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Abstract

In chemistry, most research on large language models has centered on
knowledge question answering and retrieval. However, these approaches
fall short on core tasks such as open molecular generation and optimiza-
tion: they lack explicit reasoning processes, and their outputs cannot be
systematically verified, leading to severe issues of scientific hallucination.
To overcome these limitations, we propose ChemReason, a chemical LLM
grounded in generative code reasoning. Unlike non-reasoning LLMs, Chem-
Reason is a code-driven reasoning model that provides transparent infer-
ence for molecular editing, generation, and optimization. By dynamically
generating and executing chemical verification code during reasoning, the
model validates each step, ensuring the scientific reliability of its answers
under open-domain conditions. On the TOMG benchmark, ChemReason
achieves state-of-the-art performance and demonstrates end-to-end verifi-
able inference for open molecular tasks. More broadly, the proposed “code–
verification–reflection”paradigm offers an extensible pathway for AI for
Science, providing a generalizable architecture for addressing complex sci-
entific computing challenges.

1 Introduction

Artificial intelligence has increasingly intersected with a wide range of scientific disciplines,
accelerating progress in fields such as physics, biology, and materials science Jiang et al.
(2022). In chemistry, large language models (LLMs) hold tremendous but still underexplored
potential. Existing chemical LLMs have primarily focused on tasks such as knowledge
question answering, information retrieval, and molecular generation. Among these, the core
practical capabilities most relevant to experts are molecular generation, optimization, and
editing Li et al. (2024). However, current chemical LLMs face fundamental limitations when
tackling these problems Xu et al. (2019).
First, most models directly output answers without undergoing iterative reasoning or self-
reflection, leading to unreliable predictions. Second, the lack of rigorous verification in
molecular tasks results in severe hallucination: generated SMILES strings often appear
plausible but contain subtle errors that render them chemically invalid. Although recent
“thinking”models such as DeepSeek Guo et al. (2025a), GLM Zeng et al. (2025), Doubao Guo

et al. (2025b), and Qwen3 Yang et al. (2025)improve accuracy by encouraging step-by-step
reasoning before producing answers, they still fail to incorporate molecular validation, and
hallucination remains unsolved. With the advent of the agent paradigm, tool-augmented
models (e.g., DeepSearcher Shen et al. (2009), DeepCoder Balog et al. (2016)) have emerged
that autonomously invoke external tools to assist reasoning. Inspired by this trend, we con-
sider a novel reasoning pipeline where the model alternates among thinking, code generation,
and reflection. Specifically, the model learns to verify candidate SMILES strings by writing
and executing validation code, and then updates its reasoning based on the feedback. This
approach directly addresses both the lack of systematic reasoning and the severe hallucina-
tion problem in open-domain molecular generation. Fig. 1 compares the responses of the
non-reasoning chemistry model with those of ChemReason. Non-reasoning models can out-
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put corresponding molecular formulas, but they only look correct and are completely wrong
in reality. However, ChemReason, through multiple rounds of code verification, makes the
generated molecular formulas true and reliable. This is a breakthrough in the open field of
chemical molecular formulas.
However, no prior work has established a systematic chemical code reasoning pipeline. Re-
lying on manually crafted trajectories is time-consuming and infeasible at scale. To bridge
this gap, this paper makes the following contributions:

• We design an automated code-augmented reasoning framework that requires
only a small set of manually designed chemical validation functions. These func-
tions are then diversified via LLM-driven refactoring to yield robust and varied
code templates. Unlike directly generating validation code with LLMs, which often
produces fragile or incomplete functions, our approach ensures high robustness and
comprehensive coverage of chemical constraints.

• We propose a two-stage training paradigm, consisting of a cold-start phase
followed by dense-reward reinforcement learning. Cold-start enables the model to
quickly adapt to the think–code–reflect reasoning format, while reinforcement learn-
ing with carefully designed dense rewards encourages the model to write correct
code, reflect on execution results, and iteratively refine outputs to produce valid
chemical structures.

• We release the ChemReason-8B model, which achieves state-of-the-art perfor-
mance on the TOMG-Bench benchmark for open-domain molecular generation, op-
timization, and editing tasks.

         

         

         
Modify the molecule Cc1cc(C(=O)C=Cc2ccc(-c3ccccc3)cc2)c(C)o1 by adding a benzene ring. Provide one 
possible SMILES notation for it, and place the final answer within $\boxed{}$.

          $\boxed{C(=O)/C=C/c1ccc(-c2ccccc2)cc1}$

Non-reasoning Chemical LLM

The molecular structure formula in the question

Appropriate introduction of a benzene 
ring with minimal modification.

This approach lacks a thorough analytical 
process; furthermore, it neither achieves 
effective benzene ring introductionaa nor 
preserves the original molecule’s inherent 
structure.

molecular structural formula

         

The molecular structure formula answered by 
ChemReason

         

The molecular structure formula answered by 
other non-thinking Chemical LLM

         

<think> Okay, I now need to solve the user's problem. Let me start by parsing 
this SMILES structure...
I need to find a suitable position to attach the new benzene ring...
Possible substitution methods:
Replace the methyl group on the main ring.
Perform fusion or attachment on the existing benzene ring.
Select a carbon atom on the flexible chain connecting the main ring and the side-
chain benzene ring, then add a benzene ring substituent to it....
Ultimately, option three was chosen as it involves minimal modification, is 
chemically common and feasible. The resulting SMILES is: 
Cc1cc(C(=O)C(c2ccccc2)=Cc3ccc(-c4ccccc4)cc3)c(C)o1. Next, I will use code 
to verify whether the molecule is correct.</think>

<code>from rdkit import Chem
def Add_DelComponent(original_mol: str, model_gen_mol: str, group: str, 
add_nums: int) -> bool:
...
result = Add_DelComponent(original_smiles, modified_smiles, 'benzene_ring', 1)
print(result)</code>

<result>Number of functional groups in the original molecule: 2, Number of 
functional groups in the modified molecule: 3
True</result>

<think>The execution results confirm that the molecule was successfully modified 
with the addition of a benzene ring. The functional group count increased correctly 
by one, and the resulting SMILES string is valid.</think>
<answer>$\boxed{Cc1cc(C(=O)C(c2ccccc2)=Cc3ccc(-c4ccccc4)cc3)c(C)o1}$ 
</answer>

ChemReason

Figure 1: Response Quality: Non-reasoning Chemical LLM LLM vs. ChemReason

2 Related Work

With the rapid development of agentic paradigms, a new line of research has focused on
native tool-using models trained with reinforcement learning Kwak et al. (2025). TORL

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Li et al. (2025) demonstrates that an LLM can autonomously perform mathematical com-
putation in Python via reinforcement learning, where reward functions and a maximum
code-calling limit are jointly designed. This yields a 14% improvement over the best ex-
isting tool-integrated reasoning (TIR) models. ToolRL Qian et al. (2025) systematically
studies reward function design for tool selection in RL, and introduces a principled reward
scheme tailored for tool-using tasks by jointly matching tool names, parameter names, and
parameter values to compute composite scores. ReTool Feng et al. (2025) highlights data
construction, converting textual reasoning into adaptive code generation. Through a two-
stage training strategy of cold-start followed by PPO, it achieves high code response rates,
strong utilization, and self-correction ability. Finally, OTC Wang et al. (2025) addresses
the limitation that most prior work emphasizes only answer correctness while overlooking
tool efficiency. It proposes to reward solutions that are not only correct but also minimize
the number of tool calls, thereby encouraging reasoning paths that are both accurate and
concise.
Parallel to advances in standalone chemical models, a growing line of research has explored
tool-augmented large models, where language models are equipped with the ability to call
external tools, run code, or query knowledge bases Hammer & Zdonik (1980). General-
purpose efforts illustrate that LLMs can be extended into agents capable of reasoning while
acting on external environments. In scientific domains, this paradigm has inspired proto-
types such as ChemCrow Bran et al. (2023), which integrates GPT-based reasoning with
chemistry software like RDKit and PubChem, and SciAgent Ma et al. (2024) or Synapse,
which couple LLMs with symbolic solvers and domain-specific APIs for hypothesis testing
and experimental design. These studies highlight a promising trend: large models need not
remain passive predictors but can actively orchestrate scientific workflows through tool use.
While tool-augmented agents have demonstrated proof-of-concept potential in chemistry,
they remain far from realizing the vision of autonomous scientific assistants Chauhan et al.
(2024). They still struggle to unify reasoning, tool invocation, and execution into a coherent,
learnable process—an essential gap our work seeks to address.
To address these gaps, we advocate a native tool-calling paradigm where chemical tool use is
treated as a first-class modeling objective rather than an add-on. We introduce ChemRea-
son, which synthesizes high-quality tool-use trajectories via chemistry-guided sampling and
difficulty-aware filtering, and trains models in two stages: a cold-start phase guided by tool
feedback, and a reinforcement phase with self-critique rewards. This design equips Chem-
Reason with the ability to think while computing, seamlessly combining reasoning with
external software execution for chemistry tasks. Experiments on TOMG confirm state-
of-the-art performance, highlighting the potential of domain-native tool-calling models as
practical scientific agents.

3 Methodolog

The ChemReason model is trained in two stages: initial cold-start learning followed by
dense reward reinforcement learning. The required training data is generated through the
synthesis of chemical code routes.

3.1 Chemical code data synthesis route

We adopt a Code-Enhanced Reasoning paradigm that enables the model to interleave
natural-language reasoning with executable code, run the code in an isolated sandbox, and
feed verified results back into subsequent reasoning. Concretely, each trajectory is struc-
tured with <think> (deliberation), <code> (executable snippet), <result> (sandbox output
or traceback), and a final <answer> segment. This design converts symbolic chemical con-
straints into verifiable computations and supplies instant correctness feedback to stabilize
long-horizon reasoning.
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Figure 2: Data Generation Pipeline

3.1.1 Chemical code template

To address the lack of robust chemical code reasoning paths, we design a family of task-
specific code templates that encapsulate verification utilities while leaving invocation logic
and key arguments to the model. We cover three task families, including MolCustom,
MolEdit, and MolOpt, with nine concrete tasks:

• MolCustom: AtomNum (generate by atomic counts), BondNum (generate by
bond counts), FunctionalGroup (generate by functional groups);

• MolEdit: AddComponent (add group), DelComponent (delete group), Sub-
Component (substitute group);

• MolOpt: LogP (octanol–water partition), MR (molar refractivity proxy), QED
(quantitative estimate of drug-likeness).

Eight code templates are constructed for the nine tasks, with AddComponent and Del-
Component sharing one template due to symmetric verification logic. Each template ex-
poses canonical validators (e.g., mol_prop for atomic/bond counts; property calculators for
LogP/MR/QED) and a light-weight driver. To enhance diversity while keeping semantics
invariant, we prompt a strong code model to refactor each complete validator (rename vari-
ables, reorder control flow, or modularize I/O), and then perform equivalence checking by
executing both versions on identical inputs and requiring identical outcomes; only mutually
consistent pairs are retained as diversified templates.

3.1.2 Data synthesis trajectory

We construct executable, verifiable trajectories that interleave reasoning and code, starting
from the TOMG-Bench training pool (∼1.2M items) and subsampling fewer than 2 × 104

instances for experimentation. To broaden linguistic coverage, a portion of the samples is
paraphrased into Chinese. All generations follow a unified protocol with <think> (delibera-
tion), <code> (executable snippet), <result> (sandbox output or traceback), and <answer>
(final SMILES); the exact prompt and format are provided in Appendix §C. Given an input
specification, we synthesize a multi-round trajectory via four stages:

1. Deliberation priming. A base LLM produces the initial <think> segment; de-
coding halts at </think> via a stop token, preventing premature answers.

2. Template completion. We insert a task-matched chemical code template into
<code>. Since arguments and the driver are intentionally omitted, a strong code
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model (e.g., DeepSeek-R1) continues from the prefix <think>+<code> to synthe-
size (i) missing function arguments, (ii) a minimal main driver, and (iii) a proper
</code> closure.

3. Sandbox execution & feedback. The snippet executes in a restricted Python
sandbox. On success, numerical outputs (e.g., atom/bond counts or property values
for LogP/MR/QED) are wrapped into <result>. On failure, we capture only the
final traceback line to keep signals concise and place it in <result>. The triplet
<think>+<code>+<result> is fed back to the model to enable self-correction.

4. Batched continuation with difficulty control. We replicate the updated con-
text four times to promote diverse continuations. Two outcomes are observed: (a)
the model emits <answer> with a SMILES string; correct answers are retained, or
(b) the model triggers another <code>+<result> round. We cap the total code-call
rounds per item to avoid runaway trajectories; the observed code-call count acts as
a proxy for difficulty and later supports curriculum-style training.

The data construction can be seen in Fig. 2. We keep a trajectory only if (i) the final
<answer> is consistent with validator outputs (answer–code agreement), and (ii) its round
count falls within a pre-set window for the target difficulty bucket (0–1 calls for “easy,” 2–3
for “medium,” and ≥4 for “hard”). The resulting corpus contains ∼1.2×104 verified trajecto-
ries across the nine tasks (three families MolCustom/MolEdit/MolOpt); Fig. 7 reports
per-task round-count distributions, from which we observe that tasks with structural editing
constraints (e.g., SubComponent) generally induce more code calls than purely numeric
property targets. Empirically, more rounds correlate with (i) harder discrete constraints
(stoichiometry, valency, functional-group presence) and (ii) a higher incidence of tool-side
exceptions. Logging rounds disentangles reasoning errors from tooling errors and provides
calibrated supervision signals that are leveraged by our two-stage training (cold-start SFT
on easy/medium, followed by RL with self-critique on hard), improving robustness without
inflating prompt budgets.

P (<ans >|T ) =

k∏
t=1

P (thinkt|st−1)︸ ︷︷ ︸
Reasoning

·P (codet|thinkt, st−1)︸ ︷︷ ︸
Coding

· δ(resultt = E(code)t)︸ ︷︷ ︸
Execution

(1)

The above process is organized into formula Eq. 1 and expressed as follows: Chemical
reasoning tasks are denoted as T , the state of the model at time t is represented by st,
the number of reasoning steps can be expressed as k, and E stands for the chemical code
executor.

3.2 Cold start method

After generating data trajectories in the previous section, we obtain reasoning paths aug-
mented with code execution. Due to their unique output format, which differs from the base
reasoning model’s native style, training directly with GRPO Shao et al. (2024) requires a
large number of steps before the model learns to adapt its outputs. This leads to substan-
tial GPU time wasted on format alignment rather than on improving reasoning. Ideally,
reinforcement learning should focus on generalization, strengthening the model’s ability to
handle chemical formulas and code generation. Therefore, we introduce a cold-start stage
before reinforcement learning to align the model with the required output style. In this
stage, the data portion of the synthesized trajectories is used for initialization. Within only
a few steps, the loss curve shows that the model rapidly adapts to the expected format.
During cold-start training, the content within <result>...</result> is excluded from loss
computation by applying a masking strategy. The rationale is that these results depend
on sandbox execution, which introduces external information not predicted by the model
itself. Consequently, such parts are masked out both in the cold-start and in the subsequent
reinforcement learning stage.
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3.3 RL with Code

3.3.1 C-GRPO Algorithm

After the cold-start stage, the model has preliminarily mastered the required reasoning pat-
terns. The next step is to leverage large-scale data to further generalize its performance.
For this purpose, we adopt GRPO as the reinforcement learning algorithm. A key strength
of GRPO lies in its scoring mechanism: instead of assigning absolute rewards, GRPO nor-
malizes rewards within each group. In evaluation, while other RLHF approaches require a
dedicated reward model, GRPO can flexibly rely on any scoring function or even a stronger
LLM to assess solution quality. The corresponding reinforcement learning algorithm is
shown in Fig. 3

Query

Scientific Tools
Chem code

Policy LLM

O1

O2

OG

...

Reward
Model

Reference
Model

r1

r2

rG

...

Group 
Computation

A1

A2

AG

...

Figure 3: C-GRPO Algorithm Structure

3.3.2 Dense Reward Function

In the reward design stage, relying solely on sparse rewards is insufficient for fine-grained
learning. To guide effective exploration, the model requires dense gradient signals that
enable progressive learning—starting from simple problems, advancing to intermediate cases,
and eventually handling more complex tasks. Our reward function consists of two main
components: a code-calling reward and a direct reasoning reward. The code-calling reward
is composed of three sub-rewards: (i) a format reward that enforces proper use of special
tags (e.g., <code>, <result>), (ii) a correctness reward that verifies whether the executed
output matches the ground truth, and (iii) a code execution success reward that encourages
the generation of syntactically valid and executable programs. Together, these signals guide
the model from merely producing code to producing correct and functional code that solves
the given task. In contrast, the direct reasoning reward differs in format since no special
code-related tags are involved. Instead, the correctness reward is computed by evaluating the
content enclosed in \boxed{}, which directly reflects the validity of the predicted molecular
structure or property. The dense reward function formula is shown as Eq. 2. The code
success nums is assigned 0.5 points. The corresponding score is obtained by multiplying the
total number of code calls by 0.5 based on the number of correct code executions.

R =




1 (format is success) ∧ (answer is success)
0.1− 0.6 (format is success) ∧ (answer is error) ∧ (code success nums)
0 (format is error)

Tool


1 (format is success) ∧ (answer is success)
0.1 (format is success) ∧ (answer is error)
0 (format is error)

No Tool

(2)

3.3.3 RL training use code

During reinforcement learning, we guide the model to terminate reasoning at appropriate
points by setting stop tokens and by imposing a maximum number of code-calling rounds
to prevent excessively long contexts from distorting the reasoning process. When the model
outputs </code>, generation halts, and the program enclosed in the <code> tag is extracted
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and executed in a fully isolated sandbox environment. The execution result is then wrapped
within <result> tags and concatenated with the reasoning trace, enabling the model to
continue inference with feedback from real-world computation. Importantly, during RL
parameter updates, the tokens inside <result> are excluded from the loss calculation, since
these results are produced by external environment interaction rather than model prediction,
thereby avoiding spurious supervision.

3.3.4 Code sandbox

The sandbox Vouvoutsis et al. (2025) module is designed to provide a secure and efficient
execution environment for generated code, while supporting asynchronous scheduling and
result feedback. Its core functionalities include asynchronous execution, and multi-state
result handling. The sandbox executor supports asynchronous processes Rahman & Shi
(2024), significantly reducing latency and improving training efficiency. For abnormal ter-
mination, only the last line of the error message is returned instead of the full traceback
Zhang et al. (2025), avoiding excessive token consumption while still allowing the model to
locate errors for debugging.

4 Experiment

The TOMG-Bench is the first comprehensive benchmark designed to evaluate the capa-
bility of LLMs in open-domain molecular generation. TOMG-Bench defines three main
tasks: molecular editing (MolEdit), molecular optimization (MolOpt), and cus-
tom molecular generation (MolCustom). Each task is further divided into three sub-
tasks, with 5,000 test samples per sub-task. We adopt the success rate as the primary
evaluation metric, which measures whether the generated molecules satisfy task-specific
constraints.
We compare against three categories of baselines:

• Closed-Source Models: Claude-3.5, Gemini-1.5-pro, GPT-4-turbo, and Doubao.

• Open-Source Models: Qwen3-235B-A22B, DeepSeek-R1, Qwen3-32B,
ChemDFM and Qwen3-8B.

• Our Models: Qwen3-8B-SFT (original data), C-SFT, C-SFT+TIR, and Chem-
Reason.

4.1 Implementation details

Our training pipeline consists of a supervised fine-tuning (SFT) stage followed by a re-
inforcement learning (RL) stage. Both stages are powered by code-reasoning data gener-
ated via the synthesis route. We sample 5,000 code-reasoning trajectories from the synthe-
sized corpus to adapt the base model to the target <think>Reasoning</think><code>code
func</code><result>code result</result>....<think>Final Reasoning</think> Final An-
swer. We fine-tune Qwen3-8B with LLaMA-Factory under supervised learning to quickly
acquire the output style required by code-enhanced reasoning. Hyperparameters are set
to: learning rate 1 × 10−4, batch size 16, epochs 1, and maximum sequence length 15,000.
During this stage, tokens within <result> are masked out from the loss, as they originate
from external sandbox execution rather than model prediction.
We build upon the Verl framework with customized components: an isolated code sandbox,
code-calling rewards (format/correctness/execution-success), and a direct-reasoning reward.
The rollout loop orchestrates multi-round “code → verification → reflection” interactions
with the sandbox to realize verifiable reasoning. RL hyperparameters are: batch size 128,
learning rate 1×10−6, maximum response length 25,000, and 8 rollouts per prompt. Training
is conducted on 32× A100-80G GPUs. To stabilize training and avoid spurious supervision,
<result> tokens are excluded from the RL objective as well.
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Table 1: Open source, Closed source and the evaluation results of our model on TOMG

Method MolCustom MolEdit MolOpt Avg.
Aut. Bon. Fun. Add. Del. Sub. LogP MR QED

Closed-Source Models
Claude-3.5 0.19 0.10 0.23 0.68 0.54 0.81 0.79 0.69 0.53 0.51
Gemini-1.5-pro 0.17 0.07 0.42 0.70 0.75 0.71 0.77 0.78 0.47 0.52
GPT-4-turbo 0.17 0.07 0.21 0.69 0.72 0.77 0.76 0.73 0.39 0.50
Doubao 0.48 0.46 0.22 0.44 0.74 0.51 0.68 0.80 0.55 0.54

Open-Source Models
Qwen3-235B 0.54 0.44 0.21 0.67 0.80 0.70 0.85 0.80 0.49 0.61
Deepseek-R1 0.52 0.45 0.30 0.68 0.83 0.84 0.84 0.81 0.60 0.65
Qwen3-32B 0.27 0.36 0.22 0.49 0.57 0.64 0.58 0.59 0.41 0.46
QwQ-32B 0.00 0.00 0.00 0.51 0.71 0.53 0.46 0.49 0.29 0.33
DeepSeek-32B 0.00 0.00 0.00 0.27 0.56 0.33 0.30 0.30 0.21 0.22
ChemDFM 0.03 0.07 0.06 0.35 0.18 0.33 0.36 0.42 0.21 0.22
Qwen3-8B 0.29 0.15 0.33 0.29 0.72 0.35 0.37 0.29 0.19 0.33

Our Code-Reasoning Methods
SFT(ori) 0.18 0.16 0.40 0.42 0.65 0.68 0.60 0.50 0.35 0.44
C-SFT 0.22 0.22 0.50 0.61 0.73 0.68 0.68 0.68 0.49 0.53
C-SFT-TIR 0.31 0.27 0.48 0.67 0.56 0.74 0.80 0.80 0.61 0.58
ChemReason 0.45 0.25 0.60 0.93 0.90 0.87 0.94 0.96 0.82 0.75

4.2 Main Result

From Table 1, we evaluate closed-source models, open-source models, and our two-stage
trained models on the nine chemical sub-tasks. The results show that our proposed
ChemReason consistently achieves state-of-the-art (SOTA) performance across all open-
domain molecular benchmarks. After supervised fine-tuning (SFT), the model exhibits
clear improvements over the base version. Furthermore, integrating the SFT model with
the code-sandbox calling mechanism yields additional gains, demonstrating the effective-
ness of the code reasoning paradigm. Building on this, reinforcement learning (RL) further
enhances generalization ability. After the full two-stage training pipeline, the model shows
substantial improvements on MolOpt and MolEdit.

Effect of code reasoning. The results highlight that code reasoning significantly boosts
model performance. With SFT alone, the model occasionally hallucinates answers, as out-
puts within the <result> tags are generated tokens rather than verified outcomes. This
often misleads the model into prematurely terminating the reasoning process and produc-
ing incorrect answers. In contrast, when the SFT model interacts with the external code
sandbox, the <result> outputs are always reliable. This enables the model to accurately
determine correctness, leverage error messages for debugging, and effectively perform self-
reflection and verification.

Effect of reinforcement learning. While SFT combined with sandbox interaction im-
proves reliability, its capability is bounded by the supervised data. RL provides the critical
breakthrough: given a single prompt, the model explores multiple reasoning trajectories,
each interacting with the sandbox to obtain verifiable feedback. Through multi-round ver-
ification and reflection, the model converges to a robust solution. Dense reward functions
Xie et al. (2024) play a central role in this stage. Unlike sparse rewards that are strictly
binary (0 or 1) and insufficient for stepwise learning, our dense design assigns graded scores
to each trajectory. By contrasting successes and failures within a batch, the model progres-
sively learns optimal solution paths. This reward shaping is essential for overcoming the
limitations of sparse feedback and driving substantial performance gains during RL training.

8
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Figure 5: Model Scale vs Performance

4.3 Validity analysis

To verify that the proposed code-enhanced reasoning paradigm is superior to conventional
reasoning, we design two controlled experiments. The first uses a Qwen3-235B distilled
chemical dataset to obtain a training set with standard reasoning paths (text-only reason-
ing). The second leverages our synthesized code-reasoning trajectories as training data.
Both variants are trained with identical hyperparameter settings under supervised fine-
tuning (SFT), and then evaluated on all nine tasks of TOMG-Bench. As shown in Fig. 4,
the code-enhanced paradigm consistently outperforms the standard reasoning approach,
demonstrating the clear advantage of integrating tool calls and verifiable intermediate steps
into the reasoning process.
Although the model after cold-start SFT can already follow the code-reasoning paradigm, its
<result> outputs are still generated by the model itself and may suffer from hallucinations.
To verify the benefit of introducing a real sandbox, we design a comparison between two
variants: (i) SFT with model-generated <result> for reasoning, and (ii) SFT combined with
Tool-Integrated Reasoning (SFT+TIR), where <result> is obtained from actual sandbox
execution. As shown in Fig. 4, leveraging real execution results immediately improves
accuracy. Moreover, if computational resources do not allow full GRPO training, performing
extensive SFT under the code-reasoning paradigm and then incorporating a sandbox for real
<result> feedback provides an economical yet effective route to boost accuracy.Finally, let’s
present the comparison of the parameter scale between the model we proposed and the open-
source model. It achieves better performance with smaller parameters, as shown in Fig. 5

5 Conclusion

In this paper, we present ChemReason, a chemistry-oriented LLM enhanced with code reason-
ing. The trained model is able to autonomously generate chemical code during step-by-step
reasoning, invoke an external sandbox for execution, and perform self-reflection on results to
complete molecular validation. To address the scarcity of code-reasoning data, we propose
a code-augmented data synthesis pipeline that integrates the logic of code, verification, and
reflection. Furthermore, we introduce a two-stage training strategy: a cold-start phase for
format alignment, followed by dense-reward reinforcement learning to accelerate the model’
s mastery of chemical formulas and code generation. As a result, ChemReason achieves
state-of-the-art performance across nine open-domain molecular tasks in TOMG-Bench.
More broadly, the proposed code–verification–reflection paradigm provides an extensible
pathway for AI for Science, offering a generally applicable framework for tackling complex
scientific computing problems.
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6 Ethics Statement

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or an-
imal experimentation was involved. All datasets used, including TOMG, were sourced in
compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken
care to avoid any biases or discriminatory outcomes in our research process. No person-
ally identifiable information was used, and no experiments were conducted that could raise
privacy or security concerns. We are committed to maintaining transparency and integrity
throughout the research process.

7 Reproducibility Statement

We have made every effort to ensure that the results presented in this paper are reproducible.
All code and datasets have been made publicly available in an anonymous repository to
facilitate replication and verification. The experimental setup, including training steps,
model configurations, and hardware details, is described in detail in the paper.
Additionally, Chemical molecular formula dataset, such as TOMG, are publicly available,
ensuring consistent and reproducible evaluation results.
We believe these measures will enable other researchers to reproduce our work and further
advance the field.
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Appendices

A Multi-dimensional Capability Comparison
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Figure 6: Multi-dimensional Capability Comparison Across Nine Molecular Generation
Tasks
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B Data and Round Distribution Overview
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Figure 7: Overview of Data and Round Distribution
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C Prompts

C.1 Data generation prompt

Data generation prompt

system prompt:

You are an AI research assistant with unlimited capacity for deep thinking. First, perform in−depth
reasoning and then answer the user's question.

Current date: {datatime}

Please first clarify the core requirements of the question, then plan your reasoning before answering.
During the thinking process, you may use code tools multiple times.

## Thinking and Output Format Requirements

1. Your thought process must be enclosed within `<think>` and `</think>` tags, for example:

<think>
Analyze the user's question, break down the reasoning tasks, evaluate boundary conditions, and choose

the most suitable algorithm or method.
</think>

− It can contain line breaks inside. Ensure logical clarity and a well−structured flow;
− Avoid using bold, italics, headings, or other Markdown formatting. Keep it concise and clear.

2. If you need to utilize Python code to assist in solving the problem, place it immediately after
`</think>` in `<code>` and `</code>` tags:

<code>
```python
// Here is the generated code snippet
```
</code>

− The code must correspond closely to the reasoning;
− You can output code in separate steps. After addressing one subtask, output code once;
− Make sure each code snippet can run independently or won’t fail when finally integrated;
− After outputting `</code>`, stop generating further code immediately.

3. When users see the code you generate, they will help you execute it and send you the execution results
between `<result>` and `</result>` tags; when users provide the code execution results, please
continue thinking, and generate new code if necessary.

4. When you believe your reasoning is complete and you are ready to answer the user’s question and
provide a comprehensive final solution, use `<answer>` and `</answer>` tags to present the fully
integrated result. You should provide a structurally clear, accurate, and informative description,
making appropriate use of Markdown style and formatting (though normally do not start with a
Markdown heading). No reference numbering is required.

## Summary of Work Method

− You must ∗∗perform your reasoning while writing code∗∗ , demonstrating a clear programming thought
process;

− Avoid generating a large amount of code at once or completing tasks without analysis;
− Always focus on the user’s question by breaking it down from multiple perspectives, clarifying each

design decision;
− If there is a more optimal design pattern or structural suggestion, point it out and adopt it in your

reasoning.

Please respond strictly following the above approach from now on.

C.2 LLM Refactor Prompt

LLM Refactor Prompt

system prompt：

你是一名专业的Python程序员，擅长重构代码。你的任务是对用户提供的Python代码进行重构，使其结构不同但功能
完全一致。

请严格遵守以下要求：
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1. 保留原代码中的所有边界条件判断和异常处理逻辑。
2. 确保所有错误检查、异常捕获和边界情况处理与原代码逻辑完全一致。
3. 不得删减或简化任何安全检查、验证逻辑或条件分支。
4. 对于科学计算或专业领域代码，必须保留所有特定领域的逻辑细节。
5. 程序在所有可能的输入条件下的行为必须与原代码完全一致。
6. 仅输出重构后的代码，不添加任何解释或额外内容。

你可以调整代码风格、优化算法实现或重组代码结构，但绝不能改变代码的功能和行为。

user prompt:

{code}

C.3 Code Consistency Evaluation Prompt

Code Consistency Evaluation Prompt

system prompt：

你是一位顶级的Python代码逻辑分析专家。你的核心任务是深入比较两段Python代码及其执行结果，以判断它们在功能
和核心逻辑上是否完全等价，即使它们的实现方式或代码结构有所不同。

判断标准：
1. 关注代码的核心功能和处理逻辑，而非输出格式或提示文本的表述差异
2. 如果两段代码对相同输入产生实质上相同的结果(即使输出文本表述不同)，应判断为逻辑相同
3. 重点分析数据处理流程、计算过程、条件判断和最终决策
4. 以下不影响逻辑等价性判断：

− 变量名称差异
− 输出文本的措辞或格式差异
− 代码结构优化或重构
− 注释或文档字符串的差异

5. 对于科学计算代码，需确认计算公式和方法的一致性，而非输出描述的一致性

请仔细分析提供的代码（python code1 和 python code2）及其对应的执行结果（result and report 1 和 result and
report 2）。你的目标是判断 code2 是否是 code1 在保持核心逻辑完全一致前提下的有效重构或变体。

最终仅输出 True (表示两段代码逻辑完全等价) 或 False (表示逻辑不等价)，不要添加任何解释。

user prompt:

```python code1
{Original Code}
```
```result and report 1
{Execution Results of Original Code}
```

```python code2
{Refactored Code}
```
```result and report 2
{Execution Results of Refactored Code}
```

D Data Example

D.1 Data Example

Data Example: Question

Please optimize the molecule Cc1nc(NC(=O)COC(=O)C(NC(=O)c2ccco2)C(C)C)c(Cl)cc1Cl to have a
higher MR value. I require its SMILES representation.

Data Example: Answer-Think

Okay, let's tackle this problem. The user wants to optimize the given molecule to have a higher molar
refractivity (MR) value. First, I need to understand what MR depends on. MR is a measure of the
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total polarizability of a molecule and is calculated using the formula MR = (4�/3) ∗ N ∗ �, where N is
Avogadro's number and � is the polarizability. Each atom contributes to the MR value based on its
type and bonds. So, substituents with higher MR contributions will increase the overall MR.

Looking at the original molecule: Cc1nc(NC(=O)COC(=O)C(NC(=O)c2ccco2)C(C)C)c(Cl)cc1Cl. Let's
parse the SMILES to identify substituents. The core structure is a benzene ring (the 'c1...cc1' part)
with two chlorine atoms attached. There's a methyl group (C), a nitrogen−containing group with
amide linkages, and an oxygen−containing ester or carbonyl groups. The substituents on the benzene
ring are Cl, Cl, methyl, and a complex substituent.

To increase MR, I should replace atoms or groups with those that have higher MR contributions. Chlorine
has a higher MR than, say, hydrogen, but the molecule already has two Cl atoms. Maybe adding
more halogens with higher MR? Bromine has a higher MR than chlorine (Br's MR contribution is
around 8.7, Cl is around 6.0). So replacing Cl with Br would help.

Looking at the substituents on the benzene ring: the positions with Cl are probably at positions 2 and 4
(assuming the numbering starts at the methyl). Wait, the SMILES is Cc1nc(...)c(Cl)cc1Cl. So the
benzene ring has substituents: methyl (attached to carbon 1?), then the nitrogen group, then a Cl in
position 4 (since the ring is written as c1nc...c(Cl)cc1Cl). Let me draw this mentally. The ring is
six−membered. The first carbon (position 1) is connected to a methyl (C), then position 2 is N
connected to the other groups. The c(Cl) is position 4, and the last Cl is position 6? Maybe.
Regardless, the current substituents are two Cl atoms, a methyl, and the complex substituent.

Replacing the Cl atoms with Br would definitely increase MR. Let's try that. Also, the methyl group (C)
has an MR contribution of around 5.65, but if we replace it with something like iodine (but iodine is
not common in organic molecules) or maybe a larger substituent. Alternatively, adding more
substituents. However, adding substituents might require considering the feasibility of substitution on
the ring.

Wait, the benzene ring already has four substituents: methyl (C), the NC(=O)... group, Cl, and another
Cl. Wait, the benzene ring is six−membered. Let me count: the SMILES starts with
Cc1nc(...)c(Cl)cc1Cl. So positions 1 (methyl), 2 (n, which is part of the ring with a nitrogen?), then
position 3 (connected to NC(=O)...), then position 4 (Cl), and position 6 (Cl). Wait, maybe the ring
is numbered such that the substituents are at positions 2, 4, and 6? Hmm, maybe the SMILES
notation is a bit confusing. Regardless, the two Cl atoms are present. If we can replace both Cl
atoms with Br, that would add more MR. Alternatively, maybe add another Br in a position that's
currently a hydrogen.

But the benzene ring in the original SMILES has four substituents? Let me parse it again. The core is
c1nc(...)c(Cl)cc1Cl. Breaking down the SMILES:

− Cc1: the first atom of the ring is a carbon connected to a methyl (C), so position 1.
− Then n: next is a nitrogen in the ring (position 2), which is connected to the NC(=O)... group.
− Then c(...) which is position 3, connected to the Cl at position 4 (c(Cl)cc1Cl). Wait, maybe the

positions are 1 (methyl), 2 (n), 3 (c connected to NC(=O)...?), position 4 (Cl), and position 6 (Cl).
So the benzene ring has substituents at positions 1, 2, 4, and 6? If that's the case, then there are
four substituents. But benzene can't have more than six substituents, but four is possible.

Alternatively, perhaps the ring has three substituents: methyl at position 1, the nitrogen−containing group
at position 2, and two Cl atoms at positions 4 and 6. So replacing those Cl with Br would increase
MR. Let's proceed with that.

So modifying both Cl atoms to Br would give higher MR. Also, looking at other parts of the molecule,
maybe replacing oxygen atoms with sulfur? Wait, but oxygen's MR contribution is lower than sulfur.
For example, a single−bonded sulfur (like in thioether) has a higher MR than oxygen. So replacing
an ether oxygen (O) with S could increase MR. Let's check where there are oxygen atoms in the
molecule.

The original SMILES has O in several places: OC(=O) and O=C(O)... So there are ester groups, amide
carbonyls. For example, the part COC(=O)... is an ester (O linking the C and the C(=O)).
Replacing that oxygen (the one in the ester) with S would make a thioester, which has a higher MR.
Each substitution of O with S would add more MR.

Alternatively, adding more bulky groups. For example, the amide groups could have their substituents
replaced with larger alkyl chains. For instance, the C(C)C group (which is an isopropyl) could be
replaced with a tert−butyl (C(C)(C)C), which has a higher MR. Also, the methyl group (C)
attached to the benzene could be replaced with a larger group like ethyl or isopropyl, but that might
require checking if the position allows such substitution.

Putting this together, the optimized molecule would involve:
1. Replace both Cl atoms on the benzene ring with Br.
2. Replace the ester oxygen (O in COC(=O)) with S.
3. Replace the isopropyl group (C(C)C) with a tert−butyl group (C(C)(C)C).
4. Possibly replace other oxygen atoms if feasible.
But let's check the original structure step by step.
Original SMILES: Cc1nc(NC(=O)COC(=O)C(NC(=O)c2ccco2)C(C)C)c(Cl)cc1Cl
Breaking it down:
− The benzene ring is: c1nc(...)c(Cl)cc1Cl

− Positions 1: methyl (C)
− Position 2: nitrogen (n) connected to a carbon (c), which is part of the NC(=O)... group.
− Position 4: Cl (from c(Cl))
− Position 6: Cl (from the ending cc1Cl)

So replacing the Cl at positions 4 and 6 with Br would change those to Br.
Then, looking at the ester group: COC(=O)... The O in the ester is the oxygen in COC(=O). Replacing

that O with S would make it CSC(=O)...
Also, the C(C)C group (isopropyl) in the part C(NC(=O)c2ccco2)C(C)C can be replaced with a

tert−butyl group: C(C)(C)C.

...
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Wait, maybe these numbers are not accurate. It's better to refer to a table of MR increments for common
groups.

Alternatively, considering that replacing a methyl (5.65) with a tert−butyl (C(C)(C)C) which is four
carbons. If the original is isopropyl (C(C)C), which is three carbons, replacing with tert−butyl (four
carbons) would add more MR. The MR for tert−butyl is higher than isopropyl.

But perhaps the largest gains would come from replacing Cl with Br, O with S in multiple positions, and
increasing alkyl chain length where possible.

Let's try to modify the original SMILES step by step.
Original: Cc1nc(NC(=O)COC(=O)C(NC(=O)c2ccco2)C(C)C)c(Cl)cc1Cl
First, replace the two Cl atoms with Br:
Change c(Cl) to c(Br), and the ending Cl to Br. So the benzene ring part becomes c(Br)cc1Br. The

modified SMILES would be:
Cc1nc(NC(=O)COC(=O)C(NC(=O)c2ccco2)C(C)C)c(Br)cc1Br
Next, replace the ester oxygen (O in COC(=O)) with S. The part COC(=O) becomes CSC(=O). So the

ester group becomes CSC(=O). The modified part would be:
NC(=O)CSC(=O)C(...)
Then, replace the isopropyl group C(C)C with tert−butyl C(C)(C)C. The part C(NC(=O)c2ccco2)C(C)C

becomes C(NC(=O)c2ccco2)C(C)(C)C.
Next, replace the amide carbonyl O with S. The NC(=O) groups become NC(=S). There are three

instances of NC(=O):
1. NC(=O)COC...
2. NC(=O)c2...
3. The third NC(=O) in the c2ccco2 part? Wait, no, the c2ccco2 is a furan ring. The NC(=O) is attached

to that furan. So changing each NC(=O) to NC(=S).
Additionally, replace the furan oxygen (o in c2ccco2) with S, making a thiophene. So c2ccco2 becomes

c2ccc s2 (but SMILES uses lowercase letters for aromatic atoms, so 's' for sulfur in aromatic rings).
So the part becomes c2ccc s2.

Putting all these modifications together, the SMILES would be:
Cc1nc(NC(=S)CSC(=S)C(NC(=S)c2ccc s2)C(C)(C)C)c(Br)cc1Br
Wait, let's check each part:
Original SMILES parsed step by step:
Original: Cc1nc(...)c(Cl)cc1Cl
After replacing Cl with Br:
Cc1nc(...)c(Br)cc1Br
Original NC(=O)COC(=O)... becomes NC(=S)CSC(=S)...
Original C(C)C (isopropyl) becomes C(C)(C)C (tert−butyl).
Original c2ccco2 (furan) becomes c2ccc s2 (thiophene).
But need to verify the SMILES syntax. For aromatic sulfur in a ring, it should be lowercase 's' and part of

the aromatic system. So the thiophene part would be c2ccc s2, but the exact SMILES would need
proper arrangement. Also, the substituent from the NC(=S) group would be attached to the
thiophene ring.

Putting all together, the modified SMILES is:
Cc1nc(NC(=S)CSC(=S)C(NC(=S)c2ccc s2)C(C)(C)C)c(Br)cc1Br
But need to ensure correct order and parentheses. Let me reconstruct the SMILES properly.
Breaking it down:
The core benzene ring: Cc1nc(...)c(Br)cc1Br
The substituent on the nitrogen (position 2 of the benzene) is NC(=S)CSC(=S)C(...)
The part after the first NC(=S):
CSC(=S)C(NC(=S)c2ccc s2)C(C)(C)C
So, the full substituent is NC(=S)CSC(=S)C(NC(=S)c2ccc s2)C(C)(C)C.
And the thiophene ring is c2ccc s2, where the NC(=S) is attached to the first carbon of the thiophene

(assuming the substituent is on position 2 or similar, but the exact position might not matter as long
as the ring is correctly formed).

This should result in a SMILES string where multiple substitutions have been made to increase MR:
replacing Cl with Br, O with S in esters and amides, and increasing alkyl group size.

Now, verify that all modifications are correctly applied and the SMILES is valid. Each substitution aims to
replace atoms with higher MR contributors. This should lead to a significantly higher MR value
compared to the original molecule.

</think>

1 <code>
2 ```python
3 from rdkit.Chem import Descriptors
4 from rdkit import Chem
5
6 def mol_MR(original_mol: str, model_gen_mol: str, is_hight: bool):
7 def calculate_mr(smiles: str, description: str) -> float or None:
8 try:
9 mol = Chem.MolFromSmiles(smiles)

10 return Descriptors.MolMR(mol)
11 except Exception as e:
12 print(f"Failed␣to␣standardize␣{description}␣molecule␣({smiles})␣and␣compute␣its␣

MR:␣{e}")
13 return None
14
15 original_mr = calculate_mr(original_mol , "original")
16 if original_mr is None:
17 return False
18
19 generated_mr = calculate_mr(model_gen_mol , "model-generated")
20 if generated_mr is None:
21 return False
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22
23 print(f"Original␣molecule␣MR:␣{original_mr}␣|␣Modified␣molecule␣MR:␣{generated_mr}")
24 return (generated_mr > original_mr) if is_hight else (generated_mr < original_mr)
25
26 original_smiles = 'Cc1nc(NC(=O)COC(=O)C(NC(=O)c2ccco2)C(C)C)c(Cl)cc1Cl'
27 modified_smiles = 'Cc1nc(NC(=S)CSC(=S)C(NC(=S)c2cccs2)C(C)(C)C)c(Br)cc1Br'
28
29 result = mol_MR(original_smiles , modified_smiles , is_hight=True)
30 print(f"Optimized␣MR␣higher␣than␣original?␣{result}")
31 ```
32 </code>

Data Example: Answer-Result

<result>
Original molecule MR: 103.38290000000003 | Modified molecule MR: 148.04839999999982
Optimized MR higher than original? True
</result>

Data Example: Answer-Think

<think>
The modifications applied to the original molecule include:

1. ∗∗Halogen Replacement∗∗: Both chlorine atoms (Cl) on the benzene ring were replaced with bromine
(Br), which has a higher molar refractivity contribution (Br � 8.7 vs. Cl � 6.0).

2. ∗∗Ester and Amide Modifications∗∗:
− The ester oxygen (O) in COC(=O) was replaced with sulfur (S), forming a thioester (CSC(=S)).
− All amide carbonyl oxygens (O) in NC(=O) groups were replaced with sulfur (S), converting them to

thioamides (NC(=S)).
3. ∗∗Alkyl Chain Expansion∗∗: The isopropyl group (C(C)C) was replaced with a tert−butyl group

(C(C)(C)C), increasing bulk and MR.
4. ∗∗Heterocycle Modification∗∗: The oxygen in the furan ring (c2ccco2) was replaced with sulfur, forming

a thiophene ring (c2cccs2), further boosting MR.

These substitutions collectively increased the molecule's MR from ∗∗103.38∗∗ to ∗∗148.05∗∗, confirmed by
RDKit's MolMR calculation.

</think>

Data Example: Answer-Final Answer

<answer>
The optimized SMILES with higher MR is:

$\boxed{<SMILES>Cc1nc(NC(=S)CSC(=S)C(NC(=S)c2cccs2)C(C)(C)C)c(Br)cc1Br</SMILES>}$
</answer>
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