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Abstract
Equalized odds, an important notion of algorith-
mic fairness, aims to ensure that sensitive vari-
ables, such as race and gender, do not unfairly
influence the algorithm’s prediction when condi-
tioning on the true outcome. Despite rapid ad-
vancements, current research primarily focuses
on equalized odds violations caused by a sin-
gle sensitive attribute, leaving the challenge of
simultaneously accounting for multiple attributes
under-addressed. We bridge this gap by intro-
ducing an in-processing fairness-aware learning
approach, FairICP, which integrates adversarial
learning with a novel inverse conditional permu-
tation scheme. FairICP offers a flexible and effi-
cient scheme to promote equalized odds under
fairness conditions described by complex and
multi-dimensional sensitive attributes. The ef-
ficacy and adaptability of our method are demon-
strated through both simulation studies and em-
pirical analyses of real-world datasets.

1. Introduction
Machine learning models are increasingly important in aid-
ing decision-making across various applications. Ensuring
fairness in these models—preventing discrimination against
minorities or other protected groups—remains a significant
challenge (Mehrabi et al., 2021). To address different needs,
several fairness metrics have been developed in the litera-
ture (Mehrabi et al., 2021; Castelnovo et al., 2022). The
equalized odds metric defines fairness by requiring that the
predicted outcome Ŷ provides the same level of informa-
tion about the true response Y across different sensitive
attribute(s) A (e.g. gender/race/age) (Hardt et al., 2016):

Ŷ ⊥⊥ A | Y. (1)

1Department of Statistics, University of Wisconsin-Madison
2Department of Biostatistics, Yale University. Correspondence to:
Leying Guan <leying.guan@yale.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Encouraging equalized odds is more challenging due to
Y -conditioning compared to encouraging demographic par-
ity, another common fairness notion that emphasizes equity
and requires Ŷ to be independent of A without condition-
ing on Y . Most existing algorithms targeting equalized
odds can only handle a single protected attribute, and ex-
tending them to multi-dimensional sensitive attributes is
challenging due to the well-known difficulties of estimat-
ing multi-dimensional densities (Scott, 2015). However,
real-world scenarios can involve biases that arise from mul-
tiple sensitive attributes simultaneously. For example, in
healthcare settings, patient outcomes can be influenced by
a combination of race, gender, and age (Ghassemi et al.,
2021; Yang et al., 2022). Moreover, ignoring the correlation
between multiple sensitive attributes can lead to fairness
gerrymandering (Kearns et al., 2018), where a model ap-
pears fair when considering each attribute separately but
exhibits unfairness when attributes are considered jointly.

To address these limitations, we introduce FairICP, a flexi-
ble fairness-aware learning scheme that encourages equal-
ized odds for complex sensitive attributes. Our method
leverages a novel Inverse Conditional Permutation (ICP)
strategy to generate conditionally permuted copies Ã of
sensitive attributes A given Y without the need to estimate
the multi-dimensional conditional density and encourages
equalized odds via enforcing similarity between (Ŷ , A, Y )
and (Ŷ , Ã, Y ). An illustration of the FairICP framework is
provided in Figure 1.

Our contributions can be summarized as follows:

• Inverse Conditional Permutation (ICP): We introduce
the ICP strategy to efficiently generate Ã, as conditional
permutations of A given Y , without estimating the multi-
dimensional conditional density of A|Y . This makes
our method scalable and applicable to complex sensitive
attributes.

• Empirical Validation: Through simulations and real-
world data experiments, we demonstrate FairICP’s flex-
ibility and its superior fairness-accuracy trade-off com-
pared to existing methods targeting equalized odds. Our
results also confirm that ICP is an effective sensitive
attribute resampling technique for achieving equalized
odds with increased dimensions.

1



FairICP: Encouraging Equalized Odds via Inverse Conditional Permutation

Sensitive 
Attributes

Input Data

...

Inverse Conditional
Permutation

Predictor

Prediction

"Fair data" satisfying Original data

Discriminator

Ethnicity

Sex

Financial
Status

...

Figure 1: Illustration of the FairICP framework. A, X , and Y

denote the sensitive attributes, features, and labels. We generate Ã

as permuted copies of A which satisfies (Ŷ,A,Y)
d
=(Ŷ, Ã,Y)

when the equalized odds holds, using a novel inverse conditional
permutation (ICP) strategy, and construct a fairness-aware learning
method through regularizing the distribution of (Ŷ , A, Y ) toward
the distribution of (Ŷ , Ã, Y ).

Background and Related Work Fairness in machine
learning has emerged as a critical area of research, with
various notions and approaches developed to address poten-
tial biases in algorithmic decision making. These fairness
concepts can be broadly categorized into three main types:
(1) group fairness (Hardt et al., 2016), which aims to ensure
equal treatment across different demographic groups; (2)
individual fairness (Dwork et al., 2012), focusing on similar
predictions for similar individuals; and (3) causality-based
fairness (Kusner et al., 2017), which considers fairness in
counterfactual scenarios. Given a fairness condition, exist-
ing fair ML methods for encouraging it can be classified
into three approaches: pre-processing (Zemel et al., 2013;
Feldman et al., 2015), in-processing (Agarwal et al., 2018;
Zhang et al., 2018), and post-processing (Hardt et al., 2016).

Our work focuses on in-processing learning for the equal-
ized odds (Hardt et al., 2016), a group fairness concept.
Equalized odds requires that predictions are independent of
sensitive attributes conditional on the true outcome, unlike
demographic parity (Zemel et al., 2013), which demands un-
conditional independence. The conditional nature of equal-
ized odds makes it particularly challenging when dealing
with complex sensitive attributes that may be multidimen-
sional and span categorical, continuous, or mixed types.
Under demographic parity, there have been several methods
developed for classification tasks with multiple categorical
A (Agarwal et al., 2018; Kearns et al., 2018; Creager et al.,
2019), however, these ideas can not be trivially generalized
to equalized odds. As a result, existing work on equal-
ized odds primarily considers one-dimensional sensitive
attributes, with no prior work designed to handle multi-
dimensional continuous or mixed-type sensitive attributes.
For example, Mary et al. (2019) introduces a penalty term
using the Hirschfeld-Gebelein-Rényi Maximum Correlation
Coefficient to accommodate for a continuous sensitive at-
tribute in both regression and classification settings. Another

line of in-processing algorithms for equalized odds uses ad-
versarial training for a single sensitive attribute (Zhang et al.,
2018; Louppe et al., 2017; Romano et al., 2020; Madras
et al., 2018). Our proposed FairICP is the first in-processing
framework specifically designed for equalized odds with
complex sensitive attributes.

Selected Review on Metrics Evaluating Equalized Odds
Violation Reliable evaluation of equalized odds violations
is crucial for comparing equalized odds learning methods
and assessing model performance in real-world applica-
tions. While numerous methods have been proposed to
test for parametric or non-parametric conditional indepen-
dence, measuring the degree of conditional dependence
for multi-dimensional variables remains challenging. We
note recent progress in two directions. One direction is the
resampling-based approaches (Sen et al., 2017; Berrett et al.,
2020; Tansey et al., 2022). These methods allow flexible
and adaptive construction of test statistics for comparisons.
However, their accuracy heavily depends on generating ac-
curate samples from the conditional distribution of A|Y ,
which can be difficult to verify in real-world applications
with unknown A|Y . Efforts have also been made towards di-
rect conditional dependence measures for multi-dimensional
variables. Notably, Azadkia & Chatterjee (2021) proposed
CODEC, a non-parametric, tuning-free conditional depen-
dence measure. This was later generalized into the Kernel
Partial Correlation (KPC) (Huang et al., 2022):

Definition 1.1. Kernel Partial Correlation (KPC) coeffi-
cient ρ2 ≡ ρ2(U, V |W ) is defined as:

ρ2(U, V |W ) :=
E
[
MMD2

(
PU |WV , PU |W

)]
E
[
MMD2

(
δU , PU |W

)] ,

where (U, V,W ) ∼ P and P is supported on a subset of
some topological space U ×V ×W , MMD is the maximum
mean discrepancy - a distance metric between two proba-
bility distributions depending on the characteristic kernel
k(·, ·) and δU denotes the Dirac measure at U .
Under mild regularity conditions (see details in Huang et al.
(2022)), ρ2 satisfies several good properties for any joint
distribution of (U, V,W ) in Definition 1.1: (1) ρ2 ∈ [0, 1];
(2) ρ2 = 0 if and only if U ⊥⊥ V |W ; (3) ρ2 = 1 if and only
if U is a measurable function of V given W . A consistent
estimator ρ̂2 calculated by geometric graph-based methods
(Section 3 in Huang et al. (2022)) is also provided in R Pack-
age KPC (Huang, 2022). KPC allows us to rigorously quan-
tify the violation of equalized odds for multi-dimensional
A via ρ̂2(Ŷ , A | Y ), where A can take arbitrary forms and
response Y can be continuous (regression) or categorical
(classification). Additionally, ρ2(Ŷ , A | Y ) has been prop-
erly normalized in [0, 1] to enable direct comparisons across
different models in a given problem as it can be viewed as a
generalized version of squared partial correlation between
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U and V given W (see Appendix A for a simple example).
In this paper, we consider KPC as our main evaluation met-
ric of equalized odds, where its robustness is also supported
by comparison with other popular metrics (e.g., DEO for
classification with categorical A as in Agarwal et al. (2018);
Cho et al. (2020)) in Section 3.

2. Method
We begin by reviewing how to conduct fairness-aware learn-
ing via sensitive attribute resampling to encourage equalized
odds and its challenges with complex attributes. We then in-
troduce our proposed method, FairICP, which leverages the
simpler estimation of Y |A to perform resampling, providing
theoretical insights and practical algorithms. All proofs in
this section are deferred to Appendix B.

Let (Xi, Ai, Yi) for i = 1, . . . , ntr be i.i.d. generated
triples of (features, sensitive attributes, response). Let
fθf (.) be a prediction function with model parameter θf .
While fθf (.) can be any differentiable prediction func-
tion, we consider it as a neural network throughout this
work. Let Ŷ = fθf (X) be the prediction for Y given
X . For a regression problem, Ŷ is the predicted value of
the continuous response Y ; for a classification problem,
the last layer of fθf (.) is a softmax layer and Ŷ is the
predicted probability vector for being in each class. We
also denote X = (X1, . . . , Xntr) ,A = (A1, . . . , Antr),
Y = (Y1, . . . , Yntr

) and Ŷ = (Ŷ1, . . . , Ŷntr
).

2.1. Baseline: Fairness-Aware Learning via Sensitive
Attribute Resampling

We begin by presenting the baseline model developed by Ro-
mano et al. (2020), Fair Dummies Learning (FDL), whose
high-level model architecture is the same as FairICP. We
then discuss the challenge it may face when dealing with
complex sensitive attributes.

The key idea of FDL is to construct a synthetic version of the
original sensitive attribute as Ã based on conditional ran-
domization (Candès et al., 2018), drawing independent sam-
ples Ãi from Q(·|Yi) for i = 1, . . . , ntr where the Q(·|y)
is the conditional distribution of A given Y = y. Since the
re-sampled Ã is generated independently without looking
at the features X, and consequently, the predicted responses
Ŷ, Ã satisfies equalized odds: Ŷ ⊥⊥ Ã | Y . Given the
resampled sensitive attribute, FDL uses the fact that A sat-
isfies equalized odds if and only if (Ŷ , A, Y )

d
= (Ŷ , Ã, Y ),

and promotes equalized odds by enforcing the similarity be-
tween joint distributions of (Ŷ , A, Y ) and (Ŷ , Ã, Y ) via an
adversarial learning component (Goodfellow et al., 2014),
where the model iteratively learn how to separate these two
distributions and optimize a fairness-regularized prediction
loss. More specifically, define the negative log-likelihood
loss, the discriminator loss, and the value function respec-

tively:

Lf (θf ) = EXY

[
− log pθf (Y | X)

]
, (2)

Ld (θf , θd) = EŶ AY [− logDθd(Ŷ , A, Y )]

+ EŶ ÃY [− log(1−Dθd(Ŷ , Ã, Y ))], (3)
Vµ(θf , θd) = (1− µ)Lf (θf )− µLd(θf , θd), (4)

where Dθd(.) is the classifier parameterized by θd which
separates the distribution of (Ŷ , A, Y ) and the distribution
of (Ŷ, Ã,Y), and µ ∈ [0, 1] is a tuning parameter that
controls the prediction-fairness trade-off. Then, FDL learns
θf , θd by finding the minimax solution

θ̂f , θ̂d = argmin
θf

max
θd

Vµ(θf , θd). (5)

Challenges with Complex Sensitive Attributes FDL
generates Ã through conditional randomization and re-
samples it from the (estimated) conditional distribution
Q(A | Y ). However, FDL was proposed primarily for
the scenario with a single continuous sensitive attribute, as
the estimation of Q(A | Y ) is challenging when the dimen-
sion of A increases due to the curse of dimensionality (Scott,
2015). For example, with categorical variables, combining
categories to model dependencies leads to an exponentially
decreasing amount of data in each category, making estima-
tion unreliable. Also, when A includes mixed-type variables,
modeling the joint conditional distribution q(A|Y ) becomes
complex. Therefore, an approach that allows A to have flex-
ible types and scales well with its dimensionality is crucial
for promoting improved equalized odds in many social and
medical applications.

2.2. FairICP: Fairness-Aware Learning via Inverse
Conditional Permutation

To circumvent the challenge in learning the conditional
density of A given Y , we propose the Inverse Conditional
Permutation (ICP) sampling scheme, which leverages Con-
ditional Permutation (CP) (Berrett et al., 2020) but pivots
to estimate Y given A, to generate a permuted version of
Ã which is guaranteed to satisfy (Ŷ,A,Y)

d
=(Ŷ, Ã,Y)

when the equalized odds defined in eq. (1) holds.

Recap of CP and Why It’s Not Sufficient FDL con-
structs synthetic and resampled sensitive attributes based on
conditional randomization. CP offers a natural alternative
approach to constructing the synthetic sensitive attribute Ã
(Berrett et al., 2020). Here, we provide a high-level recap
of the CP sampling and demonstrate how we can apply it
to generate synthetic sensitive attributes Ã. Let Sn denote
the set of permutations on the indices {1, . . . , n}. Given
any vector x = (x1, . . . , xn) and any permutation π ∈ Sn,
define xπ =

(
xπ(1), . . . , xπ(n)

)
as the permuted version of

x with its entries reordered according to the permutation π.
Instead of drawing a permutation Π uniformly at random,
CP assigns unequal sampling probability to permutations
based on the conditional probability of observing AΠ given
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Y :
P {Π = π | A,Y} =

qn (Aπ | Y)∑
π′∈Sn

qn (Aπ′ | Y)
. (6)

Here, q(· | y) is the density of the distribution Q(· | y)
(i.e., q(· | y) is the conditional density of A given Y = y
). We write qn(· | Y) :=

∏n
i=1 q (· | Yi) to denote the

product density. This leads to the synthetic Ã = AΠ, which,
intuitively, could achieve a similar purpose as the ones from
conditional randomization for encouraging equalized odds
when utilized in constructing the loss eq. (5).

Compared to the conditional randomization strategy in FDL,
one strength of CP is that its generated synthetic sensitive
attribute Ã is guaranteed to retain the marginal distribution
of the actual sensitive attribute A regardless of the estima-
tion quality of q(·|y). However, it still relies strongly on the
estimation of q(·|y) for its permutation quality and, thus,
does not fully alleviate the issue arising from multivariate
density estimation as we mentioned earlier.

ICP Circumvents Density Estimation of A | Y To cir-
cumvent this challenge in estimating the multi-dimensional
conditional density q(·|y) which can be further complicated
by mixed sensitive attribute types, we propose the indirect
ICP sampling strategy. ICP scales better with the dimen-
sionality of A and adapts easily to various data types.

ICP begins with the observation that the distribution of
(AΠ,Y) is identical as the distribution of (A,YΠ−1).
Hence, instead of determining Π based on the conditional
law of A given Y , we first consider the conditional permu-
tation of Y given A , which can be estimated conveniently
using standard or generalized regression techniques, as Y is
typically one-dimensional. We then generate Π by applying
an inverse operator to the distribution of these permutations.
Specifically, we generate Ã = AΠ according to the follow-
ing probabilities:

P {Π = π | A,Y} =
qn (Yπ−1 | A)∑

π′∈Sn
qn (Yπ′−1 | A)

. (7)

We adapt the parallelized pairwise sampler developed for
the vanilla CP to efficiently generate ICP samples (see Ap-
pendix C), and show that ICP generate valid conditional
permutations of A given any set of its observed value set a.

Theorem 2.1. Let (X,A,Y) be i.i.d observations of sam-
ple size n, S(A) denote the unordered set of rows in A, and
p be the dimension of A. Let Ã be sampled via ICP based
on eq. (7). Then,

(1) Ã is a valid conditional permutation of A: for any π,

P {A = aπ|S(A) = S,Y} = P
{
Ã = aπ

∣∣∣S(A) = S,Y}.

(2) If Ŷ ⊥⊥ A | Y , we have (Ŷ,A,Y)
d
=(Ŷ, Ã,Y).

Theorem 2.1 is derived from Bayes’ Rule, with its proof
provided in Appendix B

Algorithm 1 FairICP: Fairness-aware learning via inverse
conditional permutation
Input: Data (X,A,Y) = {(Xi, Ai, Yi)}i∈Itr

Parameters: penalty weight µ, step size α, number of
gradient steps Ng , and iterations T .
Output: predictive model f̂θ̂f (·) and discriminator

D̂θ̂d
(·).

1: for t = 1, . . . , T do
2: Generate permuted copy Ã by eq. (7) using ICP as

implemented in Appendix C.
3: Update the discriminator parameters θd by repeating

the following for Ng gradient steps:

θd ← θd − α∇θdL̂d(θf , θd).

4: Update the predictive model parameters θf by repeat-
ing the following for Ng gradient steps:

θf ← θf −α∇θf

[
(1− µ)L̂f (θf )− µL̂d(θf , θd)

]
.

5: end for
Output: Predictive model f̂θ̂f (·).

FairICP Encourages Equalized Odds with Complex Sen-
sitive Attributes We propose FairICP, an adversarial
learning procedure following the same formulation of the
loss function shown previously in the discussion for FDL
(Section 2.1) but utilizing the permuted sensitive attributes
Ã using ICP, i.e., eq. (7) which requires estimated q(y|A),
as opposed to the one from direct resampling using esti-
mated q(A|y). Let L̂f (θf ) and L̂d(θf , θd) be the empirical
realizations of the losses Lf (θf ) and Ld(θf , θd) defined in
(2) and (3) respectively. Algorithm 1 presents the details.

In practice, a fair predictor in terms of equalized odds that
can simultaneously minimize the prediction loss may not
exist (Tang & Zhang, 2022), and the minimizer/maximizer
to Lf (θf )/Ld(θf , θd) may not be shared as a result. In this
situation, setting µ to a large value will preferably enforce
f to satisfy equalized odds while setting µ close to 0 will
push f to purely focus on the prediction loss: an increase
in accuracy would often be accompanied by a decrease in
fairness and vice-versa.

ICP Enables Equalized Odds Testing with Complex Sen-
sitive Attributes As a by-product of ICP, we can now also
conduct more reliable testing of equalized odds violation
given complex sensitive attributes. Following the testing
procedure proposed in Holdout Randomization Test (Tansey
et al., 2022) and adopted by Romano et al. (2020) which
uses a resampled version of Ã from the conditional distri-
bution of A|Y , we can utilize the conditionally permuted
copies to test if equalized odds are violated after model
training. Algorithm 2 provides the detailed implementation
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of this hypothesis testing procedure: we repeatedly generate
synthetic copies Ã via ICP and compare T (Ŷ,A,Y) to
those using the synthetic sensitive attributes T (Ŷ, Ã,Y)
for some suitable test statistic T . According to Theorem 2.1,
(Ŷ, Ã,Y) will have the same distribution as (Ŷ,A,Y)
if the prediction Ŷ satisfies equalized odds, consequently,
the constructed p-values from comparing T (Ŷ,A,Y) and
T (Ŷ, Ã,Y) are valid for controlling type-I errors.

Proposition 2.2. Suppose the test observations
(Xte,Ate,Yte) = {(Xi, Yi, Ai) for 1 ≤ i ≤ nte}
are i.i.d. and Ŷte = {f̂(Xi) for 1 ≤ i ≤ nte} for
a learned model f̂ independent of the test data. If
H0 : Ŷte ⊥⊥ Ate | Yte holds, then the output p-value pv
of Algorithm 2 is valid, satisfying P{pv ≤ α} ≤ α for any
desired Type I error rate α ∈ [0, 1].

Algorithm 2 Hypothesis Test for Equalized Odds with ICP

Input: Data (Xte,Ate,Yte) = {(Ŷi, Ai, Yi)}, 1 ≤ i ≤
ntest

Parameter: the number of synthetic copies K.
1: Compute the test statistic T on the test set: t∗ =

T (Ŷte,Ate,Yte).
2: for k = 1, . . . ,K do
3: Generate permuted copy Ãk of Ate using ICP.
4: Compute the test statistic T using fake copy on the

test set: t(k) = T (Ŷte, Ãk,Y
te).

5: end for
6: Compute the p-value:

pv =
1

K + 1

(
1 +

K∑
k=1

I
[
t∗ ≥ t(k)

])
.

Output: A p-value pv for the hypothesis that equalized odds
(1) holds.

2.3. Density Estimation

The estimation of conditional densities is a crucial part of
both our method and previous work (Berrett et al., 2020;
Romano et al., 2020; Mary et al., 2019; Louppe et al., 2017).
However, unlike the previous work which requires the esti-
mation of A | Y , our proposal looks into the easier inverse
relationship of Y | A. To provide more theoretical insights
into how the quality of density estimation affects ICP and
CP differently, we have additional analysis in Appendix D.

In practice, ICP can easily leverage the state-of-the-art den-
sity estimator and is less disturbed by the increased com-
plexity in A, due to either dimension or data types. Unless
otherwise specified, in this manuscript, we applied Masked
Autoregressive Flow (MAF) (Papamakarios et al., 2017) to
estimate the conditional density of Y |A when Y is con-
tinuous and A1, . . . , Ak can take arbitrary data types (dis-

crete or continuous) 1. In a classification scenario when
Y ∈ {0, 1, . . . , L}, one can always fit a classifier to model
Y |A. To this end, FairICP is more feasible to handle com-
plex sensitive attributes and is suitable for both regression
and classification tasks.

3. Experiments
In this section, we conduct numerical experiments to ex-
amine the effectiveness of the proposed method on both
synthetic datasets and real-world datasets. All the imple-
mentation details are included in Appendix E.

3.1. Simulation Studies

In this section, we conduct simulation studies to (1) assess
the quality of the conditional permutations generated by ICP
and (2) understand how FairICP leverages these permuta-
tions to achieve a more favorable accuracy–fairness trade-off
for complex sensitive attributes. For the second task, we run
a series of ablation studies, replacing ICP with alternative
strategies for generating the “fake copies” Ã. Specifically,
we compare FairICP to FairCP—which is an intermediate
new procedure that generates Ã by CP—and FDL (Romano
et al., 2020), the previously proposed equalized-odds learn-
ing model that uses conditional randomization to generate Ã.
All methods use the same model architectures and training
schemes for consistency.

3.1.1. THE QUALITY OF CONDITIONAL PERMUTATIONS

First, we investigate whether ICP can generate better condi-
tional permutations than the vanilla CP by comparing them
to the oracle permutations (generated using the ground truth
in the simulation setting). We measure the Total Variation
(TV) distance between the distributions of permutations
generated by ICP/CP and those of the ground truth on a
restricted subset of permutations from swapping operation.

Simulation Setup. We generate data as the follow-
ing: 1) Let A = (U1, . . . , UK0

, UK0+1, . . . , UK0+K)Θ1/2,
where Uj are independently generated from a mixed
Gamma distribution 1

2Γ(1, 1) + 1
2Γ(1, 10), and Θ is a

randomly generated covariance matrix with Θ
1
2 eigen-

values equal-spaced in [1, 5]; 2) Generate Y ∼
N
(√

ω
∑K0

j=1 Aj , σ
2 + (1− ω) ∗K0

)
. Here, Y is influ-

enced only by the first K0 components of A, and is inde-
pendent of the remaining K components. The parameter
ω ∈ [0, 1] controls the dependence on A.

We set K0 ∈ {1, 5, 10}, K ∈ {0, 5, 10, 20, 50, 100}, ω =
0.6, and the sample size for density estimation and quality
evaluation are both set to be 200. Since the ground truth
dependence structure between the mean of A and Y is linear,

1In Papamakarios et al. (2017), to estimate p(U = u | V = v),
U is assumed to be continuous while V can take arbitrary form,
but there are no requirements about the dimensionality of U and V

5



FairICP: Encouraging Equalized Odds via Inverse Conditional Permutation

K0=1 K0 = 5 K0 = 10

0 5 10 20 50 100 0 5 10 20 50 100 0 5 10 20 50 100

−6

−5

−4

K

R
es

tr
ic

te
d 

T
V

method

CP

ICP

Figure 2: Restricted TV distances (log 10 transformed) between permutations generated by ICP/CP using estimated densities and the
oracle permutations generated by true density. Each graph contains results over 20 independent trials as the noise level K increases, with
K0 = 1, 5, 10 respectively.

we consider density estimation q̂Y |A based on regularized
linear fit when comparing CP and ICP, where we assume
q(y|A) or q(A|y) to be Gaussian. We estimate the condi-
tional mean for ICP using LASSO regression (or OLS when
K0 = 1 and K = 0) with conditional variance based on em-
pirical residuals, and we estimate qA|Y for CP via graphical
LASSO (or using empirical covariance when K0 = 1 and
K = 0). We compare permutations generated by ICP/CP
using estimated densities and those using the true density,
which is known in simulation up to a normalization constant.
Comparisons using the default MAF density estimation are
provided in Appendix D.2, which shows the same trend
while being uniformly worse for both CP and ICP.

Evaluation on Permutations Quality. Due to the large
permutation space, the calculation of the actual total vari-
ation distance is infeasible. To circumvent this challenge,
we consider a restricted TV distance where we restrict the
permutation space to swapping actions. Concretely, we con-
sider the TV distance restricted to permutations π that swap
i and j for i ̸= j, i, j = 1, . . . , n and the original order, and
compare ICP/CP to the oracle conditional permutations on
such n(n−1)

2 permutations only.

Results Figure 2 shows restricted TV distance between
permutations generated by CP/ICP and the oracle condi-
tional permutations using the true densities, averaged over
20 independent trials. We observe that the restricted TV dis-
tances between permutations by ICP and the oracle are much
lower compared to those from CP with increased sensitive
attribute dimensions, for both dimensions of the relevant
sensitive attributes K0 and dimensions of the irrelevant sen-
sitive attributes K. These results confirm our expectation
that ICP can provide higher-quality sampling by more effec-
tively capturing potentially intrinsic structures between Y
and A, For instance, when K0 = 1, ICP achieves substan-
tially better estimation quality than CP for moderately large
K. Additional discussions and mathematical intuitions on
why this occurs can be found in Appendix D.1.

3.1.2. INFLUENCE OF CP ON FAIRNESS-AWARE
LEARNING

Next, we compare the performance of models trained using
different resampling methods. Specifically, we compare
four models: (1) FairICP (Algorithm 1 with estimated den-
sity q̂(Y |A)); (3) Oracle (Algorithm 1 with true density
q(Y |A)); (3) FDL (Romano et al., 2020). Apart from the
baseline FDL, we also consider another similar but a new
model in our simulation (4) FairCP (Algorithm 1 who are
almost identical to FairICP with the only difference be-
ing permutations generated by CP using estimated density
q̂(A|Y ), aiming to investigate if the gain of ICP over CP in
generating accurate permutation actually affect the down-
stream predictive model training. The synthetic experiments
allow us to reliably evaluate the violation of the equalized
odds using different methods with known ground truth.

Simulation Setup We conduct experiments under two
simulation settings where A influence Y through X , which
is the most typical mechanism in the area of fair machine
learning (Kusner et al., 2017; Tang & Zhang, 2022; Ghas-
sami et al., 2018).

1. Simulation 1: The response Y depends on two set of
features X∗ ∈ RK and X ′ ∈ RK :

Y ∼ N
(
ΣK

k=1X
∗
k +ΣK

k=1X
′
k, σ

2
)
,

X∗
1:K ∼ N (

√
wA1:K , (1− w)IK), X ′

1:K ∼ N (0K , IK).

2. Simulation 2: The response Y depends on two features
X∗ ∈ R and X ′ ∈ R:

Y ∼ N
(
X∗ +X ′, σ2

)
,

X∗ ∼ N (
√
wA1, 1− w), X ′ ∼ N (0, 1).

In both settings, A are generated as in Section 3.1.1: A =
(U1, . . . , Uk)Θ

1/2, where k = 1, . . . ,K for Simulation 1
(where all the A1:K affects Y ) and k = 1, . . . ,K + 1 for
Simulation 2 (where only A1 affects Y , with the rest serving
as noises to increase the difficulty of density estimation).
We set K ∈ {1, 5, 10}, ω ∈ {0.6, 0.9} to investigate dif-
ferent levels of dependence on A, and the sample size for
training/test data to be 500/400. For all models, we imple-
ment the predictor f as linear model and discriminator d
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as neural networks; for density estimation part, we utilize
MAF (Papamakarios et al., 2017) for all methods except the
oracle (which uses the true density).

Evaluation on the Accuracy-Fairness Tradeoff. For
evaluating equalized odds, we use the empirical KPC
= ρ̂2(Ŷ , A | Y ) ∈ [0, 1], which is a flexible conditional
independence measure allowing different shapes of A and
serves as a natural metric for quantifying equalized-odds
violations. We also assess whether KPC is a suitable model-
comparison metric by examining trade-off curves in terms
of (KPC, prediction loss) versus (fairness testing power, pre-
diction loss). The fairness test power is defined as the ability
to reject the hypothesis test outlined by Algorithm 2—which
uses the true conditional density of Y |A and the KPC statis-
tic T with targeted type I error at α = 0.05. The greater
ρ̂2 or rejection power indicates stronger conditional depen-
dence between A and Ŷ given Y . The power metric pro-
vides a fair comparison of equalized-odds violations when
the true density is known, however, the true density is un-
available in practice, which discounts our trust of it. If the
trade-off curves based on KPC closely mirror those based
on the power metric under a known density, then KPC can
be considered a viable metric for evaluating fairness in real
data settings.1

Results Figure 3 shows the trade-off curves between pre-
diction loss and equalized odds violation measured by KPC
and the associated power using Algorithm 2 (T = KPC)
under the high-dependence scenariors w = 0.9 in Simula-
tion 1 and Simulation 2 respectively, with K ∈ {1, 5, 10}.
We train the predictor f as linear models and the discrimina-
tor d as neural networks with different penalty parameters
µ ∈ [0, 1]. The results are based on 100 independent runs
with a sample size of 500 for the training set and 400 for
the test set. Results from the low-dependence scenarios are
provided in Appendix E.1, which convey the same stories.

Figure 3A shows the results from Simulation 1. All ap-
proaches reduce to training a plain regression model for
prediction when µ = 0, resulting in low prediction loss but
a severe violation of fairness (evidenced by large KPC and
statistical power); as µ increases, models pay more atten-
tion to fairness (lower KPC and power) by sacrificing more
the prediction performance (higher loss). FairICP performs
very closely to the oracle model while outperforming both
FDL and FairCP as the dimension of K gets larger, which
fits our expectation and follows from the increased difficulty
of estimating the conditional density of A|Y . Figure 3B
shows the results from Simulation 2 and delivers a similar
message as Figure 3A.

1Note that, in Simulation 2 only A1 influences the Y , so the
test will be based on ρ̂2(Ŷ , A1 | Y ) to exclude the effects of noise
(though the training is based on A1:K+1 for all methods to evaluate
the performance under noise).
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Figure 3: Prediction loss (MSE) and violation of equalized odds
in simulation over 100 independent runs under Simulation 1/
Simulation 2 and w = 0.9. For each setting, conditional de-
pendence measure KPC and statistical power P{p-value < 0.05}
are shown in the left column and right column respectively. From
top to bottom shows the results on different choices of sensitive
attribute dimension K. The X-axis represents the metrics of equal-
ized odds and the Y-axis is the prediction loss. The Pareto front
for each algorithm is obtained by varying the fairness trade-off
parameter µ.
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Crimes (one race) Crimes (all races) ACS Income Adult COMPAS
Loss (Std) KPC (Power) Loss (Std) KPC (Power) Loss (Std) KPC (Power) Loss (Std) KPC (Power) DEO Loss (Std) KPC (Power) DEO

Baseline (Unfair) 0.340(0.039) 0.130(0.68) 0.340(0.039) 0.259(1.00) 0.210(0.003) 0.073(1.00) 0.155(0.004) 0.042(0.93) 0.431 0.336(0.01) 0.046(0.41) 0.858

FairICP 0.386(0.045) 0.016(0.10) 0.418(0.047) 0.054(0.37) 0.215(0.003) 0.025(0.80) 0.159(0.003) 0.010(0.13) 0.212 0.402(0.02) 0.008(0.04) 0.471

HGR 0.386(0.044) 0.026(0.16) 0.596(0.050) 0.068(0.48) 0.220(0.004) 0.021(0.82) 0.165(0.004) 0.006(0.10) 0.198 0.443(0.04) 0.008(0.06) 0.459

FDL 0.402(0.046) 0.023(0.17) 0.621(0.48) 0.058(0.37) / / 0.161(0.005) 0.011(0.26) 0.251 0.417(0.03) 0.008(0.11) 0.421

GerryFair / / / / 0.262(0.004) 0.050(1.00) 0.187(0.004) 0.031(0.78) 0.298 0.438(0.07) 0.02(0.14) 0.368

Reduction / / / / / / 0.161(0.004) 0.005(0.15) 0.212 0.400(0.02) 0.002(0.05) 0.460

Table 1: Comparisons of methods encouraging equalized odds across five real data tasks. FairICP (ours), FDL, HGR, and Reduction
are compared, with “Baseline (Unfair)” included as a reference which is the pure prediction model. Reported are the mean prediction
loss (with standard deviations in parentheses) and the mean KPC for equalized odds violations (with testing power Pp-value < 0.05 in
parentheses). For the Adult and COMPAS datasets, which use categorical A, the DEO equalized odds violation metric is also included.
”Fairness trade-off parameters in equalized-odds models are selected to achieve similar violation levels, with the full prediction loss-KPC
trade-off curves shown in Figure 4.
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Figure 4: Prediction loss and violation of equalized odds (measured by KPC) obtained by different methods on Crimes/ACS Income/
Adult/COMPAS data over 100 random splits. The Pareto front for each algorithm is obtained by varying the fairness trade-off parameter.
Similar results measured by testing power is in Appendix E.3.

Remark 3.1. The power measure (Algorithm 2) depends
on how the permutation/sampling is conducted in practice.
In simulations, we can trust it by utilizing the true condi-
tional density, but its reliability hinges on the accuracy of
density estimation. In contrast, the direct KPC measure is
independent of density estimation.

3.2. Experiments on Real Data

In this section, we consider several real-world scenarios
where we may need to protect multiple sensitive attributes.
For all experiments, the data is repeated divided into a train-
ing set (60%) and a test set (40%) 100 times, with the
average results on the test sets reported .

• Communities and Crime Data Set: This dataset con-
tains 1994 samples and 122 features. The goal is to
build a regression model predicting the continous vio-
lent crime rate. We take the continuous percentages of
all three minority races (African American, Hispanic,
Asian, referred to as “3 dim”) as sensitive attributes in-
stead of only one race as done in the previous literature.
We also consider the case where A only includes one
race (African American, referred to as “1 dim”) for better
comparisons.

• ACSIncome Dataset: We use the ACSIncome dataset
from Ding et al. (2021) with 100,000 instances (subsam-
pled) and 10 features. The task is a binary classification
to predict if income exceeds $50,000. We consider a

mixed-type sensitive attributes: sex (male, female), race
(Black, non-Black), and age (continuous).

• Adult Dataset: The dataset consists of 48,842 instances
and the task is the same as ACSIncome. We use both sex
and race as two binary sensitive attributes.

• COMPAS Dataset: The ProPublica’s COMPAS recidi-
vism dataset contains 5278 examples and 11 features
(Fabris et al., 2022). The goal is to build a binary clas-
sifier to predict recidivism with two binary sensitive
attributes A: race (white vs. non-white) and sex.

Results We compare FairICP with four state-of-the-art
baselines encouraging equalized odds with the predictor
f implemented as a neural network (the results for linear
regression/classification is reported in Appendix E.6): FDL
(Romano et al., 2020), HGR (Mary et al., 2019), GerryFair
(Kearns et al., 2018) and Exponentiated-gradient reduction
(Agarwal et al., 2018) (referred to as “Reduction”). These
baselines are originally designed for different tasks. Among
them, Reduction is designed for binary classification with
categorical sensitive attributes (Adult/COMPAS), and Gerry-
Fair adopts a linear threshold method to binarize sensitive
attributes for classification (ACSIncome/Adult/COMPAS)
and targets equal TPR or FPR as an approximation of equal-
ized odds. HGR handles both continuous and categorical
sensitive attributes for both regression and classification,
but how to efficiently generalize it to handle multiple sen-
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sitive attributes has not been discussed by the authors 1.
We implement FDL with conditional density of A|Y esti-
mated by MAF (Papamakarios et al., 2017) in the continuous
case (Crimes); for the classification with mixed-type sensi-
tive attributes (ACSIncome), it’s not straightforward to esti-
mate A|Y , so we only consider FDL in the categorical case
(Adult/COMPAS) where we calculate the frequencies of each
class as an estimation of A|Y . For our proposed method
FairICP, we estimate Y |A with MAF as the same as in FDL
in the continuous case, and use a two-layer neural network
classifier in the classification (ACSIncome/Adult/COMPAS).

In Table 1, we compare FairICP to the baseline methods in
terms of predictive performance (MSE for regression and
misclassification rate for classification) with model-specific
fairness trade-off parameters tuned to yield similar levels of
KPC. We find that FairICP achieves the best performance
across most tasks, offering lower or similar fairness loss
(as measured by KPC or empirical power using estimated
density) while also attaining lower prediction loss than the
other fairness-aware learning baselines. Although the unfair
vanilla baseline achieves the highest prediction accuracy, its
equalized-odds violations are several times worse than Fair-
ICP’s. Finally, FairICP’s computational cost is on par with
FDL and only slightly higher than HGR (see Appendix E.5
for running time).

Figure 4 shows their full Pareto trade-off curves using KPC
(see Appendix E.3 for trade-off curves based on testing
powers , Appendix E.4 for trade-off curves based on DEO
in Adult/COMPAS dataset). These results confirm that the
effective multi-dimensional resampling scheme ICP enables
FairICP to achieve an improved prediction and equalized
odds trade-off compared to existing baselines in the presence
of complex and multi-dimensional sensitive attributes.

4. Discussion
We introduced a flexible fairness-aware learning approach
FairICP to achieve equalized odds with complex sensitive
attributes, by combining adversarial learning with a novel in-
verse conditional permutation strategy. Theoretical insights
into the FairICP were provided, and we further conducted
numerical experiments on both synthetic and real data to
demonstrate its efficacy and flexibility.

Although this work applies ICP within an in-processing
framework, the challenge of handling complex sensitive
attributes also arises in post-processing approaches. In-
processing methods incorporate fairness constraints directly
into model training, whereas post-processing adjusts pre-
diction thresholds after training—typically by recalibrating

1In Mary et al. 2019, since their method can’t be directly
adapted to multiple sensitive attributes, we compute the mean
of the HGR coefficients of each attribute as a penalty.

predicted probabilities across outcome classes (Hardt et al.,
2016). Recent work by Tifrea et al. (2023) extends post-
processing to handle either a continuous or a categorical
sensitive attribute through suitable loss-based optimization.
In this context, ICP could serve as a valuable building block
to enhance post-processing procedures, particularly by im-
proving the resampling or adjustment steps when working
with multi-dimensional A.

Finally, we acknowledge the computational overhead as-
sociated with adversarial learning, especially on large or
complex datasets—a limitation noted in prior work (Zhang
et al., 2018; Romano et al., 2020). Future directions include
improving the training efficiency of FairICP through sta-
bilization techniques or exploring alternative discrepancy
measures such as kernel-based objectives.

Impact Statement
This work advances the field of fairness-aware machine
learning by addressing the underexplored challenge of en-
forcing equalized odds for multi-dimensional sensitive at-
tributes, such as intersections of race, gender, and socioeco-
nomic status. While our primary contribution is methodolog-
ical—introducing a theoretically grounded and adaptable
framework (FairICP) for multi-attribute fairness—we rec-
ognize the broader societal implications of this research.
Below, we outline key ethical considerations and potential
impacts: 1) By enabling compliance with equalized odds un-
der complex sensitive attributes, FairICP could improve the
equity of algorithmic systems in domains like hiring, health-
care, and criminal justice; 2) While our method promotes
fairness through adversarial training and inverse conditional
permutation, it inherently requires access to sensitive at-
tributes during training. We emphasize that practitioners
must carefully evaluate whether collecting such data aligns
with ethical and legal standards in their jurisdiction.

In summary, while our work primarily contributes to al-
gorithmic fairness methodology, its societal impact hinges
on responsible implementation. We urge practitioners to
contextualize FairICP within broader ethical frameworks,
engage impacted communities, and prioritize transparency
in deployment.
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A. Example of KPC as a Generalized Squared Partial Correlation
We use a simple example to illustrate that KPC can be viewed as the generalized squared partial correlation between U
and V given W . To see this, we first recall that MMD2(PU , PV ) = ∥µU − µV ∥2H whereH is RKHS and µU = Ek(·, U)
is the kernel mean embedding of a distribution PU (Gretton et al., 2012) and consider the special case where the kernel
is linear and U = αW + βV + ε with W,V, ε being independently distributed with mean 0 and variance 1. In this case,
we have PU |W,V = N (αW + βV, 1), PU |W = N (αW, 1 + β2) and PU = N (0, 1 + α2 + β2). Then, the numerator in
KPC(U, V |W ) becomes: E[MMD2(PU |W,V , PU |W )] = E[(αW + βV − αW )2] = β2. The denominator becomes:
E[MMD2(δU , PU |W )] = E[(U − αW )2] = β2 + 1. Hence, we can see that KPC(U, V |W ) reduces to the squared

classical partial correlation between U and V given W : KPC(U, V |W ) = (ρUV ·W )2 = β2

1+β2 . In this special model, we
know that U is conditionally independent of V given W if and only if the partial correlation/KPC is 0 (β = 0).

B. Proofs
Proof of Theorem 2.1. Let S(A) = {A1, . . . , An} denote the row set of the observed n realizations of sensitive attributes
(unordered and duplicates are allowed). Let X, Ŷ := f(X) and Y be the associated n feature, prediction, and response
observations. Recall that, with a slight abuse of notations, we have used q(.) to denote both the density for continuous
variables or potentially point mass for discrete observations. For example, if we have a continuous variable U and discrete
variable V , then, qU,V (u, v) = qU |V (u|v)qV (v) with qV (v) the point mass at v for V and qU |V (u|v) is the conditional
density of U given V = v. Similar convention is adopted for the definition of P, e.g., P(U = u, V = v) = qU |V (u|v)qV (v),
P(U = u, V ≤ v) =

∑
v′≤v qU |V (u|v)qV (v′), P(U ≤ u, V ≤ v) =

∑
v′≤v

∫
qU |V (u

′|v′)qV (v′)du′.

1. Task 1: Show that Ã generated by ICP is a valid conditional permutation of A, as generated by CP.

Proof of Task 1. Recall that conditional on S(A) = S for some S = {a1, ..., an}, we have (Berrett et al., 2020):

P {A = aπ|S(A) = S,Y} =
qnA|Y (aπ | Y)∑

π′∈Sn
qnA|Y (aπ′ | Y)

, (8)

where a = (a1, ..., an) is the stacked a values in S. On the other hand, conditional on S(Ã) = S, by construction:

P
{
Ã = aπ|S(A) = S,Y

}
=

qnY |A (Yπ−1 | a)∑
π′ qnY |A (Yπ′−1 |a)

=
qnA|Y (aπ | Y)∑
π′ qnA|Y (aπ | Y)

. (9)

where the last equality utilizes the following fact,

qnY |A (Yπ−1 | a)∑
π′ qnY |A (Yπ′−1 |a)

=
qnY,A (Yπ−1 ,a)∑

π′∈Sn
qnY,A (Yπ′−1 ,a)

=
qnY,A (Y,aπ)∑

π′∈Sn
qnY,A (Y,aπ′)

=
qnA|Y (aπ | Y)∑
π′ qnA|Y (aπ′ | Y)

.

Hence, by construction, we must have P
{
Ã = aπ|S(A) = S,Y

}
= P {A = aπ|S(A) = S,Y}

2. Task 2: Show that (Ŷ,A,Y)
d
= (Ŷ, Ã,Y) given conditional independence Ŷ ⊥⊥ A|Y .

Proof of Task 2. By Task 1, we can show that Ã|Y d
= A|Y:

P(A ≤ t|Y ) = ES|YP(A ≤ t|Y, S(A) = S)] = ES|Y P(Ã ≤ t|Y, S(A) = S)] = P(Ã ≤ t|Y ).

Additionally, under the assumption that A ⊥⊥ Ŷ |Y , Ã ⊥⊥ Ŷ |Y by construction since Ã depends on the observed data only
through Y and S(A). Consequently, we have

qŶ,A,Y(ŷ,a,y) = qŶ|Y(ŷ|y)qA|Y(a|y)qY(y) = qŶ|Y(ŷ|y)qÃ|Y(a|y)qY(y) = qŶ,Ã,Y(ŷ,a,y).

Proof of Proposition 2.2. The proposed test is a special case of the Conditional Permutation Test (Berrett et al., 2020), so
the proof is a direct result from Theorem 2.1 in our paper and Theorem 1 in (Berrett et al., 2020) .
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C. Sampling Algorithm for ICP
To sample the permutation Π from the probabilities:

P {Π = π | A,Y} = qn (Yπ−1 | A)∑
π′∈Sn

qn (Yπ′−1 | A)
,

we use the Parallelized pairwise sampler for the CPT proposed in Berrett et al. (2020), which is detailed as follows:

Algorithm 3 Parallelized pairwise sampler for the ICP

Input: Data (A,Y), Initial permutation Π[0], integer S ≥ 1.
1: for s = 1, . . . , S do
2: Sample uniformly without replacement from {1, . . . , n} to obtain disjoint pairs

(is,1, js,1) , . . . ,
(
is,⌊n/2⌋, js,⌊n/2⌋

)
.

3: Draw independent Bernoulli variables Bs,1, . . . , Bs,⌊n/2⌋ with odds ratios

P {Bs,k = 1}
P {Bs,k = 0}

=
q
(
Y(Π[s−1](js,k)) | Ais,k

)
· q
(
Y(Π[s−1](is,k)

| Ajs,k

)
q
(
Y(Π[s−1](is,k)) | Ais,k

)
· q
(
Y(Π[s−1](js,k)) | Ajs,k

) .
Define Π[s] by swapping Π[s−1] (is,k) and Π[s−1] (js,k) for each k with Bs,k = 1.

4: end for

Output: Permuted copy Ã = AΠ[S]−1 .

D. Additional Comparisons of CP/ICP
When we know the true conditional laws qY |A(.) (conditional density Y given A) and qA|Y (.) (conditional density A given
Y ), both CP and ICP show provide accurate conditional permutation copies. However, both densities are estimated in
practice, and the estimated densities are denoted as q̌Y |A(.) and q̌A|Y (.) respectively. The density estimation quality will
depend on both the density estimation algorithm and the data distribution. While a deep dive into this aspect, especially
from the theoretical aspects, is beyond the scope, we provide some additional heuristic insights to assist our understanding
of the potential gain of ICP over CP.

D.1. When ICP Might Improve over CP?

According to proof argument of Theorem 4 in Berrett et al. (2020), let Aπm
be some permuted copies of A according to the

estimated conditional law q̌A|Y (), an upper bound of exchangeability violation for A and Aπ is related to the total variation
between the estimated density q̌A|Y (.) and qA|Y (.) (Theorem 4 in Berrett et al. (2020)):

dTV {((Y,A), (Y,Aπ))|Y), ((Y, Ǎ), (Y,Aπ))|Y)}

≤dTV (

n∏
i=1

q̌A|Y (.|yi),
n∏

i=1

qA|Y (.|yi))
(b1)

≤
n∑

i=1

dTV (q̌A|Y (.|yi), qA|Y (.|yi)), (10)

where step (b1) is from Lemma (B.8) from Ghosal & van der Vaart (2017). We adapt the proof arguments of Theorem 4 in
Berrett et al. (2020) to the ICP procedure.

Specifically, let Yπ be the conditional permutation of Y according to q̌Y |A(.) and Y̌ be a new copy sampled according to
q̌Y |A(.). We will have

dTV {((Y,A), (Yπ,A)|A)} ≤
n∑

i=1

dTV (q̌Y |A(.|Ai), qY |A(.|Ai)). (11)

13



FairICP: Encouraging Equalized Odds via Inverse Conditional Permutation

There is one issue before we can compare the two CP and ICP upper bounds for exchangeability violations: the two bounds
consider different variables and conditioning events. Notice that we care only about the distributional level comparisons,
hence, we can apply permutation π−1 to (Y,A) and (Y,Aπ−1). The resulting (Yπ−1 ,Aπ−1) is equivalent to (Y,A) and
the resulting (Y,Aπ−1) is exactly the ICP conditionally permuted version. Next we can remove the conditioning event by
marginalizing out Y and A in (10) and (11) respectively. Hence, we obtain upper bounds for violation of exchangeability
using CP and ICP permutation copies, which is smaller for ICP if q̌Y |A(.) is more accurate on average:

EA

[
dTV (q̌Y |A(.|A), qY |A(.|A))

]
< EY

[
dTV (q̌A|Y (.|Y ), qA|Y (.|Y ))

]
.

D.2. ICP Achieved Higher Quality Empirically with MAF Density Estimation

Here, we compare ICP and CP using MAF-generated densities. The data-generating process is the same as Section 3.1. Note
that by design, the linear fit shown in the main paper is favored over MAF for estimating qY |A in this particular example.
There may be better density estimation choices in other applications, but overall, estimating Y |A can be simpler and allows
us to utilize existing tools, e.g., those designed for supervised learning.
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Figure 5: Restricted TV distances (log 10 transformed) between permutations generated by ICP/CP using estimated densities by MAF
and the oracle permutations generated by true density. Each graph contains results over 20 independent trials as the noise level K
increases, with K0 = 1, 5, 10 respectively.

E. Experiments on Fairness-Aware Learning Methods Comparisons
In both simulation studies and real-data experiments, we implement the algorithms with the hyperparameters chosen by the
tuning procedure as in Romano et al. (2020), where we tune the hyperparameters only once using 10-fold cross-validation
on the entire data set and then treat the chosen set as fixed for the rest of the experiments. Then we compare the performance
metrics of different algorithms on 100 independent train-test data splits. This same tuning and evaluation scheme is used for
all methods, ensuring that the comparisons are meaningful. For KPC (Huang et al., 2022), we use R Package KPC (Huang,
2022) with the default Gaussian kernel and other parameters.

E.1. Simulation Studies

For all the models evaluated (FairICP, FairCP, FDL, Oracle), we set the hyperparameters as follows:

• We set f as a linear model and use the Adam optimizer with a mini-batch size in {16, 32, 64}, learning rate in {1e-4, 1e-3,
1e-2}, and the number of epochs in {20, 40, 60, 80, 100, 120, 140, 160, 180, 200}. The discriminator is implemented as a
four-layer neural network with a hidden layer of size 64 and ReLU non-linearities. We use the Adam optimizer, with a
fixed learning rate of 1e-4.

For the MAF used to estimate the conditional density (Y |A and A|Y ) in the training phase, we use MAF with one MADE
component and one hidden layer with 2 ∗ conditional inputs nodes, and for optimizer we choose Adam with 0.01 l1 penalty
and 0.1 learning rate.
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E.1.1. LOW SENSITIVE ATTRIBUTE DEPENDENCE CASES

We report the results with A-dependence w = 0.6 in Figure 6.
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Figure 6: Prediction loss and metrics of fairness in simulation over 100 independent runs under Simulation 1/Simulation 2 and w = 0.6.
For each setting, conditional dependence measure KPC and statistical power P{p-value < 0.05} are shown in the left column and right
column respectively. From top to bottom shows the results on different choices of the noisy sensitive attribute dimension of K. The
X-axis represents the metrics of fairness and the Y-axis is the prediction loss. Each graph shows the proposed method FairICP, FDL, and
oracle model with different hyperparameters µ.

E.2. Real Data Model Architecture

Regression Tasks For FairICP and FDL (code is adapted from https://github.com/yromano/fair_
dummies), the hyperparameters used for linear model and neural network are as follows:

• Linear: we set f as a linear model and use the Adam optimizer with MSE loss and a mini-batch size in {16, 32,
64}, learning rate in {1e-4, 1e-3, 1e-2}, and the number of epochs in {20, 40, 60, 80, 100}. The discriminator
is implemented as a four-layer neural network with a hidden layer of size 64 and ReLU non-linearities. We use
the Adam optimizer, with cross entropy loss and a fixed learning rate of 1e-4. The penalty parameter µ is set as
{0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

• Neural network: we set f as a two-layer neural network with a 64-dimensional hidden layer and ReLU activation function.
The hyperparameters are the same as the linear ones.

• Density estimation of Y |A and A|Y : we use MAF with 5 MADE components and two hidden layers of 64 nodes each.
We use Adam optimizer with 0.001 learning rate.

For HGR (code is adapted from https://github.com/criteo-research/continuous-fairness), the
hyperparameters used for the linear model and neural network are as follows:

• Linear: we set f as a linear model and use the Adam optimizer with MSE loss and a mini-batch size in {16, 32, 64},
learning rate in {1e-4, 1e-3, 1e-2}, and the number of epochs in {20, 40, 60, 80, 100}. The penalty parameter λ is set as
{0, 0.25, 0.5, 0.75, 1, 2, 4, 8, 16}.

• Neural network: we set f as a two-layer neural network with a 64-dimensional hidden layer and SeLU activation function.
The hyperparameters are the same as the linear ones.
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Classification Tasks For FairICP and FDL, the hyperparameters used for linear model and neural network are as follows:

• Linear: we set f as a linear model and use the Adam optimizer with cross entropy loss and a mini-batch size in {128,
256}, learning rate in {1e-4, 1e-3, 1e-2}, and the number of epochs in {20, 40, 60, 80, 100, 120, 120, 140, 160, 180, 200}.
The discriminator is implemented as a four-layer neural network with a hidden layer of size 64 and ReLU non-linearities.
We use the Adam optimizer, with cross-entropy loss and a fixed learning rate in {1e-5, 1e-4, 1e-3}. The penalty parameter
µ is set as {0, 0.3, 0.5, 0.7, 0.8, 0.9}.

• Neural network: we set f as a two-layer neural network with a 64-dimensional hidden layer and ReLU activation function.
The hyperparameters are the same as the linear ones.

• Density estimation of Y |A: we use a two-layer neural network classifier with 64 hidden nodes and ReLU. We use Adam
optimizer with cross-entropy loss and a 0.001 learning rate.

For HGR, the hyperparameters used for the linear model and neural network are as follows:

• Linear: we set f as a linear model and use the Adam optimizer with cross entropy loss and a mini-batch size in {64, 128,
256}, learning rate in {1e-4, 1e-3, 1e-2}, and the number of epochs in {20, 40, 60, 80, 100}. The penalty parameter λ is
set as {0, 0.0375, 0.075, 0.125, 0.25, 0.5, 0.75, 1, 1.5}.

• Neural network: we set f as a two-layer neural network with a 64-dimensional hidden layer and SeLU activation function.
The hyperparameters are the same as the linear ones.

For GerryFair (code is adapted from https://github.com/algowatchpenn/GerryFair), the hyperparameters
used for the linear model and neural network are as follows:

• Linear: we use the default linear regression in sklearn. The iteration of fictitious play is 500, and the trade-off parameter
is in [0.001, 0.03]. We choose FPR as the fairness metric.

• Neural network: we set f as a two-layer neural network with a 64-dimensional hidden layer and ReLU activation function.
Adam optimizer is used with a learning rate set in {0.001, 0.005} and batch size in {128, 256}. The rest of the parameters
are the same as in the linear case.

For Reduction (we use the package from https://github.com/fairlearn/fairlearn), the hyperparameters
used for the linear model and neural network are as follows:

• Linear: we use the default logistic regression in sklearn. The maximum iteration is 50, and the trade-off parameter is in
[0.5, 100].

• Neural network: we set f as a two-layer neural network with a 64-dimensional hidden layer and ReLU activation
function. Adam optimizer is used with a learning rate set in {0.001, 0.0001} and batch size in {128, 256}. The rest of the
parameters are the same as in the linear case.

E.3. Pareto Trade-Off Curves Based on Equalized Odds Testing Power
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Figure 7: Prediction loss and violation of equalized odds (measured by Power) obtained by different methods on Crimes/ACS Income/
Adult/COMPAS data over 100 random splits. The Pareto front for each algorithm is obtained by varying the fairness trade-off parameter.
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E.4. Pareto Trade-Off Curves Based on DEO

Apart from KPC and the corresponding testing power, we also consider the standard fairness metric based on the confusion
matrix (Hardt et al., 2016; Cho et al., 2020) designed for a binary classification task with categorical sensitive attributes to
quantify equalized odds:

DEO :=
∑

y∈{0,1}

∑
z∈Z
|Pr(Ŷ = 1 | Z = z, Y = y)− Pr(Ŷ = 1 | Y = y)|,

where Ŷ is the predicted class label.
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Figure 8: Prediction loss and violation of equalized odds (measured by DEO) obtained by different methods on Adult/COMPAS data over
100 random splits. The Pareto front for each algorithm is obtained by varying the fairness trade-off parameter.

E.5. Running Time

We report the running time with neural networks as below:

Crimes (one race) Crimes (all races) ACS Income Adult COMPAS
FairICP 29.4 34.6 680.7 293.1 59.8

HGR 14.6 17.8 309.8 98.2 61.4
FDL 28.9 39.2 / 289.4 67.6

GerryFair / / 2834.4 1487.4 194.8
Reduction / / / 334.1 171.1

Table 2: The running time (in seconds) to run a single point on the trade-off curve for each method. Each number is an
average of 5 trials.

E.6. Pareto Trade-Off Curves for Linear Models

We report the results with f as a linear model in Figure 9 for the Communities and Crime dataset (regression), in Figure 11
for the Adult dataset (classification) and in Figure 12 for the COMPAS dataset (classification), which are similar to NN
version.
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Figure 9: Prediction loss and violation of equalized odds (measured by KPC and statistical power P{p-value < 0.05}) obtained by 3
different training methods in Communities and Crime data over 100 random splits. Each graph shows the results of using different A: 1
dim = (African American) and 3 dim = (African American, Hispanic, Asian). The Pareto front for each algorithm is obtained by varying
the fairness trade-off parameter.
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Figure 10: Prediction loss and violation of equalized odds (measured by KPC and statistical power P{p-value < 0.05}) obtained by 3
different training methods in ACS Income data over 100 random splits. The Pareto front for each algorithm is obtained by varying the
fairness trade-off parameter.
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Figure 11: Prediction loss and violation of equalized odds (measured by KPC, statistical power P{p-value < 0.05} and DEO) obtained
by 5 different training methods in Adult data over 100 random splits. The Pareto front for each algorithm is obtained by varying the
fairness trade-off parameter. Some points of GerryFair are out of the graph on the right.
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Figure 12: Prediction loss and violation of equalized odds (measured by KPC, statistical power P{p-value < 0.05} and DEO) obtained
by 5 different training methods in COMPAS data over 100 random splits. The Pareto front for each algorithm is obtained by varying the
fairness trade-off parameter.
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