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ABSTRACT

Foundation models, such as Latent Diffusion Models and Generative Pre-trained
Transformers, trained on broad data have shown impressive results in various
downstream applications. Fine-tuning a pre-trained foundation model is an af-
fordable way to customize it on small and personalized data. However, the non-
AI experts often struggle with the hyperparameter configurations and sometimes
encounter the overfitting issue without even realizing it. To mitigate this issue, we
introduce a new monitoring metric (CS-Fluctuation) to facilitate early stopping
the fine-tuning process. Specifically, we leverage Low-Rank Adaptation (LoRA)
to fit the small scale of the personalized data while monitoring the cosine simi-
larity of the parameter changes between the LoRA branch and its corresponding
layer. When the changes become steady, we observe the onset of overfitting is-
sue which becomes increasingly severe as fine-tuning progresses. Empirically, we
leverage various types of personalized data to conduct customization experiments
on both vision and language foundation models, which corroborates the effective-
ness of CS-Fluctuation in early stopping the LoRA fine-tuning. The code can be
found at the anonymous link: https://anonymous.4open.science/r/
EarlyStopLoRA-7467/.

1 INTRODUCTION

Foundation models Bommasani et al. (2021) that are trained on broad data have demonstrated
impressive results in various downstream applications. For example, the Generative Pre-trained
Transformers (GPTs) (Brown et al., 2020) are trained from a vast amount of text data, which fos-
tered a powerful ChatGPT OpenAI (2023) for conversational applications. Latent Diffusion Models
(LDMs) (Rombach et al., 2022), whose encoder and decoder are pre-trained from large-amount of
images, are customized into photorealistic text-to-image generation (CompVis, 2022), image edit-
ing (Zhang & Agrawala, 2023), etc.

For personalized AI, fine-tuning a pre-trained foundation model is an affordable way to take advan-
tage of its broad capabilities using a set of small and personalized data. Ruiz et al. (2023) proposed
Dreambooth which finetunes the whole LDM using a few images and then synthesizes photorealistic
images of different scenes. A more efficient finetuning technique is Low Rank Adaption (LoRA) (Hu
et al., 2021). LoRA performs the low-rank decomposition of the transformer structure, which signif-
icantly reduces the cost of fine-tuning the large foundation models (Dettmers et al., 2023; Cuenca &
Paul, 2023). Thus, LoRA enables small companies or individuals to customize a foundation model
on a small dataset and even fine-tune the private datasets using their local machines.

However, LoRA can easily overfit a small set of training data, causing a barrier to the customization
of foundation models by non-AI experts. As shown in Figure 1, an individual wants to incorporate
the personalized photos or texts into a foundation model, such as a pretrained LDM or LLM, but
can only provide limited references. As the finetuning progresses, LoRA can quickly learn the small
reference data, leading to overfiting. As shown in Figure 1a, the overfitted LoRA even generated the
original reference images. Even worse, individuals often lack sufficient validation data to early stop
the fine-tuning process. In many cases, such as personalized image generation, reliable evaluation
metrics are also be absent. The above issues require a validation-independent criterion to early stop
the fine-tuning process.
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Reference

Epoch 2 Epoch 3 Epoch 5 Epoch 6
Good results Overfitted results

"a man, shaggy layers hairstyle and chinstrap, sad smile, standing with arms crossed in front of body in WWII, 
Bombed-Out Building Interior, Exposed brickwork, rubble, damaged furniture, evidence of previous life"

Epoch 4
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Epoch 10~

(a) Use LoRA to Fine-tune a LDM to generate the personalized images according to the reference data. In this
case, an individual expects vivid photos that are consistent with the provided prompt and containing his/her face.
Generated images should preserve high quality and manifest diversity in aspects such as hairstyles, scenes, and
attire. Besides, the generated images do not exhibit distortions or overly resemble the provided reference data.
As illustrated in the figure, the overfitted LoRA models ignore the provided prompt such as “arms crossed”,
and impact image quality, leading to blurring and loss of details.
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CS-Fluctuation

(b) Use LoRA to Fine-tune a LLM on a small and personalized texts. In this case, an individual provides a
small amount of texts related to “clinical knowledge” and expects that the fine-tuned LLM with LoRA can has
good generalization performance on unseen “clinical knowledge” texts. The Five-shot baseline accuracy comes
from Touvron et al. (2023a).

Figure 1: LoRA of a LDM and LLM. As the LoRA fine-tuning progresses, the cosine similarity (CS)
between LoRA layer and its corresponding original layers undergoes abrupt changes before settling
into a more gradual and stable pattern. Our proposed monitoring metric—CS-Fluctuation—monoter
the fluctuations of the CS changes. When CS-Fluctuation becomes small, it strongly suggests early
stopping the fine-tuning process. The grey dashed line is the turning point that is located by our
proposed algorithm, e.g., the Epoch 2 in red in Fig.1(a) is where the turning point is located.

To early stop the fine-tuning process, we introduce a new monitoring metric, called CS-Fluctuation.
Initially, we observe the fine-tuning process of cosine similarity (CS) of parameters between the
low-rank layer (used in the LoRA branch) and its original layer (used in a pretrained foundation
model). During the LoRA fine-tuning for both LDM and LLM, we observe that CS undergoes
abrupt changes before settling into a more gradual and stable pattern, despite the different learning
rate chosen. Interestingly, the turning point of overfitting happens exactly at the transitional point
of CS from “abrupt” changes to “stable” changes, as shown by blue lines in Figure 1. Thus, to aid
in locating the turning point (grey dashed lines), we propose a new metric called CS-Fluctuation
(denoted as green lines), where we calculate the variance of CS slopes across training iterations and
apply moving average techniques (Box et al., 2015) to smoothen the curve.
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To verify the effectiveness of CS-Fluctuation in fine-tuning foundation models utilizing LoRA tech-
nology, we chose several high-quality LDMs from CivitAI (Civitai, 2022) and open-source LLaMA
series (Touvron et al., 2023a) of LLMs as base models. A series of fine-tuning experiments are
conducted on multiple small-scale image and text datasets, aiming to simulate the real situations
of personalizing foundation models. The experimental results revealed that the CS-Fluctuation can
effectively identify the turning point to early stop the process of fine-tuning, thus avoiding the issues
of overfitting. In practice, the LoRA models corresponding to these turning points demonstrated
better performance in most cases. Adopting such a strategy of early stopping the fine-tuning process
before the onset of overfitting reduces unnecessary consumption of computational resources.

2 RELATED WORK

2.1 FOUNDATION MODELS

Foundation models (Bommasani et al., 2021) such as BERT (Devlin et al., 2018), GPT-3 (Brown
et al., 2020), CLIP (Radford et al., 2021), have demonstrated superior performance in solving various
types of complex tasks. This paper focuses on two types of foundation models, i.e., text-to-image
latent diffusion models (LDMs) and large language models (LLMs), which are reviewed as follows.

Diffusion models (DMs) have displayed remarkable performance in image synthesis. Compared
with other generative models such as GANs (Goodfellow et al., 2014; Brock et al., 2018), DMs can
mitigate the issues of training instability and mode collapse Ho et al. (2020); Song et al. (2020).
Moreover, DMs can model highly complex distributions of natural images without requiring large
amount of parameters Razavi et al. (2019).

Notably, text-to-image diffusion models have attracted extensive attention. To generate photo-
realistic images, the GLIDE (Nichol et al., 2021) introduced text conditions during the diffusion
process, while the DALL-E2 (Ramesh et al., 2022) enhanced the precision of text and image align-
ment through the integration of the CLIP (Radford et al., 2021) joint feature space. Notably, Latent
Diffusion Models (LDMs) Rombach et al. (2022) perform the denoising processes in the latent
space, which can effectively reduce computational resources while maintaining the quality and flex-
ibility of generated images. LDMs have facilitated the emergence of popular image editing tools like
ControlNet (Zhang & Agrawala, 2023), Instruct-Pix2Pix (Brooks et al., 2023) and Adetailer (Bing-
su, 2023), benefiting artists and designers.

Language Models (LMs) have demonstrated their potentials in solving complex tasks across various
domains (Touvron et al., 2023b). LMs adopt the transformer architecture (Devlin et al., 2018) and
the attention mechanism (Vaswani et al., 2017) and various pre-training techniques. Then, a pre-
trained LM can be fine-tuned for specific applications. Recently, Brown et al. (2020) has shown
that the large language Models (LLMs) have outstanding few-shot learning capabilities and can
adapt downstream tasks efficiently. The LLM examples are GPT series (Radford et al., 2018; 2019;
Brown et al., 2020; Floridi & Chiriatti, 2020; OpenAI, 2023) and LLaMA series (Touvron et al.,
2023a;b), which can demonstrate human-level performance.

2.2 PERSONALIZED AI

AI has recently shifted from universal models to personalized solutions, emphasizing that AI should
meet individual needs rather than providing a ”one-size-fits-all” approach. The rapid development of
large foundation models has enabled the lightweight personalized AI, which allows users to obtain
a high-performing AI model with just a few reference data. For example, Gal et al. (2022) pro-
posed a personalized text-to-image generation, which can synthesize novel scenes of user-provided
reference images. Ruiz et al. (2023) proposed Dreambooth that allows personalized and diversified
scene renderings. Besides, Kumari et al. (2023) proposed Custom Diffusion to synthesize user-
provided reference concepts. However, those methods require smart framework designs and careful
hyperparameter configurations, which can be barriers for non-AI experts.

In contrast, Low-Rank Adaptation (LoRA) provides a unified solution for fitting a small amount
of personalized data. The LoRA technique (Hu et al., 2021) was initially developed for the effi-
cient fine-tuning of LLMs and has also been extended to LDMs (Cuenca & Paul, 2023). LoRA
freezes the pre-trained model weights and introduces the trainable low-rank counterparts, which can
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greatly reduce the number of trainable parameters. Consequently, LoRA lessens the demand for
computational resources and offers versatile customization tailored to small and personalized data.

3 METHOD

In this section, Section 3.1 reviews the preliminaries of LoRA. Section 3.2 introduces our proposed
monitoring metric, i.e., CS-Fluctuation as well as an algorithm of early stopping the fine-tuning
process.

3.1 PRELIMINARIES OF LORA

LoRA (Hu et al., 2021) and QLoRA (Dettmers et al., 2023) are efficient fine-tuning techniques
that were designed for LLMs. LoRA can be also utilized in other foundation models such as
LDM (Cuenca & Paul, 2023). LoRA is a low-rank decomposition of foundation models, which can
significantly reduce the number of trainable parameters and memory usage during the fine-tuning
process of downstream tasks. Furthermore, a pre-trained foundation can be used to build many small
LoRA branches for different tasks. The details are elaborated in Figure 2 and Equation 1.
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Figure 2: In the LoRA branch, the matrices A and B are trainable and can efficiently fit the small
amount of personalized data

h = Wx+BAx (1)

When we use LoRA to fine-tune on a small personalized data, the original pre-trained weight matrix
W ∈ Rd×k is frozen. However, we concatenate a trainable LoRA branch, in which the shape of the
matrix BA equals that of W , where B ∈ Rd×r, A ∈ Rr×k, and the rank r is significantly less than
d or k. To fine-tune the foundation models, LoRA commonly operates on transformer architecture.
Specifically, LoRA targets the each layer in the attention block.

3.2 CS-FLUCTUATION: TRACKING LEARNING STATUS TO AVOID OVERFITTING

In this section, we propose a CS-Fluctuation metric to monitor the LoRA fine-tuning process. Once
CS-Fluctuation becomes steady and small, we early stop the fine-tuning process to avoid overfitting.

CS-Fluctuation is computed based on the Cosine Similarity (CS) between frozen parameters in a pre-
trained foundation model (W ) and their counterparts in LoRA (BA). CS is defined in Equation 2
as follows.

CS(BA,W ) =
1

N

N∑
i=1

vec(BiAi) · vec(Wi)

∥vec(BiAi)∥∥vec(Wi)∥
, (2)

where vec(·) denote the vectorization that flattens the matrix to one-dimensional vector, and i is the
index of layers, in which there is a LoRA counterpart to perform a low-rank decomposition.
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To calculate CS-Fluctuation, we apply the technique of moving window average MA(·) on CS and
it slope ∇CS in the batch-wise matter.

MA(CSj) =
1

M

j+M∑
j

CSj , (3)

where j is the index of iteration steps in fine-tuning process, and M is the size of moving window.
Note that in order to calculate the CS of the iteration j, we need to calculate M more iterations of
fine-tuning.

Now, we calculate the smoothed version of CS slope, i.e, Xj = MA(∇(MA(CSj)). For simplicity,
we approximate the CS slope by ∇CSj = CSj − CSj−1. The CS-Fluctuation is then the variance
value of smoothed CS slope, as shown in Equation 4.

CS-Fluctuation(CSj) =
1

lr
· 1

M

j+M∑
j

(
Xj −Xj

)2
, (4)

where lr refer the size of learning rate. We divide the variance by lr to normalize and eliminate the
effect of lr scale on CS fluctuations.

We leverage CS-Fluctuation to early stop the fine-tuning process to return a well performing LoRA
model. Over the fine-tuning iterations, we empirically observe that the CS-Fluctuations behave like
transverse waves, exhibiting multiple peaks and valleys and gradually becoming stable. The first
valley of waves often happens at the very beginning of the fine-tuning process at the time when
the LoRA model is underfitted. Therefore, we take the second valley as the turning point to signal
the early stopping of the fine-tuning process. We then return to users the LoRA checkpoint at the
turning-point epoch (one or a few epochs earlier than the current stopping epoch). Kindly note
that we apply M size of moving window in Equation 3. Thus, the CS-Fluctuation value of the
turning point is calculated based on CS values of previous iterations and those of the subsequent M
iterations. The early-stopping LoRA is found in Algorithm 1.

Algorithm 1 Early Stopping based on CS-Fluctuation

1: Input: A few reference data, a pre-trained foundation model W , Maximum iteration steps J
2: Output: A LoRA model at the turning-point epoch (BA)
3: For j in J:
4: Compute CS-Fluctuationj−M based on Eq. 4, indexed at (j −M)
5: Compute ∇CS-Fluctuationj−M , i.e., the derivative of CS-Fluctuation, for identifying valleys
6: If: ∇CS-Fluctuation experiences a second transition from “-” to “+”: ▷ second valley
7: Return a LoRA checkpoint at the epoch corresponding to the turning point (j −M)
8: Stop LoRA fine-tuning process

4 EXPERIMENT

4.1 EARLY STOPPING LORA OF LDMS

In this section, we describe the experimental setup and results of using LoRA to fine-tune the LDMs.
First, we selected several high-quality LDMs in CivitAI (Civitai, 2022) as base models for LoRA
fine-tuning. These models are fine-tuned by Dreambooth on Stable Diffusion V1.5 (SD V1.5), ex-
hibiting superior image generation quality and artistic effects compared with the original version,
thus aligning more closely with user needs in real-world applications. To simulate the scenario of
users personalizing their private models, we confined the train set to a small scale, i.e., 20-30 images,
and did not provide the test set. The image datasets for LDM, supplied by us, included real portraits
of an individual, celebrity stills (MovieStillsDB, 2023), landscape of Queenstown in Auckland, and
architecture of the Forbidden City. The window size M was configured to the number of steps in
an epoch, and the resolution of training images was set to 512*512. We set the Repeat value of 50,
indicating that each epoch involves 50 complete traversals of the dataset. The tags were initially
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Table 1: Detailed information on image datasets and LoRA fine-tuning hyperparameter settings for
LDMs. In real world scenario, users can only provide limited reference data for fine-tuning and test
sets are not available since evaluations are subjective.

MODELS LORA
r

LORA
α

LR BATCH
SIZE REPEAT EPOCHS

Stable Diffusion V1.5 128 64 1e-5 1 50 10

DATASET TRAIN SET TEST SET

Real portrait 27 images N/A
Celebrity 23 images N/A
Landscape 20 images N/A
Architecture 22 images N/A

generated by the wd-v1-4-moat-tagger-v2 model (SmilingWolf, 2023) and were subsequently ad-
justed manually. For more information about datasets and hyperparameter settings, refer to Table 1,
and the selected base models in Appendix A.1.

Regarding the hyperparameter of LoRA, LoRA rank, denoted as r in Section 3.1, represents the rank
used in the decomposition of the weight matrix. Meanwhile, the α is a scaling constant applied to
the output of the low-rank decomposition, i.e., BAx in Equation 1.

We conducted fine-tuning experiments on each image dataset using two different base models. Fig-
ure 1a and Figure 3 display the second valley (turning point) identified by Algorithm 1, along with
the qualitative experimental results of the trained LoRA models. Due to space constraints, we only
present the fine-tuning results of each dataset on one base model, and additional results can be found
in Appendix A.1.

The qualitative results reveal that the turning point identified based on CS-Fluctuation can indeed
locate well performing LoRA models, thereby avoiding overfitting. Specifically, the LoRA models
corresponding to the turning point epoch and the subsequent epoch exhibit superior performance in
generating high-quality images based on the prompt while incorporating user-provided references.
In contrast, the overfitted LoRA result in generated images that are inconsistent with the prompt, and
they degrade the quality of the generated images, leading to blurry and loss of details. For example,
in Figure 1a, overfitting starts around Epoch 5, as evidenced by generating an unmentioned “hat” in
the prompt. Starting from Epoch 6, the LoRA model begins to ignore the prompts such as “arms
crossed”, “exposed brickwork”, etc., and the background becomes blurred. Similarly, the ‘blue
hair” prompt is ignored in the first row of Figure 3, the unrealistic snow mountains in the second
row, and buildings on the clouds in the third row. For a more detailed view of the image quality,
we recommend that readers zoom in on the images or refer to Appendix A.2 for more zoomed-in
images.

In summary, the LoRA models that employ early stopping based on CS-Fluctuation can integrate
user-provided references into the model without compromising the quality and diversity of the gen-
erated images.

4.2 EARLY STOPPING LORA OF LLMS

This section illustrates the experimental setup and results regarding the LLMs. We chose the 7B
and 13B versions of the LLaMA series, owing to their open-source availability and offering of
multi-scale modeling options. The employed text dataset for LLMs is derived from the MMLU
dataset (Hendrycks et al., 2020), which contains multiple-choice questions from 57 subjects. We
extracted ten subjects and allocated the dev and validation set as the train set to ensure the small
size of the training dataset, similar to the LDMs experiments. The window size M was set to 100
steps. Meanwhile, the original test set of the MMLU dataset was utilized to calculate the zero-shot
accuracy to quantitatively evaluate the LoRA models at the turning points identified by the CS-
Fluctuation. More information about the text dataset and hyperparameter settings can be found in
Table 2
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"photo of beautiful, a woman as a movie star sitting at the table, long blue hair, turtleneck sweater, black jacket"

"professional photo, photo of winter landscape, blue sky, snow mountain,cityscape,building,ocean"
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Reference

Reference

Reference

Figure 3: Experimental results for real portrait, landscape, and architecture datasets. Each figure
group contains five generated images, the curve of CS-Fluctuation during fine-tuning and the second
valley (turning point) marked with the gray dashed line. The first image labeled as “Early stop
LoRA” is the generated using the LoRA model at the epoch corresponding to the truning point. The
second image is generated using the LoRA model trained for one additional epoch after the turning
point epoch. “Overfitted LoRA” refers to the generated results of the LoRA models that continued
training after the turning point. For clarity, only part of the prompt is displayed, and non-critical
tags such as “masterpiece” and “photorealistic” have been omitted.
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Table 2: Detailed information on test datasets and LoRA fine-tuning hyperparameter settings for
LLMs

MODELS LORA
RANK

LORA
ALPHA LR BATCH

SIZE STEPS

LLaMA 7B 64 16 4e-6 16 1500
LLaMA 13B 64 16 2e-6 16 1500

DATASETS SUBJECT TRAIN SET Test set

Text dataset College Physics 16 102
Machine Learning 16 112

Clinical Knowledge 34 265
Business Ethics 16 100
College Biology 21 144

Anatomy 19 135
College Chemistry 13 100

College Mathematics 16 100
Computer Security 16 100
International Law 18 121

We conducted LoRA fine-tuning experiments on both versions of LLaMA using train sets from five
different subjects for each. The turning points identified by the Algorithm 1 and quantitative results
are presented in Figure 4.

The quantitative results validate the effectiveness of CS-Fluctuation in identifying the turning points
in the fine-tuning process. Before reaching this point, the accuracy curve fluctuates notably and then
stabilizes. For LLMs, the overfitted LoRA model does not significantly affect model performance.
However, continuing training after the turning point results in unnecessary computational expendi-
ture, especially since fine-tuning LLMs typically requires more computational resources compared
to LDMs.
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(a) LLaMA7B
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(b) LLaMA13B

Figure 4: Quantitative results for LLaMA 7B and 13B, including the zero-shot accuracy calculated
using the original test set of the MMLU dataset and the of CS-Fluctuation during the fine-tuning
process, along with second valley (turning point) marked with the gray dashed line.

Furthermore, we found that the LoRA model at the turning point is not always the instance with
the best performance. Higher accuracy may also exist near the turning points. We compare these in
Table 3 with the five-shot baseline accuracy of LLaMA (Touvron et al., 2023a). The accuracy at the
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Table 3: Comparison of accuracy during the fine-tuning process. The table displays the zero-shot
accuracy (EARLY STOP ACC.) at the second valley (turning point) , the highest accuracy (HIGH-
EST ACC.) throughout the fine-tuning process, and the five-shot baseline accuracy Touvron et al.
(2023a). We find that the best accuracy is usually achieved near the identified turning points.

MODELS SUBJECT EARLY STOP
ACC.

HIGHEST
ACC.

FIVE-SHOT
BASELINE ACC.

LLaMA 7B College Physics 40.2 42.2 26.5
Machine Learning 31.3 33.0 23.2

Clinical Knowledge 43.2 43.2 35.1
Business Ethics 33.0 36.0 40.0
College Biology 36.1 37.5 37.5

LLaMA 13B Anatomy 48.1 51.1 45.9
College Chemistry 38.0 41.0 30.0

College Mathematics 28.0 32.0 32.0
Computer Security 64.0 67.0 65.0
International Law 63.6 63.6 62.8

identified turning points does not differ significantly from the peak accuracy, the latter frequently
materializing near the turning points. Therefore, if the user is not satisfied with the accuracy of
the turning points, such points can serve as preliminary stage in a subsequent, more meticulous
fine-tuning process.

Moreover, as shown in Table 3, we observe that, in some cases, the zero-shot accuracy of the fine-
tuned LoRA models is comparable to the five-shot baseline accuracy, especially in the experiments
on LLaMA 13B. This phenomenon may be due to the larger number of parameters than the 13B
model, leading to a higher susceptibility to overfitting, particularly when fine-tuning on such a lim-
ited dataset.

5 LIMITATIONS AND FUTURE WORKS

There are several limitations of this study. Firstly, we have to admit that currently CS-Fluctuation
only addresses the overfitting issue of LoRA fine-tuning. As far as we know, other fine-tuning
methods, such as Dreambooth, are also prone to overfitting. Secondly, as demonstrated in Table 3,
there are some cases that the LoRA has no significantly better performance than five-shot baselines,
in which CS-Fluctuation cannot help. In addition, this study does not involve experiments on even
larger LLMs (such as LLaMA 33B) due to our computational constraints.

There are several areas deserving further explorations. We plan to apply the early-stopped LoRA
in broad applications, such as generating anime characters and landscapes and modifying the image
art styles. Besides, we plan to investigate the effectiveness of CS-Fluctuation larger LLMs (e.g., the
65B version of LLaMA and LLaMA2) as well as larger LDMs (e.g., SDXL (Stability-AI, 2023)).
Besides LoRA fine-tuning, we plan to develop more robust and generalized methods to mitigate the
issue of overfitting in other fine-tuning processes.

6 CONCLUSION

In this study, we have introduced a new monitoring metric, CS-Fluctuation, aimed at early stopping
the LoRA fine-tuning process of foundation models to avoid overfitting. This approach is particu-
larly valuable in the cases with limited training data or when objective test data is either unavailable
or highly subjective. Empirically, we have applied the early-stopped LoRA to both vision models
(LDMs) and language models (LLMs), respectively. Our findings corroborate the CS-Fluctuation
metric can effectively deliver well-performing, customized vision or language models to users.
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A APPENDIX

A.1 SELECTED BASE MODELS AND ADDITIONAL EXPERIMENTAL RESULTS OF LDMS

For each image dataset, we performed fine-tuning experiments on two base models, as shown in
Table 4. All of these base models can both be found and downloaded in CivitAI (Civitai, 2022). The
qualitative results for the first base model are presented in Figure 1a and Figure 3, while results for
the second base model can be found in Figure 5 and Figure 6.

"professional photo, closeup portrait photo of caucasian man, wearing black suit, serious face"
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"1girl, smirk, long hair, pink hair, outdoors, white clothes, day, open mouth"

Early stop LoRA Overfitted LoRA
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Early stop LoRA Overfitted LoRA

Figure 5: Additional experimental results on celebrity and real portrait datasets. Each figure group
contains five generated images, the curve of CS-Fluctuation during fine-tuning and the second valley
(turning point) marked with the gray dashed line.

Table 4: Selected Base Models for LDMs Experiemnts

DATASET BASE MODEL

Real portrait xxmix9realistic v40
majicmixRealistic betterV2V25

Celebrity icbinpICantBelieveIts seco
realisticVisionV51 v51VAE

Landscape realisticVisionV51 v51VAE
landscapeRealistic v20WarmColor

Architecture aargArchitecture v10
architecturerealmix v1repair
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"cityscape, building, real world location, scenery, ocean, water, snowy mountains, ice, winter, moon, aurora, night, dark, dreamy"
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"an old east asian building by the river, reflection water, cloud, outdoors, tree, scenery, day, architecture, "
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Early stop LoRA Overfitted LoRA

Early stop LoRA Overfitted LoRA

Figure 6: Additional experimental results on landscape and architecture datasets. All images were
generated with the same parameters, and non-critical tags have been omitted.

In Figure 5, we observe that the overfitted LoRA model in the first group of images generates a
character wearing a hat, even though “hat” is not provided in the prompt. Furthermore, the overfitted
LoRA generates images that resemble the user-provided references. Besides, in the second group,
the model ignores the prompt “day” and “pink hair”, and significantly degrades the quality and
diversity of the generated images.

In Figure 6, the second base model of landscape tends to generate dreamy style images rather than
pursuing image realism. However, overfitting still impacts image quality, i.e. the auroras and snow
mountains are manifested in anomalous formations. Also for the architecture, weird and unusual
buildings are generated.

A.2 ADDITIONAL QUALITATIVE RESULTS

In Figure 7, 8, 9, and 10 we present more qualitative results for LDMs, including the generation
results of the well performing LoRA model (Early stop LoRA) at turning point and the overfitted
results. For clarity, we have zoomed in on the images and non-critical tags have been omitted.
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Early stop LoRA Overfitted LoRA

"a man, shaggy layers hairstyle and chinstrap, sad smile, standing with arms crossed in front of body in WWII,Bombed-
Out Building Interior, Exposed brickwork, rubble, damaged furniture, evidence of previous life"

"film grab of a young landsknecht, plate armor, black shirt, moustache, standing, simple background"

"city street, fog, closeup portrait photo of young man wearing white shirt and black jacket, white hair"

Figure 7: Additional qualitative results on celebrity dataset
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Early stop LoRA Overfitted LoRA

"a woman, flower dress, flower armor, green theme"

"20 yo woman, long straight hair, green hair, white shirt"

"RAW photo, face portrait photo of 30 y.o man, wearing white suit, happy face, blonde hair"

Figure 8: Additional qualitative results on celebrity and real portrait dataset
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Early stop LoRA Overfitted LoRA

"1girl, angel, cloud, glowing skin, white clothes"

"photo of spring landscape, blue sky,ocean,snow mountain,cloudy sky, flowers"

"1girl, curly hair, in the dark, black shirt, blonde hair"

Figure 9: Additional qualitative results on real portrait and landscape datasets
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Early stop LoRA Overfitted LoRA

"cultural style,snow, cloud, outdoors, scenery, day, cloud, statue, architecture, east asian architecture,building,day,blue sky"

"scenery, outdoors, building, day, real world location, architecture, east asian architecture, dusk, cloud, cityscape,city"

"photo of autumn landscape, dramatic lighting, gloomy, cloudy weather"

Figure 10: Additional qualitative results on landscape and architecture datasets
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