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Abstract

We study the problem of clustering data points in a streaming setting when one has access
to the geometry of the space only via approximate nearest neighbour (ANN) oracles. In
this setting, we present algorithms for streaming O(1)-approximate k-median clustering and
its (streaming) coreset construction. In certain domains of interest, such as spaces with
constant expansion, our algorithms improve upon the best-known runtime of both these
problems. Furthermore, our results extend to cost functions satisfying the approximate
triangle inequality, which subsumes k-means clustering and M -estimators. Finally, we run
experiments on Census1990 dataset wherein the results empirically support our theory.

1 Introduction

In recent years, the streaming model of computation has become very popular for analyzing large datasets.
In this model, the objective is to compute some statistic or function of the dataset (eg: frequent items, norms,
etc.), with access to data points sequentially. Moreover, only one or a few passes through the stream are
allowed and the algorithm is permitted to use memory, sub-linear in the number of data points. A general
technique is to compute and store a succinct representation, typically called a sketch, of the points seen till
a given point in the stream and to update it efficiently upon seeing a new point. A key challenge is to ensure
that the size of the sketch is sub-linear in the number of data points. For more details, we refer the reader
to Muthukrishnan et al. (2005); Babcock et al. (2002) for comprehensive surveys.

In this work, we are concerned with the problem of clustering over data steams using only approximate
nearest neighbour (ANN) search. Clustering is a ubiquitous unsupervised data processing and exploratory
technique wherein the high-level goal is to accumulate similar points together. Clustering and ANN search
are two classical geometric problems which have been extensively studied and it is folklore that these two
bear connections. We investigate this connection with the following questions: “Can we devise clustering
algorithms with provable guarantees with access to the geometry of the space via only ANN queries"? Secondly,
“are there (interesting) settings wherein this yields an overall improved runtime compared to prior work"?

To this end, we present algorithms for k-median clustering which work with blackbox ANN oracle accesses.
A related problem is that of building coresets, which are small but representative sub-sample of the dataset
such that it approximates the cost of every solution (see Section 2 for a formal definition). In this work,
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we are concerned with building coresets with respect to the k-median clustering cost. For both these
problems, our algorithms are simple and provably correct adaptations of known algorithms: Braverman
et al. (2011) for streaming k-median clustering, and both Chen (2009) and Braverman et al. (2016) for
its coreset constructions, to the ANN oracle setting - we will call these Algorithm 1, Algorithm 2 and
Algorithm 3 respectively. We furthermore instantiate these with specific ANN constructions, which aided
by fast ANN search, give improvements in overall runtime. In practice, it is observed that many point
sets in high-dimensional ambient space usually have an intrinsic low-expansion structure. Motivated by
this, there has been a series of results studying ANN search in small expansion spaces (to be formalized
later), for example (Beygelzimer et al., 2006; Krauthgamer and Lee, 2004). We show that in these constant
expansion spaces we get a strict improvement in terms of running time, of k-median clustering and its coreset
construction. Specifically, with n points and k target clusters, the runtime improves from O (nk logn) to
O (n log(k log(n/k))) for both problems without affecting the space complexity. Moreover, in domains other
than constant expansion spaces, popular methods like Locally Sensitive Hashing (LSH) (Indyk et al., 1997),
when used as ANN oracles, can trade-off faster runtime for worse space complexity, in clustering.

We summarize our main contributions as follows.

1. We present algorithms for streaming k-median clustering and its coreset construction using only
blackbox ANN oracle accesses.

2. Equipped with sub-linear time ANN search, this speeds up the overall runtime of streaming k-
median clustering and its coreset construction. In particular, in spaces with constant expansion
constant, the runtime improves from O(nk log(n)) to O(n log(k log(n/k))) without sacrificing the
space complexity.

3. A minor and unrelated result is that we improve the space complexity of streaming k-median clus-
tering algorithm of Braverman et al. (2011) from O(k log(n)) to O(k log(n/k)) (with and without
using ANN). We note that this improvement only manifests in certain restrictive regimes.

4. Our results extend to distance functions satisfying approximate triangle inequality, such as those
used in k-means clustering, M -estimators etc.

1.1 Prior Work

The problems of k-median and k-means clustering have been widely studied. The rich history consists of
algorithms with provable guarantees as well as heuristics which work well in practice. One popular such
heuristic for k-means clustering, based on local search, is Lloyd’s heuristic (Lloyd, 1982), which alternatively
updates the cluster assignments and the cluster centers. However, it is easy to come up with arbitrarily
bad examples for it. The first polynomial time algorithm which gives a constant approximation was given
by Charikar et al. (1999), which was then improved by a line of work (Charikar and Guha, 2005; Jain and
Vazirani, 2001; Arya et al., 2004). The first result for k-median clustering in the streaming setting was
given by Guha et al. (2000) which achieves a O(21/ε) approximation using O(nε) space. Meyerson (2001)
introduced the related problem of Online Facility Location (OFL) which paved way for a stream of works
on k-median clustering using OFL. In particular, Charikar et al. (1999) gave an algorithm that produces
a O (1) approximate solution using O(k log2 n) space, subsequently improved to O(k logn) by Braverman
et al. (2011). Another popular technique for the clustering problem is to construct ε-coresets of the dataset
with respect to the clustering cost. Herein, the idea is to extract a weighted set from the original set such
that the cost of any k-median clustering on this set is close to that on the original set. The first coreset
construction was given by Har-Peled and Mazumdar (2004) for k-median and k-means clustering which
uses O(kε−d log2d+2 n) space. Subsequent works by Frahling and Sohler (2005); Chen (2009); Feldman and
Langberg (2011); Braverman et al. (2016) improved upon the guarantees and also showed how to adapt the
construction to the streaming setting.

We note that there are indeed previous works which explore this connection between clustering and ANN
search, however most of these are heuristics which use ANN as an implementation detail (Deng and Zhao,
2017; Franti et al., 2006). The most related to ours is that of Shindler et al. (2011), which as ours, builds
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upon the work of Braverman et al. (2011) for streaming k-median clustering. Their work addresses its
application to real data sets, and one of the tricks they employ is ANN search, which they remark enjoys
theoretical guarantees as well. However, they are primarily limited to only one such ANN method - random
projections, which they use in their implementation. Moreover, they only give bounds in expectation, their
runtime has an undesirable dependence on optimal cost, and suffer from a large unspecified constant in their
approximation guarantee. On the other hand, our methods work with blackbox ANN oracles and we give
high probability bounds with precise constants.

1.2 Overview of results

In this section, we state our results and discuss the key insights. The reader is encouraged to refer to section 2
to see exact definitions of the technical terms used. Our results are presented in a general setup wherein
one has access to the geometry of the set via blackbox ANN oracles. Our theorems are therefore stated in
terms of the update, query and space complexities of the ANN oracle/data structure, which are functions of
its size (i.e. number of data points). We first state the theorem for streaming k-median clustering.
Theorem 1 (k-median clustering). Given an ANN oracle with q(·) query time, u(·) update time and
s(·) space complexity, a [O(1), O(1)]-bicriterion approximate k-median clustering solution can be computed
on a stream of n points with probability at least 1 − 1/poly(n) while using s(k log(n/k)) space and with
O(u(k log(n/k)) + q(k log(n/k))) worst-case update time.

Even though the above theorem is stated for finding a bicriterion solution, we will, in section 3, show how to
efficiently convert it into an O(1)-approximate solution. In terms of runtime, our algorithms makes exactly
n calls to the ANN oracle for n points. We remark that this is optimal in terms of oracle complexity in
our setting - i.e when we have access to the geometry via ANN oracles. It is easy to see as a single bad
point can arbitrarily change the optimal clustering, and therefore we need to query at every point. Another
(minor) implication of this theorem is a separate (unrelated to ANN) result: we improve the space complexity
for k-median clustering of Braverman et al. (2011) from O(k log(n)) to O(k log(n/k)) even without ANN
oracles. A final remark is about computational complexity of k-median clustering. For n points and k
clusters, the classic lower bound on runtime of any O(1)-approximate randomized or deterministic algorithm
is Ω(nk) (Guha et al., 2000; Mettu and Plaxton, 2004). However, this lower bound is established in a limited
computational framework that counts the number of distance queries any algorithm necessarily needs to
make. Our result indicates that it is quite pessimistic, as there are spaces that admit sub-linear time ANN
search (like Euclidean spaces), which suffices for solving the problem of k-median clustering faster.

We now present our result on constructing ε-coresets.
Theorem 2 (Coreset). Given an ANN oracle with q(·) query time, u(·) update time and s(·) space complexity,
an ε-coreset for k-median can be computed on a stream of n points with probability at least 1−1/poly(n) in
O(u(k log(n))+q(k log(n))) worst-case update time and O(ε−2k log2 n+s(k log(n))) space.

We adapt two coreset construction frameworks: Chen (2009) (Algorithm 2 ) and Braverman et al. (2016)
(Algorithm 3 ), to the ANN setting. Equipped with fast ANN search, this similarly allows us to improve
their runtimes. For the first, we adapt the ring construction of Chen (2009) to the ANN setting, and show
that this approximation preserves the theoretical properties. For the second, we employ techniques from
Braverman et al. (2016) which allows construction of coresets by importance sampling even when sampling
probabilities can be overestimated. We essentially show how using ANN oracles can lead to controllable
worsening of sampling probabilities, and still enable us to construct ε-coresets. An important remark is that
second framework uses the O(1) approximate k-median clustering algorithm of Braverman et al. (2011) as a
crucial subroutine. Therefore our Algorithm 1 which adapts the k-median clustering algorithm of Braverman
et al. (2011) to the ANN oracle setting is important to make the coreset construction Algorithm 3 wholly
implementable using ANN oracles.

Applications. We discuss how specific ANN oracle instantiations manifest in overall runtime and space
bounds. Table 1 gives the query complexity of various ANN methods, as well as space and time complexities
when used for k-median clustering and ε-coresets. For coreset construction, for ease of exposition, we only
list bounds obtained from adapting the algorithm of Braverman et al. (2016) (Algorithm 3 ), and omit Chen
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ANN
method

Geometry
of the set

q(m)-
Query
complexity

- k-median clus-
tering

ε-coreset

Cover
trees

Expansion O(τ12 logm) time O(n log(k̃)) O(n log(k̄))

Constant τ space O(k log(n/k)) O(ε−2k log2(n))
Navigating Expansion τO(1) logm time O(n log k̃) O(n log k̄)
Nets Constant τ space O(k log(n/k)) O(ε−2k log2(n))
LSH (Rd, l1) O(m1/2d) time O(nd

√
k̃) O(nd

√
k)

space O(k̃3/2 + k̃d) O(ε−2 logn(k3/2 + kd))
LSH Hamming O(m1/2d) time O(nd

√
k̃) O(nd

√
k)

({0, 1}d, l1) space O(k̃3/2 + k̃d) O(ε−2 logn(k3/2 + kd))
Data-
depen-

(Rd, `2) O(m1/7d) time O(ndk̃1/7) O(ndk1/7)

-dent par-
tition

space O(k̃8/7 + k̃d) O(ε−2 logn(k8/7 + kd))

Exhaustive (X , ρ) Any O(m) time O(nk log(n/k)) O(nk log(n))
Search metric

space
space O(k log(n/k)) O(ε−2k log2(n))

Table 1: Runtime and space complexity using different ANN methods in various domains. The query complexity q(m) of
an ANN method is the time complexity to compute an ANN from m candidates. For space partitioning methods (LSH and
others), the query complexity is O (m%d), where % usually is poly(1/c), c being the approximation factor of ANN. For example,
in Euclidean space, we get %=1/c2. For simplicity of presentation, we present the results with c=2, and give bounds in terms
of k̃ and k where k̃ :=k log(n/k), k :=k log n.

(2009)(Algorithm 2 ). In the table, exhaustive search denotes the brute force nearest neighbour search method
which serves as a baseline. Furthermore, we define the terms k̃ and k as k̃ := k log(n/k), k := k logn, which
are used in the table. We see that LSH based methods have faster runtimes but they have worse space
complexity. On the other hand, in constant expansion spaces, cover trees and navigating nets give fast
runtimes with the same space complexity, which establishes out claimed improvement in runtime.

2 Preliminaries and definitions

In this section, we formalize the problem and provide key definitions. Let (X , d) be a metric space, and let
P ⊆ X , |P | = n be the set of points observed in a stream. Given integer k ∈ [1, n], the desired number of
clusters, the problem of k-median clustering asks for a set of k points called cluster centers (or just centers)
from X such that the sum of distances of points in P to the nearest point in C is minimized; therefore it can
be posed as the following optimization problem.

min
C⊆X ,|C|=k

∑
p∈P

min
c∈C

d(p, c) (k-median clustering)

For a fixed k and set of points P , let OPT(P, k) denote the cost incurred by the optimal selection of k centers
from P . A related problem is Online Facility location (OFL), which is used in our algorithm.

Online Facility Location. Given a fixed facility cost f > 0, the facility location problem relaxes the
constraint of selecting exactly k centers to adding a penalty cost of f per center to the total cost. Intuitively,
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the set of points P , called demands, are to be served via a set of facilities such that the total cost of serving
the demands via the nearest facility plus opening facilities is small. Service cost of a point p ∈ P is the cost
of serving this demand via the nearest facility, defined via its distance to the nearest facility. Therefore the
total service cost is

∑
p∈P minc∈C d(p, c). Facility cost is the cost incurred in opening facilities; the total

facility cost = |C|f . Therefore, facility location problem can be formulated as : min
C⊆X

∑
p∈P min

c∈C
d(p, c) + |C| f .

The online variant of facility location, known as Online Facility Location (OFL) considers the problem of
facility location in the streaming setting with the added constraint that once a point is assigned to a particular
facility, it cannot be changed in the future (even if we open a nearer facility). Moreover, once you designate
a point as a facility, it remains a facility henceforth. Equivalently, the service and facility costs incurred
while observing the stream are irrevocable.

α-metric Spaces and k-service clustering. The problem of k-service clustering generalizes the objective
of k-median clustering to α-metric spaces, which are defined by relaxing the triangle inequality to what is
called α-approximate triangle inequality (ATI): ρ(x, y) ≤ α(ρ(x, z) + ρ(z, y)) ∀ x, y, z ∈ X (see Appendix A
for formal definitions). It can be posed as the following optimization problem.

min
C⊆X ,|C|=k

∑
p∈P

min
c∈C

ρ(p, c) (k-service clustering)

We note that k-median and k-means clustering are special cases of the above (see Appendix A). We now
define some notions of approximations which are widely used for clustering problems.
Definition 1 (λ-approximation). Let k ∈ N, λ > 0. For the k-service clustering problem, a λ-approximation
is a tuple (C, u) where C ⊆ X & u : X → [0,∞] such that

∑
p∈P

min
c∈C

u(c)ρ(c, p) ≤ λOPT(P, k) & |C| = k.

In the above, we are tolerating a constant approximation to the optimal cost but returning a set of exactly
k centers. A bicriterion approximation, defined below, further also relaxes the constraint on the size of the
set of centers from k to O(k).
Definition 2 ((λ, κ)-bicriterion approximation). Let k ∈ N, λ > 0 and 0 < κ < 1. A (λ, κ)-bicriterion
approximation is a tuple (C, u), C ⊆ X & u : X → [0,∞] such that

∑
p∈P minc∈C u(c)ρ(c, p) ≤ λOPT(P, k)

and |C| ≤ κk

Coresets. We first give a formal definition of an ε-coreset, and then discuss some applications. A query
space over X is a tuple (P,w, f,Q) where P ⊆ X , w : P → [0,∞] is a weight function, Q is the set of all
possible queries, W the set of all possible weight functions, and f : X ×W ×Q→ [0,∞].
Definition 3 (ε-coreset). An ε-coreset for the query space (P,w, f,Q) is a tuple (Z, u) where Z ⊆ X and
u : Z → [0,∞] are points and their corresponding weights respectively such that for every q ∈ Q, we have
(1− ε)f(P,w, q) ≤ f(Z, u, q) ≤ (1 + ε)f(P,w, q)

In the context of k-median clustering, a query is any set of k points i.e. any candidate solution of k centers.
Informally, for a given problem, coresets are small, succinct representations of the dataset such that the cost
of any candidate solution on the coreset is close to that on the original set. Recently, coresets have been
designed for various problems such as k-median clustering, M -estimation, Bayesian inference, in offline and
streaming settings (Chen, 2009; Feldman and Langberg, 2011; Braverman et al., 2016; Huggins et al., 2016;
Braverman et al., 2019). In this work, we are primarily concerned with the function being the k-median
cost, but it can easily be extended to k-service cost. A useful property of coresets is that they are closed
under operations like union and composition, formalized as Proposition 1 in Appendix A.

Approximate Nearest Neighbour Oracles. Approximate nearest neighbour search is a classical geo-
metric problem concerning with the design of data structures and algorithms which support sub-linear time
(in number of points) queries for nearest neighbour search. We now define an approximate nearest neighbour
oracle. A more detailed discussion is provided in the appendix.
Definition 4 (Approximate Nearest Neighbour (c(δ)-ANN) Oracle). For a given space X , α-ATI function
ρ and set C ⊆ X , an algorithm A is a c(δ)-ANN Oracle if given a query point x ∈ X , it returns (y, ρ(x, y))
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where y ∈ C, such that with probability at least 1− δ, ρ(x, y) ≤ c(δ) ·minz∈C ρ(x, z). The query, update and
space complexity of ANN is denoted by q(|C|), u(|C|) and s(|C|) respectively.

Cover trees (Beygelzimer et al., 2006), Navigating Nets (Krauthgamer and Lee, 2004) and Locally Sensitive
Hashing (LSH) (Indyk et al., 1997; Andoni et al., 2018) are some examples which can serve as an ANN oracle.
A key quantity which these bounds depend on is expansion constant. Informally, the expansion constant of
a metric space is the largest factor by which the number of points in any ball increases when we expand a
ball to be of twice the radius.
Definition 5 (Expansion constant τ). (Beygelzimer et al., 2006) Let (S, ρ) be a metric space. Fix any
r > 0, define Bρ(p, r) = {x : ρ(p, x) ≤ r} and BSρ (p, r) = Bρ(p, r)∩ S. The Expansion Constant of set (S, ρ)
is defined as τ , if τ ≥ 2 is the smallest number such that

∣∣BSρ (p, 2r)
∣∣ ≤ τ ∣∣BSρ (p, r)

∣∣ for any r.

3 Streaming k-median Clustering

In this section, we discuss the algorithm for streaming k-median clustering (Algorithm 1 ) and sketch its
analysis. We remind the reader that in the streaming model of computation, we observe data points one
at a time, and the goal is to answer some pre-defined query on the whole stream. Our algorithm builds
upon the algorithms of Charikar et al. (2003); Braverman et al. (2011) which uses OFL as a subroutine. The
algorithm in full is presented in Algorithm 1. The algorithm runs in phases, wherein each phase corresponds
to a guess, say, L, of the lower bound to the optimal cost OPT. After reading a new point, the algorithm
computes its approximate nearest neighbour in the set of candidate facilities, and then either adds the point
to the facility set or incurs a service cost - line 8 of Algorithm 1, where the notation if probability(x) then
y denotes the random event to take action y with probability x, by tossing a (Bernoulli) coin with bias x.
If the guess is too low, we either end up opening too many facilities or the service cost grows large. At this
point, we trigger a phase change where we increase our guess by a constant factor β, and do a soft reset.
We empty the facility set and push its points to the start of the stream. If we keep incrementing the phase,
at some point our guess to the lower bound exceeds the optimal cost OPT. We call this phase the critical
phase. We show that upon setting the values of parameters appropriately, the algorithm processes the whole
stream before the critical phase and returns a constant approximate solution.

There are essentially three changes to the original algorithm of Braverman et al. (2011): line 7, line 13,
and the value of the f . In line 7, we use ANN instead of exact nearest neighbour and in line 13 we change
the condition from |C| > (γ − 1)k(1 + log(n)) to (γ − 1)k(1 + log(n/k)). These two changes independently
improve the runtime and space complexity of Braverman et al. (2011) respectively. The first improvement
comes from faster runtime of ANN search compared to exact nearest neighbour computation, and the second
comes from an improved analysis of Braverman et al. (2011).

Intermediate to our analysis is the analysis of OFL with ANN oracles. As was shown in Meyerson (2001);
Braverman et al. (2011) that the service cost and number of facilities is at most a constant times optimum
(using distance oracles), we show that that same holds with ANN oracles. We formalize this in Theorem 3.
Theorem 3 (OFL). Given an c(δ)-ANN oracle with u(·) update, q(·) query and s(·) space complexity, OFL
run on a stream of n points from an α-metric space with facility cost f = L

1+logn/k where L ≤ OPT incurs

service cost at most
(

3c(δ/4n)α+ e
e−1

(
1 + log

( 4
δ

)))
OPT and produces at most (1+6 log(4/δ)c(δ/4n) α)k(1+

log (n/k)) facilities, with probability at least 1−δ. The algorithm runs in O (n(q(k log(n/k)) + u(k log(n/k))))
time.

We now give the main theorem for Algorithm 1 with the proof in the appendix.
Theorem 4. Given a stream of n points P from an α-metric space (X , ρ) and a positive integer k, Al-
gorithm 1 executed with parameters set as β = 2α2cOFL + 2α and γ = max

{
4α3c2OFL , βkOFL + 1

}
,

where cOFL :=
(

3c(δ/4n)α+ e
e−1

(
1 + log

( 4
δ

)))
, kOFL := (1 + 6 log(4/δ)c(δ/4b)α) returns a set C with

|C| = O (k log(n/k)) such that COST(P, C) ≤ αβγ
β−αOPT(P, k) with probability at least 1 − δ. The algorithm

runs in time O (n(q(k log(n/k) + u(k log(n/k))) and uses space s(k log(n/k)).
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Algorithm 1 Streaming k-median clustering
1: Input: Integer k ≥ 1, stream P of n points, a c(δ)-approximate ANN Oracle
2: L1 ← 1, i← 1, w(p)← 1 for all points p ∈ P
3: while solution not found do
4: C ← ∅,COST← 0, f ← Li/(k(1 + log(n/k)))
5: while stream not ended do
6: x← next point from the stream
7: (y, ρ(x, y))← ANN Oracle(x, C)
8: if probability

(
min

(
w(x)ρ(x,y)

f
, 1
))

then
9: C ← C ∪ {x}
10: else
11: COST← COST + w(x) · ρ(x, y)
12: w(y)← w(y) + w(x)
13: if COST > γLi or |C| > (γ − 1)k(1 + log(n/k)) then
14: Break and raise flag
15: if flag raised then
16: Push facilities in C to the start of stream
17: Li+1 ← βLi, i← i+ 1
18: else Declare solution found
19: Output: C,COST

Constant expansion spaces. An immediate corollary of the above result is obtained by using cover tree
for fast ANN search in spaces of constant expansion, yielding faster runtime.

Corollary 1. Given a stream of n points P from an α-metric space (X , ρ) with constant expansion, and a
positive integer k, Algorithm 1 executed with cover tree data structure as the ANN oracle, and with parameters
specified in Theorem 1 returns a set C with |C| = O (k log(n/k)) such that COST(P, C) ≤ αβγ

β−αOPT(P, k) with
probability at least 1− δ. The algorithm runs in time O (n log (k log (n/k))) and uses space O(k log(n/k)).

Extensions: We remark that in the worst case, Algorithm 1 executes in O(logβ OPT) phases. So the overall
runtime has an undesirable dependence on OPT. Moreover, the size of the cluster set produced is Õ(k) and
not exactly k. Below, we discuss how the algorithm can be provably tweaked to remove these discrepancies.

1. Improved runtime via a routine from Lang (2017). To remove this dependence on OPT, Braver-
man et al. (2011) proposed a pruning method, but it works only for average-case update time. Instead, we
use the deterministic B(X, k) routine of Lang (2017), which not only gives worst case update time guarantee
but also takes advantage of the ANN setting. Given |X| = n points and a positive integer k, B(X, k) returns
a weighted set Z of size

⌈
n+k

2
⌉
such that COST(X,Z) ≤ 2OPT(X, k). Incidentally, if the nearest neighbour

graph of X is pre-computed, the runtime of B(X, k) is O(n). If B(X, k) is executed using a c(δ) ANN oracle,
the set Z returned satisfies COST(X,Z) ≤ 2c(δ)OPT(X, k) with probability at least 1 − δ and runs in time
O(n q(n)). After every phase change, we take the union of the previous and new facilities K and call B(K, k)
on this set. Since in each phase, we get O(k log(n/k)) facilities, the number of facilities removed by B(K, k)
is also O(k log(n/k)). In this way, we are ensured to read O(k log(n/k)) new points at every phase, which
bounds the number of phases by O(n/(k log(n/k))). Therefore, executing B(K, k) via ANN oracles, the total
time is O(n(q(k log(n/k)) + u(k log(n/k)).

2. Extracting exactly k points. As pointed out before, Algorithm 1 produces O(k log(n/k)) clusters.
To reduce it to exact k points, we can use any Random Access Machine (RAM) algorithm, for example Mettu
and Plaxton (2004), on these set of points C. Let cr denote the constant approximation factor incurred by
the RAM algorithm of Mettu and Plaxton (2004) which, on a set of n points takes O(n2) time. The total
runtime therefore increases by O(k2 log(n/k)2), however in the regime when k = O(

√
n), we get the same

overall runtime of O(n(q(k log(n/k)) + u(k log(n/k))). We state this below as a simple corollary.
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Corollary 2. Using a cr approximate RAM algorithm after Algorithm 1 gives a set C̄ of size k such that
COST(P, C̄) ≤ αβγcr

β−α OPT(P, k) with probability ≥ 1−δ. The algorithm takes O(n(q(k log(n/k)+u(k log(n/k))+
(k log(n/k))2) time and uses s(k log(n/k)) space.

4 Building a Coreset

In this section, we show how two popular coreset construction algorithms, in particular, of Chen (2009) and
Braverman et al. (2016), which have optimal runtime (using distance oracles), can be adapted to the ANN
setting. Our results show that we still get improvements in the running time of these algorithms.

4.1 Coreset construction I (Algorithm 2)

Offline Coreset. We first discuss how the offline coreset construction algorithm of Chen (2009) can be
adapted to the case when only ANN queries are allowed. The algorithm operates on a bicriterion solution
obtained from some algorithm. We have already seen that Algorithm 1 gives us one such solution and using
only ANN queries. Given k ≥ 1, ε > 0, the goal is to construct a ε-coreset of a set P of n points. Let
A = {a1, a2, · · · am} be the (λ, κ)-bicriterion solution which implies COST(A,P ) ≤ λOPT(P, k) and |A| ≤ κk.
The coreset construction adapted from Chen (2009) proceeds as follows.

1. Partitioning. The first step is to partition the space into rings. For every point p ∈ P , we find an ANN
in the set A via an ANN-Oracle. This constructs a partition of the space into m sets : P1, P2, · · ·Pm, where
Pi is the set of points in P whose ANN returned in A is ai. We now further partition each of these sets into
concentric circles. To do this, we first define R := COST(A,P )/κn. Note that R ≤ OPT(P, k)/n, i.e. it is a
lower bound on average cost. Let t = dlog(κn)e - the maximum number of concentric partitions we can have
inside each Pi. We use B(a,R) to denote a Euclidean ball of radius R centred at a. We now define the rings
Pij as,

Pij =
{
Pi ∩B(ai, R) j = 0
Pi ∩B(ai, 2jR)\B(ai, 2j−1R) j = 1 to t

The main idea is that we can calculate the indices i and j approximately simply from the answer to the
ANN query. In particular, if p and ∆ are the points and distance returned by ANN oracle respectively, then
i is the index of the point p in A, and j = dlog(∆/R)− 1e, and we get the ring construction.

2. Sampling. The second step is to sample points from these rings. Define s := d cκ
2

ε2

(
k logn+ 1

δ

)
e.

For each partition Pij , if |Pij | ≤ s, then we pick all its points and construct Sij . Otherwise, we draw s
independent and identical samples from Pij to construct Sij . Furthermore, each of the points in Sij is
assigned a weight of |Pij |/s. We finally return S = ∪m,ti,j=1Sij which we claim is a ε-coreset of P , as stated in
full in Theorem 5.
Theorem 5. The coreset construction of Chen (2009) run on n points using a c(δ)-ANN oracle out-
puts an ε-coreset of size O(kε−2(k logn) + log(1/δ) logn) with probability ≥ 1− δ. The space complexity
is O(kε−2(k logn)+log(1/δ) logn+s(k log(n/k))) and update time is O(q(k logn/k)+u(k logn/k))

Streaming Coreset. In recent years, merge and reduce has become a standard technique to convert offline
coresets to the streaming setting. The idea is partition the stream into equal sized blocks, and then use an
offline algorithm to construct coresets of these blocks. In our case, the modifed algorithm of (Chen, 2009)
with ANN is used for the same. We then keep merging and reducing (in size) these coresets as the stream
progresses to get a streaming coreset. The reader is encouraged to see Chen (2009) for details. The proof
follows from the observation that coresets are closed under operations like set union and composition (see
Proposition 1). We therefore obtain the following result.
Theorem 6. The coreset construction of Chen (2009) executed on a stream of n points using a c(δ)-ANN
oracle outputs an ε-coreset with probability at least 1−δ. The size of the coreset output is O(kε−2(k log8 n)),
total space complexity of the algorithm is O(kε−2(k log8 n) + s(k log(n/k))) and the update time of the algo-
rithm is O(q(k logn/k) + u(k logn/k)).
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4.2 Coreset Construction II (Algorithm 3)

We now discuss how another streaming coreset construction technique Braverman et al. (2016) can also be
adapted to work in the ANN setting. Given a candidate solution set C of k centers, for a point p, the
sensitivity s(p) is defined as, s(p) = ρ(p,C)∑

q∈P
ρ(q,C)

i.e its distance to the nearest center in C divided by sum

of distances of all points to their nearest centers. At a high-level, the framework presented in Braverman
et al. (2016) works in two steps. In the first step, we compute a candidate solution and compute sensitivity
of all the data points; in the second step, we sample with probabilities proportional to sensitivity. As in
Braverman et al. (2016), we use the algorithm of Braverman et al. (2011) to compute the set C; however, in
our setting, we use our adaptation with ANN oracles (Algorithm 1). The computational bottleneck is the
step where we need to compute the sensitivities and we show how ANN oracles can accelerate it. We do not
state the full algorithm due to space constraints and since it is essentially based on Algorithm 1. Line 8 of
Algorithm 1 (page 11) in Braverman et al. (2016) involves computing the distance of the new point in the
stream to the nearest point in the facility set. This step dominates in computation over all the other steps
of the algorithm. We replace this by computing approximate nearest neighbour using an ANN oracle. This
replaces the computational cost of O(|C|) by q(|C|) where C is the facility set. In the streaming setting, we
have that the size of facility set C is O(k logn). We now state the detailed statement for Theorem 7.
Theorem 7. Algorithm 1 of Braverman et al. (2016) executed on a stream of n points using a c(δ)-ANN
oracle (line 8) outputs a ε-coreset with probability at least 1 − δ. The size of the coreset is O(ε−2k log2 n +
s(k logn)) and the update time of the algorithm is O(q(k logn) + u(k logn)).

The key idea in the proof of Theorem 7, the details deferred to the appendix, is to show that the sensitivity
computed using ANN orcale (denoted as s̄(p)) gets worsened only by a constant.
Lemma 1. Using ANN, the sensitivities are approximated as s̄(p) ≤ c(δ)s(p) with probability ≥ 1− δ

An important property established by Braverman et al. (2016) is that even if we overestimate sensitivity by
a constant, sampling using this still gives us a ε-coreset. Therefore, the correctness of our modified algorithm
follows simply by invoking the above result. Plugging this in the result of Braverman et al. (2016) gives us
that the size of the coreset is O(ε−2k log2 n+ s(k logn)) and the update time is O(q(k logn) + u(k logn)).

5 Experiments

We run two experiments on USCensus1990 dataset (available at Frank and Asuncion (2010)) on 200,000
points in 68 dimensions. In the first experiment (depicted in Figure 1a), we set the target number of clusters
k = 1000 and evaluate the proposed method (Algorithm 1) with an exact nearest neighbour search and three
approximate NN search methods, namely cover trees1, kd-trees and LSH2. We also compare against standard
and highly-optimized implementations of three other clustering methods, Lloyd’s, Gaussian mixture model
and Elkan’s, available in sklearn python library (Pedregosa et al., 2011). Figure 1a shows the average cost
of clustering against time taken for these methods. We see that cover trees achieve the same cost as exact
NN search, but takes much less time, even less than (highly optimized) sklearn methods, which produce
lower cost clusters. On the other hand, ANN methods kd-tree and LSH do poorly on time taken and/or
the cost of clustering. To investigate further, we evaluate how these methods fare for increasing values of
k. In principle, ANN search methods are developed with the goal to give sublinear query time, once the
data structure is built. In contrast, in our application, the data structure has to updated plentiful times,
as the algorithm proceeds. Therefore, potentially the overhead of update time can overwhelm the benefits
obtained from the sublinear query time. In Figure 1b, we observed that, as expected, the time for clustering
with exact NN grows linearly with k, whereas the overall time taken by LSH grows super polynomially with
k. On the other hand, the time for cover trees grows logartithmically with k, as well as sklearn methods.
However, the time for cover trees grow slower than sklearn methods and therefore is expected to perform
even better in large(r) scale applications.

1Source: https://github.com/emanuele/PyCoverTree/
2Source: https://scikit-learn.org/stable/modules/neighbors.html

9



Published in Transactions on Machine Learning Research (03/2023)

(a) Average cost of clustering against clock time for
n = 200000 points and k = 1000. We also try various
values of hyper-parameter in the ANN constructions,
like maximum depth in cover trees, marked in the same
color, in the plot.

(b) Clock time against increasing values of target number
of clusters k. We omit kd-trees here (but provide it in
Figure 1 in the appendix), as the time for kd-trees grows
exponentially with k, thereby hiding the useful compar-
isons otherwise.

6 Conclusion

We present algorithms for k-median clustering and coreset construction in the setting when only approximate
nearest neighbour (ANN) search queries are allowed. We show, using specific ANN instantiations, that this
improves upon the total runtime of previous algorithms for these problems in certain domains such as
ones with constant expansion constant. We remark that our result can be extended to other clustering
methods, for example k-means++. For the coreset construction part, we focus on algorithms of Chen (2009)
and Braverman et al. (2016) since these have the optimal runtime, however as before, our results can be
extended to other frameworks like Feldman and Langberg (2011).
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A Additional Preliminaries

We start with giving the definition of a semi-metric space called α-metric space which generalizes k-median
clustering to k-service clustering. We first formally define α-Approximate Triangle Inequality (α-ATI).
Definition 6 (α-Approximate Triangle Inequality (α-ATI)). A symmetric positive-definite function ρ :
X × X → R+ satisfies α-ATI if ∀ x, y, z ∈ X , ρ(x, z) ≤ α(ρ(x, y) + ρ(y, z))

In the following claim, we show that ρ = d(·, ·)p satisfies 2p−1-ATI, where d is a metric. Note that for p = 2,
we get that d2 used in k-means clustering satisfies 2-ATI.
Claim 1. If (X , d) is a metric space, then ρ := dp satisfies α-ATI, with α = 2p−1

Proof. For any x, y, z ∈ X , we have,

ρ(x, z) = dp(x, z) ≤ (d(x, y) + d(y, z))p

= 2p
(
d(x, y) + d(y, z)

2

)p
≤ 2p

(
dp(x, y) + dp(y, z)

2

)
= 2p−1 (ρ(x, y) + ρ(y, z))

where the last inequality follows from Jensen’s inequality.

We now define α-metric space.
Definition 7 (α-metric spaces). An α-metric space is a tuplet (X , ρ) where X is a set endowed with a
function ρ : X × X → R+ which ∀ x, y, z ∈ X satisfies the following properties,

1. ρ(x, x) = 0

2. ρ(x, y) = ρ(y, x)

3. ρ(x, y) ≤ α(ρ(x, z) + ρ(z, y))

We now give an important property of coresets, called Merge and Reduce.
Proposition 1. [Merge and Reduce] (Chen, 2009) Coresets satisfy the following two and properties

1. If S1 & S2 are ε-coresets of disjoint sets P1 & P2 respect., then S1 ∪ S2 is a ε-coreset of P1 ∪ P2.

2. If S1 is ε-coreset of S2 & S2 is a δ-coreset of S3, then S1 is a ((1 + ε)(1 + δ)− 1)-coreset of S3.

A.1 Approximate Nearest Neighbor Oracles

The problem of nearest neighbour search is a classical geometric problem concerning with the design of data
structures and algorithms which support queries for nearest neighbour search in various (metric) spaces.
Nearest neighbour search has applications in diverse fields like data science, databases, computer vision
etc (Bhatia et al., 2010). The typical motivation is to have query complexity better than an exhaustive
search. Moreover, the problem is typically relaxed to return approximate nearest neighbours, usually in the
multiplicative sense. A major challenge is to balance the tradeoff between (larger) space and (faster) query
complexity.

We now review and discuss some results and techniques for approximate neighbour search in various domains.
In terms of query complexity, with n points in a d dimensional space, we can characterize existing results
into two mutually exclusive categories:

1. ANN in low dimensions (ANN-ld): poly(d̃) · poly log(n)
2. ANN in high dimensions (ANN-hd): poly(d, n)
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where d̃ is some notion of intrinsic dimensionality of the space, for example: expansion constant, doubling
dimension etc. We remark that there might be algorithms which do not fall in the above stated categories
but for the sake for brevity, we limit ourselves to only the above two. These examples serve to instantiate the
framework and therefore a detailed discussion on them is unnecessary. The interested reader is encouraged
to go through the referenced material.

ANN-ld. In low-dimension spaces, existing works on approximate nearest neighbour search typically use
tree data structures to give algorithms with query times logarithmic in the number of points. Some examples
which fall in this category are cover trees (Beygelzimer et al., 2006), navigating nets (Krauthgamer and Lee,
2004) etc. We restrict ourselves to only cover trees in this article. There are also heuristics which work
well in practice but their guarantees is the same as that of vanilla nearest neighbour search in the worst
case. Some examples are k-d trees and ball trees (Bhatia et al., 2010; Bentley, 1975). To state the result of
(Beygelzimer et al., 2006), we first define expansion constant below.
Definition 8 (Expansion Constant τ , (Beygelzimer et al., 2006)). The expansion constant of a set (S, ρ) is
the smallest value of τ ≥ 2 such that

∣∣BSρ (p, 2r)
∣∣ ≤ τ ∣∣BSρ (p, r)

∣∣ where BSρ (p, r) = Bρ(p, r) ∩ S.

We now restate the result of Beygelzimer et al. (2006).
Theorem 8 ((Beygelzimer et al., 2006)). Cover tree data structure is an (1 + ε)-ANN oracle which succeeds
with probability 1. The query complexity is, q(n) = O (log ∆) + (1/ε)O(1), u(n) = O

(
τ6 logn

)
, s(n) = O (n)

where ∆ is the aspect ratio of the set.

ANN-hd. We now discuss the other class of results which are designed with the consideration that the
dimension is large. Our discussion is primarily drawn from a survey by Andoni, Indyk and Razenshteyn
(Andoni et al., 2018). In these methods, the approximate nearest neighbour search is generally reduced to
its decision variant called approximate near neighbour, defined below.
Definition 9 ((c, µ, δ)-Approximate Near Neighbour). Given a set of n points P ⊂ X , build a data structure
S such that given any query point q ∈ X , such that P contains a point in Bd(q, µ), S returns a point from
Bd(q, cµ) with probability at least 1− δ.

The reader is encouraged to look at Har-Peled et al. (2012) to see the reduction of the approximate nearest
neighbour problem to a sequence of approximate near neighbour problems. We use (c, µ, δ) ANN oracle to
refer to an oracle corresponding to the (c, µ, δ)-Approximate Near Neighbour problem. We now introduce
Locally Sensitive Hashing, an idea central to the problem of approximate nearest neighbour search.

Locally Sensitive Hashing (LSH). Locally-Sensitive hashing (Indyk and Motwani, 1998) is an instan-
tiation of the technique of randomized space partitions. The idea is to come up with a distribution of hash
maps such that a query point collides more with points nearby, but collides with only a few points which
are far away. This is formalized below.
Definition 10 (Locally-Sensitive Hashing (Andoni et al., 2018)). For a metric space (X , d), scale µ > 0,
approximation c > 1 and a set P . Then a distribution H over maps h : X → P is called (µ, cµ, p1, p2)-
sensitive if the following holds for any x, y ∈ X

• If d(x, y) ≤ µ then P
h

[h(x) = h(y)] ≥ p1

• If d(x, y) > cµ then P
h

[h(x) = h(y)] ≤ p2

The distribution H is called an LSH family and has quality ν = ν(H) = log(1/p1)
log(1/p2) .

We now restate a theorem from Andoni et al. (2018) which formally describes how existence of an LSH
family facilitates construction of ANN oracles.
Theorem 9 (Andoni et al. (2018)). Suppose that a metric space (X , d) admits (µ, cµ, p1, p2)-sensitive LSH
family H with scale µ. Moreover, suppose that the space required to store h(·) is σ and for a given x, y ∈ X ,
h(x) can be computed in τ time and d(x, y) be computed in O (τ) time. Let % = %(H) = log(1/p1)

log(1/p2) . Then there

exists and (c, µ, δ) ANN Oracle with q(n) = O
(
n%τ log1/p2 n

p1

)
and space complexity = O

(
n1+%

p1
+ n%σ log1/p2 n

p1

)
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LSH is a data-independent space partitioning approach. There are other approaches which constructs data
structures based on partitions that depend on the dataset. These usually improve over the results obtained
via LSH. Table 2, drawn from (Andoni et al., 2018), lists some results under various metrics and methods.
The query and space complexity in each of these is O (n%d) and O

(
n%+1 + nd

)
respectively.

Metric Type Exponent

l1 LSH % = 1/c
% ≥ 1/c− o(1)

Data-dependent hashing % = 1
2c−1 + o(1)

% = 1
2c−1 − o(1)

l2 LSH
% ≤ 1/c2

% = 1/c2 + o(1)
% ≥ 1/c2 − o(1)

Data-dependent hashing % = 1
2c2−1 + o(1)

% = 1
2c2−1 − o(1)

Table 2: ANN search using LSH and data-dependent partitioning where c is the constant in approximation

B Streaming k-median Clustering

We first give a theorem for Online Facility Location (OFL) with approximate nearest neighbour oracles. The
algorithm for k-service clustering (Algorithm 1) uses OFL as a subroutine and therefore its guarantees are
crucially dependent on the guarantees of OFL. We restate the theorem.
Theorem 10. (Restatement of Theorem 3) Given an c(δ)−ANN oracle with u(·) update, q(·) query and
s(·) space complexity, OFL run on a stream of n points from an α-metric space with facility cost f = L

1+logn/k
where L ≤ OPT gives an expected service cost of at most 3c(δ)(α+1)OPT and the expected number of facilities
produced is at most (3c(δ)α + 1)k(1 + log (n/k)) conditioned on the randomness of the ANN oracle which
succeeds with probability at least 1 − δ. Furthermore, with probability at least 1 − δ, the service cost is
at most

(
3c(δ/4n)α+ e

e−1
(
1 + log

( 4
δ

)))
OPT and the number of facilities produced is at most (1 + (1 +

6 log(4/δ)c(δ/4n)α)k(1 + log (n/k)). The algorithm runs in O (n(q(k log(n/k)) + u(k log(n/k)))) time.

Proof. Let OPT = min
K⊆X ,|K|=k

∑
x∈X min

y∈K
ρ(x, y) be the optimal service cost and C∗ be the set of facilities

allocated by OPT. Let c∗i ’s denote the optimum k facilities, and C∗i ’s denote the points allocated to c∗i by OPT,

i ∈ [k]. Let A∗i =
∑
x∈C∗

i
ρ(x, c∗i ) be the cost of region Ci, and a∗i = A∗i

|C∗i |
be its average cost. Let S1

i be the

first ring around c∗i which contains half the nearest points in C∗i . Formally, S1
i = min

K,|K|=|Ci|/2

∑
x∈C∗

i
ρ(x, c∗i ).

The subsequent rings, Sji =
{
x ∈ Ci : ρ(y, c∗i ) ≤ ρ(x, c∗i ) ∀ y ∈ S

j−1
i

}
and |Sji | = |C∗i |

2j . We remark that

Sji might not be uniquely identifiable but for the sake of analysis, we only care about their existence. Let
Aji =

∑
x∈Sj

i
ρ(x, c∗i ) be the cost of region Sji . For a point p, let ρ∗p denote its optimal service cost and let

ρp denote the service cost incurred by p by our algorithm. For a region Z ⊆ Y, COST(Z) denotes the service
cost incurred by the points in region Z. Let COST denote the service cost incurred by our algorithm and C
denote the set of facilities produced by our algorithm. Part 1 and 2 of the theorem follows from Lemma 2
and 3 respectively.

Lemma 2 (OFL | Bounds in Expectation). After observing n points in the stream, conditioned on the
randomness of the ANN oracle, the expected service cost ≤ (1+3c(δ1)α)OPT and expected number of facilities
≤ 3αc(δ1)OPT where δ1 is the failure probability of the ANN oracle.

Proof. We start with showing the bound on expected cost by analyzing two cases. We first look at the case
wherein every region has a facility. Consider a region Sji and let q be the facility opened in the region.
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For a subsequent point p, in the worst case q is be the nearest facility and the service cost incurred is at
most c(δ1)ρ(p, q) with probability at least 1 − δ1. So we have ρp ≤ c(δ1)α

(
ρ∗q + ρ∗p

)
by α−approximate

triangle inequality. By construction of Sji , ρ∗q ≤ ρ∗z ∀ z ∈ Sj+1
i . Summing over all the z in Sj+1

i , we get

ρ∗q ≤
Aj+1
i∣∣∣Sj+1
i

∣∣∣ . Furthermore, summing over all the points p in Sji and doing a union bound over the ANN

oracle calls with failure probability δ1 for all points in Sji , we get COST(Sji ) ≤ c(δ1)α

Aji +

∣∣∣Sji ∣∣∣Aj+1
i∣∣∣Sj+1

i

∣∣∣
 =

c(δ1)α
(
Aji + 2Aj+1

i

)
with probability at least 1−|Sji |δ1. Summing over j and doing a union bound over ANN

oracle calls with failure probability δ1 for all points in C∗i we get cost(C∗i ) ≤ 3c(δ1)αAi with probability at least
1−|C∗i |δ1. Finally, summing over i’s and doing a union bound over ANN oracle calls with failure probability
δ1 for all points in the stream, we get that ANN oracle succeeds with probability at least 1− δ1 for all points
in the stream and the total (expected) cost after facilities opened in all the regions: cost ≤ 3c(δ1)αOPT
conditioned on the randomness of the ANN oracle.

The second case is when no region has a facility opened. For a region Sji , the expected service cost incurred
before a facility is opened ≤ f (See Fact 1, Lang (2017)). By Lemma 9, we have that for n points, and k
facilities, the total number of regions j is less than or equal to k (1 + log(n/k)). Hence the expected total
service cost before facilities opened is less than or equal to k (1 + log(n/k)) f .

Combining the two cases above, expected total service cost ≤ k(1 + log n
k

)f + 3c(δ1)αOPT with probabil-

ity at least 1−nδ1. If f = L

(1 + log(n/k)) and L ≤ OPT, we get expected total service cost ≤ (1+3c(δ1)α)OPT.

We now look at the expected facility count. After k(1+logn) facilities (one in each region), each subsequent

point p has a probability of ρp
f

to open a new facility. Hence the expected number of facilities =
∑
p

(
ρp
f

)
.

We already showed that
∑
p ρp ≤ 3c(δ1)αOPT. Therefore, we get E [number of facilities] ≤ 3c(δ1)αOPT

f
.

We now present high probability versions of the above bounds.

Lemma 3 (OFL | High probability Bounds). After observing n points in the stream, with probabil-
ity at least 1 − δ, COST ≤

(
3c(δ/4n)α+ e

e−1
(
1 + log

( 4
δ

)))
OPT and the number of facilities is at most

(1 + 6 log(4/δ)c(δ/4n)α)k(1 + log (n/k)).

Proof. We first look at the service cost. Let P [x, y] be the probability that given x regions which do not yet
have a facility, the remaining service cost due to points in these regions arriving prior to the region having
a facility is more than yf . Using induction, we show that P [x, y] ≤ ex−y(

e−1
e ). The base case x = 0 holds

for y ≤ xe
e−1 . Now assume that it holds for x < x0 and y < y0 . If the first request in one of the facility-less

regions incurs a service cost of ρ̄ > 0, then

P [x0, y0] = ρ̄

f
P [x0 − 1, y0] +

(
1− ρ̄

f

)
P [x0, y0 −

ρ̄

f
]

≤ ρ̄

f
ex0−1−y0( e−1

e ) +
(

1− ρ̄

f

)
ex0−(y0− ρ̄f )( e

e−1 )

≤ ex0−y0( e
e−1 )

(
ρ̄

ef
+
(

1− ρ̄

f

)
e

ρ̄e
(e−1)f

)
≤ ex0−y0( e

e−1 )
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The last inequality follows because ρ̄
ef +

(
1− ρ̄

f

)
e

ρ̄e
(e−1)f ≤ 1 ∀ ρ̄ ≤ f . For the total num-

ber of regions to be at most equal to k
(

1 + log
(n
k

))
and a failure probability of δ2, we have

ex−y(
e−1
e ) = δ2. Therefore, we get, y = e

e−1

(
k
(

1 + log
(n
k

))
+ log

(
1
δ2

))
. Hence cost is at most

e
e−1

(
k
(

1 + log
(n
k

))
+ log

(
1
δ2

))
f ≤ e

e−1

(
OPT + log

(
1
δ2

)
f
)
≤ e

e−1

(
1 + log

(
1
δ2

))
OPT with probability

at least 1−δ2, when f = L
k(1+log(n/k)) . We already proved a deterministic guarantee of at most 3c(δ1)αOPT

with probability at least 1−nδ1 cost after all the regions have facilities. Combining it with the above bound
via a union bound gives us that the total service cost is at most

(
3c(δ1)α+ e

e−1

(
1 + log

(
1
δ2

)))
OPT with

probability at least 1− nδ1 − δ2.

We now look at facility count. After k(1 + logn) facilities (one in each region), each subsequent point p

has a probability of ρp
f

to open a new facility. Hence the expected number of facilities = µ =
∑
p

(
ρp
f

)
.

Let A be the event that ANN oracle calls for all n points succeed with constant factor c(δ1). We know
that this events occurs with a probability at least 1 − nδ1, i.e. P [A] ≥ 1 − nδ1. Conditioned on event
A, we already showed in Lemma 2 that

∑
p ρp ≤ 3c(δ1)αOPT . Therefore µ ≤ 3c(δ1)αOPT

f = µu. Let the
event Bε = {number of facilities ≥ (1 + ε)µu}. From Chernoff bound on Bernoulli trials, we have P [B′ε|A] ≤
exp

(
−µuε

2

3

)
≤ δ2. Solving for ε, we get ε ≥

√
3 log(1/δ2)

µu
. Therefore, conditioned on event A, the number

of facilities ≤ (µu +
√

3 log(1/δ2)µu) ≤ µu(1 + 3 log(1/δ2)) ≤ (1 + 3 log(1/δ2))c(δ1)αk
(

1 + log n
k

) OPT
L

when f = L

k
(

1 + log n
k

) with probability at least 1 − δ2. Moreover, since P [Bε] ≥ P [Bε|A] · P [A] ≥

(1 − nδ1)(1 − δ2) ≥ 1 − (nδ1 + δ2), therefore, combining the two cases, we have the number of facilities
≤ (1 + 6 log(1/δ2)c(δ1)α)k

(
1 + log n

k

) OPT
L

with probability at least 1 − (nδ1 + δ2). Setting δ1 = δ
4n and

δ2 = δ
4 and using a union bound over the above guarantees of cost and number of facilities finishes the

proof.

Theorem 11. (Restatement of Theorem 4) Given a set of n points P from an α-metric space
(X , ρ) observed in a stream and a positive integer k, Algorithm 1 executed with β = 2α2cOFL + 2α
and γ = max

{
4α3c2OFL, βkOFL + 1

}
, where cOFL :=

(
3c(δ/4n)α+ e

e−1
(
1 + log

( 4
δ

)))
, kOFL := (1 +

6 log(1/δ2)c(δ1)α) returns a set C with |C| = O (k log(n/k)) such that COST(P, C) ≤ αβγ
β−αOPT(P, k) with

probability at least 1− δ. The algorithm runs in time O (n · q(k log(n/k))) and takes space O (k log(n/k)).

Proof. From Theorem 3, we get that at every phase, OFL produces a bicriterion approximation to our
problem with high probability. Note that cOFL :=

(
3c(δ/4n)α+ e

e−1
(
1 + log

( 4
δ

)))
is the constant

approximation factor of the service cost of OFL in the high probability bound. Similarly, kOFL :=
(1 +

√
3c(δ/4n)α log(4/δ)) such that OFL opens at most kOFLk (1 + logn) OPT

L facilities with high proba-
bility.

We remind the reader that the algorithm proceeds in phases, wherein at each phase we guess lower bound to
the optimal cost and start reading points from the stream. If the guess is too low, we either end up opening
too many facilities or the service cost grows large. At this point, we trigger a phase change and enter the
next phase in the algorithm where we increase our guess to the lower bound by a constant factor of β, and
first read the already clustered points and then start reading the remaining ones. If we keep incrementing
the phase, at some point our guess to the lower bound exceeds the optimal cost. We call this phase the
critical phase, formally defined as q = min {i : βLi > OPT}. From Lemma 4, we have that with probability
at least 1− δ, the algorithm exits before or at the critical phase.

17



Published in Transactions on Machine Learning Research (03/2023)

For a point x ∈ X, let cix denote its representative in phase i. Let j be the phase when x was first clustered.
By α-ATI of ρ, we have,

ρ(x, clx) ≤
l−j∑
i=1

αiρ(cl−ix , cl−i+1
x ) + αl−jρ(x, cjx)

Summing over all points x ∈ X, with probability at least 1− δ of terminating before the critical phase, we
have,

COST ≤
l−j∑
i=1

αi
∑
x

ρ(cl−ix , cl−i+1
x ) + αl−j

∑
x

ρ(x, cjx)

≤
l∑
i=1

αiγLl−i = γLl

l∑
i=1

(
α

β

)i
= αγLl
β − α

≤ αβγ

β − α
OPT

where in the second equality we used the fact that the cost in phase i is upper bounded by γLi. Note that
our value of β ensures α < β, so we can use the sum of an infinite geometric progression. In the third
inequality, we used that Li = Ll

βl−i
. In the last inequality, we use Ll ≤ OPT with probability at least 1 − δ,

since from Lemma 4 we know that the algorithm terminates before or at the critical phase.

We show below that before or at the critical phase, the algorithm finishes and produces a bicreterion ap-
proximate solution.

Lemma 4. With probability at least the success probability of online facility location, Algorithm 1 terminates
at or before the critical phase.

Proof. Let Xl be the stream in phase l. We first show that cost of clustering Xl is ≤ αOPT + γ

(
α2

β − α

)
Ll.

Consider a point x ∈ X. We remind the reader that cix represents x in phase i. Let j be the phase in which
x gets clustered the first time. Note that cix = x ∀i < j. Moreover, once x gets clustered, gets represented by
some point not necessarily cx in all subsequent phases. Let c∗x,i denote the optimal facility fro representation
of x in phase i. We have that in phase l, the optimal service cost of x is at most,

ρ(cl−1
x , c∗x,l−1) ≤ α(ρ(x, c∗x,l−1) + ρ(cl−1

x , x))

≤ αρ(x, c∗x,l−1) +
l−j∑
i=2

αiρ(cl−ix , cl−i+1
x )

+ αl−jρ(x, cjx)
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where we used α-ATI of ρ to expand the cost incurred in phase l into the costs across previous phases. Let
OPTi denote the optimal cost of clustering at phase i. Summing over all points x in the stream, we get

OPTl ≤
∑
x

ρ(cl−1
x , c∗x,l−1)

≤ α
∑
x

ρ(x, c∗x,l−1) +
l−j∑
i=2

αi
∑
x

ρ(cl−ix , cl−i+1
x )

+ αl−j
∑
x

ρ(x, cjx)

≤ αOPT +
l−j∑
i=2

αiγLl−i + αl−jγLj

≤ αOPT + αγ

l−1∑
i=1

αl−iLi

≤ αOPT + αγ

l−1∑
i=1

(
α

β

)l−i
Ll

≤ αOPT + α2γ

β − α
Ll

where in the second and third inequality we used that the service cost in phase i is bounded by γLi, and
Li = Ll

βl−i
. Therefore, we see that if we ensure that Ll ≤ OPT, we get a constant approximate solution. Note

that as earlier defined, critical phase is the first phase which violates this. We now show that with high
probability the algorithm terminates before or at the critical phase. Let q be the critical phase, therefore
βLq ≥ OPT . We have,

OPTq ≤ αOPT + α2γ

β − α
Lq

≤
(
αβ + α2γ

β − α

)
Lq

By Theorem 3, we have that in phase q, OFL guarantees a bicriterion approximate solution such that
COSTq ≤ cOFLOPTq and the number facilities at most βkOFL(1 + log (n/k))OPT

L . We define β := 2α2cOFL +
2α, γ := max

{
4α3c2OFL, βkOFL + 1

}
. We therefore get

COST ≤ cOFL
(
α(2α2cOFL + 2α) + α2γ

2(2α2cOFL + α)

)
Lq

≤ γLq

Moreover, the number of facilities is ≤ βkOFL(1 + log (n/k))OPT
L ≤ (γ − 1)k(1 + log(n/k)). Therefore, the

algorithm doesn;t proceed to the next phase.

C Building a coreset

Theorem 12. (Reminder of Theorem 5) The coreset construction algorithm of Chen (2009)
executed on n points using a c(δ)-ANN oracle outputs a ε-coreset with probability at least
1 − δ. The size of the coreset output is O

(
kε−2(k logn) + log(1/δ) logn

)
, total space com-

plexity is O
(
kε−2(k logn) + log(1/δ) logn+ s(k log(n/k))

)
and the update time of the algorithm is

O (q(k logn/k) + u(k logn/k)).

Proof. Lemma 5 gives us the cost guarantee. We now only need to look at size and update times. The
size of the coreset is |S| = mts = O

(
kε−2(k logn) + log(1/δ) logn

)
. Note that if we use our algo-

19



Published in Transactions on Machine Learning Research (03/2023)

rithm to get the bicriterion solution, its size is O (k log(n/k)). Therefore the total space complexity is
O
(
kε−2(k logn) + log(1/δ) logn+ s(k log(n/k))

)
. The update time also follows from the above.

Lemma 5. For all C ⊆ P such that |C| ≤ k, with probability at least 1− δ, we have,

|COST(C,P )− COST(C, S)| ≤ ε COST(C,P )

Proof. For a fixed C, from Lemma 6, with ξ = ε
2(2c(δ1)+1)κ and δ2 > 0, with probability at least 1 − δ2, we

get,

|COST(C,Pi,j)− COST(C, Si,j)|

≤ ε

2(2c(δ1) + 1)κ |Pi,j |diam(Pi,j)

Moreover, from triangle inequality, we have,

|COST(C,P )− COST(C, S)|

≤
∑
i,j

|COST(C,Pi,j)− COST(C, Si,j)|

≤ ε

2(2c(δ1) + 1)κ
∑
i,j

|Pi,j |diam(Pi,j)

For a point p ∈ Pij , j ≥ 1, note that 2j−1R ≤ ρ̃(p,A) ≤ c(δ1)ρ(p,A) with probability at least 1 − δ1.
Therefore, 2jR ≤ max(R, 2c(δ1)ρ(p,A)) ≤ R+2c(δ1)ρ(p,A) for j ≥ 0. Taking a union bound over all points,
we get that with probability at least 1− nδ1,∑

i,j

|Pi,j |2jR =
∑
i,j

∑
p∈Pi,j

(2c(δ1)ρ(p,A) +R)

=
∑
p∈P

(2c(δ1)ρ(p,A) +R)

= 2c(δ1)COST(A,P ) + |P |R
= 2c(δ1)COST(A,P ) + nR

≤ (2c(δ1) + 1)COST(A,P )
≤ (2c(δ1) + 1)κOPT(P, k)

where the last inequality follows because R = COST(A,P )
κn ≤ OPT(P,k)

n . Moreover, diam(Pi,j) ≤ 2 · 2jR. We
therefore get, with probability at least 1− n.δ1 −m.(t+ 1)δ2,

|COST(C,P )− COST(C, S)|

≤ ε

2(2c(δ1) + 1)κ2.(2c(δ1) + 1)κOPT(P, k) ≤ εCOST(C,P )

Setting δ1 = n−kδ/2 and δ2 = n−kδ/2m(t + 1), and noting that there can be nk ways of selecting k points
from P , we get that with probability at least 1− δ, for all C of size at most k,

|COST(C,P )− COST(C, S)| ≤ εCOST(C,P )

Lemma 6. Let V be a a set of points from a metric space (X , d) and let δ′, ξ > 0. Let U be a set constructed
by sampling s′ = dξ−2 log(2/δ′)e points independently and identically from V , and each point is assigned
weight |V |/|U |. For a fixed set C ⊆ X , the following holds with probability at least 1− δ′

|COST(C, V )− COST(C,U)| ≤ ξ|V |diam(V )
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Proof in (Chen, 2009) which crucially uses Lemma 7 stated below.
Lemma 7. Let M ≥ 0 and η be fixed constants and let h(·) be a function defined on a set V such that
η ≤ h(v) ≤ η +M . Let U be a set of s ≥ M2

2δ2 log(2/δ) samples drawn independently and identically from V .
Let h(U) =

∑
u∈U h(u) and h(V ) =

∑
v∈V h(v). For δ > 0, we then have,

P
[∣∣∣∣h(V )
|V |

− h(U)
|U |

∣∣∣∣ ≥ δ] ≤ λ
Theorem 13. (Restatement of Theorem 6) Algorithm of Chen (2009) executed on a stream of n points
using a c(δ)-ANN oracle (line 8) outputs a ε-coreset with probability at least 1 − δ. The size of the coreset
output is O

(
ε−2k log2 n+ s(k logn)

)
and the update time of the algorithm is O (q(k logn) + u(k logn)).

Proof. The proof is the same as that of merge and reduce in Chen (2009)

Theorem 14. (Restatement of Theorem 7) Algorithm 1 of Braverman et al. (2016) executed on a
stream of n points using a c(δ)-ANN oracle (line 8) outputs a ε-coreset with probability at least 1 − δ.
The size of the coreset output is O

(
ε−2k log2 n+ s(k logn)

)
and the update time of the algorithm is

O (q(k logn) + u(k logn)).

Proof. We will show that using ANN oracle, the sensitivity of a point increases with at worse a constant
factor.

Let p be the point observed in the stream and let s̄(p) denote its sensitivity computed using ANN oracle.
We show in the following claim that this worsens the sensitivity by a constant factor. In claim 8, we show
that s̄(p) ≤ c(δ) s(p) with probability ≥ 1− δ.

We now carefully invoke the result of Braverman et al. (2016) that overestimating sensitivity by a constant
factor still produces a ε-coreset. In particular, we set probability of failure of the oracle δ′ as δ′ = δ/2n
and condition on the event that it succeeds for each point. This establishes that we get a ε-coreset with
probability at least 1− δ.

Since the ANN data structure takes s(k logn), the size of the coreset is O
(
ε−2k log2 n+ s(k logn)

)
, where

O
(
ε−2k log2 n

)
is the size of coreset obtained by Braverman et al. (2016). The update time guarantee simply

follows query and update time complexities of the ANN data structure.

Lemma 8. The sensitivities are approximated as s̄(p) ≤ c(δ) s(p) with probability ≥ 1− δ.

Proof. For a point q, let a be its nearest neighbour in C and let ā ∈ C be the point output by ANN oracle.
Let ρ̄(q, C) denote the distance of q to the point output by ANN oracle, i.e. ρ̄(q, C) = ρ(q, ā). From the
definition of ANN oracle, we have that ρ(q, a) ≤ ρ(q, ā) ≤ c(δ)ρ(q, a) with probability at least 1− δ. We use
this to upper and lower bound the numerator and denominator of sensitivity as follows.

s̄(p) = ρ̄(p, C)∑
q∈P ρ̄(q, C) ≤ c(δ)

ρ(p, C)∑
q∈P ρ(q, C) = c(δ)s(p)

D Auxiliary results

Lemma 9. With n data points, k facilities, let ci denote the (optimal) facilities, Ci the set of points
assigned to facility ci i ∈ [k]. Let Sji = {x ∈ Ci : ρ(y, ci) ≤ ρ(x, ci) ≤ ρ(y, xi) ∀ y ∈ Sj−1

i and ∀z ∈ Sj+1
i }

and |Sji | =
|Ci|
2j . Let the number of regions N =

∣∣∣{Sji ∀ i ∈ [k] ∀ j
}∣∣∣. Then,

(1 + logn) ≤ N ≤ k
(

1 + log
(n
k

))
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Proof. We proof by demonstrating when the two ends of the bound hold. The lower bound is attained if
there is only 1 facility (or k facilities, but all the n points belong to only of them, and k − 1 has no points).
The upper bound is attained when all the k facilities have equal number of points i.e. n

k .

E Additional plots

Figure 1: The plot of time taken against target number of clusters with exact and three ANN methods
(kd-tree included) and sklearn methods. As is apparent, the time taken for kd tree increases exponentially
with k, where as sklearn methods and cover tree grows sublinearly.
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