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Abstract

The clinical Atrial Fibrillation (AF) visualization method, multi-electrode mapping (MEM),
delivers electrode grid in-vivo to the heart muscle and is known for its low resolution. A
more cutting-edge imaging modality, near-infrared optical mapping (NIOM), allows see-
ing the AF sources in high resolution; however, it is currently ex-vivo only (i.e., designed
for explanted organs only). In this work, we present the ex-vivo to the in-vivo learning
paradigm, where the former serves the purpose of improving the latter. Specifically, the
NIOM improves the detection of AF sources in MEM data via an image-to-image model.
We validate the idea on 7 explanted human hearts and test the models on 2 clinical cases.
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Introduction Atrial fibrillation (AF) is a serious disorder in the heart’s function, char-
acterized by an irregular rhythm of the heart’s beating and a 5-fold higher risk of a stroke.
Several studies indicate that the AF can be caused and maintained by localized sources in
the heart tissue called AF reentrant drivers which mechanistically resemble a rotational cir-
cuit. If the AF driver’s location is known, the surgeon can destroy the electrical activity in
this region (the ablation). Unfortunately, this process is challenging due to the nature of the
clinical method: the multi-electrode mapping (MEM) modality, conventionally used in-vivo
for the AF visualization, maps a surface-only representation of the true electrical activity at
a rather low resolution1. In contrast, another modality called near-infrared optical mapping
(NIOM) relies on voltage-sensitive dyes to visualize electric patterns from the depth of the
cardiac tissue. Subsurface electrical conduction, measured with high resolution2, reveals
true volumetric dynamics of the electric activity around the AF driver. Unfortunately, this
method is currently available only for research experiments in ex-vivo setups with explanted
organs. Recently, machine learning models were reported to correctly predict the AF driver
location using MEM features validated by NIOM activation maps (Zolotarev et al., 2020).

In this study, we aspired to improve the visualisation of the AF drivers in MEM modality
by image-to-image translation between MEM and NIOM maps, relying on the unpaired
architecture of CycleGAN (Zhu et al., 2017). Specifically, our model learns the mapping

1. Standard MEM catheter (e.g., FIRMap from Abbott EP, Chicago, IL) is just an 8×8 electrode grid.
2. Standard NIOM resolution is 100×100 pixels.
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Figure 1: Ex-vivo–to–in-vivo learning paradigm for cardiac imaging. CycleGAN, pre-
trained on explanted hearts, improves AF detection in clinical recordings.

between simultaneous NIOM and MEM data acquired from the human heart ex-vivo, and
then generates synthetic NIOM images from the real MEM data. We then engage the
model pre-trained on ex-vivo data for a limited validation on real clinical in-vivo recordings,
providing a proof-of-principle demonstration of ex-vivo–to–in-vivo learning paradigm.

Methods Three CMOS cameras (spatial resolution 0.3–1.1 mm, 1000 fps, MiCAM Ultima-
L, SciMedia Ltd, CA) were employed for ex-vivo NIOM. For clinically-relevant MEM of ex-
vivo hearts we used 64-electrode (8×8 electrodes) catheter grids (Abbott Labs, Chicago, IL).
The original methodology of experiments with NIOM and MEM can be found in (Zolotarev
et al., 2020). The proposed ex-vivo–to–in-vivo learning pipeline is shown in Fig. 1.

Datasets and Data Preprocessing The sustained AF recordings consist of two parts:
ex-vivo data (simultaneous MEM and NIOM movies from 7 hearts, 2 in test set) and
clinically acquired in-vivo data (only MEM movies of 2 clinical cases). De-identified hu-
man hearts and retrospective clinical cases data were reviewed by the proper IRB. The
ground-truth regions were annotated by NIOM maps for ex-vivo data and by the regions
of successful clinical ablation for the in-vivo dataset. MEM recordings were analyzed by
RhythmView software (Abbott EP), a common visualization tool in the clinical practice.
NIOM recordings were preprocessed in a custom MATLAB program to apply band-pass
filtering 0 to 64 Hz, pixel binning 3 by 3, and normalization in the range 3-98% of the total
intensity. Maps of heart electrical activity had the size of 100×100 pixels and were cropped
to show the same field of view as the MEM maps. This resulted in 1200 pairs of images for
training the generative model and 400 images for the evaluation.

Experiments and results We trained CycleGAN model on the pre-processed dataset
of 5 explanted hearts for generating synthetic NIOM maps, testing it on 2 ex-vivo and
2 in-vivo cases. The image-to-image experiments were conducted in Python using the
PyTorch framework and were run on Nvidia GeForce GTX 1080 Ti GPU 11GB VRAM.
Structure Similarity (SSIM) between simultaneous MEM and synthetic NIOM images, and
a human expert test (for measuring the medical relevance of the synthetic movies) were used
to evaluate the results. Two clinical experts were asked to label the locations of the AF
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Figure 2: AF driver by synthetic images

Heart SSIM RDice

ex-vivo 1 0.56 ± 0.06 1.37 ± 0.06
ex-vivo 2 0.60 ± 0.04 2.66 ± 1.62

in-vivo 1 0.58 ± 0.05 1.35 ± 0.22
in-vivo 2 0.58 ± 0.04 1.38 ± 0.25

Table 1: Metrics for different hearts

reentrant drivers in movies from the real MEM and the synthetic NIOM images, which were
compared with those of the ground-truth region by the Dice metric. We naturally proposed
a coefficient RDice = Dice1/Dice2 to quantify the human expert test, where Dice1 is the
score between the ground-truth and the synthetic NIOM masks and Dice2 is that between
the ground-truth and the real MEM masks. We showed that the generated images are
similar to the real MEM ones, with the mean SSIM of 0.58. The metrics are presented in
Table 1. The calculated ratios of Dice scores are higher than 1 in all cases, meaning that
it is easier for the experts to correctly identify the AF driver region (e.g., see Fig. 2) using
the synthetic high-resolution NIOM movies rather than using the real MEM movies.

Conclusions In this study, we addressed the problem of poor visualization of the AF
source patterns in clinical cardiac imaging. We suggested a new paradigm of ex-vivo–to–in-
vivo learning, where an image-to-image model is trained on explanted organs and is applied
to the real clinical cases. We demonstrate that the generated synthetic images resemble
the real ones both visually and quantitatively. Furthermore, the limited annotation results
by the clinical experts show that the AF rotational pattern is better visualized in synthetic
movies rather than in the original real clinical videos. Large-cohort validation and extension
to other explanted organs should further support the proposed learning paradigm.
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