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ABSTRACT

Developing human understandable interpretation of large language models (LLMs)
becomes increasingly critical for their deployment in essential domains. Mechanis-
tic interpretability seeks to mitigate the issues through extracts human-interpretable
process and concepts from LLMs’ activations. Sparse autoencoders (SAEs) have
emerged as a popular approach for extracting interpretable and monosemantic
concepts by decomposing the LLM internal representations into a dictionary.
Despite their empirical progress, SAEs suffer from a fundamental theoretical
ambiguity: the well-defined correspondence between LLM representations and
human-interpretable concepts remains unclear. This lack of theoretical grounding
gives rise to several methodological challenges, including difficulties in principled
method design and evaluation criteria. In this work, we show that, under mild
assumptions, LLM representations can be approximated as a linear mixture of the
log-posteriors over concepts given the input context, through the lens of a latent
variable model where concepts are treated as latent variables. This motivates a
principled framework for concept extraction, namely Concept Component Analysis
(ConCA), which aims to recover the log-posterior of each concept from LLM
representations through a unsupervised linear unmixing process. We explore a
specific variant, termed sparse ConCA, which leverages a sparsity prior to address
the inherent ill-posedness of the unmixing problem. We implement 12 sparse
ConCA variants and demonstrate their ability to extract meaningful concepts across
multiple LLMs, offering theory-backed advantages over SAEs—namely, a clear
unmixing target, principled sparsity placement, and improved alignment with latent
concepts.

1 INTRODUCTION

One of the critical questions surrounding the practical application of LLMs is the extent to which
and how the concepts they espouse are ground in reality. The more general question is whether a
model trained only on natural language can develop representations of concepts grounded in the real
world (Bowman, 2024; Naveed et al., 2023). Understanding this relationship is crucial, as it informs
not only how we interpret model mechanism, but also how we can systematically analyze, evaluate,
and manipulate these representations. A promising approach to investigating such questions is to
extract meaningful semantic units, i.e., human-interpretable concepts, embedded within the models’
internal representations and behaviors (Singh et al., 2024). By studying these units, we can begin to
probe which aspects of a model’s behavior are aligned with human-interpretable concepts, and how
multiple concepts interact to generate model outputs.

1.1 REVISITING SAES FOR CONCEPT EXTRACTION

Sparse autoencoders (SAEs). Recently, SAEs have been explored for this purpose (Elhage et al.,
2022; Bricken et al., 2023; Huben et al., 2023), offering a potential perspective through which to
analyze model behavior, including how such concepts interact and compose to generate the next
token. Technically, SAEs learn a set of features whose linear combinations can reconstruct the
internal representations of LLMs, while enforcing a sparsity prior on the features, in the hope that
each feature corresponds to a monosemantic concept (Huben et al., 2023; Gao et al., 2025; Braun
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Figure 1: We introduce a latent variable generative model in which observed the input context x
and next token y, arises from an unknown underlying process over latent concepts z (Sec. 2.1).
Under this model, we show that LLM representations fx(x), learned by next-token prediction,
can be approximated as a linear mixture of the column vector obtained by stacking log-posteriors
of individual latent concepts log p(zi|x), conditioned on the input, i.e., fx(x) ≈ A

[
[log p(z1 |

x)]z1 ; . . . ; [log p(zℓ | x)]zℓ
]
+b, where A is a mixing matrix and b is a constant (Sec. 2.2). Motivated

by this, we propose Concept Component Analysis (ConCA), a method for linearly unmixing LLM
representations fx(x) to recover the log-posteriors over individual latent concepts log p(zi|x) (Sec. 3).

et al., 2024; Rajamanoharan et al., 2024a;b; Mudide et al., 2024; Chanin et al., 2024; Lieberum et al.,
2024; He et al., 2024; Karvonen et al., 2024; Bussmann et al., 2024).

Hypotheses Behind SAEs. Linearity and sparsity, the two key components of SAEs, are jointly
expected to promote the emergence of monosemantic and interpretable concepts. The justification for
these two components primarily relies on two key hypotheses, (i) the linear representation hypothesis
and (ii) the superposition hypothesis. The former suggests that concepts are often encoded linearly
in LLMs (Tigges et al., 2023; Nanda et al., 2023; Moschella et al., 2022; Park et al., 2023; Li et al.,
2024; Gurnee et al., 2023; Rajendran et al., 2024; Jiang et al., 2024), enabling them to be recovered
via linear decoding. The latter argues that LLMs tend to represent more features than they have
neurons for, leading to overlapping (i.e., superimposed) representations within the same neurons
(Elhage et al., 2022). To make such representations reliable and interpretable, features should activate
sparsely, reducing interference between them (Elhage et al., 2022; Huben et al., 2023).

1.2 MOTIVATION AND CONTRIBUTIONS

While these two hypotheses support SAEs, the deeper theoretical question remains unresolved.

n Key Problem. What is the theoretical relationship between LLM representations and human-
interpretable concepts?

A Deeper Look into SAEs. Without a clear answer, both principled method design and evaluation
become major concerns. In terms of method design, for example, while the decoder in SAEs
reconstructs representations through linear combinations of learned features, the encoder typically
includes a nonlinear activation function, typically Relu, following a linear layer. This asymmetry
raises a concern about the rationale for introducing the nonlinear activation functions. Moreover, it
remains unclear whether sparsity should be imposed directly on the feature space learned by SAEs, or
instead on a transformed space derived from it, given the unclear relationship between these features
and the underlying concepts. This unclear relationship, on the evaluation side, also makes principled
assessment difficult, i.e., it remains unclear what criteria should be used to determine whether a
feature meaningfully captures a concept, as also recognized in recent works (Makelov et al., 2024;
Gao et al., 2025; Kantamneni et al., 2025).

Contributions. We propose a principled approach for extracting concepts from LLM representa-
tions, grounded in a well-defined theoretical relationship between the representations and human-
interpretable concepts (see Figure 1). We begin by analyzing this relationship through the lens
of a latent variable model, in which text data are generated by an unknown process over latent,
human-interpretable concepts. We show that, under mild conditions, LLM representations learned
by next-token prediction frameworks can be approximately expressed as a linear mixture of the
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logarithm of the posteriors of individual latent concepts, conditioned on the input context. Based
on this insight, we introduce a principled approach, that we label Concept Component Analysis
(ConCA), which aims to invert the linear mixture to recover the log-posterior of each concept in an
unsupervised manner. We propose a specific variant of ConCA, referred as Sparse ConCA, which
incorporates a sparsity prior to regularize the solution space, motivated by the widespread adoption of
the superposition hypothesis. We emphasize that alternative regularization strategies remain flexible
and open for future exploration. We evaluate the proposed Sparse ConCA using linear probing with
counterfactual text pairs, a theoretically motivated supervised method for concept extraction, and
benchmark its performance against SAE variants across multiple model scales and architectures
(Pythia (Biderman et al., 2023), Gemma3 (Team et al., 2025), Qwen3 (Team, 2025)). We further test
it on a downstream task spanning 113 datasets, empirically confirming the advantages of ConCA.

2 WHAT DO REPRESENTATIONS IN LLMS LEARN?

In this section we establish a theoretical connection between LLM representations learned through
next-token prediction framework and human-interpretable concepts. To this end, we first construct
a latent variable model (LVM) in which observed text data are generated by an unknown process
over latent variables representing human-interpretable concepts. We then show that, when LLMs are
trained on the observed data using a next-token prediction framework, their learned representations
can be approximated as a linear mixture of the log-posteriors of individual latent variables, conditioned
on the input context. This perspective not only deepens our understanding of how human-interpretable
concepts are organized within LLM representations, but more importantly, it provides a principled
foundation for extracting concepts from the representations. We define concept as follows:
Definition 2.1. A concept is defined as a discrete latent variable

zi ∈ Vi, |Vi| = ki,

where each value in Vi corresponds to a distinct, human-interpretable semantic attribute (e.g., tense,
plurality, sentiment, syntactic role, or topic). The full latent configuration is given by z = (z1, . . . , zℓ),
whose components specify the underlying semantic factors that give rise to the observed input context
x and the next token y through the latent generative process.

2.1 PRELIMINARY: A DISCRETE LATENT VARIABLE GENERATIVE MODEL FOR TEXT

We begin by a LVM in which human-interpretable concepts are modeled as latent variables governing
the generation of text data (Liu et al., 2025a). Formally, both the observed context x and the next
token y are assumed to be generated from a set of latent variables z. Here x and y serve as input to
the next-token prediction objective used to train LLMs. A human-interpretable concept is formally
defined as a latent variable zi that captures a human-interpretable factor underlying the generation of
text data, such as a topic, sentiment, syntactic role, or tense. Notably, arbitrary interdependencies or
structural relationships among the latent variables are allowed. We assume the observed variables
x ∈ Vn and y ∈ V , and the latent variables z = (z1, . . . , zℓ) ∈ V1 × · · · × Vℓ to be discrete1, with
zi ∈ Vi, |Vi| = ki, i = 1, . . . , ℓ. Under this formulation, the joint distribution over the observed
context x and next token y is given by:

p(x, y) =
∑
z

p(x|z) p(y|z) p(z) , (1)

where p(z) is a prior over the latent concepts, and p(x|z) and p(y|z) model the conditional generation
of context and next token, respectively.

2.2 REPRESENTATIONS IN LLMS LINEARLY ENCODE LOG-POSTERIORS OVER CONCEPTS

Intuitively, since the latent concepts z characterize the underlying generative factors of the text data,
as defined in Eq. 1, the representations learned from such data should encode information about these
concepts. To examine in detail how these representations capture latent concepts, we now turn to
the next-token prediction framework, which serves as the standard training framework for LLMs.

1A detailed justification for the discrete assumption can be found in Liu et al. (2025a).
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Specifically, the next-token prediction framework models the conditional distribution of the next
token y given the input context x2, as follows:

p(y|x) = exp (f(x)Tg(y))∑
yi
exp (f(x)Tg(yi))

. (2)

Here, yi denotes a specific value of the output token y, f(x) ∈ Rm maps the input x into a m-
dimensional (depending on the specific model used) representation space, and g(y) ∈ Rm retrieves
the classifier weight vector corresponding to token y, i.e., the look-up table used for prediction.

Given the generative model from Eq. 1 and the inference model from Eq. 2, our goal is to formally
characterize how the learned representations f(x) relate to the latent concepts z. In particular, we
seek to establish a precise mathematical relationship, thereby serving as the theoretical foundation
for concept component analysis developed in Sec. 3. We now present the following key result:

Theorem 2.2. Suppose latent variables z and the observed variables x and y follow the generative
models defined in Eq. 1. Assume the following holds:

(i) (Diversity Condition) There exist m + 1 values of y, such that the matrix L =
(
g(y =

y1)− g(y = y0), ...,g(y = ym)− g(y = y0)
)

of size m×m is invertible,

(ii) (Informational Sufficiency Condition) The conditional entropy of the latent concepts given
the context is close to zero, i.e., H(z|x) → 0,

then the representations f(x) in LLMs, which are learned through the next-token prediction framework,
are related to the true latent variables z, by the following relationship:

f(x) ≈ A
[
[log p(z1 | x)]z1 ; . . . ; [log p(zℓ | x)]zℓ

]
+ b, (3)

where A is a m× (
∑ℓ

i=1 ki) matrix, and b is a bias vector3.

Justification for Conditions (i) and (ii). Condition (i) is closely related to the data diversity assump-
tion in earlier work for identifiability analysis in the context of nonlinear independent component
analysis (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019; Khemakhem et al., 2020), and has
recently been employed to identifiability analyses of latent variables in the context of LLMs (Roeder
et al., 2021; Marconato et al., 2025; Liu et al., 2025a). Intuitively, Condition (i) implies that there is
a sufficiently large number of distinct values of y that the m difference vectors g(yi)− g(y0) (for
i = 1, . . . ,m) span the image of g. This is a mild assumption, as pointed out by Roeder et al. who
emphasized that the set of m+1 values {yi}mi=0 required to generate difference vectors g(yi)−g(y0)
that are linearly dependent has measure zero, given that both the initialization and subsequent updates
of the parameters of g are stochastic. Turning to Condition (ii), it can be seen as a mild relaxation
of a standard invertibility assumption commonly adopted for identifiability analysis within causal
representation learning community, i.e., the mapping from z to x in the generative model (Eq. 1)
is assumed to be deterministic and invertible. This implies H(z | x) = 0, to ensure exact recovery
of the latent variables. By contrast, our assumption only requires that H(z | x) → 0, allowing for
approximate invertibility from z to x in practice. This relaxation also implies that only an approximate
recovery is achievable, as shown in Eq. 3.

� Inspiration: Eq. 3 in Theorem 2.2 implies that LLM representations, learned through the next-
token prediction framework, are essentially a linear mixture of the log-posteriors of individual
latent concepts given the input context, that is, the log p(zi|x). This provides a theoretical
foundation for exploring individual concepts by linearly unmixing the representations, which
motivates the development of our ConCA framework in Sec. 3.

2More rigorously, this assumes a parametric form of the conditional distribution p(y|x) as a softmax over
inner products in an optimally discriminative representation space. Such optimality assumption is canonical for
establishing clear and meaningful identifiability results (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019;
Khemakhem et al., 2020).

3Here, [log p(zi | x)]zi denotes the column vector of log-probabilities of all possible values of zi.
[
[log p(z1 |

x)]z1 ; . . . ; [log p(zℓ | x)]zℓ
]

represents the column vector obtained by stacking these vectors.
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3 CONCA: A PRINCIPLED APPROACH FOR CONCEPT EXTRACTION IN LLMS

Grounded in Theorem 2.2, we now introduce ConCA, a principled approach that recovers the log
posteriors of individual latent concepts conditional on the input context, i.e., log p(zi|x), by inverting
the linear mixture in Eq. 3, in a unsupervised way. This enables us to decompose LLM representations
f(x) into interpretable concept-level components.

3.1 CHALLENGES IN DESIGNING CONCA

Recovering log p(zi|x) from f(x) presents two main challenges:

. Key Challenges: 1 Ill-posed inverse problem: The inversion of Eq. 3 is inherently ill-posed
because there exist many possible solutions that produce the same LLM representations. Without
additional constraints or regularization, the solution space is large and ambiguous, leading to
non-unique decompositions. 2 Underdetermined problem and overfitting: The issue above is
particularly critical when the dimension of the latent concept space exceeds that of the observed
representations (i.e., ℓ > m), corresponding to the well-known underdetermined case. This
occurs because, from the model’s perspective, the number of degrees of freedom to be estimated
increases, which not only significantly expands the set of possible solutions but also amplifies the
risk of overfitting.

To address challenge 1 , we impose a sparsity prior, requiring that for each context x, only a small
subset of latent concepts z is activated. We refer to this variant as sparse ConCA. This inductive bias
is motivated by two considerations: (i) it aligns with the superposition hypothesis, a widely discussed
phenomenon in the study of SAEs, and (ii) sparsity ensures the identifiability of latent factors under
certain assumptions, i.e., the individual log-probabilities of latent concepts can be uniquely recovered,
as established in the theory of sparse dictionary learning (Elad & Bruckstein, 2002; Gribonval &
Schnass, 2010; Spielman et al., 2012; Arora et al., 2014). Importantly, we highlight the following:

⋆ Highlight: Unlike SAEs, which recover concepts loosely, like a blurry sketch, sparse ConCA
recovers a clearly defined concepts, i.e., the log-posteriors log p(zi|x).

This key distinction fundamentally changes how sparsity should be interpreted and enforced. In
SAEs and sparse coding, sparsity is directly imposed on the latent feature space, where values near
zero correspond to inactive features. In ConCA, however, the situation is inverted. Specifically,
the latent feature space in ConCA corresponds to the log-posteriors, i.e., log p(zi|x). A value of
log p(zi|x) = 0 corresponds to p(zi|x) = 1, meaning the concept zi is fully active rather than
inactive. Consequently, sparsity in ConCA should be enforced in the exponential form of the latent
feature space, i.e., the posteriors p(zi|x), ensuring that only a small subset of concepts is truly active.

Despite its advantages, sparsity alone does not fully resolve the challenge of overfitting, particularly
in underdetermined settings where the dimensionality of z is much higher than that of f , as mentioned
in challenge 2 . While the sparsity prior helps restrict the solution space, it does not guarantee
generalizable or semantically meaningful decompositions in practical scenarios. Although theoretical
results provide identifiability guarantees under ideal conditions, real-world challenges, such as limited
data and optimization difficulties, often violate these conditions, leading to potential overfitting and
less reliable concept recovery. In such settings, multiple sparse solutions may fit the observed
representation equally well, and some may capture meaningless noise or non-semantic patterns rather
than true underlying concepts. Therefore, techniques to mitigate overfitting may be both useful and
even necessary in real applications.

3.2 SPARSE CONCA: ARCHITECTURE AND TRAINING OBJECTIVE

According to the analysis above, we propose sparse ConCA as follows:

ẑ = R(Wef(x) + be), f̂(x) = Wdẑ+ bd. (4)

This is a typical autoencoder architecture, where R(·) denotes a general regularization module applied
to mitigate overfitting, including but not limited to Dropout, and LayerNorm, as the analysis above to
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Aspect SAEs ConCA

Theoretical grounding (i) Linear representation hypothesis
(ii) Superposition hypothesis Theorem 2.2

Objective Recover monosemantic features Recover log p(zi|x)

Architecture Encoder: linear + nonlinear activation
Decoder: linear

Encoder: linear + module for overfitting
Decoder: linear

Role of sparsity On feature space On exp-transformed feature space
Evaluation criterion Heuristic, lacks principled metric Theoretically motivated (Sec. 4)

Table 1: Comparison between SAEs and the proposed ConCA. ConCA provides a principled,
theoretically grounded framework for disentangling LLM representations, while SAEs are largely
motivated by empirical hypotheses.

address the challenge 2 . We and Wd are learnable weight matrices of the encoder and decoder,
respectively, and be, bd are the corresponding biases. The vector ẑ corresponds to an estimate of
[log p(zi | x)]zi . Let the set of all learnable parameters be Θ = {We,be,Wd,bd}. We train the
proposed sparse ConCA by minimizing the following objective with respect to Θ:

min
Θ

Ex

[
||f̂(x)− f(x)||22 + αS(g(ẑ))

]
, (5)

where we apply g(·) to the representations ẑ (corresponding to log-posterior in theory), to map them
back into the probability domain, where sparse activation patterns can be meaningfully enforced, as
motivated by the analysis above to address challenge 1 . Ideally, the exact exp(·) function would be
optimal, but it is prone to numerical instability and exploding gradients when ẑ takes large values.
Therefore, we employ a smooth surrogate in practice, see Sec. 4 for further implementation details.
This regularization function S(·) is then applied so as to encourage sparsity on g(ẑ). This can be
implemented using standard sparsity constraints such as L1 regularization or structured sparsity
variants 4. The hyperparameter α controls the trade-off between reconstruction fidelity and sparsity,
allowing the model to be tuned to the expected degree of sparsity.

The key distinctions between our proposed ConCA framework and SAEs are summarized in Table 1.

4 EXPERIMENTS

We train the proposed sparse ConCA on a subset of the Pile (the first 200 million tokens) (Gao
et al., 2020). The regularization function R(·) is implemented using 4 normalization strategies,
including LayerNorm (Ba et al., 2016), Dropout (Srivastava et al., 2014), BatchNorm (Ioffe &
Szegedy, 2015), and GroupNorm (Wu & He, 2018). For the function g(·), not exponential function
directly, we explore the exponential with 3 different activation functions, SELU (Klambauer et al.,
2017), SoftPlus (Dugas et al., 2000), and ELU (Clevert et al., 2015). Although they are not exact
exponentials, these functions preserve exponential-like behavior for small (i.e., negative) values,
ensure numerical and gradient stability, and provide smooth surrogates suitable for applying sparsity
regularization. In total, we implement 12 sparse ConCA variants across these configurations. Sparsity,
i.e., S(·), is primarily enforced via L1 normalization in this work, other choices remain flexible. To
evaluate the effect of model scale, we use representations from Pythia models of varying sizes: 70M,
1.4B, and 2.8B Biderman et al. (2023). To assess model generalization, we also test across different
architectures, including Pythia-1.4B, Gemma3-1b (Team et al., 2025), and Qwen3-1.7B (Team, 2025).
We compare the proposed sparse ConCA with various SAE variants, including top-k SAE (Gao et al.,
2025), batch-top-k SAE (Bussmann et al., 2024), p-annealing SAE (Karvonen et al., 2024).

We evaluate sparse ConCA using two metrics designed to assess both faithfulness and interpretability:

• Reconstruction loss captures how well the original LLM representations are preserved after
decomposition. Since our goal is to reveal the internal structure of the model without altering its

4We emphasize that sparsity is a design choice, other forms of regularization are potentially applicable.
For instance, non-negativity (Lee & Seung, 1999; Hoyer, 2004) or bounded-range constraints (Cruces, 2010;
Erdogan, 2013), given that the learned features are expected to correspond to probabilities.
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Figure 2: Ablation study of 4 different normalization methods and 3 activation functions. For
GroupNorm, the number of groups (num_groups) is set to 4, 8, 16, or 32. Left axis shows Mean
of Pearson Correlation (MPC), right axis shows MSE. Each subplot corresponds to one combination
of normalization method and activation function, with each configuration run three times. Across
all configurations, ConCA exhibits a remarkably stable correlation regime (MPC ≈ 0.72–0.74,
excluding BatchNorm), with performance largely insensitive to the sparsity level. Notably, the MSE
is affected by the number of groups used in GroupNorm, i.e., fewer groups lead to lower MSE.
Overall, LayerNorm emerges as a strong choice, offering consistently good performance in both
MPC and MSE.

behavior, low reconstruction loss is essential to ensure that concept extraction introduces minimal
distortion. Specifically, we use mean squared error (MSE) as our reconstruction loss metric.

• Pearson correlation quantifies how well the ConCA-extracted features align with theoretically
consistent supervised estimates of log p(zi|x) for each latent concept zi. Specifically, for each
latent concept zi, we construct counterfactual pairs that differ only in the value of zi while keeping
all other variables unchanged, and train a linear classifier to predict this difference, yielding a
supervised estimate of log p(zi|x). This estimator is theoretically motivated, see Sec. F5. We then
compute the Pearson Correlation (PC) between this supervised estimate of log p(zi|x) and the
unsupervised ConCA feature. Higher correlation indicates more accurate recovery.

To compute Pearson correlation, we require counterfactual text pairs as mentioned above. However,
constructing such counterfactual pairs is highly challenging due to the complexity and subtlety of
natural language, as noted in prior works (Park et al., 2023; Jiang et al., 2024), and remains non-trivial
even for human annotators. For our evaluation, we adopt 27 counterfactual pairs from Park et al.

5We note that Liu et al. (2025a) provide a similar approach, but our result is derived from Theorem 2.2.
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Figure 3: Comparison of SAE variants and the proposed ConCA variant across different scales and
architectures. The left two shows the results for Pythia family with varying sizes (70m, 1.4b, 2.8b),
while the right compares different architectures across multiple models (Gemma-3-1b, Pythia-1.4b,
Qwen3-1.7b). Pearson correlation (left axis) and MSE (right axis) are reported for each method.
ConCA variants (BatchNorm, GroupNorm, LayerNorm), overall, achieve higher MPC than SAE
baselines (Top-k, Batch-Top-k, Panneal), with LayerNorm-ConCA performing best across all settings
(approximately 0.70–0.80). SAE methods remain in a lower band (approximately 0.60–0.70) and
show weaker gains with model scale. Reconstruction error (MSE) varies substantially across methods:
only Panneal (SAE) obtain lower MSE, whereas ConCA maintains strong both MPC and MSE.
Overall, the figure highlights that ConCA more reliably extracts concepts, robust across model size
and architecture. Full numerical mean and std values, see Sec. Q.

(2023), each differing in a single concept, as testing dataset. These pairs were derived from the Big
Analogy Test dataset (Gladkova et al., 2016).

Ablation Study We first conduct an ablation study over normalization strategies, activation func-
tions, and sparsity strength as mentioned above, to understand the design choices of sparse ConCA.
In total, this yields 21 configurations (For GroupNorm, the number of groups (num_groups) is
set to 4, 8, 16, and 32, respectively). Each configuration is trained with varying sparsity coefficients
α ∈ {1e−1, 5e−2, 1e−2, . . . , 5e−5}, and every experiment is repeated three times with training on
Pythia-70M. We report results on the two key evaluation metrics as mentioned, i.e., reconstruction
loss and Pearson correlation. Both metrics are summarized in Figure 2, where the left y-axis shows
correlation and the right y-axis shows reconstruction loss.

Findings. Three main observations emerge:

• Normalization. The primary role of normalization methods in our framework is to mitigate
overfitting. For GroupNorm, increasing the number of groups (num_groups) tends to result in
slightly higher reconstruction loss. Conversely, LayerNorm achieves the lowest reconstruction
loss among the considered methods (Dropout, BatchNorm). This trend suggests that full-
feature normalization, as performed by LayerNorm, better preserves the overall structure of LLM
representations. This may be because, LayerNorm stabilizes per-sample activations and preserves
global feature correlations, which helps ConCA recover concept log-posteriors more faithfully and
generalize better than the others.

• Activation. The purpose of the activation functions is to serve as a surrogate for the exact exp(·)
function, enabling more effective enforcement of sparsity. Roughly, for GroupNorm, all three
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Figure 4: Rank-based fraction of features exhibiting significant changes between counterfactual pairs
for SAE and ConCA variants. ConCA shows smaller feature variations, indicating more stable feature
responses under counterfactual pairs.

activations (SELU, ELU, and SoftPlus) perform similarly, with Pearson correlation values
around 0.725–0.73. In the context of LayerNorm and Dropout, SoftPlus appears slightly
better than the other two, whereas for BatchNorm, SELU seems slightly better.

• Sparsity. The sparsity coefficient α controls a trade-off: too large a value may introduce excessive
information loss, while too small a value fails to induce meaningful structure. Overall, across
the range [5e−3, . . . , 1e−2], the performance in both reconstruction loss and Pearson correlation
remains relatively stable.

Takeaway. The ablation study demonstrates that careful choices of normalization and activation
functions significantly improve the performance of sparse ConCA. In the following experiments,
considering both reconstructuion loss and Pearson Correlation, we focus on the most promising con-
figurations: GroupNorm with num_groups= 4 and Softplus, LayerNorm with Softplus,
BatchNorm with Softplus, labeled as Groupnorm, LayerNorm, and BatchNorm in the following,
respectively. For all of these, the sparsity hyperparameter, we set α = 1e−4. These design choices
are consistent across repeated trials, highlighting the stability of the proposed sparse ConCA.

Comparison on Counterfactual Pairs. We next conduct experiments comparing various SAE
variants, including including Topk SAE (Gao et al., 2025), Batch-Topk SAE (Bussmann et al.,
2024), P-anneal SAE (Karvonen et al., 2024), and the proposed ConCA configurations mentioned
in Takeaway above. We conduct these experiments across different scales of the Pythia family to
evaluate the scalability and effectiveness of each method. Each method is run across multiple random
seeds to ensure robustness, and we present both the mean and standard deviation of the metrics.
The left in Figure 3 highlights how the proposed ConCA configurations consistently achieve higher
Pearson correlation while maintaining competitive reconstruction loss compared to the SAE variants,
as model size increases from Pythia-70m to Pythia-2.8b. This performance advantage is mainly due
to the theoretical grounding of ConCA. Specifically, ConCA employs a principled framework with
sparsity on the exponentiated feature space, whereas SAEs rely on heuristic assumptions, resulting
in more interpretable and accurate monosemantic concepts across Pythia scales. Notably, when
considering both MSE and Pearson correlation, the LayerNorm configuration emerges as the better
choice. The advantages of ConCA are further highlighted across different model families, including
Gemma-3-1b, Pythia-1.4b, and Qwen3-1.7B, as shown in the right of Figure 3. ConCA configurations
generally outperform SAE variants in both reconstruction and Pearson correlation, demonstrating the
robustness and broad applicability of ConCA. Figure 4 shows the rank-based fraction of features that
change significantly between counterfactual pairs, indicating that ConCA produces smaller feature
variations than SAE variants under counterfactual conditions. See Sec. H for details on how this
metric is computed and for additional visualization results.

Downstream Tasks In the final stage, we conduct a series of few-shot linear probing experiments
to evaluate how well the features extracted by SAEs and ConCA capture monosemantic, human-
interpretable concepts. This evaluation is particularly relevant because disentangled representations
tend to transfer easily and robustly, making them especially suitable for few-shot learning and
out-of-distribution shift tasks (Fumero et al., 2023).

To this end, we collect 113 binary classification datasets from Kantamneni et al. (2025) and use them
to train linear classifiers on features extracted by SAEs and ConCA variants under limited training
samples, specifically 4, 8, 16, 32, and 128 samples drawn randomly. After training, we evaluate the
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Figure 5: Test AUC of SAE variants and the proposed ConCA variants under different few-shot
settings across 113 datasets (left), and out-of-distribution tasks across 8 datasets (right), respectively.
An example of visualization can be found in Sec. I.

linear classifiers and report the Area Under the Receiver Operating Characteristic Curve (AUC). The
left panel of Figure 5 shows a trend where ConCA often achieves higher AUC than SAE variants in
few-shot settings, particularly for LayerNorm and GroupNorm variants, although the differences are
not statistically significant under the current sample size.

Furthermore, we extend our evaluation to 8 out-of-distribution (OOD) datasets from Kantamneni
et al. (2025), which are designed to test robustness under distributional shifts. These datasets
include fictional character substitution, random letter insertion, name order reversal, multilingual
translation perturbations, as well as OOD splits from GLUE-X. As shown in the right in Figure 5,
ConCA consistently achieves superior performance across nearly all OOD settings, indicating that
the representations it learns generalize more robustly under distributional shifts.

The improvements above are likely attributable to ConCA’s principled framework, grounded in Theo-
rem 2.2, which motivates theorem-driven method design by enforcing sparsity in the exponentiated
feature space and leveraging normalization to avoid overfitting, thereby yielding transferable features
under both few-shot and OOD scenarios.

5 CONCLUSION

Observing the lack of a clear theoretical understanding behind SAEs motivated us to formalize
the relationship between LLM representations and human-interpretable concepts. We showed that,
under mild assumptions, LLM representations can be approximated as linear mixtures of the log-
posteriors of latent concepts. Building on this insight, we introduced ConCA, including a sparse
variant, to recover these concept posteriors in an unsupervised manner. Empirical results across
multiple models and benchmarks demonstrate that ConCA extracts features that outperform SAE
variants in both faithfulness and utility. Looking forward, our framework opens the door to principled
analysis, manipulation, and evaluation of LLM representations, as well as exploration of alternative
regularization strategies to further enhance interpretability.
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A RELATED WORK

Sparse Autoencoders and Dictionary Learning The proposed ConCA framework is closely
related to Sparse Autoencoders (SAEs) (Rajamanoharan et al., 2024a;b; Gao et al., 2025; Braun et al.,
2024; Bricken et al., 2023; Huben et al., 2023; Gao et al., 2025; Mudide et al., 2024; Chanin et al.,
2024; Lieberum et al., 2024; He et al., 2024; Karvonen et al., 2024; Bussmann et al., 2024), as both
aim to extract and monosemantic human-interpretable concepts from LLM representations in order to
provide mechanistic explanations for their success. However, the two approaches differ fundamentally
in their theoretical foundations. ConCA is grounded in a rigorous theoretical framework, as estab-
lished in Theorem 2.2, while SAEs rely on assumptions such as the linear representation hypothesis
and the superposition hypothesis. This foundational difference leads to notable divergences in both
method design and evaluation protocols, as discussed in the Introduction. In addition, our work is
also closely connected to the well-established framework of dictionary learning (Dumitrescu & Irofti,
2018; Eggert & Korner, 2004; Elad, 2010; Elad & Bruckstein, 2002; Aharon et al., 2006; Arora et al.,
2015). Specifically, this work bridges next-token prediction framework and dictionary learning by
showing that LLM representations acquired through the next-token prediction framework can be
further meaningfully decomposed using dictionary learning-like techniques.

Causal Representation Learning This work is also related to causal representation learning
(Schölkopf et al., 2021), which seeks to identify latent causal variables from observational data
(Brehmer et al., 2022; Von Kügelgen et al., 2021; Massidda et al., 2023; von Kügelgen et al., 2023;
Ahuja et al., 2023; Seigal et al., 2022; Shen et al., 2022; Liu et al., 2022; Buchholz et al., 2023; Varici
et al., 2023; Liu et al., 2024c; 2025b; 2024b;a; Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019;
Khemakhem et al., 2020; Cai et al., 2025; Rajendran et al., 2024). Most of those works focus on
continuous latent and observed variables, we explore the setting of discrete variables. A subset of
studies has investigated causal representation learning in discrete spaces (Gu & Dunson, 2023; Kong
et al., 2024; Kivva et al., 2021), but these typically assume specific graphical structures and rely on
invertible mappings from latent to observed variables. In contrast, our approach does not require such
assumptions, offering greater flexibility.

Identifiability Analysis for LLMs Several prior studies (Marconato et al., 2024; Roeder et al.,
2021) have explored identifiability within the inference space, revealing alignments between repre-
sentations obtained from distinct inference models. However, these findings remain confined to the
inference space and do not extend to identifying the true latent variables in latent variable models.
More recently, Jiang et al. (2024) examined the emergence of linear structures under a different
generative framework, attributing them to the implicit bias introduced by gradient-based optimization.
In contrast, our approach offers a theoretical explanation rooted in identifiability theory, directly
linking the observed linear patterns to the ground-truth latent structure. This shift in perspective
provides a deeper and more principled understanding of the underlying mechanisms.

Concept Discovery Concept discovery aims to extract human-interpretable concepts from pre-
trained models, and has emerged as a key area within machine learning (Schut et al., 2023; Yang et al.,
2023; Marconato et al., 2023; Oikarinen et al., 2023; Koh et al., 2020; Schwalbe, 2022; Poeta et al.,
2023; Taeb et al., 2022). While empirical methods have flourished, theoretical understanding of when
and how such concepts can be reliably identified remains limited. In contrast, the proposed ConCA
is grounded in rigorous theoretical results. The work of Leemann et al. (2023) investigates concept
identifiability under the assumption that the non-linear mapping is known a priori. In contrast, our
results establish identifiability guarantees without requiring such prior knowledge. A recent advance
by Rajendran et al. (2024) offers formal identifiability results for continuous latent concepts under a
likelihood-matching framework, while our work focuses on discrete concepts, and approaches the
problem from a different angle, i.e., rooted in the next-token prediction paradigm, which underpins
modern LLMs training. This shift in both focus and framework allows us to derive new identifiability
guarantees tailored to the discrete setting.
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B LIMITATIONS AND DISCUSSION

Theoretical limitations. Our theoretical analysis in Theorem 2.2 relies on several assumptions,
including the Diversity Condition (i) and the Informational Sufficiency Condition (ii). While we
provide justifications and argue that these assumptions are likely mild in practice, they represent
idealized conditions that may not hold exactly in real-world datasets. Nonetheless, we believe they are
reasonable: most have been introduced in prior work, and some, such as the Informational Sufficiency
Condition (ii), are already considered relaxations in previous identifiability analyses within the causal
representation learning community.

Methodological limitations. In addition, sparse ConCA applies regularization to recover concept-
level posteriors, but in practice we do not use the exponential function directly on ẑ ≈ [log p(zi|x)]zi .
Instead, we employ exponential-like activation functions, such as SELU, SoftPlus, and ELU,
which approximate exponential behavior for small input values while ensuring numerical stability and
smooth gradients. As a result, the sparsity prior only approximately reflects true posterior activation.
Additionally, underdetermined settings (ℓ > m) and deviations from theoretical assumptions can lead
to multiple plausible solutions, some capturing noise rather than meaningful concepts.

Discussion. Despite the theoretical, methodological, and evaluation limitations discussed above,
sparse ConCA provides a principled framework for understanding and decomposing LLM representa-
tions at the concept level. The approach highlights the potential of leveraging sparsity and structured
priors to recover interpretable latent factors, even under underdetermined settings or approximate
assumptions. Furthermore, our work emphasizes the importance of carefully designed evaluation
frameworks, as concept-level recovery in natural language remains inherently challenging. We hope
that these insights will motivate future research to incorporate additional probabilistic constraints,
explore alternative regularization strategies, and develop larger and more diverse benchmarks to better
evaluate and improve concept extraction methods in LLMs. Ultimately, sparse ConCA serves as a
starting point for building more interpretable, reliable, and theoretically grounded tools for analyzing
complex representations in LLM.
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Aspect Our Theorem 2.2 Liu’s Theorem C.1

Diversity Condition 1 Requires only m+ 1 distinct y values Requires
∏

i ki + 1 distinct y values
Diversity Condition 2 Not required Required
Representations A[. . . ; [log p(zi|x)]zi ; . . . ] + b A[log p(z = zi|x)]zi + b

Interpretability Mixture of component-wise p(zj |x) Mixture of joint [log p(z = zi|x)]zi

Table 2: Comparison of Our Theorem and Liu’s Theorem in terms of assumptions and results. This
table highlights that our theorem requires weaker assumptions and provides more interpretable,
component-wise results.

C COMPARISON OF THE RESULT IN LIU ET AL. (2025A)

The theoretical result Theorem 2.2 in this work is totally different with that of Liu et al. (2025a). For
comparison, here we re-write the result in Liu et al. (2025a) as follows:
Theorem C.1 (Liu et al. (2025a)). Suppose latent variables z and the observed variables x and
y follow the generative models defined in Eq. 1, and assume that z takes values in a finite set of
cardinality k. Assume the following holds:

(i) (Diversity Condition 1) There exist
∏

i ki + 1 values of y, so that the matrix L =
(
g(y =

y1)− g(y = y0), ...,g(y = yk)− g(y = y0)
)

of size
∏

i ki ×
∏

i ki is invertible,

(ii) (Diversity Condition 2) There exist k + 1 distinct values of y, i.e., y0,...,yk, such that the
matrix L̂ =

(
[p(z = zi|y = y1) − p(z = zi|y = y0)]zi

, ..., [p(z = zi|y = yk) − p(z =

zi|y = y0)]zi

)
of the size k × k is invertible

(iii) (Approximate Invertibility Condition) The mapping from z to (x, y) is approximately
invertible in the sense that the posterior p(z | x, y) is sharply peaked, i.e., there exists a
most probable z∗ such that p(z = z∗ | x, y) ≥ 1− ϵ for some ϵ ∈ [0, 1) with ϵ → 0.

Then the true latent variables z are mathematically related to the representations in LLMs, i.e., f(x),
which are learned through the next-token prediction framework, by the following relationship:

f(x) ≈ A[log p(z = zi|x)]zi
+ b, (6)

where A = (L̂T )−1L, and b is a bias vector.

We compare our Theorem 2.2 with Theorem C.1 mainly from the following (Also see Table 2 for a
summary of the comparison.):

• Assumptions: Our Theorem 2.2 eliminates the need for Diversity Condition 2 ((ii)). Further-
more, compared to Diversity Condition 1 ((i)), our assumption requires only m+ 1 distinct
values of y, where m is the dimensionality of the learned LLM representations. In contrast,
Condition (i) requires k + 1 values, where k is the number of possible configurations of the
discrete latent variable z (i.e., the number of distinct values z can take). Since it is generally
believed that m < k, our assumption is strictly weaker. This belief is partly supported by
the commonly discussed the superposition hypothesis (Elhage et al., 2022).

• Results: Our result shows that the LLM representation f(x) approximates a
mixture over the individual components of the latent variable z, i.e.,f(x) ≈
A [log p(z1 | x), . . . , log p(zℓ | x)] + b, whereas Theorem C.1 describes f(x) as a
mixture over the full configurations of the joint latent variable z, i.e., f(x) ≈
A [log p(z = zi | x)]zi

+ b. Most importantly, our result support that one can estimate
each distribution p(zj | x) by unmixing a linear combination, offering a more interpretable
and component-wise understanding of the learned representation.
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D LEMMAS IN THE CONTEXT OF H(z | x) → 0

For ease of exposition in the following sections, we first introduce the following lemmas.
Lemma D.1 (Factorization of the Posterior as Conditional Entropy Vanishes). Suppose latent causal
variables z = (z1, . . . , zℓ) and observed variable x follow the causal generative model defined in
Eq. 1. Then:

p(z | x) ≈
ℓ∏

i=1

p(zi | x), as H(z | x) → 0. (7)

Intuition. When H(z | x) = 0, the observation x uniquely determines every coordinate zi, so no
residual dependence remains between them. If the conditional entropy is merely small, the remaining
dependencies are weak and the posterior is well-approximated by

∏
i p(zi | x).

Proof. Define the product of marginals as:

q(z | x) :=
ℓ∏

i=1

p(zi | x). (8)

The Kullback–Leibler divergence between p(z | x) and q(z | x) is

DKL

(
p(z | x)∥q(z | x)

)
= Ep(z|x)

[
log

p(z | x)∏ℓ
i=1 p(zi | x)

]
. (9)

Recall that conditional entropy satisfies

H(z | x) = −Ep(z|x) log p(z | x), (10)

and similarly for each marginal,

H(zi | x) = −Ep(zi|x) log p(zi | x). (11)

Thus,

DKL

(
p(z | x)∥q(z | x)

)
= Ep(z|x)

[
log p(z | x)−

ℓ∑
i=1

log p(zi | x)

]
(12)

= −H(z | x)−
ℓ∑

i=1

Ep(z|x) [− log p(zi | x)] (13)

=

ℓ∑
i=1

H(zi | x)−H(z | x), (14)

where we have used the law of total expectation to replace Ep(z|x)[− log p(zi | x)] by H(zi | x).
By the chain rule of entropy, for each i we have

H(z | x)−H(zi | x) = H(z−i | zi,x), (15)

where z−i denotes all components except zi. Since entropy is non-negative for discrete case,

H(z | x) ≥ H(zi | x). (16)

Then, if H(z | x) → 0, we necessarily have

H(zi | x) → 0, for all i = 1, . . . , ℓ. (17)

Combining the above,

DKL

(
p(z | x)∥q(z | x)

)
=

ℓ∑
i=1

H(zi | x)−H(z | x) → 0. (18)
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Lemma D.2 (Exact Linear Representation of Joint Log Posterior via Full Marginals). Let z =
(z1, . . . , zℓ) ∈ V1 × · · · × Vℓ to be discrete, with zi ∈ Vi, |Vi| = ki, i = 1, . . . , ℓ, then there exists a
fixed (assignment-independent) selector matrix S ∈ {0, 1}M×

∑
i ki with M =

∏
i ki such that

[log p(z | x)]z ≈ S
[
[log p(z1 | x)]z1 ; . . . ; [log p(zℓ | x)]zℓ

]
, (19)

where the approximation becomes accurate as H(z | x) → 0 (i.e., the posterior concentrates on
a few high-probability assignments). The j-th row of S selects, for each i, the entry in

[
[log p(z1 |

x)]z1 , , . . . , [log p(zℓ | x)]zℓ
]

corresponding to the value of zi in the j-th joint assignment z(j).

Intuition. The vector
[
[log p(z1 | x)]z1 ; . . . ; [log p(zℓ | x)]zℓ

]
stacks all single-variable log-

posteriors. The selector matrix S picks, for each joint assignment, the corresponding entries in[
[log p(z1 | x)]z1 ; . . . ; [log p(zℓ | x)]zℓ

]
so that S

[
[log p(z1 | x)]z1 ; . . . ; [log p(zℓ | x)]zℓ

]
recon-

structs the joint log-posterior [log p(z | x)]z. Under low conditional entropy H(z | x) → 0, only a
few joint assignments dominate, making this approximation accurate.

Proof. Let M =
∏

i ki and enumerate all joint assignments as Vℓ = {z(1), . . . , z(M)}. Consider the
vector

[log p(z | x)]z ∈ RM , (20)

whose j-th entry is log p(z(j) | x).

Step 1 (Factorization under low entropy). By Lemma D.1, as H(z | x) → 0,

p(z | x) ≈
ℓ∏

i=1

p(zi | x) =⇒ log p(z(j) | x) ≈
ℓ∑

i=1

log p(z
(j)
i | x) (21)

where z
(j)
i denotes the value of the i-th latent variable in the j-th joint assignment z(j).

Step 2 (Construction of selector matrix). Construct S ∈ {0, 1}M×
∑

i ki so that its j-th row has
exactly one 1 in each block corresponding to variable zi, selecting the entry that corresponds to the
value of zi in z(j), and all other entries in that row are 0.

Then for each j,

(S
[
[log p(z1 | x)]z1 ; . . . ; [log p(zℓ | x)]zℓ

]
)j =

ℓ∑
i=1

log p(z
(j)
i | x) ≈ log p(z(j) | x), (22)

so the linear map exactly reproduces the sum of marginal log-probabilities for the joint assignment.

Step 3 (Validity under low entropy). Because the posterior concentrates on a few high-probability
assignments as H(z | x) → 0, the sum-of-marginals approximation is accurate for the entries
corresponding to these assignments. Thus

[log p(z | x)]z ≈ S
[
[log p(z1 | x)]z1 ; . . . ; [log p(zℓ | x)]zℓ

]
, (23)

as claimed. The matrix S is fixed (assignment-independent) and encodes the mapping from full
marginal logs to joint-log vector.
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Lemma D.3 (Expectation difference vanishes with conditional entropy). Suppose latent causal
variables z and observed variable x follow a generative model. For any two values y0 and yi, as
H(z | x) → 0,

Ep(z|yi)[log p(z | x)]− Ep(z|y0)[log p(z | x)] −→ 0.

Intuition. When x almost fully determines z, the expectation Ep(z|y)[log p(z | x)] becomes nearly
independent of y, so the difference between any two values of y vanishes.

Proof. Let

z∗ = argmax
z

p(z | x), ε = 1− p(z∗ | x). (24)

Since H(z | x) → 0, the conditional distribution p(z | x) becomes increasingly concentrated on z∗,
i.e., ε → 0.

Now, for any fixed y, as ε → 0, the posterior satisfies

p(z∗ | x) = 1− ε, (25)

and for all z ̸= z∗, we have

p(z | x) ≈ ε. (26)

We can then decompose the expectation:

Ep(z|y)[log p(z | x)] = p(z∗ | y) log p(z∗ | x) +
∑
z̸=z∗

p(z | y) log p(z | x) (27)

(28)

Note that:

• log(1− ϵ) ≈ 0, when ϵ → 0,

• log p(z | x) ≈ log ϵ for all z ̸= z∗, when ϵ → 0,

• and for z ̸= z∗, p(z | y) is bounded.

Hence, for any y, when ϵ → 0,

Ep(z|y)[log p(z | x, y)] → log ϵ, (29)

which is independent of the specific value of y. As a result, taking the difference for two distinct
values y0 and yi:

Ep(z|yi)[log p(z | x, yi)]− Ep(z|y0)[log p(z | x, y0)] → 0.

This completes the proof.
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E PROOF OF THEOREM 2.2

Theorem 2.1. Suppose latent variables z and the observed variables x and y follow the generative
models defined in Eq. 1. Assume the following holds:

(i) (Diversity Condition) There exist m + 1 values of y, so that the matrix L =
(
g(y =

y1)− g(y = y0), ...,g(y = ym)− g(y = y0)
)

of size m×m is invertible,

(ii) (Informational Sufficiency Condition) The conditional entropy of the latent concepts given
the context is close to zero, i.e., H(z|x) → 0,

then the representations f(x) in LLMs, which are learned through the next-token prediction framework,
are related to the true latent variables z, by the following relationship:

f(x) ≈ A
[
[log p(z1 | x)]z1 ; . . . ; [log p(zℓ | x)]zℓ

]
+ b, (30)

where A is a m× (
∑ℓ

i=1 ki) matrix, b is a bias vector.

Intuition. Each LLM representation f(x) encodes a combination of all latent concepts. Under the
Diversity, observing representations across multiple diverse outputs y provides linearly independent
constraints that reveal how all latent concepts contribute together, i.e., the joint posterior. When the
latent concepts are nearly determined by x, i.e., the Informational Sufficiency Condition, the joint
posterior decomposes into marginal posteriors, allowing f(x) to be expressed as a linear mixture of
the log-posteriors of individual concepts.

Proof. Recall that next-token prediction can be viewed as a multinomial logistic regression model,
where the conditional distribution is approximated as

p(y|x) =
exp

(
f(x)⊤g(y)

)∑
y′ exp

(
f(x)⊤g(y′)

) . (31)

Here, f(x) and g(y) denote the learned representations of x and y, respectively, both lying in Rm.

On the other hard, under the latent-variable formulation in Eq. 1, the conditional distribution is given
by marginalization:

p(y|x) =
∑
z

p(y|z) p(z|x). (32)

Equating Eq. 31 and Eq. 32, we obtain

exp
(
f(x)⊤g(y)

)∑
y′ exp

(
f(x)⊤g(y′)

) =
∑
z

p(y|z) p(z|x). (33)

Taking logarithms on both sides, one arrives at

f(x)⊤g(y)− logZ(x) = log
∑
z

p(y|z) p(z|x), (34)

where Z(x) =
∑

y′ exp(f(x)⊤g(y′)) is the partition function.

We now focus on the right-hand side. Using Bayes’ rule and the conditional independence assumption
y ⊥ x | z, we can decompose:

log p(y|x) = Ep(z|y)

[
log

p(y, z|x)
p(z|y,x)

]
(35)

= Ep(z|y)[log p(z|x)] + Ep(z|y)[log p(y|z)]− Ep(z|y)[log p(z|y,x)] . (36)

Combining Eq. equation 34 and Eq. equation 36, we arrive at

f(x)⊤g(y)− logZ(x) = Ep(z|y)[log p(z|x)]− Ep(z|y)[log p(z|y,x)] + by, (37)

where we set by := Ep(z|y)[log p(y|z)] for notational convenience.
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For concreteness, let y0, y1, . . . , ym denote the outcomes satisfying the diversity condition in condi-
tion (i). In particular, for y = y0 we have

f(x)⊤g(y0)− logZ(x) =
∑
z

p(z|y0) log p(z|x)− hy0
+ by0

, (38)

with hy0 :=
∑

z p(z|y0) log p(z|y0,x). Similarly, for y = y1,

f(x)⊤g(y1)− logZ(x) =
∑
z

p(z|y1) log p(z|x)− hy1
+ by1

. (39)

Subtracting Eq. equation 38 from Eq. equation 39, we obtain(
g(y1)− g(y0)

)⊤
f(x) =

(∑
z

(
p(z|y1)− p(z|y0)

)
log p(z|x)

)
− (hy1

− hy0
) + (by1

− by0
).

(40)

Since y can take m+ 1 distinct values, Eq. 40 yields m linearly independent equations. Collecting
them together, we obtain(

fy(y1)− fy(y0), . . . , fy(yℓ)− fy(y0)
)⊤︸ ︷︷ ︸

L⊤

fx(x) (41)

=
(
[p(z|y1)− p(z|y0)]z, . . . , [p(z|yℓ)− p(z|y0)]z

)⊤︸ ︷︷ ︸
L̂

[log p(z|x)]z

− [hy1 − hy0 , . . . , hyℓ
− hy0 ]︸ ︷︷ ︸

hy

+ [by1 − by0 , . . . , byℓ
− by0 ]︸ ︷︷ ︸

by

. (42)

By the diversity condition, the matrix L ∈ Rm×m is invertible. Hence we can solve for fx(x):

fx(x) = (L⊤)−1L̂[log p(z|x)]z − (L⊤)−1hy + (L⊤)−1by︸ ︷︷ ︸
b

. (43)

Then, as H(z | x) → 0, by lemmas D.2 and D.3, we have:

fx(x) = (L⊤)−1L̂ S
[
[log p(z1 | x)]z1 ; . . . ; [log p(zℓ | x)]zℓ

]︸ ︷︷ ︸
by Lemma C.2

− (L⊤)−1hy︸ ︷︷ ︸
by Lemma C.3, → 0

+b. (44)

Finally, defining A = (L⊤)−1L̂S completes the proof.
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F JUSTIFICATION FOR LOG-POSTERIOR ESTIMATION VIA LINEAR PROBING

Corollary 3.1. Suppose Theorem 2.1 holds, i.e.,

f(x) ≈ A
[
[log p(z1 | x)]z1 ; . . . ; [log p(zℓ | x)]zℓ

]
+ b. (45)

Let x0 and x1 be two counterfactual samples that differ only in the i-th latent concept zi, each with its
own ground-truth label. Then the corresponding representations (f(x0), f(x1)) are linearly separable
with respect to these labels. In particular, there exists a weight matrix W such that WÃ(i) ≈ I, and
the associated logits recover the marginal posterior [p(zi | x)]zi over all possible values of zi. In the
context where zi is binary, the logits reduce to a two-dimensional vector, and the softmax recovers
the marginal posterior p(zi = 0 | x), or equivalently, p(zi = 1 | x) = 1− p(zi = 0 | x).

Intuition. The key idea is that each latent concept contributes to the representation along a distinct
linear direction. Changing only one concept shifts the representation along its direction, so a simple
linear classifier can isolate this change and recover the marginal posterior. For binary concepts, this
reduces to a one-dimensional separation, while for multi-class concepts, each class corresponds to its
own direction.

Proof. Consider the approximation

f(x) ≈ Ag(x) + b, g(x) =
[
[log p(z1 | x)]z1 ; . . . ; [log p(zℓ | x)]zℓ

]
.

For the counterfactual samples x0 and x1 differing only in zi, we pass the representations into a
linear classifier with weights W. The classifier produces logits

logits ≈ W
(
Ag(x) + b

)
, (46)

where logits is a vector over all possible values of zi. In the binary case, this is a two-dimensional
vector

[log p(zi = 0 | x), log p(zi = 1 | x)]⊤,
and in the multi-class case, it contains one entry per category.

For correct classification under cross-entropy loss, the logits should recover the log-posterior for all
categories (up to an additive constant):

logits =
[
log p(zi = k | x)

]
k
+ const, (47)

where k indexes all possible values of zi, and the constant does not affect the softmax output.

Comparing equation 46 and equation 47, we require

WÃ(i) ≈ I, (48)

where Ã(i) is the block of columns of A associated with all possible values of zi. This condition
ensures that the classifier isolates the contribution from zi and produces the correct logits.

Binary case: When zi is binary, Ã(i) has two columns, and the logits reduce to a two-dimensional
vector [log p(zi = 0 | x), log p(zi = 1 | x)]⊤. After softmax, we directly obtain the marginal
posterior

p(zi = 0 | x), p(zi = 1 | x) = 1− p(zi = 0 | x).

Therefore, the counterfactual pair (x0,x1) is linearly separable with respect to their ground-truth
labels in both the general multi-class and binary cases.
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G EXPERIMENTAL DETAILS

Training Data For all experiments, we use pre-trained LLMs downloaded from https://
huggingface.co/, including Pythia-70m, 1.4b, 2.8b (Biderman et al., 2023), Gemma3-1b
(Team et al., 2025), and Qwen3-1.7b (Team, 2025). LLM representations are extracted from
these models using the first 200 million tokens of the Pile dataset, obtained from https:
//huggingface.co/datasets/EleutherAI/the_pile_deduplicated (Gao et al.,
2020). For each token, we record the corresponding representation from the model’s last hidden
layer, aligned with Theorem 2.2. These pre-extracted representations form the training data for the
proposed sparse ConCA and SAEs.

Table 3: Counterfactual concept pairs used for evaluation, adapted from Park et al. (2023).

# Concept Example Word Pair Counts
Verb inflections
1 verb −→ 3pSg (accept, accepts) 50
2 verb −→ Ving (add, adding) 50
3 verb −→ Ved (accept, accepted) 50
4 Ving −→ 3pSg (adding, adds) 50
5 Ving −→ Ved (adding, added) 50
6 3pSg −→ Ved (adds, added) 50
7 verb −→ V + able (accept, acceptable) 50
8 verb −→ V + er (begin, beginner) 50
9 verb −→ V + tion (compile, compilation) 50
10 verb −→ V + ment (agree, agreement) 50

Adjective transformations
11 adj −→ un + adj (able, unable) 50
12 adj −→ adj + ly (according, accordingly) 50
21 adj −→ comparative (bad, worse) 87
22 adj −→ superlative (bad, worst) 87
23 frequent −→ infrequent (bad, terrible) 86

Size, thing, noun
13 small −→ big (brief, long) 25
14 thing −→ color (ant, black) 50
15 thing −→ part (bus, seats) 50
16 country −→ capital (Austria, Vienna) 158
17 pronoun −→ possessive (he, his) 4
18 male −→ female (actor, actress) 52
19 lower −→ upper (always, Always) 73
20 noun −→ plural (album, albums) 100

Language translations
24 English −→ French (April, avril) 116
25 French −→ German (ami, Freund) 128
26 French −→ Spanish (annee, año) 180
27 German −→ Spanish (Arbeit, trabajo) 228

Testing Data for Results in Figures 2 and 3. For evaluation, we use counterfactual text pairs that
differ in only a single concept while keeping all other aspects unchanged. We emphases again that
constructing such pairs is challenging due to the complexity of natural language, as also highlighted
in Park et al. (2023); Jiang et al. (2024). We adopt 27 high-precision counterfactual concepts from
Park et al. (2023), derived from the Big Analogy Test dataset (Gladkova et al., 2016), as our testing
dataset. Table 3 lists the 27 concepts, one illustrative pair per concept, and the number of pairs used
for evaluation. Despite its modest size, this benchmark suffices to meaningfully distinguish method
performance and validate the sensitivity of our evaluation framework.
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Algorithm 1 Evaluation of SAE/ConCA Concepts via Supervised Linear Classification

Require: Trained SAEs/ConCA, 27 counterfactual pairs {xi}27i=1
Ensure: Mean Pearson correlation between SAE features and concept logits

1: Step 1: Obtain concept logits
2: for i = 1 to 27 do
3: Train LogisticRegression on the i-th counterfactual pair
4: Compute logit si = logit(ck = 1|f(xi))
5: end for
6: Stack logits to form s = (s1, s2, . . . , s27)
7: Step 2: Extract SAEs and ConCA latent features
8: for i = 1 to 27 do
9: Pass f(xi) through SAE to get latent ẑi

10: Compute element-wise exponentiation z̃i = exp(ẑi)
11: end for
12: Stack features to form z̃ ∈ R27×D

13: Step 3: Compute correlation matrix
14: for d = 1 to D do
15: Compute Pearson correlation Rd = C(s, z̃:,d) (D denotes SAEs/ConCA’s feature dimension)
16: end for
17: Step 4: Solve assignment problem
18: Apply Hungarian algorithm on R to obtain optimal assignment.
19: Compute assigned Pearson correlations
20: Step 5: Aggregate metric
21: Report mean Pearson correlation across the 27 concepts.

Testing Data for Downsteam Tasks in Figure 5. For the few-show learning setting in Figure 5,
we leverage a previously collected set of 113 binary classification datasets from Kantamneni et al.
(2025), covering diverse tasks including challenging cases such as front-page headline detection and
logical entailment. Each dataset provides prompts and binary targets (0 or 1), with prompt lengths
ranging from 5 to 1024 tokens. Refer to Table 3 in Kantamneni et al. (2025) for details. For the
out-of-distribution task in Figure 5, we also leverage 8 datasets from Kantamneni et al. (2025). These
include: These include: 2 preexisting GLUE-X datasets designed as “extreme” versions of tasks
testing grammaticality and logical entailment, 3 datasets with altered language, i.e., Tanslated to
Frech, Spanish, and German, and 3 datasets with syntactic modifications substitutions of names
(Fictional Characters, Random Letter Inserted, and Reversed Name Order) with cartoon characters.
Probes are trained in standard settings and evaluated on these out-of-distribution test examples. Both
two dataset can be downloaded from https://github.com/JoshEngels/SAE-Probes/
tree/main.

Training Pipeline. All ConCA and SAE variants use a feature dimension of 215, based on empirical
settings from sparse SAEs. They are trained for 20,000 optimization steps with a batch size of 10,000,
using the Adam optimizer with an initial learning rate of 1 × 10−4 and a linear warm-up over the
first 200 steps. For the top-k and batch-top-k SAEs, k is set to 32. P-annealing SAEs incorporate a
sparsity warm-up of 400 steps with an initial sparsity penalty coefficient 0.1. All experiments are run
on a server equipped with 4 NVIDIA A100 GPUs.

Pearson correlation coefficient We use the PCC as the evaluation metric, as described in exper-
iments. Algorithm 1 summarizes the procedure: for each of the 27 counterfactual concept pairs,
we first obtain concept logits using a supervised linear classifier. The same inputs are then passed
through the trained SAE to extract latent features, which are exponentiated and stacked into a feature
matrix. We compute the Pearson correlation between each SAE feature and the corresponding concept
logit, and solve the assignment problem using the Hungarian algorithm to account for permutation
indeterminacy. The mean Pearson correlation across all concepts is reported as the final evaluation
score.

AUC. The Area Under the Curve (AUC) is used to evaluate the performance of a binary classifier
for concept prediction. The ROC curve plots the True Positive Rate (TPR) against the False Positive
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Figure 6: Rank-based fraction of significant features for SAE and ConCA variants across three counter-
factual pair concepts: [3pSg - Ved], [adj - adj + ly], and [adj - comparative].
For each concept, the top-32 features with highest differences are selected, and points show the
fraction of features exhibiting significant changes (mean ± std across seeds). Higher fractions indicate
more variant features.

Rate (FPR) at different threshold levels, illustrating the trade-off between correctly predicting positive
instances and incorrectly predicting negative instances. The AUC measures the total area under this
curve, ranging from 0 to 1. An AUC of 1.0 indicates perfect classification, 0.5 corresponds to random
guessing, and values closer to 0 indicate poor performance. This metric provides an aggregate,
threshold-independent measure of the classifier’s ability to discriminate between the two classes.

Linear Probing in Downstream Tasks. In our few-shot experiments, we first apply different SAEs
and ConCA variants to the representations of pretrained LLMs to obtain feature embeddings. We then
train a logistic regression classifier (using the LogisticRegression implementation from the scikit-learn
package) on these features with limited labeled examples. To mitigate overfitting given the high
dimensionality of the features, we employ an L2 penalty and select the regularization strength through
cross-validation. In our out-of-distribution shift experiments, we again train a logistic regression
classifier on the extracted features. To avoid overfitting to the in-distribution validation split, we fix
the regularization strength to its default value (i.e., C=1.0 in LogisticRegression) instead of tuning it
via cross-validation. This ensures a fairer and more stable evaluation under distribution shift.

H VISUALIZATION OF COUNTERFACTUAL PAIR EXPERIMENTS

To more clearly illustrate the advantages of the proposed ConCAs, we perform a visualization analysis
based on features extracted by ConCA and SAE variants from counterfactual pairs. Specifically, we
first select the top 32 (k in top-k) features with the highest average absolute difference between a
counterfactual pair, focusing on the most significant variations while avoiding dilution from less
responsive features. We then compute the rank-based fraction of significant features over these 32
features across multiple thresholds to ensure robustness. The fraction measures the proportion of
selected features exhibiting significant changes, providing a metric of feature sensitivity and stability
in response to a single concept change. Intuitively, if the learned features are expected to capture
a single concept as much as possible, their responses should be small—that is, the fraction will
be low. The results are visualized using scatter plots with mean and standard deviation to capture
both distribution and central tendency. This analysis highlights how ConCAs capture selective
and meaningful feature variations, complementing the quantitative metrics reported earlier. For
GroupNorm, we apply the same procedure independently within each group. That is, the 32 selection
and rank-based fraction calculation are performed per group, and the final metric is obtained by
averaging across all groups. This ensures that group-level normalization does not interfere across
groups, making the evaluation consistent for GroupNorm settings. Algorithm 2 summarizes the
procedure.

Figures 4, 6–13 show the rank-based fraction of significant features for the proposed ConCA and
SAE variants across 27 counterfactual pairs, on Pythia-2.8b. The LayerNorm configuration exhibits
the smallest fractions, indicating more stable or less variant feature changes under counterfactual
conditions. In contrast, the Batch-Topk and Topk SAE variants produce larger fractions, reflecting
more variable feature responses. BatchNorm and Panneal configurations display similar intermediate
behavior. Overall, these trends are broadly aglined with the MPC results shown in Figure 3.
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Figure 7: Rank-based fraction of significant features for SAE and ConCA variants across three
counterfactual pair concepts: [English - French], [French - German], and [French
- Spanish].

Figure 8: Rank-based fraction of significant features for SAE and ConCA variants across three
counterfactual pair concepts: [frequent - infrequent], [German - Spanish], and
[lower - upper].

Figure 9: Rank-based fraction of significant features for SAE and ConCA variants across three
counterfactual pair concepts: [male - female], [noun - plural], and [pronoun -
possessive].

Figure 10: Rank-based fraction of significant features for SAE and ConCA variants across three
counterfactual pair concepts: [small - big], [thing - color], and [thing - part].
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Figure 11: Rank-based fraction of significant features for SAE and ConCA variants across three
counterfactual pair concepts: [verb - 3pSg], [verb - V + able], and [verb - V +
er].

Figure 12: Rank-based fraction of significant features for SAE and ConCA variants across three
counterfactual pair concepts: [verb - V + ment], [verb - V + tion], and [verb -
Ved].

Figure 13: Rank-based fraction of significant features for SAE and ConCA variants across three
counterfactual pair concepts: [verb - Ving], [Ving - Ved], and [Ving - Ved].

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Algorithm 2 Compute Rank-Based Fraction of Significant Features for Counterfactual Pairs

Require: Features of counterfactual pair (zs, zt), k, normalization, number of groups G
Ensure: Fraction of significant features

1: Compute element-wise absolute difference: diff = |zs − zt|
2: if normalization == "Group" then
3: Split diff , zs, zt into G groups
4: for g = 1 to G do
5: Select top-kg = max(1, k/G) elements in group g based on diff
6: Convert group features zgs , z

g
t to percentile ranks

7: Compute absolute rank differences for top-kg elements
8: Evaluate significance across multiple thresholds T = {0.1, 0.2, 0.3, 0.4, 0.5}
9: Compute average fraction of significant features for group g

10: end for
11: Average fractions across groups to obtain overall fraction
12: else
13: Select top-k elements globally based on diff
14: Convert selected features zs, zt to percentile ranks
15: Compute absolute rank differences for top-k elements
16: Evaluate significance across multiple thresholds T = {0.1, 0.2, 0.3, 0.4, 0.5}
17: Compute average fraction of significant features
18: end if
19: return Overall fraction of significant features

I VISUALIZATION OF CLASSIFICATION TASKS

To better understand why ConCA features transfer effectively under the few-shot setting, we visualize
the features extracted by the proposed ConCA and SAEs variants from test data using t-SNE. By
projecting all features into 2D space, we can observe the structure and separability of learned
representations, providing intuition for the superior downstream performance of ConCA compared
to SAE variants. Figure 14 provides t-SNE visualization (Maaten & Hinton, 2008) of features of
testing data, extracted by SAE and ConCA variants, on a example of the few-shot task, which shows
that ConCA configurations (e.g., LayerNorm, BatchNorm, GroupNorm) produce more compact and
well-separated clusters, indicating more stable and discriminative representations compared to SAE
variants.

J ACKNOWLEDGMENT OF LLMS

We acknowledge that large language models (LLMs) were used in this work only for word-level
tasks, including correcting typos, improving grammar, and refining phrasing. No substantive content,
results, or scientific interpretations were generated by LLMs. All scientific ideas, analyses, and
conclusions presented in this manuscript are solely the work of the authors.

K PRACTICAL DIAGNOSTIC FOR THE DIVERSITY CONDITION

The diversity condition in our theory requires that the model’s output space contains enough linearly
independent directions. Although the assumption is existential (it only requires that there exists such
a set of output tokens), it is useful to provide an empirical procedure showing that modern LLMs
indeed offer sufficiently diverse outputs. Since exhaustively checking all possible token combinations
is infeasible, we design a practical proxy that searches for a diverse subset of outputs.

We begin by randomly sampling a large set of candidate tokens from the model’s vocabulary. One
token is chosen as a reference output. For each remaining candidate, we compute the difference
between its output embedding and that of the reference token. These differences represent all
available output directions relative to the reference. To find a subset of tokens whose directions are as
independent as possible, we apply a greedy selection procedure based on LU decomposition with
pivoting. This method reorders the candidate directions in decreasing order of their contribution to
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Figure 14: Visualization of features extracted by SAE and ConCA variants on a example of few-
shot classification task datasets. Each point represents a test sample, colored by its class label.
ConCA configurations (e.g., LayerNorm, BatchNorm, GroupNorm) produce more compact and
well-separated clusters, indicating more stable and discriminative representations compared to SAE
variants.

Figure 15: Singular-value spectra of the greedily selected output-difference matrix across Pythia-70m,
Pythia-1.4B, and Pythia-2.8B. Each curve plots the log-scale singular values (largest to smallest)
obtained from a large candidate pool of output tokens using LU-pivoting selection. The spectra
decay smoothly and only collapse in the final few dimensions, indicating that each model provides a
numerically full-rank set of output directions and that the diversity assumption can be approximately
satisfied in practice.

the overall dimensionality. Taking the first 2,048 directions (for Pythia-12B) yields a set of outputs
that spans the most independent subspace available within the candidate pool. We then assess how
diverse this selected set actually is by measuring the spectrum of singular values derived from the
chosen directions. A well-spread singular-value spectrum indicates that the selected outputs span a
nearly full-dimensional space.

Across all model sizes, the spectra exhibit a consistent pattern. The largest several hundred singular
values remain high and decay smoothly, indicating that each model provides a substantial number of
independent output directions. As the index approaches the effective dimensionality of the model,
the tail of the spectrum gradually drops, but only the final few singular values approach very small
magnitudes. This behavior suggests that the selected output directions nearly span the model’s
representational space and are far from the rank-deficient structure we observe when tokens are
selected at random.

Interestingly, the point at which the spectrum begins to decline sharply shifts with model scale (See
Figure 15): larger models (1.4B and above) maintain strong singular values for a greater proportion
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of directions compared to the 70m variant. This reflects the natural trend that larger models encode
richer and more varied output embeddings. Nevertheless, even the 70m model remains numerically
full-rank down to its final few dimensions.

L INFORMATIONAL SUFFICIENCY DIAGNOSTICS

Our theory requires an informational sufficiency condition: the learned representation should contain
enough information to reliably determine the related latent concept. For binary latent factors, this
means the posterior distribution over the factor should be sharply peaked given the representation.
Although this assumption is mild and standard in representation analyses, it is useful to provide a
practical diagnostic showing that LLMs indeed satisfy it. We use the constructed 27 counterfactual
concept pairs as mentioned in Table 3. These pairs cover a broad variety of concept types while
keeping each concept operationally well-defined.

For each concept pair, we gather a list of word pairs exhibiting the target transformation. We
extract last-token representations from the model for each word, forming two embedding sets
corresponding to the two concept values. We then train a linear probe (logistic regression) to classify
the target concept using 70/30 train–test splits repeated with three random seeds. The linear probe is
intentionally simple: rather than maximising accuracy, its role is to estimate an empirical distribution
p(z|x), allowing us to measure the uncertainty the representation leaves about the concept.

To quantify how well the representation specifies the latent concept, we compute the conditional
entropy of the probe’s predicted distribution over the concept: entropy near 0 bits indicates that the
representation almost perfectly determines the concept; entropy near 1 bit corresponds to complete
uncertainty (uniform prediction).

Across the 27 evaluated concepts (See Figure 16), we observe a clear and consistent trend: larger
Pythia models yield substantially lower conditional entropy, indicating increasingly informative
representations. The 70M model shows moderate informational sufficiency (typically 0.1–0.3 bits,
with a few harder concepts higher), while the 1.4B and 2.8B models exhibit uniformly low entropies
(mostly below 0.15 bits). This pattern suggests that, at the model scales relevant for our theoretical
analysis, the representations almost deterministically encode the target concept. Consequently, the
informational-sufficiency (approximate invertibility) assumption is empirically well supported.

M SYNTHETIC VALIDATION OF MARGINAL VS. JOINT IDENTIFIABILITY.

To complement our theoretical discussion in Appendix C, and also compare our ConCA and SAEs,
we design a synthetic experiment as follow. We begin by sampling 5 binary latent variables whose
causal dependencies follow an Erdős–Rényi (ER) random directed acyclic graph (DAG). Each graph
is drawn with an expected number of edges equal to 10. For every node in the DAG, we define
a conditional distribution over its parents using a Bernoulli model whose parameters are sampled
uniformly from the interval [0.2,0.8]. We also generate counterfactual data that only in one latent
variable while keeping the remains unchanged, to train base model and also train linear probing as
evaluation. To simulate a nonlinear mixture process, we then convert the latent variable samples
into one-hot format and randomly apply a permutation matrix to the one-hot encoding, generating
one-hot observed samples. These are then transformed into binary observed samples. To simulate
next-token prediction, we randomly mask a part of the binary observed data, e.g.„ xi, and predict it
by use the remaining portion x\i. After training, we obtain the learned representations. Note that we
set the representation dimension to 10 (i.e., component-wise posterior corresponds to 2× 5) in order
to highlight the difference between our theoretical result and the formulation in (Liu et al., 2025a),
which requires a representation dimension of 32 (i.e., joint posterior corresponds to 25).

Given the above setup, our first experiment aims to highlight the difference between our theoretical
result and the formulation in (Liu et al., 2025a). To this end, we train a linear probe on the learned
representations (as justified by Corollary 3.1). The probe achieves a classification accuracy of 0.923
(std: 0.021). This demonstrates that 2× 5 dimensional representations are already sufficient for linear
classification, and that 25 dimensional representations required by Liu et al. (2025a) are unnecessary,
thereby empirically supporting our theoretical result in Theorem 2.2.
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Figure 16: Conditional entropy for the 27 concept pairs across three Pythia model scales (70m,
1.4b, 2.8b). Lower entropy indicates that the representation more sharply determines the underlying
concept. As model size increases, entropies consistently decrease—especially for non-trivial semantic
contrasts—illustrating that informational sufficiency (approximate invertibility) emerges naturally.
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Activation Type Clamp Range Pearson ↑ MSE ↓
Exp [−20, 20] 0.7029± 0.0081 10.59± 2.10
Exp [−30, 30] 0.7055± 0.0148 11.18± 0.85
Exp [−40, 40] 0.7020± 0.0077 11.03± 0.97
Exp [−50, 50] 0.7006± 0.0018 10.65± 0.55
SoftPlus (ours) — 0.7324± 0.0002 7.63± 0.40

Table 4: Performance comparison of exponential and SoftPlus activation variants under clamped toy
settings. SoftPlus achieves consistently higher Pearson correlation and lower MSE, even when the
exponential is artificially stabilized.

Our second experiment is to verify the performance of our ConCA and SAEs on the learned repre-
sentations. To this end, we train SAEs (Panneal), and ConCA (LayerNorm). We compute Pearson
correlation between logits obtained by linear probing trained on counterfactual pair, and features
obtained by SAEs and ConCA. The results are as follows: ConCA: 0.813 (std: 0.031) SAEs: 0.635
(std: 0.046). We emphasize that the scope of this work focuses on the theoretical guarantee in
Theorem 2.1, which addresses identifiability up to the linear mixtures. Achieving unique recovery
of individual concepts is substantially challenging. While additional assumptions, such as sparsity
conditions familiar from compressed sensing, can in principle support uniqueness, it remains unclear
whether the mixing matrix A in our setting satisfies the specific sparsity or incoherence conditions
required. Exploring these assumptions is an interesting direction for future work.

N VERIFYING EXPONENTIAL SUBSTITUTES ON PYTHIA-70M

A core modeling choice in ConCA is the replacement of the exponential function with numerically
stable surrogates such as SoftPlus, motivated by the fact that LLM activations lie in ranges that
make the true exponential function prone to gradient explosion and instability. To further validate
this design choice, we conduct an additional controlled experiment where the exponential function
becomes numerically stable.

Specifically, we construct a toy setting by clamping the final-layer hidden activations of Pythia-70m
to bounded ranges where exponential function can be safely evaluated without numerical overflow.
We consider the four clamping windows as shown in Table 4. We additionally include LayerNorm and
the same sparsity penalty used in our SoftPlus variant to ensure comparability. We then train ConCA
variants using the true exponential under these artificially stabilized conditions, and compare them
with our SoftPlus-based variant. Performance is evaluated using both Pearson correlation (between
recovered concepts and linear-probe ground truth) and MSE reconstruction error.

Three observations emerge: Exp becomes usable only under artificial clamping. Even when stabilized,
exp-based ConCA exhibits lower Pearson correlation ( 0.69–0.72) and higher MSE ( 10–12) across all
clamp settings. SoftPlus consistently outperforms exp, achieving both the highest correlation ( 0.73)
and the lowest MSE ( 7–8), despite being evaluated under more challenging, unclamped activation
distributions. Together, these findings demonstrate that the surrogate activations used in ConCA are
not only numerically safer but also better aligned with empirical behavior, even in settings explicitly
constructed to favor the exponential function. This experiment thus reinforces our modeling choice
and supports the theoretical motivation behind replacing exp in ConCA.

O ACTIVATION PATCHING EVALUATION

Activation patching is widely regarded as one of the strongest tests of functional interpretability.
Unlike reconstruction-based metrics (e.g., MSE) or alignment metrics (e.g., Pearson correlation), acti-
vation patching directly measures whether a representation—after being encoded and reconstructed by
a concept-extraction model—still leads the LLM to make similar token-level predictions. To evaluate
this, we measure how substituting an internal hidden state with its ConCA/SAE reconstruction affects
the LLM’s output logits. If a dictionary model faithfully captures the underlying functional structure,
the LLM’s predictions should remain largely unchanged.
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Figure 17: Activation patching comparison across ConCA and SAE variants on Pythia-70M using
10,000 cached hidden activations from The Pile. (a) Argmax Match (higher is better): ConCA
variants preserve the model’s top prediction more reliably than SAE baselines. (b) Top-10 Overlap
(higher is better): ConCA reconstructions retain substantially more of the model’s predictive structure.
(c) Jensen–Shannon Divergence (lower is better): ConCA achieves lower distributional distortion,
indicating higher functional faithfulness.

We use 10k randomly sampled token activations from The Pile activation dataset of Pythia-70m.
Sampling is performed once, cached, and reused across models to ensure perfect comparability. For
each sampled activation, we: 1: feed the original hidden state into the model’s final prediction layer
to obtain the baseline logits. 2: reconstruct the hidden state using either our ConCA or SAEs. 3: feed
the reconstructed activation back into the model and compare the resulting logits with the baseline.
We report three widely used functional metrics: Argmax Match: whether the top predicted token stays
the same. Top-10 Overlap: fraction of overlapping tokens in the top-10 predictions. Jensen–Shannon
Divergence: distributional distance between original and reconstructed logits (lower is better). Each
metric is averaged over all 10,000 activations.

The results in Figure 17 show that ConCA-BatchNorm achieves the best overall performance across
metrics. SAE-top-k and SAE-batch-top-k show the largest divergence, indicating functional mismatch
despite good sparsity. ConCA variants exhibit lower variance, suggesting more stable behavior across
diverse activations. This experiment demonstrates that: ConCA reconstructions lead the LLM to
make more similar predictions, confirming that ConCA retains functional information more faithfully
than SAEs.

P EXPERIMENTS ON ADDITIONAL COUNTERFACTUAL CONCEPT PAIRS

While the original 27 counterfactual concept pairs from Park et al. (2023) provide clean, expert-
curated evaluations along several core linguistic axes (verb inflections, adjective morphology, noun
attributes, and multilingual translations), they cover only a small portion of the semantic space
relevant to modern LLM behavior. In particular, many practically important concepts, such as
sentiment polarity, toxicity, factuality, stance, politeness, or degree/intensity—are not represented in
the original benchmark. These dimensions are widely studied in interpretability and safety research,
and their inclusion offers a more comprehensive evaluation of concept alignment.

To complement the original dataset, we construct 23 additional counterfactual concept pairs, each
designed to capture a single semantic concept for linear probing and our theoretical disentanglement
analysis. For every concept, we curate 50 pairs where only the targeted semantic attribute changes
while all other factors (POS category, morphological structure, lexical frequency, etc.) remain
controlled.

These new concepts span five broader semantic families—sentiment polarity, toxicity/politeness,
factuality/truthfulness, stance/subjectivity, and degree/intensity—and are summarized in Table 5.
Importantly, the pairs were constructed to satisfy the same identifiability constraints emphasized in
our main text: each pair differs in one concept, preventing confounding correlations across multiple
latent factors. This makes the dataset suitable both for linear probing and for measuring concept-level
disentanglement.

A concise overview of the 23 added concepts is provided (full list and examples in Table 5). Overall,
the results in the left in Figure 18 show that the ConCA variants demonstrate substantially stronger
alignment than standard SAE baselines. In Pythia-70M, ConCA methods outperform SAEs by a
large margin, indicating more faithful feature extraction in low-capacity language models. As model
size increases to 1.4B and 2.8B, all methods improve, but ConCA retains a consistent advantage:
LayerNorm-ConCA yields the highest and most stable correlations across scales, followed closely
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Table 5: Additional counterfactual concept pairs (sentiment, toxicity, factuality/truthfulness, stance,
politeness). Each concept contains 50 pairs.

# Concept Example Pair Word Pair Counts
Sentiment polarity
1 positive → negative (happy, sad) 50
2 positive → neutral (amazing, average) 50
3 negative → neutral (terrible, ordinary) 50

Toxicity
4 toxic → neutral (stupid, silly) 50
5 toxic → polite (idiot, friend) 50
6 rude → polite (shut up, please speak) 50

Factuality / Truthfulness
7 true → false (earth, flat-earth) 50
8 factual → nonfactual (oxygen, magic-power) 50
9 real → fictional (doctor, wizard) 50

Stance / Subjectivity
10 supportive → opposed (agree, oppose) 50
11 approving → disapproving (praise, blame) 50
12 subjective → objective (biased, neutral) 50

Politeness / Formality
13 polite → impolite (sorry, shut-up) 50
14 formal → informal (assist, help) 50
15 respectful → disrespectful (sir, dude) 50

Emotion / Tone
16 calm → angry (calm, furious) 50
17 excited → bored (excited, uninterested) 50
18 friendly → hostile (friendly, hostile) 50

Intensity / Degree
19 mild → strong (warm, hot) 50
20 weak → strong (soft, solid) 50
21 low-certainty → high-

certainty
(maybe, definitely) 50

Common semantic axes
22 general → specific (animal, dog) 50
23 concrete → abstract (chair, justice) 50

by GroupNorm and BatchNorm. In contrast, SAE-Top-k and Batch-Top-k lag significantly behind,
and Panneal improves with scale but remains below ConCA. These results indicate that ConCA’s
normalization-driven design leads to more stable and interpretable feature learning, particularly in
smaller models where dictionary training is more brittle.

Q DETAILED RESULTS OF FIGURE 3

While Figure 3 includes error bands reflecting variability across random seeds, many of these standard
deviations are extremely small and therefore not visually distinguishable in the plots. To make these
differences explicit, we report the full numerical mean and std values for each method–model pair in
Tables 6 and 7.

R RELATION WITH LINEAR REPRESENTATION HYPOTHESIS

In Theorem 2.1, the mixing matrix A offers a way to interpret how latent semantic information may
be organized within the representation space of LLMs. At a high level, A can be viewed as describing
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Figure 18: Pearson correlation and MSE between predicted concept logits and matched dictionary
features across model scales (Pythia-70M, 1.4B, 2.8B) and dictionary learning methods. Mean
± standard deviation over three random seeds is shown. ConCA variants achieve higher Pearson
correlation than SAE baselines, with the performance gap most visible in smaller models and
remaining stable as scale increases.

Method Model Pearson (MPC) MSE

BatchNorm pythia-70m 0.6500 ± 0.00552 8.3305 ± 4.10287
pythia-1.4b 0.7543 ± 0.00004 1.6418 ± 0.00135
pythia-2.8b 0.7630 ± 0.00132 2.4657 ± 0.04794

GroupNorm pythia-70m 0.7285 ± 0.00094 9.0071 ± 1.36961
pythia-1.4b 0.7914 ± 0.00222 6.3021 ± 0.09493
pythia-2.8b 0.8038 ± 0.00059 7.1652 ± 0.30648

LayerNorm pythia-70m 0.7325 ± 0.00015 7.6272 ± 0.40461
pythia-1.4b 0.7958 ± 0.00009 5.2756 ± 0.09484
pythia-2.8b 0.8074 ± 0.00178 3.5708 ± 0.45880

Batch-TopK pythia-70m 0.5687 ± 0.00691 24.6165 ± 0.10317
pythia-1.4b 0.6856 ± 0.00205 24.3850 ± 0.08773
pythia-2.8b 0.7037 ± 0.00211 23.7690 ± 0.07034

TopK pythia-70m 0.5851 ± 0.01090 22.9035 ± 0.03389
pythia-1.4b 0.6969 ± 0.00399 22.7108 ± 0.10553
pythia-2.8b 0.7074 ± 0.00810 22.5243 ± 0.03869

Panneal pythia-70m 0.6474 ± 0.00816 7.7097 ± 0.08165
pythia-1.4b 0.7413 ± 0.00234 5.7218 ± 0.08165
pythia-2.8b 0.7613 ± 0.00205 6.3563 ± 0.03300

Table 6: Comparison of Pearson correlation (MPC) and MSE across normalization methods and
Pythia model scales. Each cell reports mean ± standard deviation over random seeds.

how the log-posteriors of latent concepts might be linearly combined inside hidden activations. This
perspective is related to the broader Linear Representation Hypothesis, which suggests that certain
semantic attributes in neural representations may interact in an approximately linear manner.

Under this view, each column of A may be interpreted as indicating a possible direction associated
with a particular latent factor, while differences across rows could correspond to the kinds of
difference vectors often observed in counterfactual pairs or steering-vector analyses. In particular,
when two inputs differ only in one latent concept, their representation difference may align with the
corresponding column of A, reminiscent of the vector arithmetic phenomena discussed in both word
embeddings and modern LLMs.

Such observations hint that A may induce a geometric structure in which examples sharing similar
latent concept values tend to cluster along certain affine subspaces, while changes in concept values
correspond to movement along interpretable directions. From this perspective, the mixing matrix
provides a possible explanation for why linear unmixing methods like ConCA can recover meaningful
concept-level variations in practice. Of course, these interpretations are exploratory, and the precise
geometric structure may depend on various factors such as model architecture, data distribution, and
training objective.
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Method Model Pearson (MPC) MSE

BatchNorm Qwen3-1.7B 0.7281 ± 0.00050 3.3193 ± 0.00026
gemma-3-1b-pt 0.6853 ± 0.00374 1.5604 ± 0.00057
pythia-1.4b 0.7543 ± 0.00004 1.6418 ± 0.00135

GroupNorm Qwen3-1.7B 0.7979 ± 0.00023 6.1347 ± 0.00051
gemma-3-1b-pt 0.7791 ± 0.00123 6.5240 ± 0.05917
pythia-1.4b 0.7914 ± 0.00222 6.3021 ± 0.09493

LayerNorm Qwen3-1.7B 0.7900 ± 0.00034 5.9607 ± 0.05288
gemma-3-1b-pt 0.7738 ± 0.00019 6.1671 ± 0.12262
pythia-1.4b 0.7958 ± 0.00009 5.2756 ± 0.09484

Batch-TopK Qwen3-1.7B 0.6926 ± 0.01003 18.1650 ± 0.11887
gemma-3-1b-pt 0.6617 ± 0.00301 44.4503 ± 0.20351
pythia-1.4b 0.6856 ± 0.00205 24.3850 ± 0.08773

Panneal Qwen3-1.7B 0.7345 ± 0.00500 3.1175 ± 0.03114
gemma-3-1b-pt 0.6770 ± 0.00419 2.7399 ± 0.02055
pythia-1.4b 0.7413 ± 0.00234 5.7218 ± 0.08165

TopK Qwen3-1.7B 0.7027 ± 0.00024 15.0734 ± 0.03822
gemma-3-1b-pt 0.6758 ± 0.00334 42.6148 ± 0.18811
pythia-1.4b 0.6969 ± 0.00399 22.7108 ± 0.10553

Table 7: Comparison of Pearson correlation (MPC) and MSE across methods and architectures.
Values are mean ± standard deviation over random seeds.
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