties, allowing the dynamics model
to adjust predictions based on observed object behavior. The
proposed perception-driven adaptation significantly enhanced
the generalization of model predictions across diverse textiles.

A key limitation of the data-driven models we proposed
was their open-loop formulation due to the challenges in
state estimation, preventing them from updating state repre-
sentations as new observations become available. Closing this
loop is crucial for adaptive manipulation, as models can be
inaccurate and accumulate errors over time. However, real-
time state estimation remains challenging due to occlusions
and continuous deformations [15, 6, 19]. To address this, we
developed two complementary approaches. The first, presented
in [26], introduced a graph-based tracking method that re-
fines 3D state estimations from RGB images using Gaussian
Splatting (GS) [17], enhancing accuracy in complex deforma-
tions and self-occluded configurations. The second, in [28],
shifted from dense tracking to task-specific semantic point
cloud representations, leveraging geometric priors to resolve
ambiguities in crumpled configurations. By improving state
estimation, these methods contributed to closing the action-
perception loop, enabling model correction and replanning.

Control: While early work highlighted the importance of
optimizing deformable object manipulation trajectories [20],
much of the current research still relies on open-loop pick-
and-place planning, disregarding relevant information within
the pick-and-place trajectory [38, 32, 21, 33, 41]. This is
primarily due to the difficulty of simultaneously estimating and
tracking cloth states during manipulation. The modeling and
perception advances discussed earlier provide a foundation for
addressing this limitation, enabling the closure of the action-
perception loop and facilitating adaptive manipulation. In [28],
we integrated the aforementioned state estimation and model-
ing components into a model-based manipulation framework,
proposing a closed-loop approach to optimize cloth folding
trajectories. Unlike previous work, our method leverages con-
tinuous feedback to dynamically adapt to changes in object
size, shape, and physical properties, enabling more versatile
manipulation. We evaluated the method’s generalization across
a diverse set of real-world textiles, characterized using the
taxonomy and measurement tools introduced in [23, 10],
demonstrating improved adaptability to textile variations. The

results, shown in Figure 1, underscore the effectiveness of
closing the action-perception loop in achieving versatile, real-
world deformable object manipulation.

III. FUTURE WORK

The proposed methods, along with their limitations, open
several promising research directions, including improving
sample efficiency through hybrid model-based and model-free
approaches [13] and extending the framework to a broader
range of deformable objects such as cables, dough, and food.
This section will focus on two particularly compelling future
directions that build upon the foundations of this work, push-
ing the boundaries of versatile deformable object manipulation
and opening new avenues for investigation.

Closing the sim-to-real gap: Simulating object dynamics
is essential for training robotic policies without relying on
extensive real-world interactions. However, existing physics-
based models [3] face analytical and computational limitations,
especially for deformable objects, resulting in a persistent sim-
to-real gap. In contrast, generative data-driven world models
offer the potential to learn complex dynamics directly from
the real world [37, 29], but currently lack physical fidelity [2].
To overcome the limitations of both approaches, we propose
hybrid dynamics models that combine physics-based structure
with generative residuals to adapt from real-world observations
and close the sim-to-real gap. Building on our prior work, we
aim to extend our adaptation module to refine these residuals
online using real-world feedback. Yet, closing the sim-to-real
gap via hybrid world models remains challenging due to the
lack of a shared state space between vision-based generative
models and physics-based simulations. We suggest using GS
as a bridge between 3D object states and visual observations,
as proposed in [26]. This direction will enable adaptive, data-
efficient learning while ensuring robust physical reasoning for
robotic manipulation tasks with complex dynamics.

Broadening semantic understanding: The discussion thus
far primarily focused on the physical and mechanical prop-
erties of textiles that influence cloth manipulation. However,
object properties exist at multiple levels of abstraction, from
measurable physical attributes (e.g., elasticity) to human se-
mantic descriptors (e.g., stretchy or soft). Bridging these
levels requires robots to ground semantic knowledge in the
physical world through multisensory perception, integrating
vision, haptic, and tactile inputs [40]. Future work will fo-
cus on developing a framework that combines these sensory
modalities with the reasoning capabilities of vision-language
models (VLMs) [18, 35] to ground semantic properties in
robot sensing and enable robots to infer physical and semantic
attributes. By leveraging interactive perception, robots will
actively explore objects through actions like pulling or poking,
refining their physical and semantic understanding of object
properties. This direction not only promises to enhance the
understanding of deformable objects for robotic systems but
also establishes a foundation for richer language understanding
and more versatile instruction formats, advancing both robotic
autonomy and human-robot collaboration.
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and Danica Kragic. Cloth-splatting: 3d cloth state estima-
tion from rgb supervision. Conference on Robot Learning
(CoRL), 2024.

[27] Alberta Longhini, Yufei Wang, Irene Garcia-Camacho,
David Blanco-Mulero, Marco Moletta, Michael Welle,
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