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Abstract

Encountering shifted data at test time is a ubiquitous challenge when deploying
predictive models. Test-time adaptation (TTA) methods address this issue by
continuously adapting a deployed model using only unlabeled test data. While
TTA can extend the model’s lifespan, it is only a temporary solution. Eventually
the model might degrade to the point that it must be taken offline and retrained. To
detect such points of ultimate failure, we propose pairing TTA with risk monitoring
frameworks that track predictive performance and raise alerts when predefined
performance criteria are violated. Specifically, we extend existing monitoring tools
based on sequential testing with confidence sequences to accommodate scenarios in
which the model is updated at test time and no test labels are available to estimate
the performance metrics of interest. Our extensions unlock the application of
rigorous statistical risk monitoring to TTA, and we demonstrate the effectiveness
of our proposed TTA monitoring framework across a representative set of datasets,
distribution shift types, and TTA methods.

1 Introduction

Whenever test data is drawn from a different distribution than the one the model was trained on,
performance might degrade, which can cause the model to ‘expire’. Such drops in performance
are especially concerning in safety-critical applications. For example, a medical device trained on
patients from a specific demographic group may produce poor predictions when, upon deployment, it
encounters patients from a different subpopulation.

Test-time adaptation (TTA) [44] has proven to be a powerful paradigm for prolonging the life of a
model subjected to distribution shift. TTA methods adapt model parameters online, using only test
batches of features and no labels. By leveraging unsupervised objectives such as test-time entropy
[42] or pseudo-label losses [41], these methods effectively ‘fine-tune’ model parameters on unlabeled
test data. Despite their stark potential to retain high performance under a variety of distribution shifts
[49], TTA methods can suffer performance drops under severe shifts or after prolonged adaptation.
The TTA literature has documented a range of persistent failure cases in which the model collapses
entirely, resulting in near-zero accuracy [31]. Alarmingly, these failures often occur silently and
prohibit TTA methods from safe deployment in practice.

Timely detection of performance degradations—whether due to harmful distribution shifts or adap-
tation collapse—is thus crucial for safe deployment. At the same time, however, falsely flagging
that a model should be taken offline and retrained can incur significant, avoidable costs given the
size of modern predictive models. Recently, sequential testing has emerged as a promising statistical
framework for monitoring model performance over time [30]. When a predefined risk (or error)
threshold is exceeded, the monitoring tool triggers an alarm. By employing time-uniform confidence
sequences [ 13], such tools provide rigorous guarantees on the false alarm rate, thereby minimizing
unnecessary retraining with high probability.
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However, existing sequential risk monitors either require access to ground truth labels in production
[30] or do not account for model adaptation [1]. In this paper, we extend sequential testing to the
challenging setting of TTA. This enables us to track the risk of a continuously evolving model without
ever observing test labels. Our main contributions are as follows:

 In § 3, we present a general approach for risk monitoring of TTA models. Notably, our framework
makes no assumptions about the distribution shift nor the TTA implementation.

* In § 3.2 and § A.1, we extend prior work on unsupervised risk monitoring [1] to enable effective
tracking of risks most commonly used in TTA, such as classification error.

* In § 3.3 and § 3.4, we present a concrete instantiation of our monitoring tool based on model
uncertainty, which importantly does not require fitting any additional model components.

* In § 5, we extensively study our monitoring tool and demonstrate that (i) it reliably detects risk
violations and (ii) does not raise false alarms on a range of TTA methods, datasets and shift types.

2 Preliminaries

Setting We consider a standard multi-class classification setting, where the input space is denoted
by X C RP and the label space by Y = {1,...,C} for some finite number of classes C. Data
points (&, y) are assumed to be realizations of random variables (x,y) drawn from an unknown
joint distribution P over X x Y. The samples in train Dy,;, and calibration D, sets are drawn 4.7.d.
from the source distribution (xg, yo) ~ Py. Test samples in DY, are assumed to arrive sequentially
from a time-varying and possibly shifting fest distribution (y,yr) ~ Px, & > 1. We do not
make any assumptions about the nature of the distribution shift. For the test stream, we distinguish
between two settings. In the ‘unsupervised’ setting, only test features x;, ~ Pj(x) are observed,
yielding a sequence of unlabeled test datasets DXk > 1. In the ‘supervised’ setting, the true labels
yr ~ Pp(y | x = ) are revealed after predictions are made on the observed features at each time
step k, resulting in a sequence of labeled test datasets D:’,‘;y, k> 1. Lastly, withp : X — A9~ we
denote a probabilistic classifier, where A€~ is the probability simplex over C classes.

Losses and Risks It is crucial to monitor the deployed model on test data to detect potential
performance degradations early. To formally capture the concept of error, a problem-specific loss
function, denoted as £ : O x ) — R is first defined.”> The risk of a model p on data drawn from
distribution P is then given as the expected loss Ry (p) := Ep, [¢(p(x),y)]. To ease notation, we
denote the loss random variable on data from Py, with z;, := ¢(p(x), y) henceforth. Ro(p) represents
the source risk on data coming from the source distribution F,. We also define a running test risk as

_ 1<
Ri(p) = 1> Ri(p)., (M
k=1

which measures the model’s running performance on data drawn from the (shifting) test distribution
Py.. Tf, for some time index ¢*, the running test risk starts to exceed the source risk, i.e., Ry« (p) >
Ry (p), this may indicate that the data distribution has shifted in a way that is harmful to the model’s
performance, suggesting that the model should potentially be taken offline and retrained. In practice,

the ‘true’ risk is typically estimated using the empirical risk, defined as Ry, (p; Dyy) = n- SN 2k

where the loss realizations zy, ,, are based on i.i.d. samples from Dﬁzy.

Given our focus on classification, we consider two loss functions. The first is the 0-1 loss,
lo1(p(x),y) := 1[g(x) # y] where §(x) := arg max, p(x)., which means that the risk corresponds
to classification error. We also consider a squared loss between labels and model confidences:
C
1 2
ls(p(x).y) = 5 Zl (p(x)e — Ly =d])" . @)
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When averaged across samples, this squared loss corresponds to the Brier score, a strictly proper
scoring rule [9]. Hence it captures not only the classifier’s error but also its calibration. Due to this
connection, we refer to this second loss as the ‘Brier loss’ for short.

The output space O may correspond either to the label space ) or to the space of probability distributions
over ), depending on the loss type.



Supervised Risk Monitoring via Sequential Testing To track how well a deployed model is
performing, Podkopaev and Ramdas [30] propose a risk monitoring framework based on sequential
testing [32]. The performance of a model p, in the presence of a labeled test stream, is tracked using
the following sequential test:

Hy : Ri(p) < Ro(p) + €1, Yt > 1 Hy:3t* > 1: Ry=(p) > Ro(p) + €ual (3)
where €, > 0 is a tolerance level that quantifies the acceptable drop in a model’s test performance
relative to its source performance.

To give the test anytime-valid properties (e.g. arbitrary stopping and restarting), Podkopaev and
Ramdas [30] rely on confidence sequences, which extend traditional confidence intervals to the
sequential setting and offer time-uniform coverage guarantees [5, 13]. A sequence of model losses
on test data is used to construct an anytime-valid lower bound L; on the true running test risk R;:

IP)(-Rt(p) Z Lt(Zl, s 7Zt)7 vt Z 1) Z 1- Qrtest

for a miscoverage level aqeqr € (0, 1). To get an upper bound U on the source risk, a regular (static)
confidence interval is computed using the loss on the source data:

P( R()(p) < U(Zo) ) > 1 — aisource

for another miscoverage level couce € (0,1). Combining the two bounds, the following alarm
function is proposed

@y =1 [Li(21,...,2:t) > Ulzo) + €l 4)
and used to reject the null hypothesis (Eq. 3) at tu, := inf{t > 1| ®; = 1}. See Fig. 1 for an
illustration. Note that in practice, the empirical bounds are computed using empirical risks:

t
~ ~ ~ 1 ~
Uo = Ro(p; Dear) + wo, Ly = 5 > Ri(p; Dk,) —wi
k=1

where wy, w, are finite-sample correction terms (see § B.1 for concrete formulas). Owing to the
power of confidence sequences, the alarm function ®; enjoys a time-uniform guarantee on the control
of the probability of the false alarm (PFA)
]P)HU (Ht >1,®, = 1) < Quest + Qsource
which ensures that performance degradations are not incorrectly detected,
thereby avoiding unnecessary (and potentially costly) interventions on
the model. Notably, this guarantee requires only that the loss function is
bounded ¢ € [a, b]. This minimal assumption makes the method broadly
applicable, as it imposes no constraints on the data distributions, the
predictive model, or the nature of distribution shift (beyond indepen-
dence). To maintain minimal assumptions, it is necessary to rely ona )
conjugate-mixture empirical Bernstein bound [13] when constructing a Flgure I Alarm @, is
lower confidence sequence for the test risk L; (see § B.1 for more details). raised at ¢ as the lower
bound L; on the running
Test-time Adaptation (TTA). In test-time adaptation [42], the model (€St risk [, exceeds the
parameters @ are updated online as the model observes batches of un- Upper bound Up on the
labeled test features. Specifically, given a sequence of unlabeled test SOUrce risk Ro.
batches DL, ..., DL, the TTA method produces a sequence of classifiers pg,, . . . , g, , Where each 0,
is adapted using DX. This stands in contrast to the static source model pg,, which is trained once
on labeled training data Dy, and remains fixed during deployment. For simplicity, we refer to the
source model as pg and the adapted models as pq, . . ., p; henceforth.
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3 Sequential Testing for TTA Monitoring

We now detail our approach to risk monitoring for test-time adaptation (TTA) methods using sequen-
tial testing. We begin by extending the risk monitoring framework of Podkopaev and Ramdas [30] to
a deployment setting in which the model is continuously updated (§ 3.1). Next, inspired by Amoukou
et al. [1], we derive a sequential test for the running test risk that does not require access to labels on
the test data stream (§ 3.2)—a key innovation that enables rigorous statistical testing in TTA settings
where test labels are unavailable. We then propose a concrete instantiation of our unsupervised test
based on model uncertainty (§ 3.3) and online calibration of thresholds (§ 3.4). Finally, we describe
techniques to enhance the detection power of the proposed tests (§ A.1). Our approach to monitoring
risks in TTA is summarized in Algo. 1.



3.1 Risk Monitoring under Model Adaptation

Unlike in the static model setting considered by Podkopaev and Ramdas [30], we are interested
in scenarios where a classifier is being continuously updated using a TTA method. Hence, we are
interested in monitoring the risk not of a static source model pg, but rather of a sequence of models
p1.¢- To this end we define the hypotheses tested by our TTA risk tracker as:

HS 2 Ri(p1:4) < Ro(po) + €, VE>1 H{ 3t > 1: Ry« (p1:4) > Ro(po) + €1 (5)

where Ry(p14) = L 37, Ri(px) and Ry (pr) := Ep,[£(pr(x),¥) |x1.5—1]. Note that conditioning
on the (unlabeled) test stream x1.;—1 is included despite assuming an independent data stream, as it
becomes necessary when the model py, is updated using test data, such as in TTA. To reduce notational

clutter, this conditioning is omitted hereafter unless explicitly required. We use zg )=t (p;(x),y)
to denote the loss random variable of the model p; on data from F.

To design the corresponding alarm function, we proceed similarly to the construction of ® in Eq. 4,
checking if the lower bound on the test risk exceeds the upper bound on the source risk. However,
rather than relying on a sequence of losses from the static source model, we instead use a sequence of
losses from the continuously adapted models in the (lower) confidence sequence for test risk. This
leads to the adapted alarm function:

oY =1 [L;}(zg”,...,z?)) > U(zy") +€tol} : ©

which also enjoys strong PFA control guarantees when using conjugate-mixture empirical Bernstein
bounds [13]. Throughout the rest of this section, we abbreviate z,(f“') as zy and we shorten the sequence

notation from z1, . . ., z; to z1.; to ease the notational burden.

3.2 Unsupervised Risk Monitoring

While the adapted alarm function ®* (Eq. 6) monitors the performance of adapted models—rather
than a fixed static model—it still depends on access to a labeled test stream to compute the adapted
lower bound L¢. Consequently, it cannot be directly applied to track the performance of TTA methods
where only an unlabeled test stream is available. To get around this, we propose to replace a sequence
of supervised losses with a sequence of loss proxies that can be computed from unlabeled test streams.
This allows us to derive an ‘unsupervised’ lower bound (Proposition 1) to the running test risk which
we use to design an ‘unsupervised’ alarm function (Eq. 7).

As a first step, we introduce the notion of a loss proxy and specify its desirable properties. For
a chosen proxy function g, a loss proxy of a model p is defined as u := g(x,p). Besides being
‘unsupervised’ (i.e., it should depend only on features x), the proxy should be (at least partially)
informative of the corresponding loss variable z. Before presenting our concrete choice of a proxy
function based on model uncertainty (see § 3.3), we formalize the notion of a proxy’s informativeness
with the following assumption.

Assumption 1. Given a sequence of losses z., let the corresponding sequence of loss proxies ug.;
and proxy thresholds Mo, . .., A+ € R, along with a loss threshold T € (0, M), be such that for all
t > 1, the following inequality holds:

t

1 i
{ZPPk(uk > A, Zg ST) SPPU(UO > Ao, Zg ST) +¥prk(uk < Ak, Zg >T).

k=1 k=1
PFPy, PFPqo PFN,

While Assumption 1 may initially appear rather complicated, it can be interpreted in terms of two
intuitive desiderata for a valid (and effective) loss proxy. First, the proxy u should enable separation
between low losses (z < 7) and high losses (z > 7) for a fixed loss threshold 7. This ensures that
the probabilities of both false positives (PFP;) and false negatives (PFNy) are small. Second, this
separability should be robust across the time-varying test distributions Py, ensuring that the false
positive rate on the test stream (PFPy) remains comparable to that on the source distribution (PFPy).
Below we formalize how a sequence of loss proxies can be used to derive an unsupervised lower
bound on the true running test risk.



Proposition 1. Assume a non-negative, bounded loss ¢ € [0, M|, M > 0. Further, assume that for a
sequence of losses 7.1, a sequence of loss proxies Wg.; together with thresholds Xy, ..., \s € R, 7 €
(0, M) satisfying Assumption 1 are available. Then the running test risk can be lower bounded as

t

_ 1

Ri(p1s) > 7 (t E Pp, (ur > Ax) — Pp,(up > Ao,z < T)) Vi > 1.
k=1

=B,

We defer the full proof to § B.2. A similar bound was proposed by Amoukou et al. [1], though with
some key differences, which we discuss in detail in § A.1 and § 4. Importantly, the bound B; from
Proposition 1 depends only on the test loss proxies and the source loss, meaning its corresponding
lower-bound confidence sequence L! can be evaluated using a combination of unlabeled test data
(Di) and labeled source data (D). This makes it suitable for our final proposed unsupervised alarm:

©7 := 1 [L{ (101, Aot 20, 7) > U (20) + €al] - @)
In § B.3, we prove that such an alarm has a PFA control guarantee for the sequential test in Eq. 5.

3.3 Uncertainty as Loss Proxy

After introducing a general loss proxy u in the previous section, we now present a concrete instan-
tiation based on model uncertainty. Specifically, we define the proxy function using the maximum
class probability as g(x, p) := 1 — max. p(x).. We choose uncertainty, firstly, due to it being easy
to implement: it requires no modifications to the underlying model and avoids the need for additional
components, unlike alternative proxies based on model disagreement [33] or separate error estimators
[1, 4]. Secondly, for 0-1 loss this score approximates the conditional risk, up to calibration error:

Ry (p;x ZP =c|x) - Zp X) #c] = 1fmgxp(x)c.

Although the condmonal risk approximation 1mpr0ves when p is well-calibrated, we do not need to
assume the model’s uncertainty is well-calibrated under model adaptation [48] nor under distribution
shift [28], as some previous work has required [16]. Returning to Assumption 1, uncertainty is a
useful loss proxy when it separates high-loss and low-loss instances for a carefully chosen threshold
Ap,—a task known as failure prediction [4, 50]. Failure prediction boils down to the ability to rank the
test instances according to their loss values, which is a much weaker requirement in comparison to
calibration [11]. Before demonstrating empirically in § 5 that using model uncertainty in Proposition
1 yields valid and tight lower bounds when monitoring TTA performance, we describe our threshold
selection mechanism below.

3.4 Online Threshold Calibration

We now describe our procedure for selecting the loss and proxy thresholds used in the lower bound
from Proposition 1. This step is critical for the effectiveness of our risk monitoring tool: poorly
chosen thresholds can yield bounds that are either invalid (i.e., violate Assumption 1) or vacuous (i.e.,
excessively loose). Since our goal is to simultaneously minimize false positives and false negatives
(cf. Assumption 1), we determine the loss threshold 7 € (0, M) and the source proxy threshold
Ao € (0, 1) by maximizing the F1 score based on the source model’s proxy:

“ 2TP

Ao, T = arg/\TaxFl(A,T; Deal, Po) » Fl(\, 1) = TP T EN T FP
where TP = ) ;™ Ned 1ugi > A, 20, > 7], FN = dim i 1 Luoi < A z04 > 7], FP =3 Nedt g >
A 20,4 < 7] and uo,z ~ ug and zg ; ~ Zo are proxy and loss realizations of the source model Do on
samples in Dy, respectively. Similarly, to select test proxy thresholds A\;.; we maximize F1 score
while keeping the loss threshold 7 fixed: \g := arg max, F1(A, 7; Dea, pi ), where F1 is computed
from proxy u ( ) and loss z(()k) ~ z(()k) realizations of the adapted model pj, on the (same)
calibration dataset Dca] (since no test labels are available). We emphasize that continuously adapting
the proxy threshold is essential for preserving an effective bound B, under model adaptation. Using a
static threshold throughout the test stream is insufficient, as many TTA methods can affect the scale
of the observed uncertainties. For example, TENT [42] tends to reduce uncertainty over time due to
its entropy minimization objective. Our full threshold selection procedure is summarized in Algo. 2.



4 Related Work

TTA [44, 20] aims to improve model performance under distribution shift by updating the model
using unlabeled test data. Classic approaches include recomputing normalization statistics [36, 24],
optimizing unsupervised objectives such as test entropy [42, 26, 27], energy [47], or pseudo-labels
[17, 19], or adapting the last layer [15, 3, 35]. However, recent work has identified scenarios where
TTA methods are ineffective [49, 35], and even harmful, degrading performance below that of the
unadapted source model [3, 10, 46, 27, 6, 31, 43, 29]. While some studies propose heuristic indicators
of TTA failure, such as high gradient norms [27], or estimate test accuracy directly [18, 31], there
remains no principled framework for detecting risk violations of TTA methods with theoretical
guarantees.

Risk monitoring via sequential testing has been proposed by Podkopaev and Ramdas [30], though
in a setting where test stream labels are available and the model remains static. Recent important
extensions include [51], which proposes supervised risk monitoring for the more challenging setting
of instantaneous risk control, and [52], which tackles the task using weighted-conformal martingales.
Most relevant to our work is that of Amoukou et al. [1], who extend [30] to the test scenario without
labels. We further build upon their framework by: (i) incorporating model adaptation (§ 3.1); (ii)
deriving an unsupervised bound on the expected loss, rather than only a bound on the probability of
high loss (§ 3.2); (iii) using model uncertainty as a proxy for loss instead of a separate error estimator
(§ 3.3); (iv) proposing a simpler calibration method (§ 3.4) and showing it’s effectiveness for 0-1
loss (§ 5.1); and (v) providing theoretical insights into why effective monitoring of continuous losses
necessitates a change in the tested hypothesis (§ A.1). Also related is work by Bar et al. [2], where a
sequential test for TTA methods based on betting martingales [32] is proposed. However, their test
is designed to detect changes in predictive entropy, which may or may not lead to a degradation in
performance—unlike our method, which directly tests for performance drops. We provide further
related works in Appendix E.

S Experiments

We empirically validate the effectiveness of our monitoring tool for a range of TTA methods under
different distribution shifts. In § 5.1, we study the monitoring tool in comparison to several baseline
alarm functions. § 5.2 demonstrates the wide applicability of our monitoring tool across different
TTA methods and datasets. In § 5.3, we show that the tool can be employed to detect risk increase
arising from failed model adaptation. Lastly, in § 5.4, we show the generalizability of our statistical
framework by going beyond uncertainty as loss proxy. Our code is available at: https://github.
com/monasch/tta-monitor.

Oracles and Baselines Our goal is to approximate, R; := % 22:1 Ry, (pk), the empirical estimate

of the true, unobservable, running test risk R, (p1:+) as closely as possible. Once R, exceeds a pre-
defined risk threshold, we wish to raise an alarm as early as possible. We compare our unsupervised
alarm ®° (Eq. 7 and Eq. 8), to several baseline monitors. While all monitors use the same upper
bound on the source risk Uy, they differ in their choice of the test risk lower bound. We next present
the alternatives to our proposed test risk lower bound L?:

- i?: the estimated confidence lower bound on the running test risk under model adaptation (see
Eq. 6). This direct extension of Podkopaev and Ramdas [30] preserves false-alarm guarantees
but observes labels at each time point. While inapplicable in the unsupervised TTA setting, it
serves as an oracle baseline. Since L¢ > L! (under Assumption 1) our alarm ®? can never
trigger before this alarm, ®¢, and consequently we inherit its detection delay. The closer i’g is to
ﬁf, the smaller is the price we pay for not observing test labels.

- ﬁg: a naive estimate of the running test risk, formed by substituting the supervised losses zg.;
with unsupervised proxies ug.; in the alarm from Eq. 4 [30]. While it avoids using test labels, it
lacks false alarm guarantees due to omitting the lower bounding step in Prop. 1.

— LY: the estimated unsupervised lower bound on the running test risk of the static source model
po as presented in [1]. While providing false alarm guarantees without access to labels, it uses a
different calibration procedure and is not applicable to a time-varying predictive model py.


https://github.com/monasch/tta-monitor
https://github.com/monasch/tta-monitor

Risk Control Design We monitor test risk using 0-1 loss ¢y.; and Brier loss {5 (Eq. 2). If not
specified otherwise, we use a tolerance threshold of €, = 0.05 for 0-1 loss and €, = 0.01 for Brier
loss. We set & = aisource + Qieest to 0.2 using most budget for controlling the test risk, i.e. aquest = 0.175
and agouree = 0.025. For threshold selection (§ 3.4) we use N, = 1000 labeled samples from F.

Datasets & Models We evaluate our monitoring approach on three datasets: synthetic corruptions
from ImageNet-C [12], and real-world distribution shifts from Yearbook [8] and FMoW-Time [45].
For ImageNet-C, we use the pretrained ViT-Base model [7] from the Timm library [34], focusing
on Gaussian noise (GN) corruptions. Yearbook involves binary gender classification from portrait
images, while FMoW-Time consists of satellite imagery with land use labels. Both datasets span
multiple years; models are trained on data up to a cutoff year and tested on future samples. For
Yearbook and FMoW, we follow the protocol of Yao et al. [45], using their provided model weights:
a small CNN for Yearbook and DenseNet121 [14] for FMoW.

5.1 Illustrative Example Source TENT

0.5 -1

In the first experiment, we study the behavior of our
alarm in comparison to described baselines. We are
notably interested how closely our unsupervised mon-
itoring tool mimics the two oracle quantities having
access to the ground truth test labels: empirical run-

lo—1

ning test risk R, and I:? [30]. To simulate an in-
creasing test risk, we construct a test stream from
ImageNet-C by gradually increasing the severity level

of Gaussian noise corruption from in-distribution 0 200 400 0 200 400
(no shift) up to severity level 5. We track both the Time ¢ Time ¢
unadapted source model and TENT using 0-1 loss S P — Assumpt. violated
£y.1 and Brier loss 5. We also verify the validity — R I e A (Assumpt. 1)
of Assumption 1 throughout adaptation by tracking ] — i &

AY = PFPy+ 1Y, _| PFN; — PFP;. The as-
sumption is met in practice when A > 0 and vio-
lated when A? < 0. A? also reflects the tightness of N . SN
LY, so, ideally, it is also not too much above 0. We bound L on the empirical test risk RQ closely
proceed analogously for Assumption 4.1 in Amoukou follows the supervised lower bound L.

et al. [1] and denote it with Atd.

Figure 2: Test risk of increasing severity on
ImageNet-C (GN): Our unsupervised lower

The results are shown in Fig. 2. As the severity of the distribution shift increases, the empirical running

test risk ét (—) increases as well, for both 0-1 loss ¢y (top row) and Brier loss £ g (bottom row). As
expected, the unadapted source model (left) exhibits a higher risk, while adaptation with TENT (right)
postpones the point where the empirical risk crosses the specified performance requirement. However,
as the distribution shift becomes increasingly severe, R; eventually exceeds the upper bound on the

source risk, U, plus the tolerance margin € (- -), despite model adaptation. From this time point (
|), we wish to trigger an alarm. As expected, the lower confidence sequence on the empirical test

risk, L{ (- -), which leverages test labels, detects the risk violation first. Encouragingly, our proposed

unsupervised lower bound I:? (—) closely follows the supervised bound I:? This indicates that
our bound is tight and the price for not seeing labels is relatively small. The naive plugin bound,

ﬁ;? (—), is not only void of theoretical guarantees but also exhibits low power empirically by not
detecting the risk violation in all but one case. The unsupervised bound by Amoukou et al. [1], L¢

(—), detects slightly later then I:f for Brier loss, but is extremely loose for 0-1 loss. Fig. 2 shows that
our Assumption 1 (---) is met throughout the distribution shift in all cases, while the assumption of
Amoukou et al. [1] (---) is violated for 0-1 loss, making their bound invalid for large .

5.2 Generalization across Datasets, Shifts and TTA Methods

Next we evaluate the robustness of our monitoring tool by testing different TTA methods: TENT
[42], CoTTA [41], SAR [27] and SHOT [19]. Please see § D.2 for details. We study four test
streams: In-distribution of ImageNet (no shift, alarm should remain silent), ImageNet-C Gaussian



ImageNet ID ImageNet Severity 5 Yearbook FMoW-Time

1.0
o
2
3
]
wn
H
Z
m
H
F
©
an
wn
<
E
=
o
O
~
<
w»n
T T T T T T
0 50 100 0 100 0 200 0 200 400
Time ¢ Time ¢ Time ¢ Time ¢
- Oy+eq —— R — Db e AP (Assumpt. 1) Assumpt. violated

Figure 3: Estimated test risk for different datasets and TTA methods: Our lower bound ﬁf consistently

exceeds the risk threshold Uo + €11 When a true risk violation occurs (ImageNet severity 5, Yearbook),
while remaining below it on benign shifts (ImageNet ID, FMoW-Time), across all TTA methods.

noise (GN) severity level 5 (strong shift), Yearbook (moderate shift) and FMoW (gradual shift). Since
classification error is the most commonly used metric in TTA, we track a risk increase for 0-1 loss.

Risk violation is detected reliably Fig. 3 shows that the empirical running test risk R; (—) is
closely mimicked by our ﬁf (—) across TTA methods, datasets and shifts. Our alarm function
correctly remains silent on the ID stream (first column) of ImageNet, where test risk remains below
the threshold (- -). For FMoW, the risk increases steadily but also remains below the alarm threshold;

this is accurately reflected in our monitoring, as L? tightly tracks R; without triggering false alarms.
For the immediate risk violation on ImageNet-C severity level 5 (second column), our test triggers
an alarm after < 25 steps for all TTA methods. Similar results are observed for Yearbook. We
additionally provide a detailed comparison with other baselines across all TTA methods in § A.4.

Assumption 1 holds after warm-up Importantly, we find that Assumption 1 is generally satisfied
in practice, with A? (---) remaining above zero for most time steps, when using model uncertainty
(§ 3.3) with online adaptation of proxy thresholds (§ 3.4). For some datasets, such as FMoW, we
observe slight violations during the warm-up phase, i.e., for small ¢. Fortunately, the finite-sample
penalty term w; in the confidence sequence is largest for small ¢, which may offset these minor
violations and help prevent false alarms. The only instance where violations persist throughout the
entire test stream is with the source model on ImageNet under a severity 5 shift. This is because
our proposed threshold calibration procedure (§ 3.4) keeps the proxy threshold fixed if the model



is not updated on the test stream, making Assumption 1 more difficult to satisfy. Since our focus is
on adapted models, we leave the development of alternative calibration methods effective for static
models to future work.

5.3 Detecting TTA Collapse

Unlike static models, the risk of a TTA model can increase
not only due to distribution shift but also because the
model deteriorates during adaptation. An extreme, yet
well documented case of model failure in TTA is model
collapse, where finally only a small subset or a single class
is predicted [25, 39, 27, 22]. Alarmingly, these harmful
collapses often occur silently [27]. We next ask whether
our statistical framework can detect risk increases caused
by model failure. This is not a given, as the monitor relies
on the model’s own outputs (e.g., predictive uncertainty),

Predicted Class

Monitor

; - : - Time ¢ Time t
which may become unreliable when the model itself fails. - ”
To induce model collapse, we follow [3] and apply TENT T oo I (Besmpt )
with a high learning rate of 7 = 1le~! on the ImageNet-C : 1:; P

(GN) corruption at severity level 1. We set a high ¢, = 0.2

to disregard risk increase caused by distribution shift.
Figure 4: Collapsed vs. non-collapsed

Fig. 4 (left) displays predicted classes (first row) and es-
timated test risk (second row) for an adaptation with a
suitable learning rate. The predicted classes remain di-
verse, and both the estimated test risk and our lower bound

model on ImageNet-C (GN): When col-
lapsed (right), the model always predicts
the same class, which our monitor flags.

stay below the pre-defined risk threshold. This is in stark contrast to adaptation with a high learning
(right): after few adaptation steps, the model assigns all input samples to the same class. This leads
to a large increase in empirical test risk. Encouragingly, our bound IA/? tracks this rise and detects a
violation shortly after, demonstrating that our monitoring remains effective even when the underlying
model collapses.

T3A

5.4 Alternative Loss Proxies 1.0

In § 5.2, we demonstrated that using model uncer- 0.5 7

tainty as a loss proxy yields valid (according to As-
sumption 1) and, importantly, tight unsupervised
lower bounds across a representative set of TTA meth- 0 5 100 150 0 50 100 150

0.0

ods and data shifts. Here, we supplement these results Time ¢ Time ¢
with a case where relying solely on model uncertainty —— Opreq — B e A (Assumpt. 1)
proves insufficient for effective detection. Specif- — & — L7 (prot. dist) Assumpt. violated

ically, when monitoring "last-layer" TTA methods
[15, 35]—which adapt only the classification head
W = [wy,...,wc] € RT*C_we observed that
our unsupervised bound becomes overly loose, caus-
ing the alarm to fail under severe distribution shifts.
We attribute this behavior to the normalization of
each class prototype, i.e. w,. / ||w.||3, at every adaptation step. This normalization leads to (much)
reduced variability in uncertainty across samples at the start of adaptation, making the separation of
high and low losses harder. To overcome this, we propose using the distance to the closest prototype
[40, 23], g(x,p) = min, ||f(x) — w,||3, where f denotes the feature extractor of model p, as an
alternative loss proxy. Unlike uncertainty, this measure is less affected by the normalization of
class prototypes. In Fig. 5, we show that this yields tighter lower bounds for T3A [15] and STAD
[35]—both last-layer TTA methods—underscoring the importance of aligning the proxy choice with
the specifics of the given TTA approach. Lastly, in § A.2 we show results when using energy score
[21] or predictive entropy as a loss proxy—finding that both yield looser bounds compared to model
uncertainty.

Figure 5: Comparison of loss proxies for
last-layer TTA methods on ImageNet-C (GN)
severity 5. Distance to class prototype is more
effective than uncertainty for this TTA class.



6 Conclusion

We proposed a risk monitoring tool for test-time adaptation (TTA) based on sequential testing.
Crucially, our method is unsupervised—requiring no access to test labels—and is compatible with
models undergoing continuous adaptation. We demonstrated its broad applicability across a diverse
set of TTA methods, by showing that it effectively detects performance degradations resulting from
either harmful distribution shifts or adaptation collapse.

Limitations and Future Work While we have shown that our unsupervised alarm has detection
delays not too much larger compared to its supervised counterpart [30] (see Fig. 2), the observed
delays might still be too big for applications where detecting late is (significantly) more costly
compared to raising false alarms. For such settings, it would be worth weakening the requirement
on the probability of false alarm control under Hy in order to gain more power under H;. Perhaps
this could be done by aiming for a weaker average run length control as is commonly done in the
literature on change-point detection using confidence sequences [38, 37]. Moreover, although our
proposed lower bound from Proposition 1 can be computed without access to test labels, verifying
Assumption 1 for a given loss proxy still requires a labeled test stream. While we found empirically
that this assumption holds in nearly all evaluated cases (Fig. 3), developing unsupervised diagnostics
to flag potential violations of the assumption remains an important direction for future work.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets are publicly available. The code is available at https://github.
com/monasch/tta-monitor.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the experimental setup and hyperparameters in § 5 and Ap-
pendix D.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard deviation over different random seeds in Fig. 2, Fig. 3,
Fig. 4, Fig. 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We detail the computational resources used in Appendix D.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [NA|
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss broader impact in Appendix F.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

19


https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: [NA |
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We plan to release a well documented code base.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA|

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

The appendix is organized as follows:

* Appendix A provides additional theoretical (§ A.1) and experimental results (?? - § A.4):

— In § A.1, we describe how we improve the reactivity of our proposed unsupervised
alarm function CI)f (Eq. 7).

— In § A.2, we perform an ablation for our choice of model uncertainty as a loss proxy.

— § A.3 contains results when using a smaller calibration set in our proposed online
threshold calibration (§ 3.4).

— We extend results from § 5.2 with more baselines in § A.4.

— In § A.5, we conduct experiments on label shift.

* Appendix B details our theoretical results.

— In § B.1, we describe our choice of confidence sequences.
— In § B.2 - § B.5, we provide proofs for all our theoretical results.

* Appendix C contains algorithmic descriptions of our methods.
* Appendix D lists experimental details.
* Appendix E contains extended related work (in addition to § 4).

» Appendix F presents the impact statement.

A Additional Results

A.1 Improving Test Power

We have previously shown that our proposed unsupervised alarm (Eq. 7) provides strong false
alarm control guarantees under H (§ B.3)—that is, the alarm is guaranteed not to trigger when
no performance degradation occurs in practice, preventing taking the model ‘offline’ prematurely.
However, for a monitoring tool to be truly useful, it must also be ‘reactive’ under H;—that is, it
should raise an alarm when the model’s performance degrades beyond an acceptable tolerance level
(ew01), and ideally, it should do so with minimal detection delay. Since our unsupervised alarm is
based on lower-bounding the true running test risk twice —a lower-bound confidence sequence L? to
a lower bound B, is used—it is not too surprising that the procedure can sometimes exhibit overly
conservative behavior under ;. We next discuss our strategies for addressing this issue by improving
the power of our proposed unsupervised sequential test.

0-1loss We first note that for the 0-1 loss, the loss threshold 7 can be omitted from the lower bound
B, in Proposition 1. This is a direct consequence of the binary nature of the 0-1 loss (see Corollary 1
in § B.4 for the full derivation). Omitting this scaling for 0-1 loss yields a tighter lower bound By,
which directly translates into a more reactive alarm function—while still maintaining false alarm
guarantees. This is especially important when monitoring performance in TTA, where 0-1 loss is the
one most widely used (as its risk corresponds to the classifier error).

Continuous Losses For continuous losses such as Brier, which can take on any value in [0, 1], the
lower bound must be scaled by a threshold 7 € (0, 1), resulting in looser bounds.? To recover some
of the lost test power, we propose also lower bounding the source risk R using the same threshold 7
as in the test lower bound B; (Proposition 1):

Ry =Elzg] > 7P(z¢ > 7) =: By
which follows directly from Markov’s inequality. Denoting the corresponding upper-bound of the
confidence interval for By with U?, we define the alarm function:

1 1 -
o7 =1 ;Li’ (wo:t, Noit, 20, T) > ;U*’(zO,r) + &l ®)

3For a loss bounded in [0, M] with M > 1, it is theoretically possible that threshold calibration yields + > 1,
in which case scaling by 7 could produce a tighter lower bound. However, since all losses considered in this
work are bounded above by 1, we leave this case for future work.
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where €, := 2 and show its PFA guarantee for the following sequential test

t
1
H EZIPpk(zk. > 1) < Ppy(20 > 7) + &al, VE > 1 )
k=1
1<
H{:Ht*Zl:tf*zppk(zk>T)>PPO(Z0>T)+€K)1.
k=1

The proof is provided in § B.5. Comparing the two sequential tests, we note that Eq. 9 tracks the
probability of high loss, whereas Eq. 5 makes a statement about the expected loss (i.e., risk). While
the test in Eq. 5 is arguably more interpretable—especially considering that the loss threshold 7
is not specified by the user but determined empirically through a threshold calibration procedure
(see Algo. 2)—the advantage of the high-loss probability test in Eq. 9 lies in its greater reactivity.
Specifically, the lower bound L? in the alarm function (Eq. 8) is no longer scaled by 7 (due to the
multiplication by %), resulting in a tighter bound that can recover some of the statistical power lost in
the continuous loss setting, albeit at the cost of reduced interpretability.

We also note that the scaled alarm function (Eq. 8) is closely related to the quantile detector proposed
in Amoukou et al. [1]. Our work extends their approach in (at least) three main ways: first, by allowing
for continuously evolving models, unlike [1] where a static model is assumed; second, by relaxing
the assumption required for the loss proxy (see our Assumption 1 versus their Assumption 4.1); and
third, by providing a theoretical justification for the increased reactivity of the high-probability test
relative to the expected-loss test for continuous losses (via the cancellation of the loss threshold 7).
We elaborate further on these differences in § 4.

A.2 Alternative Loss Proxies

Here, we compare our choice of using model uncertainty as a loss proxy (§ 3.3) with two alternatives:
energy score and entropy. The energy score [21] is one of the most popular measures for detecting
out-of-distribution (OOD) samples: g(x,p) = — log chzl e™X)e where m(x) € R is a vector
of logits for model p. The entropy of the predictive distribution is another common uncertainty-
based measure: g(x,p) = — Zle p(c|x) log p(c|x), where p(c|x) is the predicted class probability.
Entropy is widely used in TTA as an unsupervised objective, e.g., in TENT [42], where models adapt
by minimizing predictive entropy on unlabeled test data.

We present the corresponding results in Fig. 6. While using energy as loss proxies also yields valid
lower bounds (as indicated by Af > 0), the resulting bounds (—) are consistently looser compared to
those obtained when using model uncertainty (—) across all TTA methods and distribution shifts.
We attribute the underperformance of the energy score to its focus on distinguishing in-distribution
versus OOD samples rather than separating correctly and incorrectly predicted instances. In contrast,
a useful loss proxy (see Assumption 1) should be able to differentiate between correctly predicted
samples (i.e., low loss) and incorrectly predicted ones (i.e., high loss).

For entropy (), detection delays are comparable to uncertainty as loss proxy. This confirms that our
risk-monitoring mechanism remains valid and effective even when the same quantity is used both as
the TTA objective and as the monitoring proxy. Indeed, our approach does not rely on the raw proxy
values but instead on the proportion of test points exceeding a calibrated threshold (see Assumption
1). If adaptation minimizes entropy, our online calibration procedure (see § 3.4) dynamically adjusts
this threshold, ensuring that the alarm remains reliable.

Although these findings further support our choice of model uncertainty as a suitable loss proxy,
we believe that exploring alternative proxies that would lead to (even) tighter bounds remains an
important direction for future work.

24



ImageNet ID ImageNet Severity 5 ImageNet ID to Severity 5

1.0
0]
% 0.5 - - -
& = e T ¢ ettt e
0.0 - .‘.-.l..-'-!; ........ = :‘Ii:{liiiIIIIIIIIIIIIIIIIIIIII
I I I I I I I
1.0
—~
Z
4]
=
=~
®)
jan
W
a7
<
9]
I I I I I I I
0 50 100 0 50 100 150 0 200 400
Time ¢ Time 1 Time ¢
= 00 + Eol — iﬂ’(uncertainty) ----- Ai’ (uncertainty)
— RA, p— i.i’ (energy) et Ai’ (energy)
Assumpt. violated i,,b(cntl‘opy) A? (entropy)

Figure 6: Estimated test risk for ImageNet test streams: We compare uncertainty and energy-score as
loss proxies. Uncertainty yields consistently tighter lower bounds on the test risk than the energy
score.

A.3 Ablation on Calibration Set Size and Calibration Frequency

Our method requires a small labeled calibration set from the source distribution, which introduces
additional computational overhead due to repeated evaluation of the adapted model on this set during
adaptation. A small set of (labeled) source samples is commonly used for initializing TTA methods
[53, 54, 41, 55, 56, 2, 57-59], and is indispensable for risk control [30, 1]. We next investigate
whether the calibration set size can be reduced. In addition to addressing the reliance on labeled data,
a smaller calibration set also reduces the runtime overhead of the online calibration procedure.

Fig. 7 shows the estimated upper bound on the source risk Uy and our estimated lower bound on the
test risk Lb for the default calibration set size of N, = 1000 (—) and a reduced size of Ncal = 100

(—). We find that reducing the calibration set to Ny = 100 has minimal impact on both Uo and Lb.
Only in the setting with a gradually increasing distribution shift (right column) do we observe a shght
delay in risk detection compared to the default setup.
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Figure 7: Estimated test risk for ImageNet test streams. We compare the default calibration set size
of Nq = 1000 to a smaller set with N, = 100. Reducing the calibration size leads to no or only
small detection delays relative to the larger calibration set.

Another way to reduce the computational overhead of the monitoring tool is to decrease the frequency
of the online calibration procedure described in § 3.4. Instead of evaluating the adapted model
on the calibration set and selecting a new threshold \j after every adaptation step k, one can
perform this threshold selection only periodically, reusing the most recently calibrated threshold
for the intermediate monitoring intervals. This reduces the number of calibration evaluations while
maintaining continuous monitoring of the model’s performance.

Figure 8: Estimated test risk of TENT on ImageNet-C (ID to Severity 5) when performing the online
calibration step every 1,2, 5, 10, 20 adaptation steps. Less frequent calibration results in only a small
increase in detection delay, indicating a good trade-off between detection delay and computational
overhead.

To assess the impact of such reduced calibration frequency, we monitor TENT performance on
the ImageNet-C test stream with different intervals—performing calibration every 1,2, 5, 10, 20
adaptation steps. Fig. 8 shows that less frequent calibration leads to only a small increase in detection
delay. This suggests that our monitoring framework remains effective even when calibration is
performed at coarser temporal resolutions. Future work may further explore adaptive calibration
strategies that trigger re-calibration only when a significant increase in estimated risk is detected,
rather than at fixed time intervals.
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A4 Extended Comparison to Baselines

We next provide an extended baseline comparison by evaluating the baselines from § 5.1 on the TTA
methods and datasets studied in § 5.2.

ImageNet ID ImageNet Severity 5 Yearbook FMoW-Time

Source
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SHOT

CoTTA
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Figure 9: Estimated test risk for different baselines, datasets and TTA methods.

Fig. 9 displays the estimated test risk across datasets and TTA methods. As expected, the oracle,
supervised lower bound on the test risk, ﬁ? (- -), reliably flags risk violations without causing false
alarms across all datasets and TTA methods. In contrast, the naive plug-in bound ﬁf (—) triggers a
false alarm on the in-distribution ImageNet test stream for CoTTA, despite the test risk remaining
below the alarm threshold. This is unsurprising, as ﬁf lacks formal guarantees on the false alarm
rate. While it yields reasonable risk estimates for the other TTA methods on ImageNet ID, as well
as on ImageNet-C severity 5 and FMoW-Time, it fails to detect risk violations on Yearbook across
all TTA methods. Even though not originally proposed for TTA, we extend the unsupervised test
risk lower bound by Amoukou et al. [1], ﬁf to the TTA setting to enable comparison on this plot.
We note that it behaves poorly with TTA methods. ﬁf (—), also triggers a false alarm on ImageNet
ID for CoTTA. For other TTA methods, it is largely unresponsive resulting in a consistently loose
lower bound on the estimated true test risk R; (—). This looseness leads to missed alarms on the
severe shift of ImageNet-C severity 5 for 3 out of 5 TTA methods. Furthermore, we observe that the
required assumption of their method (---) is violated in nearly every practical setting.

In contrast, as shown in § 5.2, our unsupervised test risk lower bound ﬁf (—) detects risk violations
promptly (ImageNet-C severity 5, Yearbook), while remaining inactive when the risk threshold is not
breached (ImageNet ID, FMoW-Time).
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A.5 Results under Label Shift

As our theoretical framework does not make any assumptions about the nature of the distribution
shift (see § 2), it naturally extends to scenarios with shifting label distributions. To explicitly validate
this, we conducted additional experiments on the Yearbook dataset, where we induced controlled
label shift by reordering test samples according to their class labels, following the setup of [10, 35].

Fig. 10 compares our monitoring results for Yearbook with (right) and without (leff) label shift.
Test-time adaptation methods perform worse under label shift, as reflected by the higher empirical

risk R; (—). Our method reliably detects this deterioration, triggering an earlier alarm across all TTA
methods. While Assumption 1 becomes slightly looser in this setting, the monitor still raises an alert,
demonstrating that our framework effectively captures failures of TTA methods caused by label shift.
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Figure 10: Estimated test risk on Yearbook. We compare a test stream affected only by covariate
shift (left) with one that additionally exhibits label shift (right). Under label shift, TTA methods
show higher empirical risk, while our risk monitor detects the degradation earlier and raises an alarm
accordingly.
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B Theoretical Results

B.1 Choice of Confidence Sequences

For an introduction to confidence sequences, we refer the interested reader to Howard et al. [13] and
Appendix E of Podkopaev and Ramdas [30]. Throughout this paper, we use a Hoeffding confidence
interval to estimate the upper bound on the source risk. Accordingly, the finite-sample penalty
term is given by wy = \/ log (1/source ) /Near- For the lower bound on the test risk, we use the
conjugate-mixture empirical Bernstein (CM-EB) confidence sequence proposed in Theorem 4 of
Howard et al. [13], chosen for its minimal assumptions. To obtain the finite-sample terms w; for
t > 1—which depend on s and the empirical variance of the observed sequence—we use the
gamma-exponential mixture bound from Proposition 9 in Howard et al. [13].

For the confidence sequence L? used in our proposed unsupervised alarms ®% (Eq. 7) and ®7 (Eq. 8),

we apply a CM-EB lower confidence sequence for % Zzzl Pp, (ug > Ar) with qyeg, , and an upper
Hoeffding confidence interval for Pp, (ug > Mg, zg < 7) With uegt,, such that cies; + Qest, = Ottest-

B.2 Unsupervised Lower Bound Derivation (Propositon 1)

Proposition 1. Assume a non-negative, bounded loss ¢ € [0, M|, M > 0. Further, assume that for a
sequence of losses zg.;, a sequence of loss proxies Wg.; together with thresholds Xy, ..., \s € R, 7 €
(0, M) satisfying Assumption 1 are available. Then the running test risk can be lower bounded as

t

_ 1

Ri(pre) > 7 (t prk(uk > Ag) — Pp,(ug > Ao, 2o < T)) ,Vt > 1.
k=1

=By

Proof. The proof technique is inspired by the derivation presented in Amoukou et al. [1]; see Eqgs.
(12)—(15) in their paper. To derive a lower bound on the true running test risk, we first apply Markov’s
inequality and then invoke Assumption 1:

¢(D1:t) ZEPk ZPPk Zg > T)

t

1

T <tZPpk(uk >)\k7Zk: >T)+Ppk(uk §)\k,zk >T)) =
k=1

Markov s 1

1 i Ass.1
T\ Z]P’pk(uk > Ag) — Pp (ug > Mg, 21 < 7))+ Pp,(up < Apyzip >7) | >
k=1

t
1
T (t > Pp(ug > M) = Pp,(ug > Ao, 2o < T))

k=1

O

If the risk definition includes conditioning on Xi.;_1, i.e., Ri(px) := Ep, [2r|X1:k—1], the proof
proceeds analogously, with the only change being the use of conditional Markov’s inequality. In this
case, the resulting bound holds almost surely.

B.3 PFA Control Guarantee

Proposition 2. The unsupervised alarm ®% (Eq. 7) for the TTA sequential test (Eq. 5) satisfies a
probability of false alarm (PFA) control guarantee:

PHU (Elt > 1, (I)? = 1) < Qest + Qsource -

29



Proof. The proof closely follows the PFA proof for the supervised alarm from Podkopaev and
Ramdas [30], see Appendix D there. To show the PFA guarantee we proceed as:*

Pr,(3t > 1,0 =1) =Py, (3t > 1,LL — U > €q)) =
]P)Ho (Ht > 1, (L? — Rt) — (U — RO) > €0l — (Rt — Ro)) <
Py, (3t > 1, (L2 — Ry) — (U — Ry) > 0),
where the 1nequahty follows from the fact that under Hy (Eq. 5), we have that €,y > R; — Ry. Since

3t > 1,(LY — Ry) — (U — Ry) > 0 implies that either 3 > 1, LY — R; > 0 or U — Ry < 0, we can
use union bound to continue as:

Py,(3t > 1,(LY — Ry) — (U — Ry) > 0) <
P(3t>1,L — Ry > 0) + P(U — Ry < 0) < test + Qsource 5
where the last inequality follows from the fact that L? is a lower bound confidence sequence for the

lower bound By, i.e., P(B; > Li’ LVt > 1) > 1 — ey, together with Proposition 1, which ensures
R; > B;,Vt > 1, and the fact that U is the upper bound of the confidence interval for Ry.

O

B.4 Tighter Bound for 0-1 Loss

Corollary 1. For a 0-1 loss function, assume that for a sequence of losses zy.;, a sequence of loss
proxies ., together with thresholds \q, . . ., \y € R satisfying Assumption 1 are available. Then the
running test risk can be lower bounded as

t
_ 1
Ri(p1:t) = n > Pp (ux > M) — Pp, (g > Ao, 2o = 0) , V¢ > 1.

Proof. This (tighter) bound follows from the fact that for 0-1 loss, Markov’s inequality is unnecessary
due to the binary nature of the loss:

(01) 1
+(D1:t) ZEPk zy] = ZPPk zr, = 1].

The remainder of the proof then proceeds identically to that of Proposition 1. O

Observe how the lower bound for 0-1 loss is the same as the lower bound for a general (bounded,
non-negative) loss in Proposition 1 up to the loss threshold 7. Additionally, we leave out the loss
threshold 7 from Assumption 1, i.e., we assume that the proxy sequence uyg.; is such that:

—_

t
72 uk>)\k,zkf0)<IP’p0(u0>)\07z0fO prk uk<)\k,zkf1)
=1 k: 1

~+

B.5 PFA for '"Probability of High Loss' Test

Proposition 3. The unsupervised alarm ®] (Eq. 8) for the ‘probability of high loss’ TTA sequential
test (Eq. 9) satisfies a PFA control guarantee:

PHO (Ht >1, (PZ— = 1) < Qresr + Qsource -

Proof. To simplify notation, denote with R} := 137 _ Pp, (z; > 7) and Rf := Pp, (2o > 7).
From the proof of Proposition 1, it follows that le > %Bt, which, combined with the fact that Lfg is
a lower bound confidence sequence for B, implies that P(R]f > %Liﬂ YVt > 1) > 1 — Qg Similarly,

“To simplify notation, we omit all arguments of the relevant risks and confidence sequences in the proof (e.g.,
we abbreviate U(zo) as U).
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since U? is an upper bound of the confidence interval for 7Rg, it follows that P(LU® > Rf) >
1 — aource- The rest of the proof is then indentical to the proof of Proposition 2:

1
o

1 _ 1 N _ Hp
Pu, (3t > 1, (- L = BY) = (ZU = Rg) > éa — (R = Rp)) <

1
Pry(3t > 1,87 = 1) =Py, (3t > 1, - L — ;Ub > &ot) =

1 — 1
Puy (3t > 1, (- Ly = BY) = (ZU = Rg) > 0) <

1 _ 1
P(Ht > 1, ;L? - R]tp > 0) +P(;U - RE < O) < Qttest + Qsource -
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C Algorithms

Algorithm 1: TTA with Risk Monitoring

Input :Calibration data Doy = { (@, y;) } 24 with (@, ;) ~ P, test data DX = {@;} % with
x; ~ Py, loss function ¢, proxy function g, source model py, tolerance level €y,
significance levels aiource and cuest, TTA method b : (pr—1 X Dﬁ) — Dk

Compute source losses zg ; = £(po(x;), ¥:)

Compute source loss proxies up ; = g(&;, po)

Find source thresholds Ao, 7 := arg max, . FI(\, 75 {(20,i, g ;) )

i=1
Ncal

Compute upper bound U using {zp; };-4 and osource

for k> 1do
Perform TTA update pj, = h(pp_1,DE)

Compute losses of model py, on Dey: zé];) = L(pr(xi),yi)

Compute loss proxies of model py, on Dy ugfi) = g(xi, pr)

Update proxy threshold \j, := arg max, F1(\, 7; {(zé’fi), uékl))}f\;“{)

Compute loss proxies of model py, on Dg: Uk = g(x;, pr)

Compute lower bound L using {u1 )M, .., {un.i YN {20032 Mok 75 Quiest
Compute alarm Pt =1 [ﬁz >U+ etol}

if &% = 1 then
Terminate TTA
‘ break
else
Predict using py, on DE: §; = arg max, pp(x;).
continue

Algorithm 2: Online Threshold Calibration

Input :Calibration data Dy = {(2;, yi)}f\i"’l‘ with (2, y;) ~ Po, loss function ¢, proxy
function g, source model pg, TTA models p1, ..., p;

Output :loss threshold 7, proxy thresholds Mot

Compute source losses zp,; = ¢(po(x;), ¥;)

Compute source loss proxies ug ; = g(x;, po)

Find source thresholds Ao, 7 := arg max, . FI(\, 75 {(20,i, g i)}t

fork=1—tdo

Compute losses of model py, on Dey: zé’;-) = L(pr(xi),yi)

Compute loss proxies of model py, on Dy : u(()]fi) = g(xi, pr)

Update proxy threshold )\, := arg max, F1(\, 7; {(zé’i-), uékl))}fvz“ll)

return 7, \g.;
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D Experimental Details

D.1 Datasets

* ImageNet-C [12]: This dataset applies 15 types of algorithmic corruptions (e.g., Gaussian noise,
blur, weather effects, digital distortions) at five severity levels to the original ImageNet [60]
validation set. The dataset preserves the original 1,000-class classification task, using the same
labels and image resolutions. In our setup, we focus on Gaussian noise corruption.

* Yearbook [8]: This dataset contains portraits of American high school students taken over eight
decades, capturing changes in visual appearance due to evolving beauty standards, cultural
norms, and demographics. We follow the Wild-Time preprocessing and evaluation protocol [45],
resulting in 33,431 grayscale images (32x32 pixels) labeled with binary gender. Images from
1930-1969 are used for training, and those from 1970-2013 for testing.

* FMoW-Time: The Functional Map of the World (FMoW) dataset [61] consists of 224x224 RGB
satellite images categorized into 62 land-use classes. Distribution shift arises from technological
and economic changes that alter land usage over time. FMoW-Time [45] is a temporal split of
FMoW-WILDS [61, 62], dividing 141,696 images into a training period (2002-2014) and a
testing period (2015-2017).

D.2 TTA Methods

We evaluate our monitoring tool across several TTA methods, which differ in the set of adapted
parameters (e.g., normalization layers, full model, classification head) and in their objective functions
(e.g., entropy minimization, information maximization, log-likelihood maximization):

e TENT[42] updates normalization layers by minimizing test entropy.

* SHOT [19] adapts normalization layers using information maximization and self-supervised
pseudo-labeling to align target representations with a frozen source classifier.

* SAR [27] updates normalization layers via an entropy minimization objective. It filters out
high-entropy samples and guides adaptation toward flatter minima.

e CoTTA [41] updates all model parameters using a student-teacher approach on augmentation
averaged predictions. It also employs stochastic weight restoration to mitigate forgetting.

* T3A [15] adjusts only the final linear classifier by computing class-wise pseudo-prototypes from
confident, normalized representations.

e STAD [35] updates only the last linear layer by tracking the evolution of feature representations
with a probabilistic state-space model.

D.3 Implementation Details

All experiments are performed on NVIDIA RTX 6000 Ada with 48GB memory. We plot the mean
and standard deviations over 20 runs. The variability across runs stems from calibration set sampling
and test sample shuffling with different random seeds. For Fig. 5 and ??, we use 10 random seeds.

For each TTA method, we use the default hyperparameters proposed in the respective paper. We use
a test batch size of 32 for ImageNet and 64 for Yearbook and FMoW-Time.

We use the confseq package [63] by [13] to compute the conjugate-mixture empirical Bernstein
confidence lower bound on the target risk. This confidence sequence framework supports tuning for an
intrinsic time ., which we set by default to the first 25% of the sequence length for all experiments.
To implement the baseline ﬁtd from Amoukou et al. [1], we use the same loss proxy—uncertainty—as
in our method.
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E Further Related Work

Error and accuracy estimation aims to assess model performance on unlabeled test data, which is
often subject to distribution shift [64, 65]. This is typically achieved via model uncertainty [66, 4, 67—
69] or model disagreement [70, 71, 16, 33, 18, 72, 73]. Uncertainty-based methods exploit the
predictive distribution of the model— for example through the maximum class probability [66] or the
true class probability [4]—and learn a threshold to distinguish correctly from incorrectly predicted
samples [67-69]. Disagreement-based error prediction methods leverage the theoretical equivalence
between model disagreement and test error under calibration [70, 16]. However, these methods often
require training multiple models—sometimes even from different architectures [71, 70]. Closest to
our work [18, 31, 74], estimate the accuracy of TTA methods based on disagreement. Notably, by
exploiting theoretical results from [70], Lee et al. [18] proposes an accuracy estimation method based
on dropout disagreement. They differ from our work by (i) providing an estimator of test risk directly
while we are interested in signaling a significant increase in test risk compared to the source risk; as
such (ii) their method does not come with guarantees on the false alarm rate; and (iii) they require
calibration (their Definition 3.3) to preserve theoretical validity of their risk estimator while we rely
on separability of high and low error samples (Assumption 1).

TTA robustness Recent work has identified several scenarios where TTA methods tend to degrade.
These include adaptation under non-stationary test distributions [41, 75, 46, 54, 6, 22, 76, 35],
label shift [10, 26, 3, 46], mixed domains within a test batch [27, 54, 22], small test batch sizes
[27, 54, 22, 6, 35], and adaptation in the presence of malicious samples [29, 43]. Most such work
on TTA robustness has focused on proposing more robust TTA methods and developing evaluation
benchmarks [10, 22, 46, 76]. Liu et al. [77] analyze failure cases of the related test-time training
paradigm, which requires a self-supervised objective during training. They derive an upper bound on
test risk dependent on the effectiveness of the self-supervised loss. In contrast, our approach does
not require any modification to the training procedure and provides guarantees that hold regardless
of the model’s original training objective. Also related to our work is research on TTA model
collapse—where models degenerate to trivial solutions during adaptation [31, 27, 18, 78]—and
efforts to identify optimal reset mechanisms that revert the model back to its source parameters during
deployment [26, 18, 78]. In contrast, we propose a general-purpose monitoring tool that provides
statistical guarantees on risk control for arbitrary TTA methods. Rather than focusing on a specific
mitigation strategy, our tool can inform a range of interventions—such as resetting the model to its
source for continued adaptation or taking it offline entirely for retraining [79].

F Impact Statement

This work introduces a statistically grounded framework for detecting risk violations during TTA,
a key challenge for deploying machine learning models in dynamic, real-world environments. By
enabling risk monitoring without access to labels, our approach promotes safer and more trustworthy
use of TTA methods—particularly in high-stakes domains such as healthcare, autonomous systems,
and finance, where undetected model failure can have serious consequences. Our method comple-
ments existing adaptation techniques by offering a safeguard against silent performance degradation
and model collapse, helping practitioners determine when adaptation is no longer effective. In doing
S0, it supports more responsible and robust deployment of adaptive models. While the framework
provides high-probability guarantees, misuse or overreliance could lead to overconfidence in model
reliability. We therefore emphasize the importance of understanding its assumptions and limitations.
Overall, this work contributes to the safe deployment of adaptive machine learning models under
distribution shift.
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