

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONCEPT COMPONENT ANALYSIS: A PRINCIPLED APPROACH FOR CONCEPT EXTRACTION IN LLMs

Anonymous authors

Paper under double-blind review

## ABSTRACT

Developing human understandable interpretation of large language models (LLMs) becomes increasingly critical for their deployment in essential domains. Mechanistic interpretability seeks to mitigate the issues through extracts human-interpretable process and concepts from LLMs' activations. Sparse autoencoders (SAEs) have emerged as a popular approach for extracting interpretable and monosemantic concepts by decomposing the LLM internal representations into a dictionary. Despite their empirical progress, SAEs suffer from a fundamental theoretical ambiguity: the well-defined correspondence between LLM representations and human-interpretable concepts remains unclear. This lack of theoretical grounding gives rise to several methodological challenges, including difficulties in principled method design and evaluation criteria. In this work, we show that, under mild assumptions, LLM representations can be approximated as a linear mixture of the log-posteriors over concepts given the input context, through the lens of a latent variable model where concepts are treated as latent variables. This motivates a principled framework for concept extraction, namely Concept Component Analysis (ConCA), which aims to recover the log-posterior of each concept from LLM representations through a unsupervised linear unmixing process. We explore a specific variant, termed sparse ConCA, which leverages a sparsity prior to address the inherent ill-posedness of the unmixing problem. **We implement 12 sparse ConCA variants and demonstrate their ability to extract meaningful concepts across multiple LLMs, offering theory-backed advantages over SAEs—namely, a clear unmixing target, principled sparsity placement, and improved alignment with latent concepts.**

## 1 INTRODUCTION

One of the critical questions surrounding the practical application of LLMs is the extent to which and how the concepts they espouse are ground in reality. The more general question is whether a model trained only on natural language can develop representations of concepts grounded in the real world (Bowman, 2024; Naveed et al., 2023). Understanding this relationship is crucial, as it informs not only how we interpret model mechanism, but also how we can systematically analyze, evaluate, and manipulate these representations. A promising approach to investigating such questions is to extract meaningful semantic units, i.e., human-interpretable concepts, embedded within the models' internal representations and behaviors (Singh et al., 2024). By studying these units, we can begin to probe which aspects of a model's behavior are aligned with human-interpretable concepts, and how multiple concepts interact to generate model outputs.

### 1.1 REVISITING SAEs FOR CONCEPT EXTRACTION

**Sparse autoencoders (SAEs).** Recently, SAEs have been explored for this purpose (Elhage et al., 2022; Bricken et al., 2023; Huben et al., 2023), offering a potential perspective through which to analyze model behavior, including how such concepts interact and compose to generate the next token. Technically, SAEs learn a set of features whose *linear* combinations can reconstruct the internal representations of LLMs, while enforcing a *sparsity* prior on the features, in the hope that each feature corresponds to a monosemantic concept (Huben et al., 2023; Gao et al., 2025; Braun



Figure 1: We introduce a latent variable generative model in which observed the input context  $x$  and next token  $y$ , arises from an unknown underlying process over latent concepts  $z$  (Sec. 2.1). Under this model, we show that LLM representations  $f_x(x)$ , learned by next-token prediction, can be approximated as a linear mixture of the column vector obtained by stacking log-posteriors of individual latent concepts  $\log p(z_i|x)$ , conditioned on the input, i.e.,  $f_x(x) \approx A[[\log p(z_1 | x)]_{z_1}; \dots; [\log p(z_\ell | x)]_{z_\ell}] + b$ , where  $A$  is a mixing matrix and  $b$  is a constant (Sec. 2.2). Motivated by this, we propose Concept Component Analysis (ConCA), a method for linearly unmixing LLM representations  $f_x(x)$  to recover the log-posteriors over individual latent concepts  $\log p(z_i|x)$  (Sec. 3).

et al., 2024; Rajamanoharan et al., 2024a;b; Mudide et al., 2024; Chanin et al., 2024; Lieberum et al., 2024; He et al., 2024; Karvonen et al., 2024; Bussmann et al., 2024).

**Hypotheses Behind SAEs.** Linearity and sparsity, the two key components of SAEs, are jointly expected to promote the emergence of monosemantic and interpretable concepts. The justification for these two components primarily relies on two key hypotheses, (i) the linear representation hypothesis and (ii) the superposition hypothesis. The former suggests that concepts are often encoded linearly in LLMs (Tigges et al., 2023; Nanda et al., 2023; Moschella et al., 2022; Park et al., 2023; Li et al., 2024; Gurnee et al., 2023; Rajendran et al., 2024; Jiang et al., 2024), enabling them to be recovered via linear decoding. The latter argues that LLMs tend to represent more features than they have neurons for, leading to overlapping (i.e., superimposed) representations within the same neurons (Elhage et al., 2022). To make such representations reliable and interpretable, features should activate sparsely, reducing interference between them (Elhage et al., 2022; Huben et al., 2023).

## 1.2 MOTIVATION AND CONTRIBUTIONS

While these two hypotheses support SAEs, the deeper theoretical question remains unresolved.

**Key Problem.** What is the theoretical relationship between LLM representations and human-interpretable concepts?

**A Deeper Look into SAEs.** Without a clear answer, both principled method design and evaluation become major concerns. In terms of method design, for example, while the decoder in SAEs reconstructs representations through *linear* combinations of learned features, the encoder typically includes a *nonlinear* activation function, typically *Relu*, following a linear layer. This asymmetry raises a concern about the rationale for introducing the nonlinear activation functions. Moreover, it remains unclear whether sparsity should be imposed directly on the feature space learned by SAEs, or instead on a transformed space derived from it, given the unclear relationship between these features and the underlying concepts. This unclear relationship, on the evaluation side, also makes principled assessment difficult, i.e., it remains unclear what criteria should be used to determine whether a feature meaningfully captures a concept, as also recognized in recent works (Makelov et al., 2024; Gao et al., 2025; Kantamneni et al., 2025).

**Contributions.** We propose a principled approach for extracting concepts from LLM representations, grounded in a well-defined theoretical relationship between the representations and human-interpretable concepts (see Figure 1). We begin by analyzing this relationship through the lens of a latent variable model, in which text data are generated by an unknown process over latent, human-interpretable concepts. We show that, under mild conditions, LLM representations learned by next-token prediction frameworks can be approximately expressed as a linear mixture of the

108 logarithm of the posteriors of individual latent concepts, conditioned on the input context. Based  
 109 on this insight, we introduce a principled approach, that we label Concept Component Analysis  
 110 (ConCA), which aims to invert the linear mixture to recover the log-posterior of each concept in an  
 111 unsupervised manner. We propose a specific variant of ConCA, referred as Sparse ConCA, which  
 112 incorporates a sparsity prior to regularize the solution space, motivated by the widespread adoption of  
 113 the superposition hypothesis. We emphasize that alternative regularization strategies remain flexible  
 114 and open for future exploration. We evaluate the proposed Sparse ConCA using linear probing with  
 115 counterfactual text pairs, a theoretically motivated supervised method for concept extraction, and  
 116 benchmark its performance against SAE variants across multiple model scales and architectures  
 117 (Pythia (Biderman et al., 2023), Gemma3 (Team et al., 2025), Qwen3 (Team, 2025)). We further test  
 118 it on a downstream task spanning 113 datasets, empirically confirming the advantages of ConCA.  
 119

## 2 WHAT DO REPRESENTATIONS IN LLMs LEARN?

122 In this section we establish a theoretical connection between LLM representations learned through  
 123 next-token prediction framework and human-interpretable concepts. To this end, we first construct  
 124 a latent variable model (LVM) in which observed text data are generated by an unknown process  
 125 over latent variables representing human-interpretable concepts. We then show that, when LLMs are  
 126 trained on the observed data using a next-token prediction framework, their learned representations  
 127 can be approximated as a linear mixture of the log-posteriors of individual latent variables, conditioned  
 128 on the input context. This perspective not only deepens our understanding of how human-interpretable  
 129 concepts are organized within LLM representations, but more importantly, it provides a principled  
 130 foundation for extracting concepts from the representations. We define concept as follows:  
 131

**Definition 2.1.** A *concept* is defined as a discrete latent variable

$$z_i \in \mathcal{V}_i, \quad |\mathcal{V}_i| = k_i,$$

132 where each value in  $\mathcal{V}_i$  corresponds to a distinct, human-interpretable semantic attribute (e.g., tense,  
 133 plurality, sentiment, syntactic role, or topic). The full latent configuration is given by  $\mathbf{z} = (z_1, \dots, z_\ell)$ ,  
 134 whose components specify the underlying semantic factors that give rise to the observed input context  
 135  $\mathbf{x}$  and the next token  $y$  through the latent generative process.  
 136

### 2.1 PRELIMINARY: A DISCRETE LATENT VARIABLE GENERATIVE MODEL FOR TEXT

138 We begin by a LVM in which human-interpretable concepts are modeled as latent variables governing  
 139 the generation of text data (Liu et al., 2025a). Formally, both the observed context  $\mathbf{x}$  and the next  
 140 token  $y$  are assumed to be generated from a set of latent variables  $\mathbf{z}$ . Here  $\mathbf{x}$  and  $y$  serve as input to  
 141 the next-token prediction objective used to train LLMs. A human-interpretable concept is formally  
 142 defined as a latent variable  $z_i$  that captures a human-interpretable factor underlying the generation of  
 143 text data, such as a topic, sentiment, syntactic role, or tense. Notably, arbitrary interdependencies or  
 144 structural relationships among the latent variables are allowed. We assume the observed variables  
 145  $\mathbf{x} \in \mathcal{V}^n$  and  $y \in \mathcal{V}$ , and the latent variables  $\mathbf{z} = (z_1, \dots, z_\ell) \in \mathcal{V}_1 \times \dots \times \mathcal{V}_\ell$  to be discrete<sup>1</sup>, with  
 146  $z_i \in \mathcal{V}_i, |\mathcal{V}_i| = k_i, i = 1, \dots, \ell$ . Under this formulation, the joint distribution over the observed  
 147 context  $\mathbf{x}$  and next token  $y$  is given by:  
 148

$$p(\mathbf{x}, y) = \sum_{\mathbf{z}} p(\mathbf{x}|\mathbf{z}) p(y|\mathbf{z}) p(\mathbf{z}), \quad (1)$$

149 where  $p(\mathbf{z})$  is a prior over the latent concepts, and  $p(\mathbf{x}|\mathbf{z})$  and  $p(y|\mathbf{z})$  model the conditional generation  
 150 of context and next token, respectively.  
 151

### 2.2 REPRESENTATIONS IN LLMs LINEARLY ENCODE LOG-POSTERIORS OVER CONCEPTS

152 Intuitively, since the latent concepts  $\mathbf{z}$  characterize the underlying generative factors of the text data,  
 153 as defined in Eq. 1, the representations learned from such data should encode information about these  
 154 concepts. To examine in detail how these representations capture latent concepts, we now turn to  
 155 the next-token prediction framework, which serves as the standard training framework for LLMs.  
 156

<sup>1</sup>A detailed justification for the discrete assumption can be found in Liu et al. (2025a).

162 Specifically, the next-token prediction framework models the conditional distribution of the next  
 163 token  $y$  given the input context  $\mathbf{x}$ <sup>2</sup>, as follows:  
 164

$$165 \quad p(y|\mathbf{x}) = \frac{\exp(\mathbf{f}(\mathbf{x})^T \mathbf{g}(y))}{\sum_{y_i} \exp(\mathbf{f}(\mathbf{x})^T \mathbf{g}(y_i))}. \quad (2)$$

168 Here,  $y_i$  denotes a specific value of the output token  $y$ ,  $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^m$  maps the input  $\mathbf{x}$  into a  $m$ -  
 169 dimensional (depending on the specific model used) representation space, and  $\mathbf{g}(y) \in \mathbb{R}^m$  retrieves  
 170 the classifier weight vector corresponding to token  $y$ , i.e., the look-up table used for prediction.

171 Given the generative model from Eq. 1 and the inference model from Eq. 2, our goal is to formally  
 172 characterize how the learned representations  $\mathbf{f}(\mathbf{x})$  relate to the latent concepts  $\mathbf{z}$ . In particular, we  
 173 seek to establish a precise mathematical relationship, thereby serving as the theoretical foundation  
 174 for concept component analysis developed in Sec. 3. We now present the following key result:

175 **Theorem 2.2.** *Suppose latent variables  $\mathbf{z}$  and the observed variables  $\mathbf{x}$  and  $y$  follow the generative  
 176 models defined in Eq. 1. Assume the following holds:*

- 178 (i) **(Diversity Condition)** *There exist  $m + 1$  values of  $y$ , such that the matrix  $\mathbf{L} = (\mathbf{g}(y =$*   
 179  $y_1) - \mathbf{g}(y = y_0), \dots, \mathbf{g}(y = y_m) - \mathbf{g}(y = y_0))$  of size  $m \times m$  is invertible,
- 180 (ii) **(Informational Sufficiency Condition)** *The conditional entropy of the latent concepts given  
 181 the context is close to zero, i.e.,  $H(\mathbf{z}|\mathbf{x}) \rightarrow 0$ ,*

183 then the representations  $\mathbf{f}(\mathbf{x})$  in LLMs, which are learned through the next-token prediction framework,  
 184 are related to the true latent variables  $\mathbf{z}$ , by the following relationship:

$$186 \quad \mathbf{f}(\mathbf{x}) \approx \mathbf{A}[[\log p(z_1 | \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell | \mathbf{x})]_{z_\ell}] + \mathbf{b}, \quad (3)$$

187 where  $\mathbf{A}$  is a  $m \times (\sum_{i=1}^\ell k_i)$  matrix, and  $\mathbf{b}$  is a bias vector<sup>3</sup>.

189 **Justification for Conditions (i) and (ii).** Condition (i) is closely related to the data diversity assumption  
 190 in earlier work for identifiability analysis in the context of nonlinear independent component  
 191 analysis (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019; Khemakhem et al., 2020), and has  
 192 recently been employed to identifiability analyses of latent variables in the context of LLMs (Roeder  
 193 et al., 2021; Marconato et al., 2025; Liu et al., 2025a). Intuitively, Condition (i) implies that there is  
 194 a sufficiently large number of distinct values of  $y$  that the  $m$  difference vectors  $\mathbf{g}(y_i) - \mathbf{g}(y_0)$  (for  
 195  $i = 1, \dots, m$ ) span the image of  $\mathbf{g}$ . This is a mild assumption, as pointed out by Roeder et al. who  
 196 emphasized that the set of  $m + 1$  values  $\{y_i\}_{i=0}^m$  required to generate difference vectors  $\mathbf{g}(y_i) - \mathbf{g}(y_0)$   
 197 that are linearly dependent has measure zero, given that both the initialization and subsequent updates  
 198 of the parameters of  $\mathbf{g}$  are stochastic. Turning to Condition (ii), it can be seen as a *mild relaxation*  
 199 of a standard invertibility assumption commonly adopted for identifiability analysis within causal  
 200 representation learning community, i.e., the mapping from  $\mathbf{z}$  to  $\mathbf{x}$  in the generative model (Eq. 1)  
 201 is assumed to be deterministic and invertible. This implies  $H(\mathbf{z} | \mathbf{x}) = 0$ , to ensure exact recovery  
 202 of the latent variables. By contrast, our assumption only requires that  $H(\mathbf{z} | \mathbf{x}) \rightarrow 0$ , allowing for  
 203 approximate invertibility from  $\mathbf{z}$  to  $\mathbf{x}$  in practice. This relaxation also implies that only an approximate  
 204 recovery is achievable, as shown in Eq. 3.

205  **Inspiration:** Eq. 3 in Theorem 2.2 implies that LLM representations, learned through the next-  
 206 token prediction framework, are essentially a linear mixture of the log-posteriors of individual  
 207 latent concepts given the input context, that is, the  $\log p(z_i | \mathbf{x})$ . This provides a theoretical  
 208 foundation for exploring individual concepts by linearly unmixing the representations, which  
 209 motivates the development of our *ConCA* framework in Sec. 3.

211 <sup>2</sup>More rigorously, this assumes a parametric form of the conditional distribution  $p(y|\mathbf{x})$  as a softmax over  
 212 inner products in an optimally discriminative representation space. Such optimality assumption is canonical for  
 213 establishing clear and meaningful identifiability results (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019;  
 214 Khemakhem et al., 2020).

215 <sup>3</sup>Here,  $[\log p(z_i | \mathbf{x})]_{z_i}$  denotes the column vector of log-probabilities of all possible values of  $z_i$ .  $[[\log p(z_1 |$   
 $\mathbf{x})]_{z_1}; \dots; [\log p(z_\ell | \mathbf{x})]_{z_\ell}]$  represents the column vector obtained by stacking these vectors.

### 216 3 CONCA: A PRINCIPLED APPROACH FOR CONCEPT EXTRACTION IN LLMs 217

218 Grounded in Theorem 2.2, we now introduce *ConCA*, a principled approach that recovers the *log*  
219 *posteriors* of individual latent concepts conditional on the input context, i.e.,  $\log p(z_i|\mathbf{x})$ , by inverting  
220 the linear mixture in Eq. 3, in a unsupervised way. This enables us to decompose LLM representations  
221  $\mathbf{f}(\mathbf{x})$  into interpretable concept-level components.

#### 223 3.1 CHALLENGES IN DESIGNING CONCA 224

225 Recovering  $\log p(z_i|\mathbf{x})$  from  $\mathbf{f}(\mathbf{x})$  presents two main challenges:

227 **▲ Key Challenges:** ① **Ill-posed inverse problem:** The inversion of Eq. 3 is inherently ill-posed  
228 because there exist many possible solutions that produce the same LLM representations. Without  
229 additional constraints or regularization, the solution space is large and ambiguous, leading to  
230 non-unique decompositions. ② **Underdetermined problem and overfitting:** The issue above is  
231 particularly critical when the dimension of the latent concept space exceeds that of the observed  
232 representations (i.e.,  $\ell > m$ ), corresponding to the well-known underdetermined case. This  
233 occurs because, from the model’s perspective, the number of degrees of freedom to be estimated  
234 increases, which not only significantly expands the set of possible solutions but also amplifies the  
235 risk of overfitting.

236 To address challenge ①, we impose a sparsity prior, requiring that for each context  $\mathbf{x}$ , only a small  
237 subset of latent concepts  $\mathbf{z}$  is activated. We refer to this variant as *sparse ConCA*. This inductive bias  
238 is motivated by two considerations: (i) it aligns with the superposition hypothesis, a widely discussed  
239 phenomenon in the study of SAEs, and (ii) sparsity ensures the identifiability of latent factors under  
240 certain assumptions, i.e., the individual log-probabilities of latent concepts can be uniquely recovered,  
241 as established in the theory of sparse dictionary learning (Elad & Bruckstein, 2002; Gribonval &  
242 Schnass, 2010; Spielman et al., 2012; Arora et al., 2014). Importantly, we highlight the following:

244 **★ Highlight:** Unlike SAEs, which recover concepts loosely, like a blurry sketch, sparse ConCA  
245 recovers a clearly defined concepts, i.e., the log-posteriors  $\log p(z_i|\mathbf{x})$ .

247 This key distinction fundamentally changes how sparsity should be interpreted and enforced. In  
248 SAEs and sparse coding, sparsity is directly imposed on the latent feature space, where values near  
249 zero correspond to inactive features. In ConCA, however, the situation is inverted. Specifically,  
250 the latent feature space in ConCA corresponds to the log-posteriors, i.e.,  $\log p(z_i|\mathbf{x})$ . A value of  
251  $\log p(z_i|\mathbf{x}) = 0$  corresponds to  $p(z_i|\mathbf{x}) = 1$ , meaning the concept  $z_i$  is *fully active* rather than  
252 inactive. Consequently, sparsity in ConCA should be enforced in the exponential form of the latent  
253 feature space, i.e., the posteriors  $p(z_i|\mathbf{x})$ , ensuring that only a small subset of concepts is truly active.

254 Despite its advantages, sparsity alone does not fully resolve the challenge of overfitting, particularly  
255 in underdetermined settings where the dimensionality of  $\mathbf{z}$  is much higher than that of  $\mathbf{f}$ , as mentioned  
256 in challenge ②. While the sparsity prior helps restrict the solution space, it does not guarantee  
257 generalizable or semantically meaningful decompositions in practical scenarios. Although theoretical  
258 results provide identifiability guarantees under ideal conditions, real-world challenges, such as limited  
259 data and optimization difficulties, often violate these conditions, leading to potential overfitting and  
260 less reliable concept recovery. In such settings, multiple sparse solutions may fit the observed  
261 representation equally well, and some may capture meaningless noise or non-semantic patterns rather  
262 than true underlying concepts. Therefore, techniques to mitigate overfitting may be both useful and  
263 even necessary in real applications.

#### 264 3.2 SPARSE CONCA: ARCHITECTURE AND TRAINING OBJECTIVE 265

266 According to the analysis above, we propose sparse ConCA as follows:

$$\hat{\mathbf{z}} = \mathcal{R}(\mathbf{W}_e \mathbf{f}(\mathbf{x}) + \mathbf{b}_e), \quad \hat{\mathbf{f}}(\mathbf{x}) = \mathbf{W}_d \hat{\mathbf{z}} + \mathbf{b}_d. \quad (4)$$

267 This is a typical autoencoder architecture, where  $\mathcal{R}(\cdot)$  denotes a general regularization module applied  
268 to mitigate overfitting, including but not limited to Dropout, and LayerNorm, as the analysis above to

| Aspect                       | SAEs                                                                  | ConCA                                                       |
|------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|
| <b>Theoretical grounding</b> | (i) Linear representation hypothesis<br>(ii) Superposition hypothesis | Theorem 2.2                                                 |
| <b>Objective</b>             | Recover monosemantic features                                         | Recover $\log p(z_i   \mathbf{x})$                          |
| <b>Architecture</b>          | Encoder: linear + nonlinear activation<br>Decoder: linear             | Encoder: linear + module for overfitting<br>Decoder: linear |
| <b>Role of sparsity</b>      | On feature space                                                      | On exp-transformed feature space                            |
| <b>Evaluation criterion</b>  | Heuristic, lacks principled metric                                    | Theoretically motivated (Sec. 4)                            |

Table 1: Comparison between SAEs and the proposed ConCA. ConCA provides a principled, theoretically grounded framework for disentangling LLM representations, while SAEs are largely motivated by empirical hypotheses.

address the challenge ②.  $\mathbf{W}_e$  and  $\mathbf{W}_d$  are learnable weight matrices of the encoder and decoder, respectively, and  $\mathbf{b}_e$ ,  $\mathbf{b}_d$  are the corresponding biases. The vector  $\hat{\mathbf{z}}$  corresponds to an estimate of  $[\log p(z_i | \mathbf{x})]_{z_i}$ . Let the set of all learnable parameters be  $\Theta = \{\mathbf{W}_e, \mathbf{b}_e, \mathbf{W}_d, \mathbf{b}_d\}$ . We train the proposed sparse ConCA by minimizing the following objective with respect to  $\Theta$ :

$$\min_{\Theta} \mathbb{E}_{\mathbf{x}} \left[ \|\hat{\mathbf{f}}(\mathbf{x}) - \mathbf{f}(\mathbf{x})\|_2^2 + \alpha \mathcal{S}(\mathbf{g}(\hat{\mathbf{z}})) \right], \quad (5)$$

where we apply  $\mathbf{g}(\cdot)$  to the representations  $\hat{\mathbf{z}}$  (corresponding to log-posterior in theory), to map them back into the probability domain, where sparse activation patterns can be meaningfully enforced, as motivated by the analysis above to address challenge ①. Ideally, the exact  $\exp(\cdot)$  function would be optimal, but it is prone to numerical instability and exploding gradients when  $\hat{\mathbf{z}}$  takes large values. Therefore, we employ a smooth surrogate in practice, see Sec. 4 for further implementation details. This regularization function  $\mathcal{S}(\cdot)$  is then applied so as to encourage sparsity on  $\mathbf{g}(\hat{\mathbf{z}})$ . This can be implemented using standard sparsity constraints such as  $L_1$  regularization or structured sparsity variants<sup>4</sup>. The hyperparameter  $\alpha$  controls the trade-off between reconstruction fidelity and sparsity, allowing the model to be tuned to the expected degree of sparsity.

The key distinctions between our proposed ConCA framework and SAEs are summarized in Table 1.

## 4 EXPERIMENTS

We train the proposed sparse ConCA on a subset of the Pile (the first 200 million tokens) (Gao et al., 2020). The regularization function  $\mathcal{R}(\cdot)$  is implemented using 4 normalization strategies, including LayerNorm (Ba et al., 2016), Dropout (Srivastava et al., 2014), BatchNorm (Ioffe & Szegedy, 2015), and GroupNorm (Wu & He, 2018). For the function  $\mathbf{g}(\cdot)$ , not exponential function directly, we explore the exponential with 3 different activation functions, SELU (Klambauer et al., 2017), SoftPlus (Dugas et al., 2000), and ELU (Clevert et al., 2015). Although they are not exact exponentials, these functions preserve exponential-like behavior for small (i.e., negative) values, ensure numerical and gradient stability, and provide smooth surrogates suitable for applying sparsity regularization. In total, we implement 12 sparse ConCA variants across these configurations. Sparsity, i.e.,  $\mathcal{S}(\cdot)$ , is primarily enforced via  $L_1$  normalization in this work, other choices remain flexible. To evaluate the effect of model scale, we use representations from Pythia models of varying sizes: 70M, 1.4B, and 2.8B Biderman et al. (2023). To assess model generalization, we also test across different architectures, including Pythia-1.4B, Gemma3-1b (Team et al., 2025), and Qwen3-1.7B (Team, 2025). We compare the proposed sparse ConCA with various SAE variants, including top- $k$  SAE (Gao et al., 2025), batch-top- $k$  SAE (Bussmann et al., 2024),  $p$ -annealing SAE (Karvonen et al., 2024).

We evaluate sparse ConCA using two metrics designed to assess both faithfulness and interpretability:

- **Reconstruction loss** captures how well the original LLM representations are preserved after decomposition. Since our goal is to reveal the internal structure of the model without altering its

<sup>4</sup>We emphasize that sparsity is a design choice, other forms of regularization are potentially applicable. For instance, non-negativity (Lee & Seung, 1999; Hoyer, 2004) or bounded-range constraints (Cruces, 2010; Erdogan, 2013), given that the learned features are expected to correspond to probabilities.



Figure 2: Ablation study of 4 different normalization methods and 3 activation functions. For GroupNorm, the number of groups (num\\_groups) is set to 4, 8, 16, or 32. Left axis shows Mean of Pearson Correlation (MPC), right axis shows MSE. Each subplot corresponds to one combination of normalization method and activation function, with each configuration run three times. **Across all configurations, ConCA exhibits a remarkably stable correlation regime (MPC  $\approx 0.72$ – $0.74$ , excluding BatchNorm), with performance largely insensitive to the sparsity level.** Notably, the MSE is affected by the number of groups used in GroupNorm, i.e., fewer groups lead to lower MSE. Overall, LayerNorm emerges as a strong choice, offering consistently good performance in both MPC and MSE.

behavior, low reconstruction loss is essential to ensure that concept extraction introduces minimal distortion. Specifically, we use mean squared error (MSE) as our reconstruction loss metric.

- **Pearson correlation** quantifies how well the ConCA-extracted features align with theoretically consistent supervised estimates of  $\log p(z_i|\mathbf{x})$  for each latent concept  $z_i$ . Specifically, for each latent concept  $z_i$ , we construct counterfactual pairs that differ only in the value of  $z_i$  while keeping all other variables unchanged, and train a linear classifier to predict this difference, yielding a supervised estimate of  $\log p(z_i|\mathbf{x})$ . This estimator is theoretically motivated, see Sec. F<sup>5</sup>. We then compute the Pearson Correlation (PC) between this supervised estimate of  $\log p(z_i|\mathbf{x})$  and the unsupervised ConCA feature. Higher correlation indicates more accurate recovery.

To compute Pearson correlation, we require counterfactual text pairs as mentioned above. However, constructing such counterfactual pairs is highly challenging due to the complexity and subtlety of natural language, as noted in prior works (Park et al., 2023; Jiang et al., 2024), and remains non-trivial even for human annotators. For our evaluation, we adopt 27 counterfactual pairs from Park et al.

<sup>5</sup>We note that Liu et al. (2025a) provide a similar approach, but our result is derived from Theorem 2.2.



Figure 3: Comparison of SAE variants and the proposed ConCA variant across different scales and architectures. The left two shows the results for Pythia family with varying sizes (70m, 1.4b, 2.8b), while the right compares different architectures across multiple models (Gemma3-1b, Pythia-1.4b, Qwen3-1.7b). Pearson correlation (left axis) and MSE (right axis) are reported for each method. ConCA variants (BatchNorm, GroupNorm, LayerNorm), overall, achieve higher MPC than SAE baselines (Top-k, Batch-Top-k, Panneal), with LayerNorm-ConCA performing best across all settings (approximately 0.70–0.80). SAE methods remain in a lower band (approximately 0.60–0.70) and show weaker gains with model scale. Reconstruction error (MSE) varies substantially across methods: only Panneal (SAE) obtain lower MSE, whereas ConCA maintains strong both MPC and MSE. Overall, the figure highlights that ConCA more reliably extracts concepts, robust across model size and architecture. Full numerical mean and std values, see Sec. Q.

(2023), each differing in a single concept, as testing dataset. These pairs were derived from the Big Analogy Test dataset (Gladkova et al., 2016).

**Ablation Study** We first conduct an ablation study over normalization strategies, activation functions, and sparsity strength as mentioned above, to understand the design choices of sparse ConCA. In total, this yields 21 configurations (For GroupNorm, the number of groups (num\_groups) is set to 4, 8, 16, and 32, respectively). Each configuration is trained with varying sparsity coefficients  $\alpha \in \{1e^{-1}, 5e^{-2}, 1e^{-2}, \dots, 5e^{-5}\}$ , and every experiment is repeated three times with training on Pythia-70M. We report results on the two key evaluation metrics as mentioned, i.e., reconstruction loss and Pearson correlation. Both metrics are summarized in Figure 2, where the left  $y$ -axis shows correlation and the right  $y$ -axis shows reconstruction loss.

**Findings.** Three main observations emerge:

- **Normalization.** The primary role of normalization methods in our framework is to mitigate overfitting. For GroupNorm, increasing the number of groups (num\_groups) tends to result in slightly higher reconstruction loss. Conversely, LayerNorm achieves the lowest reconstruction loss among the considered methods (Dropout, BatchNorm). This trend suggests that full-feature normalization, as performed by LayerNorm, better preserves the overall structure of LLM representations. This may be because, LayerNorm stabilizes per-sample activations and preserves global feature correlations, which helps ConCA recover concept log-posteriors more faithfully and generalize better than the others.
- **Activation.** The purpose of the activation functions is to serve as a surrogate for the exact  $\exp(\cdot)$  function, enabling more effective enforcement of sparsity. Roughly, for GroupNorm, all three



Figure 4: Rank-based fraction of features exhibiting significant changes between counterfactual pairs for SAE and ConCA variants. ConCA shows smaller feature variations, indicating more stable feature responses under counterfactual pairs.

activations (SELU, ELU, and SoftPlus) perform similarly, with Pearson correlation values around 0.725–0.73. In the context of LayerNorm and Dropout, SoftPlus appears slightly better than the other two, whereas for BatchNorm, SELU seems slightly better.

- **Sparsity.** The sparsity coefficient  $\alpha$  controls a trade-off: too large a value may introduce excessive information loss, while too small a value fails to induce meaningful structure. Overall, across the range  $[5e^{-3}, \dots, 1e^{-2}]$ , the performance in both reconstruction loss and Pearson correlation remains relatively stable.

**Takeaway.** The ablation study demonstrates that careful choices of normalization and activation functions significantly improve the performance of sparse ConCA. In the following experiments, considering both reconstruction loss and Pearson Correlation, we focus on the most promising configurations: GroupNorm with `num_groups=4` and `Softplus`, LayerNorm with `Softplus`, BatchNorm with `Softplus`, labeled as Groupnorm, LayerNorm, and BatchNorm in the following, respectively. For all of these, the sparsity hyperparameter, we set  $\alpha = 1e^{-4}$ . These design choices are consistent across repeated trials, highlighting the stability of the proposed sparse ConCA.

**Comparison on Counterfactual Pairs.** We next conduct experiments comparing various SAE variants, including including Topk SAE (Gao et al., 2025), Batch-Topk SAE (Bussmann et al., 2024), P-anneal SAE (Karvonen et al., 2024), and the proposed ConCA configurations mentioned in **Takeaway** above. We conduct these experiments across different scales of the Pythia family to evaluate the scalability and effectiveness of each method. Each method is run across multiple random seeds to ensure robustness, and we present both the mean and standard deviation of the metrics. The left in Figure 3 highlights how the proposed ConCA configurations consistently achieve higher Pearson correlation while maintaining competitive reconstruction loss compared to the SAE variants, as model size increases from Pythia-70m to Pythia-2.8b. This performance advantage is mainly due to the theoretical grounding of ConCA. Specifically, ConCA employs a principled framework with sparsity on the exponentiated feature space, whereas SAEs rely on heuristic assumptions, resulting in more interpretable and accurate monosemantic concepts across Pythia scales. Notably, when considering both MSE and Pearson correlation, the LayerNorm configuration emerges as the better choice. The advantages of ConCA are further highlighted across different model families, including Gemma-3-1b, Pythia-1.4b, and Qwen3-1.7B, as shown in the right of Figure 3. ConCA configurations generally outperform SAE variants in both reconstruction and Pearson correlation, demonstrating the robustness and broad applicability of ConCA. Figure 4 shows the rank-based fraction of features that change significantly between counterfactual pairs, indicating that ConCA produces smaller feature variations than SAE variants under counterfactual conditions. See Sec. H for details on how this metric is computed and for additional visualization results.

**Downstream Tasks** In the final stage, we conduct a series of few-shot linear probing experiments to evaluate how well the features extracted by SAEs and ConCA capture monosemantic, human-interpretable concepts. This evaluation is particularly relevant because disentangled representations tend to transfer easily and robustly, making them especially suitable for few-shot learning and out-of-distribution shift tasks (Fumero et al., 2023).

To this end, we collect 113 binary classification datasets from Kantamneni et al. (2025) and use them to train linear classifiers on features extracted by SAEs and ConCA variants under limited training samples, specifically 4, 8, 16, 32, and 128 samples drawn randomly. After training, we evaluate the



Figure 5: Test AUC of SAE variants and the proposed ConCA variants under different few-shot settings across 113 datasets (left), and out-of-distribution tasks across 8 datasets (right), respectively. An example of visualization can be found in Sec. I.

linear classifiers and report the Area Under the Receiver Operating Characteristic Curve (AUC). The left panel of Figure 5 shows a trend where ConCA often achieves higher AUC than SAE variants in few-shot settings, particularly for LayerNorm and GroupNorm variants, although the differences are not statistically significant under the current sample size.

Furthermore, we extend our evaluation to 8 *out-of-distribution* (OOD) datasets from Kantamneni et al. (2025), which are designed to test robustness under distributional shifts. These datasets include fictional character substitution, random letter insertion, name order reversal, multilingual translation perturbations, as well as OOD splits from GLUE-X. As shown in the right in Figure 5, ConCA consistently achieves superior performance across nearly all OOD settings, indicating that the representations it learns generalize more robustly under distributional shifts.

The improvements above are likely attributable to ConCA’s principled framework, grounded in Theorem 2.2, which motivates theorem-driven method design by enforcing sparsity in the exponentiated feature space and leveraging normalization to avoid overfitting, thereby yielding transferable features under both few-shot and OOD scenarios.

## 5 CONCLUSION

Observing the lack of a clear theoretical understanding behind SAEs motivated us to formalize the relationship between LLM representations and human-interpretable concepts. We showed that, under mild assumptions, LLM representations can be approximated as linear mixtures of the log-posteriors of latent concepts. Building on this insight, we introduced ConCA, including a sparse variant, to recover these concept posteriors in an unsupervised manner. Empirical results across multiple models and benchmarks demonstrate that ConCA extracts features that outperform SAE variants in both faithfulness and utility. Looking forward, our framework opens the door to principled analysis, manipulation, and evaluation of LLM representations, as well as exploration of alternative regularization strategies to further enhance interpretability.

540 REFERENCES  
541

542 Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for designing over-  
543 complete dictionaries for sparse representation. *IEEE Transactions on signal processing*, 54(11):  
544 4311–4322, 2006.

545 Kartik Ahuja, Divyat Mahajan, Yixin Wang, and Yoshua Bengio. Interventional causal representation  
546 learning. In *ICML*, pp. 372–407. PMLR, 2023.

547 Sanjeev Arora, Rong Ge, and Ankur Moitra. New algorithms for learning incoherent and overcomplete  
548 dictionaries. In *Conference on Learning Theory*, pp. 779–806. PMLR, 2014.

549 Sanjeev Arora, Rong Ge, Tengyu Ma, and Ankur Moitra. Simple, efficient, and neural algorithms for  
550 sparse coding. In *Conference on learning theory*, pp. 113–149. PMLR, 2015.

551 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint  
552 arXiv:1607.06450*, 2016.

553 Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, Eric  
554 Hallahan, Mohammad Aftab Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.  
555 Pythia: A suite for analyzing large language models across training and scaling. In *International  
556 Conference on Machine Learning*, pp. 2397–2430. PMLR, 2023.

557 Samuel R Bowman. Eight things to know about large language models. *Critical AI*, 2(2), 2024.

558 Dan Braun, Jordan Taylor, Nicholas Goldowsky-Dill, and Lee Sharkey. Identifying functionally  
559 important features with end-to-end sparse dictionary learning. *Advances in Neural Information  
560 Processing Systems*, 37:107286–107325, 2024.

561 Johann Brehmer, Pim De Haan, Phillip Lippe, and Taco Cohen. Weakly supervised causal representa-  
562 tion learning. *arXiv preprint arXiv:2203.16437*, 2022.

563 Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick  
564 Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,  
565 Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina  
566 Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and  
567 Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary  
568 learning. *Transformer Circuits Thread*, 2023.

569 Simon Buchholz, Goutham Rajendran, Elan Rosenfeld, Bryon Aragam, Bernhard Schölkopf, and  
570 Pradeep Ravikumar. Learning linear causal representations from interventions under general  
571 nonlinear mixing. *arXiv preprint arXiv:2306.02235*, 2023.

572 Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders. *arXiv preprint  
573 arXiv:2412.06410*, 2024.

574 Yichao Cai, Yuhang Liu, Erdun Gao, Tianjiao Jiang, Zhen Zhang, Anton van den Hengel, and  
575 Javen Qinfeng Shi. On the value of cross-modal misalignment in multimodal representation  
576 learning. *arXiv preprint arXiv:2504.10143*, 2025.

577 David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, Satvik Golechha, and Joseph  
578 Bloom. A is for absorption: Studying feature splitting and absorption in sparse autoencoders.  
579 *arXiv preprint arXiv:2409.14507*, 2024.

580 Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network  
581 learning by exponential linear units (elus). *arXiv preprint arXiv:1511.07289*, 4(5):11, 2015.

582 Sergio Cruces. Bounded component analysis of linear mixtures: A criterion of minimum convex  
583 perimeter. *IEEE Transactions on Signal Processing*, 58(4):2141–2154, 2010.

584 Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating  
585 second-order functional knowledge for better option pricing. *Advances in neural information  
586 processing systems*, 13, 2000.

594 Bogdan Dumitrescu and Paul Irofti. *Dictionary learning algorithms and applications*. Springer,  
 595 2018.

596

597 Julian Eggert and Edgar Korner. Sparse coding and nmf. In *2004 IEEE International Joint Conference  
 598 on Neural Networks (IEEE Cat. No. 04CH37541)*, volume 4, pp. 2529–2533. IEEE, 2004.

599

600 Michael Elad. *Sparse and redundant representations: from theory to applications in signal and image  
 601 processing*. Springer Science & Business Media, 2010.

602

603 Michael Elad and Alfred M Bruckstein. A generalized uncertainty principle and sparse representation  
 604 in pairs of bases. *IEEE Transactions on Information Theory*, 48(9):2558–2567, 2002.

605

606 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,  
 607 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,  
 608 Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of  
 609 superposition. *Transformer Circuits Thread*, 2022.

610

611 Alper T Erdogan. A class of bounded component analysis algorithms for the separation of both  
 612 independent and dependent sources. *IEEE Transactions on Signal Processing*, 61(22):5730–5743,  
 613 2013.

614

615 Marco Fumero, Florian Wenzel, Luca Zancato, Alessandro Achille, Emanuele Rodolà, Stefano Soatto,  
 616 Bernhard Schölkopf, and Francesco Locatello. Leveraging sparse and shared feature activations  
 617 for disentangled representation learning. In *Advances in Neural Information Processing Systems*,  
 618 2023.

619

620 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,  
 621 Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for  
 622 language modeling. *arXiv preprint arXiv:2101.00027*, 2020.

623

624 Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,  
 625 Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In *The Thirteenth  
 626 International Conference on Learning Representations*, 2025.

627

628 Anna Gladkova, Aleksandr Drozd, and Satoshi Matsuoka. Analogy-based detection of morphological  
 629 and semantic relations with word embeddings: what works and what doesn’t. In *Proceedings of  
 the NAACL Student Research Workshop*, pp. 8–15, 2016.

630

631 Rémi Gribonval and Karin Schnass. Dictionary identification—sparse matrix-factorization via  
 632  $\ell_1$ -minimization. *IEEE Transactions on Information Theory*, 56(7):3523–3539, 2010.

633

634 Yuqi Gu and David B Dunson. Bayesian pyramids: Identifiable multilayer discrete latent structure  
 635 models for discrete data. *Journal of the Royal Statistical Society Series B: Statistical Methodology*,  
 636 85(2):399–426, 2023.

637

638 Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.  
 639 Finding neurons in a haystack: Case studies with sparse probing. *arXiv preprint arXiv:2305.01610*,  
 640 2023.

641

642 Zhengfu He, Wentao Shu, Xuyang Ge, Lingjie Chen, Junxuan Wang, Yunhua Zhou, Frances Liu,  
 643 Qipeng Guo, Xuanjing Huang, Zuxuan Wu, et al. Llama scope: Extracting millions of features  
 644 from llama-3.1-8b with sparse autoencoders. *arXiv preprint arXiv:2410.20526*, 2024.

645

646 Patrik O Hoyer. Non-negative matrix factorization with sparseness constraints. *Journal of machine  
 647 learning research*, 5(Nov):1457–1469, 2004.

648

649 Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse  
 650 autoencoders find highly interpretable features in language models. In *The Twelfth International  
 651 Conference on Learning Representations*, 2023.

652

653 Aapo Hyvärinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning  
 654 and nonlinear ica. *Advances in neural information processing systems*, 29, 2016.

648 Aapo Hyvärinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ica using auxiliary variables and  
 649 generalized contrastive learning. In *The 22nd international conference on artificial intelligence  
 650 and statistics*, pp. 859–868. PMLR, 2019.

651 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by  
 652 reducing internal covariate shift. In *International conference on machine learning*, pp. 448–456.  
 653 pmlr, 2015.

654 Yibo Jiang, Goutham Rajendran, Pradeep Ravikumar, Bryon Aragam, and Victor Veitch. On the  
 655 origins of linear representations in large language models. *arXiv preprint arXiv:2403.03867*, 2024.

656 Subhash Kantamneni, Joshua Engels, Senthooran Rajamanoharan, Max Tegmark, and Neel Nanda.  
 657 Are sparse autoencoders useful? a case study in sparse probing. *arXiv preprint arXiv:2502.16681*,  
 658 2025.

659 Adam Karvonen, Benjamin Wright, Can Rager, Rico Angell, Jannik Brinkmann, Logan Smith,  
 660 Claudio Mayrink Verdun, David Bau, and Samuel Marks. Measuring progress in dictionary learning  
 661 for language model interpretability with board game models. *Advances in Neural Information  
 662 Processing Systems*, 37:83091–83118, 2024.

663 Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvärinen. Variational autoencoders  
 664 and nonlinear ica: A unifying framework. In *International conference on artificial intelligence  
 665 and statistics*, pp. 2207–2217. PMLR, 2020.

666 Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, and Bryon Aragam. Learning latent causal  
 667 graphs via mixture oracles. *Advances in Neural Information Processing Systems*, 34:18087–18101,  
 668 2021.

669 Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing  
 670 neural networks. *Advances in neural information processing systems*, 30, 2017.

671 Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and  
 672 Percy Liang. Concept bottleneck models. In *International conference on machine learning*, pp.  
 673 5338–5348. PMLR, 2020.

674 Lingjing Kong, Guangyi Chen, Biwei Huang, Eric P Xing, Yuejie Chi, and Kun Zhang. Learning  
 675 discrete concepts in latent hierarchical models. *arXiv preprint arXiv:2406.00519*, 2024.

676 Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix factoriza-  
 677 tion. *nature*, 401(6755):788–791, 1999.

678 Tobias Leemann, Michael Kirchhof, Yao Rong, Enkelejda Kasneci, and Gjergji Kasneci. When  
 679 are post-hoc conceptual explanations identifiable? In *Uncertainty in Artificial Intelligence*, pp.  
 680 1207–1218. PMLR, 2023.

681 Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time  
 682 intervention: Eliciting truthful answers from a language model. *Advances in Neural Information  
 683 Processing Systems*, 36, 2024.

684 Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant  
 685 Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse  
 686 autoencoders everywhere all at once on gemma 2. *arXiv preprint arXiv:2408.05147*, 2024.

687 Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun  
 688 Zhang, and Javen Qinfeng Shi. Identifying weight-variant latent causal models. *arXiv preprint  
 689 arXiv:2208.14153*, 2022.

690 Yuhang Liu, Zhen Zhang, Dong Gong, Erdun Gao, Biwei Huang, Mingming Gong, Anton van den  
 691 Hengel, Kun Zhang, and Javen Qinfeng Shi. Beyond DAGs: A latent partial causal model for  
 692 multimodal learning. *arXiv preprint arXiv:2402.06223*, 2024a.

693 Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel,  
 694 Kun Zhang, and Javen Qinfeng Shi. Identifiable latent neural causal models. *arXiv preprint  
 695 arXiv:2403.15711*, 2024b.

702 Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun  
 703 Zhang, and Javen Qinfeng Shi. Identifiable latent polynomial causal models through the lens of  
 704 change. In *The Twelfth International Conference on Learning Representations*, 2024c.

705 Yuhang Liu, Dong Gong, Yichao Cai, Erdun Gao, Zhen Zhang, Biwei Huang, Mingming Gong,  
 706 Anton van den Hengel, and Javen Qinfeng Shi. I predict therefore i am: Is next token prediction  
 707 enough to learn human-interpretable concepts from data? *arXiv preprint arXiv:2503.08980*, 2025a.

708 Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel,  
 709 Kun Zhang, and Javen Qinfeng Shi. Latent covariate shift: Unlocking partial identifiability for  
 710 multi-source domain adaptation. *Transactions on Machine Learning Research*, 2025b.

711 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine  
 712 learning research*, 9(Nov):2579–2605, 2008.

713 Aleksandar Makelov, George Lange, and Neel Nanda. Towards principled evaluations of sparse  
 714 autoencoders for interpretability and control. *arXiv preprint arXiv:2405.08366*, 2024.

715 Emanuele Marconato, Andrea Passerini, and Stefano Teso. Interpretability is in the mind of the  
 716 beholder: A causal framework for human-interpretable representation learning. *Entropy*, 25(12):  
 717 1574, 2023.

718 Emanuele Marconato, Sébastien Lachapelle, Sebastian Weichwald, and Luigi Gresele. All or none:  
 719 Identifiable linear properties of next-token predictors in language modeling. *arXiv preprint  
 720 arXiv:2410.23501*, 2024.

721 Emanuele Marconato, Sébastien Lachapelle, Sebastian Weichwald, and Luigi Gresele. All or  
 722 none: Identifiable linear properties of next-token predictors in language modeling. In *The 28th  
 723 International Conference on Artificial Intelligence and Statistics*, 2025.

724 Riccardo Massidda, Atticus Geiger, Thomas Icard, and Davide Bacciu. Causal abstraction with soft  
 725 interventions. In *Conference on Causal Learning and Reasoning*, pp. 68–87. PMLR, 2023.

726 Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Francesco Locatello, and  
 727 Emanuele Rodolà. Relative representations enable zero-shot latent space communication. *arXiv  
 728 preprint arXiv:2209.15430*, 2022.

729 Anish Mudide, Joshua Engels, Eric J Michaud, Max Tegmark, and Christian Schroeder de Witt.  
 730 Efficient dictionary learning with switch sparse autoencoders. *arXiv preprint arXiv:2410.08201*,  
 731 2024.

732 Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models  
 733 of self-supervised sequence models. *arXiv preprint arXiv:2309.00941*, 2023.

734 Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,  
 735 Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language  
 736 models. *arXiv preprint arXiv:2307.06435*, 2023.

737 Tuomas Oikarinen, Subhro Das, Lam M Nguyen, and Tsui-Wei Weng. Label-free concept bottleneck  
 738 models. *arXiv preprint arXiv:2304.06129*, 2023.

739 Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry  
 740 of large language models. *arXiv preprint arXiv:2311.03658*, 2023.

741 Eleonora Poeta, Gabriele Ciravegna, Eliana Pastor, Tania Cerquitelli, and Elena Baralis. Concept-  
 742 based explainable artificial intelligence: A survey. *arXiv preprint arXiv:2312.12936*, 2023.

743 Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János  
 744 Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-  
 745 coders. *arXiv preprint arXiv:2404.16014*, 2024a.

746 Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János  
 747 Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse  
 748 autoencoders. *arXiv preprint arXiv:2407.14435*, 2024b.

756 Goutham Rajendran, Simon Buchholz, Bryon Aragam, Bernhard Schölkopf, and Pradeep Ravikumar.  
 757 Learning interpretable concepts: Unifying causal representation learning and foundation models.  
 758 *arXiv preprint arXiv:2402.09236*, 2024.

759 Geoffrey Roeder, Luke Metz, and Durk Kingma. On linear identifiability of learned representations.  
 760 In *International Conference on Machine Learning*, pp. 9030–9039. PMLR, 2021.

762 Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,  
 763 Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. *Proceedings of the*  
 764 *IEEE*, 109(5):612–634, 2021.

765 Lisa Schut, Nenad Tomasev, Tom McGrath, Demis Hassabis, Ulrich Paquet, and Been Kim. Bridging  
 766 the human-ai knowledge gap: Concept discovery and transfer in alphazero. *arXiv preprint*  
 767 *arXiv:2310.16410*, 2023.

769 Gesina Schwalbe. Concept embedding analysis: A review. *arXiv preprint arXiv:2203.13909*, 2022.

770 Anna Seigal, Chandler Squires, and Caroline Uhler. Linear causal disentanglement via interventions.  
 771 *arXiv preprint arXiv:2211.16467*, 2022.

773 Xinwei Shen, Furui Liu, Hanze Dong, Qing Lian, Zhitang Chen, and Tong Zhang. Weakly supervised  
 774 disentangled generative causal representation learning. *The Journal of Machine Learning Research*,  
 775 23(1):10994–11048, 2022.

776 Chandan Singh, Jeevana Priya Inala, Michel Galley, Rich Caruana, and Jianfeng Gao. Rethinking  
 777 interpretability in the era of large language models. *arXiv preprint arXiv:2402.01761*, 2024.

779 Daniel A Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-used dictionaries. In  
 780 *Conference on Learning Theory*, pp. 37–1. JMLR Workshop and Conference Proceedings, 2012.

782 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.  
 783 Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine*  
 784 *learning research*, 15(1):1929–1958, 2014.

785 Armeen Taeb, Nicolo Ruggeri, Carina Schnuck, and Fanny Yang. Provable concept learning for  
 786 interpretable predictions using variational autoencoders. *arXiv preprint arXiv:2204.00492*, 2022.

787 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,  
 788 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical  
 789 report. *arXiv preprint arXiv:2503.19786*, 2025.

791 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

792 Curt Tigges, Oskar John Hollinsworth, Atticus Geiger, and Neel Nanda. Linear representations of  
 793 sentiment in large language models. *arXiv preprint arXiv:2310.15154*, 2023.

795 Burak Varici, Emre Acarturk, Karthikeyan Shanmugam, Abhishek Kumar, and Ali Tajer. Score-based  
 796 causal representation learning with interventions. *arXiv preprint arXiv:2301.08230*, 2023.

797 Julius Von Kügelgen, Yash Sharma, Luigi Greselle, Wieland Brendel, Bernhard Schölkopf, Michel  
 798 Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably  
 799 isolates content from style. In *NeurIPS*, 2021.

801 Julius von Kügelgen, Michel Besserve, Liang Wendong, Luigi Greselle, Armin Kekić, Elias Barein-  
 802 boim, David Blei, and Bernhard Schölkopf. Nonparametric identifiability of causal representations  
 803 from unknown interventions. *Advances in Neural Information Processing Systems*, 36, 2023.

804 Yuxin Wu and Kaiming He. Group normalization. In *Proceedings of the European conference on*  
 805 *computer vision (ECCV)*, pp. 3–19, 2018.

807 Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin, Chris Callison-Burch, and Mark  
 808 Yatskar. Language in a bottle: Language model guided concept bottlenecks for interpretable  
 809 image classification. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*  
*recognition*, pp. 19187–19197, 2023.

810

811

812

813

814

815

816

# Appendix

## Table of Contents

817

|          |                                                                                          |           |
|----------|------------------------------------------------------------------------------------------|-----------|
| <b>A</b> | <b>Related Work</b>                                                                      | <b>17</b> |
| <b>B</b> | <b>Limitations and Discussion</b>                                                        | <b>18</b> |
| <b>C</b> | <b>Comparison of the result in Liu et al. (2025a)</b>                                    | <b>19</b> |
| <b>D</b> | <b>Lemmas in the Context of <math>H(\mathbf{z} \mid \mathbf{x}) \rightarrow 0</math></b> | <b>20</b> |
| <b>E</b> | <b>Proof of Theorem 2.2</b>                                                              | <b>23</b> |
| <b>F</b> | <b>Justification for Log-Posterior Estimation via Linear Probing</b>                     | <b>25</b> |
| <b>G</b> | <b>Experimental Details</b>                                                              | <b>26</b> |
| <b>H</b> | <b>Visualization of Counterfactual Pair Experiments</b>                                  | <b>28</b> |
| <b>I</b> | <b>Visualization of Classification Tasks</b>                                             | <b>31</b> |
| <b>J</b> | <b>Acknowledgment of LLMs</b>                                                            | <b>31</b> |
| <b>K</b> | <b>Practical Diagnostic for the Diversity Condition</b>                                  | <b>31</b> |
| <b>L</b> | <b>Informational Sufficiency Diagnostics</b>                                             | <b>33</b> |
| <b>M</b> | <b>Synthetic validation of marginal vs. joint identifiability.</b>                       | <b>33</b> |
| <b>N</b> | <b>Verifying Exponential Substitutes on Pythia-70m</b>                                   | <b>35</b> |
| <b>O</b> | <b>Activation Patching Evaluation</b>                                                    | <b>35</b> |
| <b>P</b> | <b>Experiments on Additional Counterfactual Concept Pairs</b>                            | <b>36</b> |
| <b>Q</b> | <b>Detailed Results of Figure 3</b>                                                      | <b>37</b> |
| <b>R</b> | <b>Relation with Linear Representation Hypothesis</b>                                    | <b>37</b> |

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 A RELATED WORK  
865

866 **Sparse Autoencoders and Dictionary Learning** The proposed ConCA framework is closely  
867 related to Sparse Autoencoders (SAEs) (Rajamanoharan et al., 2024a; Gao et al., 2025; Braun et al.,  
868 2024; Bricken et al., 2023; Huben et al., 2023; Gao et al., 2025; Mudide et al., 2024; Chanin et al.,  
869 2024; Lieberum et al., 2024; He et al., 2024; Karvonen et al., 2024; Bussmann et al., 2024), as both  
870 aim to extract and monosemantic human-interpretable concepts from LLM representations in order to  
871 provide mechanistic explanations for their success. However, the two approaches differ fundamentally  
872 in their theoretical foundations. ConCA is grounded in a rigorous theoretical framework, as estab-  
873 lished in Theorem 2.2, while SAEs rely on assumptions such as the linear representation hypothesis  
874 and the superposition hypothesis. This foundational difference leads to notable divergences in both  
875 method design and evaluation protocols, as discussed in the Introduction. In addition, our work is  
876 also closely connected to the well-established framework of dictionary learning (Dumitrescu & Irofti,  
877 2018; Eggert & Korner, 2004; Elad, 2010; Elad & Bruckstein, 2002; Aharon et al., 2006; Arora et al.,  
878 2015). Specifically, this work bridges next-token prediction framework and dictionary learning by  
879 showing that LLM representations acquired through the next-token prediction framework can be  
880 further meaningfully decomposed using dictionary learning-like techniques.  
881

882 **Causal Representation Learning** This work is also related to causal representation learning  
883 (Schölkopf et al., 2021), which seeks to identify latent causal variables from observational data  
884 (Brehmer et al., 2022; Von Kügelgen et al., 2021; Massidda et al., 2023; von Kügelgen et al., 2023;  
885 Ahuja et al., 2023; Seigal et al., 2022; Shen et al., 2022; Liu et al., 2022; Buchholz et al., 2023; Varici  
886 et al., 2023; Liu et al., 2024c; 2025b; 2024b;a; Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019;  
887 Khemakhem et al., 2020; Cai et al., 2025; Rajendran et al., 2024). Most of those works focus on  
888 continuous latent and observed variables, we explore the setting of discrete variables. A subset of  
889 studies has investigated causal representation learning in discrete spaces (Gu & Dunson, 2023; Kong  
890 et al., 2024; Kivva et al., 2021), but these typically assume specific graphical structures and rely on  
891 invertible mappings from latent to observed variables. In contrast, our approach does not require such  
892 assumptions, offering greater flexibility.  
893

894 **Identifiability Analysis for LLMs** Several prior studies (Marconato et al., 2024; Roeder et al.,  
895 2021) have explored identifiability within the inference space, revealing alignments between repre-  
896 sentations obtained from distinct inference models. However, these findings remain confined to the  
897 inference space and do not extend to identifying the true latent variables in latent variable models.  
898 More recently, Jiang et al. (2024) examined the emergence of linear structures under a different  
899 generative framework, attributing them to the implicit bias introduced by gradient-based optimization.  
900 In contrast, our approach offers a theoretical explanation rooted in identifiability theory, directly  
901 linking the observed linear patterns to the ground-truth latent structure. This shift in perspective  
902 provides a deeper and more principled understanding of the underlying mechanisms.  
903

904 **Concept Discovery** Concept discovery aims to extract human-interpretable concepts from pre-  
905 trained models, and has emerged as a key area within machine learning (Schut et al., 2023; Yang et al.,  
906 2023; Marconato et al., 2023; Oikarinen et al., 2023; Koh et al., 2020; Schwalbe, 2022; Poeta et al.,  
907 2023; Taeb et al., 2022). While empirical methods have flourished, theoretical understanding of when  
908 and how such concepts can be reliably identified remains limited. In contrast, the proposed ConCA  
909 is grounded in rigorous theoretical results. The work of Leemann et al. (2023) investigates concept  
910 identifiability under the assumption that the non-linear mapping is known a priori. In contrast, our  
911 results establish identifiability guarantees without requiring such prior knowledge. A recent advance  
912 by Rajendran et al. (2024) offers formal identifiability results for continuous latent concepts under a  
913 likelihood-matching framework, while our work focuses on discrete concepts, and approaches the  
914 problem from a different angle, i.e., rooted in the next-token prediction paradigm, which underpins  
915 modern LLMs training. This shift in both focus and framework allows us to derive new identifiability  
916 guarantees tailored to the discrete setting.  
917

---

## 918 B LIMITATIONS AND DISCUSSION

920 **Theoretical limitations.** Our theoretical analysis in Theorem 2.2 relies on several assumptions,  
 921 including the Diversity Condition (i) and the Informational Sufficiency Condition (ii). While we  
 922 provide justifications and argue that these assumptions are likely mild in practice, they represent  
 923 idealized conditions that may not hold exactly in real-world datasets. Nonetheless, we believe they are  
 924 reasonable: most have been introduced in prior work, and some, such as the Informational Sufficiency  
 925 Condition (ii), are already considered relaxations in previous identifiability analyses within the causal  
 926 representation learning community.

927 **Methodological limitations.** In addition, sparse ConCA applies regularization to recover concept-  
 928 level posteriors, but in practice we do not use the exponential function directly on  $\hat{\mathbf{z}} \approx [\log p(z_i|\mathbf{x})]_{z_i}$ .  
 929 Instead, we employ exponential-like activation functions, such as SELU, SoftPlus, and ELU,  
 930 which approximate exponential behavior for small input values while ensuring numerical stability and  
 931 smooth gradients. As a result, the sparsity prior only approximately reflects true posterior activation.  
 932 Additionally, underdetermined settings ( $\ell > m$ ) and deviations from theoretical assumptions can lead  
 933 to multiple plausible solutions, some capturing noise rather than meaningful concepts.

935 **Discussion.** Despite the theoretical, methodological, and evaluation limitations discussed above,  
 936 sparse ConCA provides a principled framework for understanding and decomposing LLM representa-  
 937 tions at the concept level. The approach highlights the potential of leveraging sparsity and structured  
 938 priors to recover interpretable latent factors, even under underdetermined settings or approximate  
 939 assumptions. Furthermore, our work emphasizes the importance of carefully designed evaluation  
 940 frameworks, as concept-level recovery in natural language remains inherently challenging. We hope  
 941 that these insights will motivate future research to incorporate additional probabilistic constraints,  
 942 explore alternative regularization strategies, and develop larger and more diverse benchmarks to better  
 943 evaluate and improve concept extraction methods in LLMs. Ultimately, sparse ConCA serves as a  
 944 starting point for building more interpretable, reliable, and theoretically grounded tools for analyzing  
 945 complex representations in LLM.

946  
 947  
 948  
 949  
 950  
 951  
 952  
 953  
 954  
 955  
 956  
 957  
 958  
 959  
 960  
 961  
 962  
 963  
 964  
 965  
 966  
 967  
 968  
 969  
 970  
 971

| Aspect                       | Our Theorem 2.2                                                           | Liu's Theorem C.1                                                               |
|------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| <b>Diversity Condition 1</b> | Requires only $m + 1$ distinct $y$ values                                 | Requires $\prod_i k_i + 1$ distinct $y$ values                                  |
| <b>Diversity Condition 2</b> | Not required                                                              | Required                                                                        |
| <b>Representations</b>       | $\mathbf{A}[\dots; [\log p(z_i   \mathbf{x})]_{z_i}; \dots] + \mathbf{b}$ | $\mathbf{A}[\log p(\mathbf{z} = \mathbf{z}_i   \mathbf{x})]_{z_i} + \mathbf{b}$ |
| <b>Interpretability</b>      | Mixture of <i>component-wise</i> $p(z_j   \mathbf{x})$                    | Mixture of <i>joint</i> $p(\mathbf{z} = \mathbf{z}_i   \mathbf{x})$             |

Table 2: Comparison of Our Theorem and Liu's Theorem in terms of assumptions and results. This table highlights that our theorem requires weaker assumptions and provides more interpretable, component-wise results.

## C COMPARISON OF THE RESULT IN LIU ET AL. (2025A)

The theoretical result Theorem 2.2 in this work is totally different with that of Liu et al. (2025a). For comparison, here we re-write the result in Liu et al. (2025a) as follows:

**Theorem C.1** (Liu et al. (2025a)). *Suppose latent variables  $\mathbf{z}$  and the observed variables  $\mathbf{x}$  and  $y$  follow the generative models defined in Eq. 1, and assume that  $\mathbf{z}$  takes values in a finite set of cardinality  $k$ . Assume the following holds:*

- (i) **(Diversity Condition 1)** *There exist  $\prod_i k_i + 1$  values of  $y$ , so that the matrix  $\mathbf{L} = (\mathbf{g}(y = y_1) - \mathbf{g}(y = y_0), \dots, \mathbf{g}(y = y_k) - \mathbf{g}(y = y_0))$  of size  $\prod_i k_i \times \prod_i k_i$  is invertible,*
- (ii) **(Diversity Condition 2)** *There exist  $k + 1$  distinct values of  $y$ , i.e.,  $y_0, \dots, y_k$ , such that the matrix  $\hat{\mathbf{L}} = ([p(\mathbf{z} = \mathbf{z}_i | y = y_1) - p(\mathbf{z} = \mathbf{z}_i | y = y_0)]_{z_i}, \dots, [p(\mathbf{z} = \mathbf{z}_i | y = y_k) - p(\mathbf{z} = \mathbf{z}_i | y = y_0)]_{z_i})$  of the size  $k \times k$  is invertible*
- (iii) **(Approximate Invertibility Condition)** *The mapping from  $\mathbf{z}$  to  $(\mathbf{x}, y)$  is approximately invertible in the sense that the posterior  $p(\mathbf{z} | \mathbf{x}, y)$  is sharply peaked, i.e., there exists a most probable  $\mathbf{z}^*$  such that  $p(\mathbf{z} = \mathbf{z}^* | \mathbf{x}, y) \geq 1 - \epsilon$  for some  $\epsilon \in [0, 1)$  with  $\epsilon \rightarrow 0$ .*

Then the true latent variables  $\mathbf{z}$  are mathematically related to the representations in LLMs, i.e.,  $\mathbf{f}(\mathbf{x})$ , which are learned through the next-token prediction framework, by the following relationship:

$$\mathbf{f}(\mathbf{x}) \approx \mathbf{A}[\log p(\mathbf{z} = \mathbf{z}_i | \mathbf{x})]_{z_i} + \mathbf{b}, \quad (6)$$

where  $\mathbf{A} = (\hat{\mathbf{L}}^T)^{-1} \mathbf{L}$ , and  $\mathbf{b}$  is a bias vector.

We compare our Theorem 2.2 with Theorem C.1 mainly from the following (Also see Table 2 for a summary of the comparison.):

- Assumptions: Our Theorem 2.2 eliminates the need for Diversity Condition 2 (ii). Furthermore, compared to Diversity Condition 1 (i), our assumption requires only  $m + 1$  distinct values of  $y$ , where  $m$  is the dimensionality of the learned LLM representations. In contrast, Condition (i) requires  $k + 1$  values, where  $k$  is the number of possible configurations of the discrete latent variable  $\mathbf{z}$  (i.e., the number of distinct values  $\mathbf{z}$  can take). Since it is generally believed that  $m < k$ , our assumption is strictly weaker. This belief is partly supported by the commonly discussed the superposition hypothesis (Elhage et al., 2022).
- Results: Our result shows that the LLM representation  $\mathbf{f}(\mathbf{x})$  approximates a mixture over the individual components of the latent variable  $\mathbf{z}$ , i.e.,  $\mathbf{f}(\mathbf{x}) \approx \mathbf{A}[\log p(z_1 | \mathbf{x}), \dots, \log p(z_\ell | \mathbf{x})] + \mathbf{b}$ , whereas Theorem C.1 describes  $\mathbf{f}(\mathbf{x})$  as a mixture over the full configurations of the joint latent variable  $\mathbf{z}$ , i.e.,  $\mathbf{f}(\mathbf{x}) \approx \mathbf{A}[\log p(\mathbf{z} = \mathbf{z}_i | \mathbf{x})]_{z_i} + \mathbf{b}$ . Most importantly, our result support that one can estimate each distribution  $p(z_j | \mathbf{x})$  by unmixing a linear combination, offering a more interpretable and component-wise understanding of the learned representation.

1026 **D LEMMAS IN THE CONTEXT OF  $H(\mathbf{z} \mid \mathbf{x}) \rightarrow 0$**   
 1027

1028 For ease of exposition in the following sections, we first introduce the following lemmas.  
 1029

1030 **Lemma D.1** (Factorization of the Posterior as Conditional Entropy Vanishes). *Suppose latent causal*  
 1031 *variables  $\mathbf{z} = (z_1, \dots, z_\ell)$  and observed variable  $\mathbf{x}$  follow the causal generative model defined in*  
 1032 *Eq. 1. Then:*

1033 
$$p(\mathbf{z} \mid \mathbf{x}) \approx \prod_{i=1}^{\ell} p(z_i \mid \mathbf{x}), \quad \text{as } H(\mathbf{z} \mid \mathbf{x}) \rightarrow 0. \quad (7)$$
  
 1034  
 1035

1036 **Intuition.** When  $H(\mathbf{z} \mid \mathbf{x}) = 0$ , the observation  $\mathbf{x}$  uniquely determines every coordinate  $z_i$ , so no  
 1037 residual dependence remains between them. If the conditional entropy is merely small, the remaining  
 1038 dependencies are weak and the posterior is well-approximated by  $\prod_i p(z_i \mid \mathbf{x})$ .  
 1039

1040 *Proof.* Define the product of marginals as:  
 1041

1042 
$$q(\mathbf{z} \mid \mathbf{x}) := \prod_{i=1}^{\ell} p(z_i \mid \mathbf{x}). \quad (8)$$
  
 1043  
 1044

1045 The Kullback–Leibler divergence between  $p(\mathbf{z} \mid \mathbf{x})$  and  $q(\mathbf{z} \mid \mathbf{x})$  is  
 1046

1047 
$$D_{\text{KL}}(p(\mathbf{z} \mid \mathbf{x}) \parallel q(\mathbf{z} \mid \mathbf{x})) = \mathbb{E}_{p(\mathbf{z} \mid \mathbf{x})} \left[ \log \frac{p(\mathbf{z} \mid \mathbf{x})}{\prod_{i=1}^{\ell} p(z_i \mid \mathbf{x})} \right]. \quad (9)$$
  
 1048

1049 Recall that conditional entropy satisfies

1050 
$$H(\mathbf{z} \mid \mathbf{x}) = -\mathbb{E}_{p(\mathbf{z} \mid \mathbf{x})} \log p(\mathbf{z} \mid \mathbf{x}), \quad (10)$$
  
 1051

1052 and similarly for each marginal,

1053 
$$H(z_i \mid \mathbf{x}) = -\mathbb{E}_{p(z_i \mid \mathbf{x})} \log p(z_i \mid \mathbf{x}). \quad (11)$$
  
 1054

1055 Thus,

1056 
$$D_{\text{KL}}(p(\mathbf{z} \mid \mathbf{x}) \parallel q(\mathbf{z} \mid \mathbf{x})) = \mathbb{E}_{p(\mathbf{z} \mid \mathbf{x})} \left[ \log p(\mathbf{z} \mid \mathbf{x}) - \sum_{i=1}^{\ell} \log p(z_i \mid \mathbf{x}) \right] \quad (12)$$
  
 1057  
 1058

1059 
$$= -H(\mathbf{z} \mid \mathbf{x}) - \sum_{i=1}^{\ell} \mathbb{E}_{p(\mathbf{z} \mid \mathbf{x})} [-\log p(z_i \mid \mathbf{x})] \quad (13)$$
  
 1060  
 1061

1062 
$$= \sum_{i=1}^{\ell} H(z_i \mid \mathbf{x}) - H(\mathbf{z} \mid \mathbf{x}), \quad (14)$$
  
 1063  
 1064

1065 where we have used the law of total expectation to replace  $\mathbb{E}_{p(\mathbf{z} \mid \mathbf{x})} [-\log p(z_i \mid \mathbf{x})]$  by  $H(z_i \mid \mathbf{x})$ .  
 1066

1067 By the chain rule of entropy, for each  $i$  we have

1068 
$$H(\mathbf{z} \mid \mathbf{x}) - H(z_i \mid \mathbf{x}) = H(\mathbf{z}_{-i} \mid z_i, \mathbf{x}), \quad (15)$$
  
 1069

1070 where  $\mathbf{z}_{-i}$  denotes all components except  $z_i$ . Since entropy is non-negative for discrete case,  
 1071

1072 
$$H(\mathbf{z} \mid \mathbf{x}) \geq H(z_i \mid \mathbf{x}). \quad (16)$$
  
 1073

1074 Then, if  $H(\mathbf{z} \mid \mathbf{x}) \rightarrow 0$ , we necessarily have  
 1075

1076 
$$H(z_i \mid \mathbf{x}) \rightarrow 0, \quad \text{for all } i = 1, \dots, \ell. \quad (17)$$
  
 1077

1078 Combining the above,  
 1079

1080 
$$D_{\text{KL}}(p(\mathbf{z} \mid \mathbf{x}) \parallel q(\mathbf{z} \mid \mathbf{x})) = \sum_{i=1}^{\ell} H(z_i \mid \mathbf{x}) - H(\mathbf{z} \mid \mathbf{x}) \rightarrow 0. \quad (18)$$
  
 1081  
 1082

□

1080  
 1081 **Lemma D.2** (Exact Linear Representation of Joint Log Posterior via Full Marginals). *Let  $\mathbf{z} = (z_1, \dots, z_\ell) \in \mathcal{V}_1 \times \dots \times \mathcal{V}_\ell$  to be discrete, with  $z_i \in \mathcal{V}_i$ ,  $|\mathcal{V}_i| = k_i$ ,  $i = 1, \dots, \ell$ , then there exists a  
 1082 fixed (assignment-independent) selector matrix  $\mathbf{S} \in \{0, 1\}^{M \times \sum_i k_i}$  with  $M = \prod_i k_i$  such that  
 1083*

$$1084 \quad [\log p(\mathbf{z} \mid \mathbf{x})]_{\mathbf{z}} \approx \mathbf{S} [[\log p(z_1 \mid \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell \mid \mathbf{x})]_{z_\ell}], \quad (19)$$

1085 where the approximation becomes accurate as  $H(\mathbf{z} \mid \mathbf{x}) \rightarrow 0$  (i.e., the posterior concentrates on  
 1086 a few high-probability assignments). The  $j$ -th row of  $\mathbf{S}$  selects, for each  $i$ , the entry in  $[[\log p(z_1 \mid$   
 1087  $\mathbf{x})]_{z_1}, \dots, [\log p(z_\ell \mid \mathbf{x})]_{z_\ell}]$  corresponding to the value of  $z_i$  in the  $j$ -th joint assignment  $\mathbf{z}^{(j)}$ .  
 1088

1089 **Intuition.** The vector  $[[\log p(z_1 \mid \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell \mid \mathbf{x})]_{z_\ell}]$  stacks all single-variable log-  
 1090 posteriors. The selector matrix  $\mathbf{S}$  picks, for each joint assignment, the corresponding entries in  
 1091  $[[\log p(z_1 \mid \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell \mid \mathbf{x})]_{z_\ell}]$  so that  $\mathbf{S} [[\log p(z_1 \mid \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell \mid \mathbf{x})]_{z_\ell}]$  recon-  
 1092 structs the joint log-posterior  $[\log p(\mathbf{z} \mid \mathbf{x})]_{\mathbf{z}}$ . Under low conditional entropy  $H(\mathbf{z} \mid \mathbf{x}) \rightarrow 0$ , only a  
 1093 few joint assignments dominate, making this approximation accurate.  
 1094

1095 *Proof.* Let  $M = \prod_i k_i$  and enumerate all joint assignments as  $\mathcal{V}^\ell = \{\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(M)}\}$ . Consider the  
 1096 vector  
 1097

$$1098 \quad [\log p(\mathbf{z} \mid \mathbf{x})]_{\mathbf{z}} \in \mathbb{R}^M, \quad (20)$$

1100 whose  $j$ -th entry is  $\log p(\mathbf{z}^{(j)} \mid \mathbf{x})$ .

1101 **Step 1 (Factorization under low entropy).** By Lemma D.1, as  $H(\mathbf{z} \mid \mathbf{x}) \rightarrow 0$ ,

$$1103 \quad p(\mathbf{z} \mid \mathbf{x}) \approx \prod_{i=1}^{\ell} p(z_i \mid \mathbf{x}) \implies \log p(\mathbf{z}^{(j)} \mid \mathbf{x}) \approx \sum_{i=1}^{\ell} \log p(z_i^{(j)} \mid \mathbf{x}) \quad (21)$$

1106 where  $z_i^{(j)}$  denotes the value of the  $i$ -th latent variable in the  $j$ -th joint assignment  $\mathbf{z}^{(j)}$ .  
 1107

1108 **Step 2 (Construction of selector matrix).** Construct  $\mathbf{S} \in \{0, 1\}^{M \times \sum_i k_i}$  so that its  $j$ -th row has  
 1109 exactly one 1 in each block corresponding to variable  $z_i$ , selecting the entry that corresponds to the  
 1110 value of  $z_i$  in  $\mathbf{z}^{(j)}$ , and all other entries in that row are 0.  
 1111

1112 Then for each  $j$ ,

$$1114 \quad (\mathbf{S} [[\log p(z_1 \mid \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell \mid \mathbf{x})]_{z_\ell}])_j = \sum_{i=1}^{\ell} \log p(z_i^{(j)} \mid \mathbf{x}) \approx \log p(\mathbf{z}^{(j)} \mid \mathbf{x}), \quad (22)$$

1116 so the linear map exactly reproduces the sum of marginal log-probabilities for the joint assignment.  
 1117

1118 **Step 3 (Validity under low entropy).** Because the posterior concentrates on a few high-probability  
 1119 assignments as  $H(\mathbf{z} \mid \mathbf{x}) \rightarrow 0$ , the sum-of-marginals approximation is accurate for the entries  
 1120 corresponding to these assignments. Thus  
 1121

$$1122 \quad [\log p(\mathbf{z} \mid \mathbf{x})]_{\mathbf{z}} \approx \mathbf{S} [[\log p(z_1 \mid \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell \mid \mathbf{x})]_{z_\ell}], \quad (23)$$

1123 as claimed. The matrix  $\mathbf{S}$  is fixed (assignment-independent) and encodes the mapping from full  
 1124 marginal logs to joint-log vector.  $\square$   
 1125

1126  
 1127  
 1128  
 1129  
 1130  
 1131  
 1132  
 1133

1134    **Lemma D.3** (Expectation difference vanishes with conditional entropy). *Suppose latent causal*  
 1135    *variables  $\mathbf{z}$  and observed variable  $\mathbf{x}$  follow a generative model. For any two values  $y_0$  and  $y_i$ , as*  
 1136     *$H(\mathbf{z} \mid \mathbf{x}) \rightarrow 0$ ,*

$$1137 \quad \mathbb{E}_{p(\mathbf{z} \mid y_i)}[\log p(\mathbf{z} \mid \mathbf{x})] - \mathbb{E}_{p(\mathbf{z} \mid y_0)}[\log p(\mathbf{z} \mid \mathbf{x})] \longrightarrow 0.$$

1139    **Intuition.** When  $\mathbf{x}$  almost fully determines  $\mathbf{z}$ , the expectation  $\mathbb{E}_{p(\mathbf{z} \mid y)}[\log p(\mathbf{z} \mid \mathbf{x})]$  becomes nearly  
 1140    independent of  $y$ , so the difference between any two values of  $y$  vanishes.

1141    *Proof.* Let

$$1143 \quad \mathbf{z}^* = \arg \max_z p(z \mid \mathbf{x}), \quad \varepsilon = 1 - p(\mathbf{z}^* \mid \mathbf{x}). \quad (24)$$

1145    Since  $H(\mathbf{z} \mid \mathbf{x}) \rightarrow 0$ , the conditional distribution  $p(\mathbf{z} \mid \mathbf{x})$  becomes increasingly concentrated on  $\mathbf{z}^*$ ,  
 1146    i.e.,  $\varepsilon \rightarrow 0$ .

1147    Now, for any fixed  $y$ , as  $\varepsilon \rightarrow 0$ , the posterior satisfies

$$1149 \quad p(\mathbf{z}^* \mid \mathbf{x}) = 1 - \varepsilon, \quad (25)$$

1151    and for all  $\mathbf{z} \neq \mathbf{z}^*$ , we have

$$1152 \quad p(\mathbf{z} \mid \mathbf{x}) \approx \varepsilon. \quad (26)$$

1154    We can then decompose the expectation:

$$1156 \quad \mathbb{E}_{p(\mathbf{z} \mid y)}[\log p(\mathbf{z} \mid \mathbf{x})] = p(\mathbf{z}^* \mid y) \log p(\mathbf{z}^* \mid \mathbf{x}) + \sum_{\mathbf{z} \neq \mathbf{z}^*} p(\mathbf{z} \mid y) \log p(\mathbf{z} \mid \mathbf{x}) \quad (27)$$

$$1158 \quad (28)$$

1160    Note that:

- 1162    •  $\log(1 - \varepsilon) \approx 0$ , when  $\varepsilon \rightarrow 0$ ,
- 1163    •  $\log p(\mathbf{z} \mid \mathbf{x}) \approx \log \varepsilon$  for all  $\mathbf{z} \neq \mathbf{z}^*$ , when  $\varepsilon \rightarrow 0$ ,
- 1164    • and for  $\mathbf{z} \neq \mathbf{z}^*$ ,  $p(\mathbf{z} \mid y)$  is bounded.

1166    Hence, for any  $y$ , when  $\varepsilon \rightarrow 0$ ,

$$1169 \quad \mathbb{E}_{p(\mathbf{z} \mid y)}[\log p(\mathbf{z} \mid \mathbf{x}, y)] \rightarrow \log \varepsilon, \quad (29)$$

1170    which is independent of the specific value of  $y$ . As a result, taking the difference for two distinct  
 1171    values  $y_0$  and  $y_i$ :

$$1172 \quad \mathbb{E}_{p(\mathbf{z} \mid y_i)}[\log p(\mathbf{z} \mid \mathbf{x}, y_i)] - \mathbb{E}_{p(\mathbf{z} \mid y_0)}[\log p(\mathbf{z} \mid \mathbf{x}, y_0)] \rightarrow 0.$$

1174    This completes the proof. □

1176  
 1177  
 1178  
 1179  
 1180  
 1181  
 1182  
 1183  
 1184  
 1185  
 1186  
 1187

1188 **E PROOF OF THEOREM 2.2**  
 1189

1190 **Theorem 2.1.** Suppose latent variables  $\mathbf{z}$  and the observed variables  $\mathbf{x}$  and  $y$  follow the generative  
 1191 models defined in Eq. 1. Assume the following holds:

1193 (i) **(Diversity Condition)** There exist  $m + 1$  values of  $y$ , so that the matrix  $\mathbf{L} = (\mathbf{g}(y =$   
 1194  $y_1) - \mathbf{g}(y = y_0), \dots, \mathbf{g}(y = y_m) - \mathbf{g}(y = y_0))$  of size  $m \times m$  is invertible,  
 1195  
 1196 (ii) **(Informational Sufficiency Condition)** The conditional entropy of the latent concepts given  
 1197 the context is close to zero, i.e.,  $H(\mathbf{z}|\mathbf{x}) \rightarrow 0$ ,

1198 then the representations  $\mathbf{f}(\mathbf{x})$  in LLMs, which are learned through the next-token prediction framework,  
 1199 are related to the true latent variables  $\mathbf{z}$ , by the following relationship:

1200 
$$\mathbf{f}(\mathbf{x}) \approx \mathbf{A}[[\log p(z_1 | \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell | \mathbf{x})]_{z_\ell}] + \mathbf{b}, \quad (30)$$

1202 where  $\mathbf{A}$  is a  $m \times (\sum_{i=1}^\ell k_i)$  matrix,  $\mathbf{b}$  is a bias vector.

1204 **Intuition.** Each LLM representation  $\mathbf{f}(\mathbf{x})$  encodes a combination of all latent concepts. Under the  
 1205 Diversity, observing representations across multiple diverse outputs  $y$  provides linearly independent  
 1206 constraints that reveal how all latent concepts contribute together, i.e., the joint posterior. When the  
 1207 latent concepts are nearly determined by  $\mathbf{x}$ , i.e., the Informational Sufficiency Condition, the joint  
 1208 posterior decomposes into marginal posteriors, allowing  $\mathbf{f}(\mathbf{x})$  to be expressed as a linear mixture of  
 1209 the log-posteriors of individual concepts.

1210 *Proof.* Recall that next-token prediction can be viewed as a multinomial logistic regression model,  
 1211 where the conditional distribution is approximated as

1213 
$$p(y|\mathbf{x}) = \frac{\exp(\mathbf{f}(\mathbf{x})^\top \mathbf{g}(y))}{\sum_{y'} \exp(\mathbf{f}(\mathbf{x})^\top \mathbf{g}(y'))}. \quad (31)$$

1216 Here,  $\mathbf{f}(\mathbf{x})$  and  $\mathbf{g}(y)$  denote the learned representations of  $\mathbf{x}$  and  $y$ , respectively, both lying in  $\mathbb{R}^m$ .

1217 On the other hand, under the latent-variable formulation in Eq. 1, the conditional distribution is given  
 1218 by marginalization:

1219 
$$p(y|\mathbf{x}) = \sum_{\mathbf{z}} p(y|\mathbf{z}) p(\mathbf{z}|\mathbf{x}). \quad (32)$$

1221 Equating Eq. 31 and Eq. 32, we obtain

1223 
$$\frac{\exp(\mathbf{f}(\mathbf{x})^\top \mathbf{g}(y))}{\sum_{y'} \exp(\mathbf{f}(\mathbf{x})^\top \mathbf{g}(y'))} = \sum_{\mathbf{z}} p(y|\mathbf{z}) p(\mathbf{z}|\mathbf{x}). \quad (33)$$

1226 Taking logarithms on both sides, one arrives at

1228 
$$\mathbf{f}(\mathbf{x})^\top \mathbf{g}(y) - \log Z(\mathbf{x}) = \log \sum_{\mathbf{z}} p(y|\mathbf{z}) p(\mathbf{z}|\mathbf{x}), \quad (34)$$

1231 where  $Z(\mathbf{x}) = \sum_{y'} \exp(\mathbf{f}(\mathbf{x})^\top \mathbf{g}(y'))$  is the partition function.

1232 We now focus on the right-hand side. Using Bayes' rule and the conditional independence assumption  
 1233  $y \perp \mathbf{x} | \mathbf{z}$ , we can decompose:

1234 
$$\log p(y|\mathbf{x}) = \mathbb{E}_{p(\mathbf{z}|y)} \left[ \log \frac{p(y, \mathbf{z}|\mathbf{x})}{p(\mathbf{z}|y, \mathbf{x})} \right] \quad (35)$$

1237 
$$= \mathbb{E}_{p(\mathbf{z}|y)} [\log p(\mathbf{z}|\mathbf{x})] + \mathbb{E}_{p(\mathbf{z}|y)} [\log p(y|\mathbf{z})] - \mathbb{E}_{p(\mathbf{z}|y)} [\log p(\mathbf{z}|y, \mathbf{x})]. \quad (36)$$

1238 Combining Eq. equation 34 and Eq. equation 36, we arrive at

1240 
$$\mathbf{f}(\mathbf{x})^\top \mathbf{g}(y) - \log Z(\mathbf{x}) = \mathbb{E}_{p(\mathbf{z}|y)} [\log p(\mathbf{z}|\mathbf{x})] - \mathbb{E}_{p(\mathbf{z}|y)} [\log p(\mathbf{z}|y, \mathbf{x})] + b_y, \quad (37)$$

1241 where we set  $b_y := \mathbb{E}_{p(\mathbf{z}|y)} [\log p(y|\mathbf{z})]$  for notational convenience.

1242 For concreteness, let  $y_0, y_1, \dots, y_m$  denote the outcomes satisfying the diversity condition in condition  
 1243 (i). In particular, for  $y = y_0$  we have  
 1244

$$1245 \mathbf{f}(\mathbf{x})^\top \mathbf{g}(y_0) - \log Z(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}|y_0) \log p(\mathbf{z}|\mathbf{x}) - h_{y_0} + b_{y_0}, \quad (38)$$

1247 with  $h_{y_0} := \sum_{\mathbf{z}} p(\mathbf{z}|y_0) \log p(\mathbf{z}|y_0, \mathbf{x})$ . Similarly, for  $y = y_1$ ,  
 1248

$$1249 \mathbf{f}(\mathbf{x})^\top \mathbf{g}(y_1) - \log Z(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}|y_1) \log p(\mathbf{z}|\mathbf{x}) - h_{y_1} + b_{y_1}. \quad (39)$$

1251 Subtracting Eq. equation 38 from Eq. equation 39, we obtain  
 1252

$$1253 (\mathbf{g}(y_1) - \mathbf{g}(y_0))^\top \mathbf{f}(\mathbf{x}) = \left( \sum_{\mathbf{z}} (p(\mathbf{z}|y_1) - p(\mathbf{z}|y_0)) \log p(\mathbf{z}|\mathbf{x}) \right) - (h_{y_1} - h_{y_0}) + (b_{y_1} - b_{y_0}). \quad (40)$$

1257 Since  $y$  can take  $m + 1$  distinct values, Eq. 40 yields  $m$  linearly independent equations. Collecting  
 1258 them together, we obtain  
 1259

$$1260 \underbrace{(\mathbf{f}_y(y_1) - \mathbf{f}_y(y_0), \dots, \mathbf{f}_y(y_\ell) - \mathbf{f}_y(y_0))^\top}_{\mathbf{L}^\top} \mathbf{f}_x(\mathbf{x}) \quad (41)$$

$$1263 \underbrace{([p(\mathbf{z}|y_1) - p(\mathbf{z}|y_0)]_{\mathbf{z}}, \dots, [p(\mathbf{z}|y_\ell) - p(\mathbf{z}|y_0)]_{\mathbf{z}})^\top}_{\hat{\mathbf{L}}} [\log p(\mathbf{z}|\mathbf{x})]_{\mathbf{z}} \\ 1264 - \underbrace{[h_{y_1} - h_{y_0}, \dots, h_{y_\ell} - h_{y_0}]}_{\mathbf{h}_y} + \underbrace{[b_{y_1} - b_{y_0}, \dots, b_{y_\ell} - b_{y_0}]}_{\mathbf{b}_y}. \quad (42)$$

1268 By the diversity condition, the matrix  $\mathbf{L} \in \mathbb{R}^{m \times m}$  is invertible. Hence we can solve for  $\mathbf{f}_x(\mathbf{x})$ :  
 1269

$$1270 \mathbf{f}_x(\mathbf{x}) = (\mathbf{L}^\top)^{-1} \hat{\mathbf{L}} [\log p(\mathbf{z}|\mathbf{x})]_{\mathbf{z}} - (\mathbf{L}^\top)^{-1} \mathbf{h}_y + \underbrace{(\mathbf{L}^\top)^{-1} \mathbf{b}_y}_{\mathbf{b}}. \quad (43)$$

1273 Then, as  $H(\mathbf{z} \mid \mathbf{x}) \rightarrow 0$ , by lemmas D.2 and D.3, we have:  
 1274

$$1275 \mathbf{f}_x(\mathbf{x}) = (\mathbf{L}^\top)^{-1} \hat{\mathbf{L}} \underbrace{[\log p(z_1 \mid \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell \mid \mathbf{x})]_{z_\ell}}_{\text{by Lemma C.2}} - \underbrace{(\mathbf{L}^\top)^{-1} \mathbf{h}_y}_{\text{by Lemma C.3, } \rightarrow 0} + \mathbf{b}. \quad (44)$$

1278  $\square$   
 1279

1280 Finally, defining  $\mathbf{A} = (\mathbf{L}^\top)^{-1} \hat{\mathbf{L}} \mathbf{S}$  completes the proof.  
 1281

1282  
 1283  
 1284  
 1285  
 1286  
 1287  
 1288  
 1289  
 1290  
 1291  
 1292  
 1293  
 1294  
 1295

1296 F JUSTIFICATION FOR LOG-POSTERIOR ESTIMATION VIA LINEAR PROBING  
12971298 **Corollary 3.1.** Suppose Theorem 2.1 holds, i.e.,  
1299

1300 
$$\mathbf{f}(\mathbf{x}) \approx \mathbf{A} \left[ [\log p(z_1 | \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell | \mathbf{x})]_{z_\ell} \right] + \mathbf{b}. \quad (45)$$

1301 Let  $\mathbf{x}_0$  and  $\mathbf{x}_1$  be two counterfactual samples that differ only in the  $i$ -th latent concept  $z_i$ , each with its  
1302 own ground-truth label. Then the corresponding representations  $(\mathbf{f}(\mathbf{x}_0), \mathbf{f}(\mathbf{x}_1))$  are linearly separable  
1303 with respect to these labels. In particular, there exists a weight matrix  $\mathbf{W}$  such that  $\mathbf{W} \tilde{\mathbf{A}}^{(i)} \approx \mathbf{I}$ , and  
1304 the associated logits recover the marginal posterior  $[p(z_i | \mathbf{x})]_{z_i}$  over all possible values of  $z_i$ . In the  
1305 context where  $z_i$  is binary, the logits reduce to a two-dimensional vector, and the softmax recovers  
1306 the marginal posterior  $p(z_i = 0 | \mathbf{x})$ , or equivalently,  $p(z_i = 1 | \mathbf{x}) = 1 - p(z_i = 0 | \mathbf{x})$ .  
13071308 **Intuition.** The key idea is that each latent concept contributes to the representation along a distinct  
1309 linear direction. Changing only one concept shifts the representation along its direction, so a simple  
1310 linear classifier can isolate this change and recover the marginal posterior. For binary concepts, this  
1311 reduces to a one-dimensional separation, while for multi-class concepts, each class corresponds to its  
1312 own direction.1313 *Proof.* Consider the approximation  
1314

1315 
$$\mathbf{f}(\mathbf{x}) \approx \mathbf{A}\mathbf{g}(\mathbf{x}) + \mathbf{b}, \quad \mathbf{g}(\mathbf{x}) = \left[ [\log p(z_1 | \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell | \mathbf{x})]_{z_\ell} \right].$$
  
1316

1317 For the counterfactual samples  $\mathbf{x}_0$  and  $\mathbf{x}_1$  differing only in  $z_i$ , we pass the representations into a  
1318 linear classifier with weights  $\mathbf{W}$ . The classifier produces logits  
1319

1320 
$$\text{logits} \approx \mathbf{W}(\mathbf{A}\mathbf{g}(\mathbf{x}) + \mathbf{b}), \quad (46)$$

1321 where **logits** is a vector over all possible values of  $z_i$ . In the binary case, this is a two-dimensional  
1322 vector  
1323

$$[\log p(z_i = 0 | \mathbf{x}), \log p(z_i = 1 | \mathbf{x})]^\top,$$

1324 and in the multi-class case, it contains one entry per category.  
13251326 For correct classification under cross-entropy loss, the logits should recover the log-posterior for all  
1327 categories (up to an additive constant):  
1328

$$\text{logits} = [\log p(z_i = k | \mathbf{x})]_k + \text{const}, \quad (47)$$

1329 where  $k$  indexes all possible values of  $z_i$ , and the constant does not affect the softmax output.  
13301331 Comparing equation 46 and equation 47, we require  
1332

1333 
$$\mathbf{W} \tilde{\mathbf{A}}^{(i)} \approx \mathbf{I}, \quad (48)$$

1334 where  $\tilde{\mathbf{A}}^{(i)}$  is the block of columns of  $\mathbf{A}$  associated with all possible values of  $z_i$ . This condition  
1335 ensures that the classifier isolates the contribution from  $z_i$  and produces the correct logits.  
13361337 **Binary case:** When  $z_i$  is binary,  $\tilde{\mathbf{A}}^{(i)}$  has two columns, and the logits reduce to a two-dimensional  
1338 vector  $[\log p(z_i = 0 | \mathbf{x}), \log p(z_i = 1 | \mathbf{x})]^\top$ . After softmax, we directly obtain the marginal  
1339 posterior

1340 
$$p(z_i = 0 | \mathbf{x}), \quad p(z_i = 1 | \mathbf{x}) = 1 - p(z_i = 0 | \mathbf{x}).$$
  
1341

1342 Therefore, the counterfactual pair  $(\mathbf{x}_0, \mathbf{x}_1)$  is linearly separable with respect to their ground-truth  
1343 labels in both the general multi-class and binary cases.  $\square$   
13441345  
1346  
1347  
1348  
1349

1350 **G EXPERIMENTAL DETAILS**  
1351

1352 **Training Data** For all experiments, we use pre-trained LLMs downloaded from <https://huggingface.co/>, including Pythia-70m, 1.4b, 2.8b (Biderman et al., 2023), Gemma3-1b  
1353 (Team et al., 2025), and Qwen3-1.7b (Team, 2025). LLM representations are extracted from  
1354 these models using the first 200 million tokens of the Pile dataset, obtained from [https://huggingface.co/datasets/EleutherAI/the\\_pile\\_deduplicated](https://huggingface.co/datasets/EleutherAI/the_pile_deduplicated) (Gao et al.,  
1355 2020). For each token, we record the corresponding representation from the model’s last hidden  
1356 layer, aligned with Theorem 2.2. These pre-extracted representations form the training data for the  
1357 proposed sparse ConCA and SAEs.  
1358

1360  
1361 Table 3: Counterfactual concept pairs used for evaluation, adapted from Park et al. (2023).  
1362

| #                                | Concept               | Example                  | Word Pair Counts |
|----------------------------------|-----------------------|--------------------------|------------------|
| <i>Verb inflections</i>          |                       |                          |                  |
| 1                                | verb → 3pSg           | (accept, accepts)        | 50               |
| 2                                | verb → Ving           | (add, adding)            | 50               |
| 3                                | verb → Ved            | (accept, accepted)       | 50               |
| 4                                | Ving → 3pSg           | (adding, adds)           | 50               |
| 5                                | Ving → Ved            | (adding, added)          | 50               |
| 6                                | 3pSg → Ved            | (adds, added)            | 50               |
| 7                                | verb → V + able       | (accept, acceptable)     | 50               |
| 8                                | verb → V + er         | (begin, beginner)        | 50               |
| 9                                | verb → V + tion       | (compile, compilation)   | 50               |
| 10                               | verb → V + ment       | (agree, agreement)       | 50               |
| <i>Adjective transformations</i> |                       |                          |                  |
| 11                               | adj → un + adj        | (able, unable)           | 50               |
| 12                               | adj → adj + ly        | (according, accordingly) | 50               |
| 21                               | adj → comparative     | (bad, worse)             | 87               |
| 22                               | adj → superlative     | (bad, worst)             | 87               |
| 23                               | frequent → infrequent | (bad, terrible)          | 86               |
| <i>Size, thing, noun</i>         |                       |                          |                  |
| 13                               | small → big           | (brief, long)            | 25               |
| 14                               | thing → color         | (ant, black)             | 50               |
| 15                               | thing → part          | (bus, seats)             | 50               |
| 16                               | country → capital     | (Austria, Vienna)        | 158              |
| 17                               | pronoun → possessive  | (he, his)                | 4                |
| 18                               | male → female         | (actor, actress)         | 52               |
| 19                               | lower → upper         | (always, Always)         | 73               |
| 20                               | noun → plural         | (album, albums)          | 100              |
| <i>Language translations</i>     |                       |                          |                  |
| 24                               | English → French      | (April, avril)           | 116              |
| 25                               | French → German       | (ami, Freund)            | 128              |
| 26                               | French → Spanish      | (annee, año)             | 180              |
| 27                               | German → Spanish      | (Arbeit, trabajo)        | 228              |

1397 **Testing Data for Results in Figures 2 and 3.** For evaluation, we use counterfactual text pairs that  
1398 differ in only a single concept while keeping all other aspects unchanged. We emphasize again that  
1399 constructing such pairs is challenging due to the complexity of natural language, as also highlighted  
1400 in Park et al. (2023); Jiang et al. (2024). We adopt 27 high-precision counterfactual concepts from  
1401 Park et al. (2023), derived from the Big Analogy Test dataset (Gladkova et al., 2016), as our testing  
1402 dataset. Table 3 lists the 27 concepts, one illustrative pair per concept, and the number of pairs used  
1403 for evaluation. Despite its modest size, this benchmark suffices to meaningfully distinguish method  
1404 performance and validate the sensitivity of our evaluation framework.

---

1404           **Algorithm 1** Evaluation of SAE/ConCA Concepts via Supervised Linear Classification

---

1405           **Require:** Trained SAEs/ConCA, 27 counterfactual pairs  $\{\mathbf{x}_i\}_{i=1}^{27}$

1406           **Ensure:** Mean Pearson correlation between SAE features and concept logits

1407           1: **Step 1: Obtain concept logits**

1408           2: **for**  $i = 1$  to 27 **do**

1409           3:    Train LogisticRegression on the  $i$ -th counterfactual pair

1410           4:    Compute logit  $s_i = \text{logit}(c^k = 1 | \mathbf{f}(\mathbf{x}_i))$

1411           5: **end for**

1412           6: Stack logits to form  $\mathbf{s} = (s_1, s_2, \dots, s_{27})$

1413           7: **Step 2: Extract SAEs and ConCA latent features**

1414           8: **for**  $i = 1$  to 27 **do**

1415           9:    Pass  $\mathbf{f}(\mathbf{x}_i)$  through SAE to get latent  $\tilde{\mathbf{z}}_i$

1416           10:   Compute element-wise exponentiation  $\tilde{\mathbf{z}}_i = \exp(\tilde{\mathbf{z}}_i)$

1417           11: **end for**

1418           12: Stack features to form  $\tilde{\mathbf{z}} \in \mathbb{R}^{27 \times D}$

1419           13: **Step 3: Compute correlation matrix**

1420           14: **for**  $d = 1$  to  $D$  **do**

1421           15:    Compute Pearson correlation  $R_d = \mathbf{C}(\mathbf{s}, \tilde{\mathbf{z}}_{:,d})$  ( $D$  denotes SAEs/ConCA's feature dimension)

1422           16: **end for**

1423           17: **Step 4: Solve assignment problem**

1424           18: Apply Hungarian algorithm on  $\mathbf{R}$  to obtain optimal assignment.

1425           19: Compute assigned Pearson correlations

1426           20: **Step 5: Aggregate metric**

1427           21: Report mean Pearson correlation across the 27 concepts.

---

1428

1429           **Testing Data for Downstream Tasks in Figure 5.** For the few-show learning setting in Figure 5, we leverage a previously collected set of 113 binary classification datasets from [Kantamneni et al. \(2025\)](#), covering diverse tasks including challenging cases such as front-page headline detection and logical entailment. Each dataset provides prompts and binary targets (0 or 1), with prompt lengths ranging from 5 to 1024 tokens. Refer to Table 3 in [Kantamneni et al. \(2025\)](#) for details. For the out-of-distribution task in Figure 5, we also leverage 8 datasets from [Kantamneni et al. \(2025\)](#). These include: These include: 2 preexisting GLUE-X datasets designed as “extreme” versions of tasks testing grammaticality and logical entailment, 3 datasets with altered language, i.e., Translated to French, Spanish, and German, and 3 datasets with syntactic modifications substitutions of names (Fictional Characters, Random Letter Inserted, and Reversed Name Order) with cartoon characters. Probes are trained in standard settings and evaluated on these out-of-distribution test examples. Both two dataset can be downloaded from <https://github.com/JoshEngels/SAE-Probes/tree/main>.

1441

1442           **Training Pipeline.** All ConCA and SAE variants use a feature dimension of  $2^{15}$ , based on empirical

1443           settings from sparse SAEs. They are trained for 20,000 optimization steps with a batch size of 10,000,

1444           using the Adam optimizer with an initial learning rate of  $1 \times 10^{-4}$  and a linear warm-up over the

1445           first 200 steps. For the top- $k$  and batch-top- $k$  SAEs,  $k$  is set to 32. P-annealing SAEs incorporate a

1446           sparsity warm-up of 400 steps with an initial sparsity penalty coefficient 0.1. All experiments are run

1447           on a server equipped with 4 NVIDIA A100 GPUs.

1448

1449           **Pearson correlation coefficient** We use the PCC as the evaluation metric, as described in exper-

1450           iments. Algorithm 1 summarizes the procedure: for each of the 27 counterfactual concept pairs,

1451           we first obtain concept logits using a supervised linear classifier. The same inputs are then passed

1452           through the trained SAE to extract latent features, which are exponentiated and stacked into a feature

1453           matrix. We compute the Pearson correlation between each SAE feature and the corresponding concept

1454           logit, and solve the assignment problem using the Hungarian algorithm to account for permutation

1455           indeterminacy. The mean Pearson correlation across all concepts is reported as the final evaluation

1456           score.

1457           **AUC.** The Area Under the Curve (AUC) is used to evaluate the performance of a binary classifier

1458           for concept prediction. The ROC curve plots the True Positive Rate (TPR) against the False Positive



Figure 6: Rank-based fraction of significant features for SAE and ConCA variants across three counterfactual pair concepts: [3pSg -> Ved], [adj -> adj + ly], and [adj -> comparative]. For each concept, the top-32 features with highest differences are selected, and points show the fraction of features exhibiting significant changes (mean  $\pm$  std across seeds). Higher fractions indicate more variant features.

Rate (FPR) at different threshold levels, illustrating the trade-off between correctly predicting positive instances and incorrectly predicting negative instances. The AUC measures the total area under this curve, ranging from 0 to 1. An AUC of 1.0 indicates perfect classification, 0.5 corresponds to random guessing, and values closer to 0 indicate poor performance. This metric provides an aggregate, threshold-independent measure of the classifier’s ability to discriminate between the two classes.

**Linear Probing in Downstream Tasks.** In our few-shot experiments, we first apply different SAEs and ConCA variants to the representations of pretrained LLMs to obtain feature embeddings. We then train a logistic regression classifier (using the LogisticRegression implementation from the scikit-learn package) on these features with limited labeled examples. To mitigate overfitting given the high dimensionality of the features, we employ an L2 penalty and select the regularization strength through cross-validation. In our out-of-distribution shift experiments, we again train a logistic regression classifier on the extracted features. To avoid overfitting to the in-distribution validation split, we fix the regularization strength to its default value (i.e., C=1.0 in LogisticRegression) instead of tuning it via cross-validation. This ensures a fairer and more stable evaluation under distribution shift.

## H VISUALIZATION OF COUNTERFACTUAL PAIR EXPERIMENTS

To more clearly illustrate the advantages of the proposed ConCAs, we perform a visualization analysis based on features extracted by ConCA and SAE variants from counterfactual pairs. Specifically, we first select the top 32 ( $k$  in top- $k$ ) features with the highest average absolute difference between a counterfactual pair, focusing on the most significant variations while avoiding dilution from less responsive features. We then compute the rank-based fraction of significant features over these 32 features across multiple thresholds to ensure robustness. *The fraction measures the proportion of selected features exhibiting significant changes, providing a metric of feature sensitivity and stability in response to a single concept change. Intuitively, if the learned features are expected to capture a single concept as much as possible, their responses should be small—that is, the fraction will be low.* The results are visualized using scatter plots with mean and standard deviation to capture both distribution and central tendency. This analysis highlights how ConCAs capture selective and meaningful feature variations, complementing the quantitative metrics reported earlier. For GroupNorm, we apply the same procedure independently within each group. That is, the 32 selection and rank-based fraction calculation are performed per group, and the final metric is obtained by averaging across all groups. This ensures that group-level normalization does not interfere across groups, making the evaluation consistent for GroupNorm settings. Algorithm 2 summarizes the procedure.

Figures 4, 6–13 show the rank-based fraction of significant features for the proposed ConCA and SAE variants across 27 counterfactual pairs, on Pythia-2.8b. The LayerNorm configuration exhibits the smallest fractions, indicating more stable or less variant feature changes under counterfactual conditions. In contrast, the Batch-Topk and Topk SAE variants produce larger fractions, reflecting more variable feature responses. BatchNorm and Panneal configurations display similar intermediate behavior. Overall, these trends are broadly aligned with the MPC results shown in Figure 3.



Figure 7: Rank-based fraction of significant features for SAE and ConCA variants across three counterfactual pair concepts: [English - French], [French - German], and [French - Spanish].



Figure 8: Rank-based fraction of significant features for SAE and ConCA variants across three counterfactual pair concepts: [frequent - infrequent], [German - Spanish], and [lower - upper].



Figure 9: Rank-based fraction of significant features for SAE and ConCA variants across three counterfactual pair concepts: [male - female], [noun - plural], and [pronoun - possessive].



Figure 10: Rank-based fraction of significant features for SAE and ConCA variants across three counterfactual pair concepts: [small - big], [thing - color], and [thing - part].



1578 Figure 11: Rank-based fraction of significant features for SAE and ConCA variants across three  
1579 counterfactual pair concepts: [verb - 3pSg], [verb - V + able], and [verb - V + er].  
1580



1597 Figure 12: Rank-based fraction of significant features for SAE and ConCA variants across three  
1598 counterfactual pair concepts: [verb - V + ment], [verb - V + tion], and [verb -  
1599 Ved].  
1600  
1601  
1602  
1603  
1604  
1605  
1606



1615 Figure 13: Rank-based fraction of significant features for SAE and ConCA variants across three  
1616 counterfactual pair concepts: [verb - Ving], [Ving - Ved], and [Ving - Ved].  
1617  
1618  
1619

---

1620 **Algorithm 2** Compute Rank-Based Fraction of Significant Features for Counterfactual Pairs

1621

1622 **Require:** Features of counterfactual pair ( $\mathbf{z}_s, \mathbf{z}_t$ ),  $k$ , normalization, number of groups  $G$

1623 **Ensure:** Fraction of significant features

1624 1: Compute element-wise absolute difference:  $\mathbf{diff} = |\mathbf{z}_s - \mathbf{z}_t|$

1625 2: **if** normalization == "Group" **then**

1626 3: Split  $\mathbf{diff}, \mathbf{z}_s, \mathbf{z}_t$  into  $G$  groups

1627 4: **for**  $g = 1$  **to**  $G$  **do**

1628 5: Select top- $k_g = \max(1, k/G)$  elements in group  $g$  based on  $\mathbf{diff}$

1629 6: Convert group features  $\mathbf{z}_s^g, \mathbf{z}_t^g$  to percentile ranks

1630 7: Compute absolute rank differences for top- $k_g$  elements

1631 8: Evaluate significance across multiple thresholds  $T = \{0.1, 0.2, 0.3, 0.4, 0.5\}$

1632 9: Compute average fraction of significant features for group  $g$

1633 10: **end for**

1634 11: Average fractions across groups to obtain overall fraction

1635 12: **else**

1636 13: Select top- $k$  elements globally based on  $\mathbf{diff}$

1637 14: Convert selected features  $\mathbf{z}_s, \mathbf{z}_t$  to percentile ranks

1638 15: Compute absolute rank differences for top- $k$  elements

1639 16: Evaluate significance across multiple thresholds  $T = \{0.1, 0.2, 0.3, 0.4, 0.5\}$

1640 17: Compute average fraction of significant features

1641 18: **end if**

1642 19: **return** Overall fraction of significant features

---

## I VISUALIZATION OF CLASSIFICATION TASKS

1643 To better understand why ConCA features transfer effectively under the few-shot setting, we visualize  
 1644 the features extracted by the proposed ConCA and SAEs variants from test data using t-SNE. By  
 1645 projecting all features into 2D space, we can observe the structure and separability of learned  
 1646 representations, providing intuition for the superior downstream performance of ConCA compared  
 1647 to SAE variants. Figure 14 provides t-SNE visualization (Maaten & Hinton, 2008) of features of  
 1648 testing data, extracted by SAE and ConCA variants, on a example of the few-shot task, which shows  
 1649 that ConCA configurations (e.g., LayerNorm, BatchNorm, GroupNorm) produce more compact and  
 1650 well-separated clusters, indicating more stable and discriminative representations compared to SAE  
 1651 variants.

## J ACKNOWLEDGMENT OF LLMs

1652 We acknowledge that large language models (LLMs) were used in this work only for word-level  
 1653 tasks, including correcting typos, improving grammar, and refining phrasing. No substantive content,  
 1654 results, or scientific interpretations were generated by LLMs. All scientific ideas, analyses, and  
 1655 conclusions presented in this manuscript are solely the work of the authors.

## K PRACTICAL DIAGNOSTIC FOR THE DIVERSITY CONDITION

1664 The diversity condition in our theory requires that the model's output space contains enough linearly  
 1665 independent directions. Although the assumption is existential (it only requires that there exists such  
 1666 a set of output tokens), it is useful to provide an empirical procedure showing that modern LLMs  
 1667 indeed offer sufficiently diverse outputs. Since exhaustively checking all possible token combinations  
 1668 is infeasible, we design a practical proxy that searches for a diverse subset of outputs.

1669 We begin by randomly sampling a large set of candidate tokens from the model's vocabulary. One  
 1670 token is chosen as a reference output. For each remaining candidate, we compute the difference  
 1671 between its output embedding and that of the reference token. These differences represent all  
 1672 available output directions relative to the reference. To find a subset of tokens whose directions are as  
 1673 independent as possible, we apply a greedy selection procedure based on LU decomposition with  
 pivoting. This method reorders the candidate directions in decreasing order of their contribution to



Figure 14: Visualization of features extracted by SAE and ConCA variants on a example of few-shot classification task datasets. Each point represents a test sample, colored by its class label. ConCA configurations (e.g., LayerNorm, BatchNorm, GroupNorm) produce more compact and well-separated clusters, indicating more stable and discriminative representations compared to SAE variants.



Figure 15: Singular-value spectra of the greedily selected output-difference matrix across Pythia-70m, Pythia-1.4B, and Pythia-2.8B. Each curve plots the log-scale singular values (largest to smallest) obtained from a large candidate pool of output tokens using LU-pivoting selection. The spectra decay smoothly and only collapse in the final few dimensions, indicating that each model provides a numerically full-rank set of output directions and that the diversity assumption can be approximately satisfied in practice.

the overall dimensionality. Taking the first 2,048 directions (for Pythia-12B) yields a set of outputs that spans the most independent subspace available within the candidate pool. We then assess how diverse this selected set actually is by measuring the spectrum of singular values derived from the chosen directions. A well-spread singular-value spectrum indicates that the selected outputs span a nearly full-dimensional space.

Across all model sizes, the spectra exhibit a consistent pattern. The largest several hundred singular values remain high and decay smoothly, indicating that each model provides a substantial number of independent output directions. As the index approaches the effective dimensionality of the model, the tail of the spectrum gradually drops, but only the final few singular values approach very small magnitudes. This behavior suggests that the selected output directions nearly span the model’s representational space and are far from the rank-deficient structure we observe when tokens are selected at random.

Interestingly, the point at which the spectrum begins to decline sharply shifts with model scale (See Figure 15): larger models (1.4B and above) maintain strong singular values for a greater proportion

1728 of directions compared to the 70m variant. This reflects the natural trend that larger models encode  
 1729 richer and more varied output embeddings. Nevertheless, even the 70m model remains numerically  
 1730 full-rank down to its final few dimensions.

## L INFORMATIONAL SUFFICIENCY DIAGNOSTICS

1735 Our theory requires an informational sufficiency condition: the learned representation should contain  
 1736 enough information to reliably determine the related latent concept. For binary latent factors, this  
 1737 means the posterior distribution over the factor should be sharply peaked given the representation.  
 1738 Although this assumption is mild and standard in representation analyses, it is useful to provide a  
 1739 practical diagnostic showing that LLMs indeed satisfy it. We use the constructed 27 counterfactual  
 1740 concept pairs as mentioned in Table 3. These pairs cover a broad variety of concept types while  
 1741 keeping each concept operationally well-defined.

1742 For each concept pair, we gather a list of word pairs exhibiting the target transformation. We  
 1743 extract last-token representations from the model for each word, forming two embedding sets  
 1744 corresponding to the two concept values. We then train a linear probe (logistic regression) to classify  
 1745 the target concept using 70/30 train–test splits repeated with three random seeds. The linear probe is  
 1746 intentionally simple: rather than maximising accuracy, its role is to estimate an empirical distribution  
 1747  $p(\mathbf{z}|\mathbf{x})$ , allowing us to measure the uncertainty the representation leaves about the concept.

1748 To quantify how well the representation specifies the latent concept, we compute the conditional  
 1749 entropy of the probe’s predicted distribution over the concept: entropy near 0 bits indicates that the  
 1750 representation almost perfectly determines the concept; entropy near 1 bit corresponds to complete  
 1751 uncertainty (uniform prediction).

1752 Across the 27 evaluated concepts (See Figure 16), we observe a clear and consistent trend: larger  
 1753 Pythia models yield substantially lower conditional entropy, indicating increasingly informative  
 1754 representations. The 70M model shows moderate informational sufficiency (typically 0.1–0.3 bits,  
 1755 with a few harder concepts higher), while the 1.4B and 2.8B models exhibit uniformly low entropies  
 1756 (mostly below 0.15 bits). This pattern suggests that, at the model scales relevant for our theoretical  
 1757 analysis, the representations almost deterministically encode the target concept. Consequently, the  
 1758 informational-sufficiency (approximate invertibility) assumption is empirically well supported.

## M SYNTHETIC VALIDATION OF MARGINAL VS. JOINT IDENTIFIABILITY.

1763 To complement our theoretical discussion in Appendix C, and also compare our ConCA and SAEs,  
 1764 we design a synthetic experiment as follow. We begin by sampling 5 binary latent variables whose  
 1765 causal dependencies follow an Erdős–Rényi (ER) random directed acyclic graph (DAG). Each graph  
 1766 is drawn with an expected number of edges equal to 10. For every node in the DAG, we define  
 1767 a conditional distribution over its parents using a Bernoulli model whose parameters are sampled  
 1768 uniformly from the interval [0.2, 0.8]. We also generate counterfactual data that only in one latent  
 1769 variable while keeping the remains unchanged, to train base model and also train linear probing as  
 1770 evaluation. To simulate a nonlinear mixture process, we then convert the latent variable samples  
 1771 into one-hot format and randomly apply a permutation matrix to the one-hot encoding, generating  
 1772 one-hot observed samples. These are then transformed into binary observed samples. To simulate  
 1773 next-token prediction, we randomly mask a part of the binary observed data, e.g.,  $x_i$ , and predict it  
 1774 by use the remaining portion  $\mathbf{x}_{\setminus i}$ . After training, we obtain the learned representations. Note that we  
 1775 set the representation dimension to 10 (i.e., component-wise posterior corresponds to  $2 \times 5$ ) in order  
 1776 to highlight the difference between our theoretical result and the formulation in (Liu et al., 2025a),  
 1777 which requires a representation dimension of 32 (i.e., joint posterior corresponds to  $2^5$ ).

1778 Given the above setup, our first experiment aims to highlight the difference between our theoretical  
 1779 result and the formulation in (Liu et al., 2025a). To this end, we train a linear probe on the learned  
 1780 representations (as justified by Corollary 3.1). The probe achieves a classification accuracy of 0.923  
 1781 (std: 0.021). This demonstrates that  $2 \times 5$  dimensional representations are already sufficient for linear  
 1782 classification, and that  $2^5$  dimensional representations required by Liu et al. (2025a) are unnecessary,  
 1783 thereby empirically supporting our theoretical result in Theorem 2.2.



Figure 16: Conditional entropy for the 27 concept pairs across three Pythia model scales (70m, 1.4b, 2.8b). Lower entropy indicates that the representation more sharply determines the underlying concept. As model size increases, entropies consistently decrease—especially for non-trivial semantic contrasts—illustrating that informational sufficiency (approximate invertibility) emerges naturally.

| 1836 | Activation Type        | Clamp Range | Pearson $\uparrow$  | MSE $\downarrow$ |
|------|------------------------|-------------|---------------------|------------------|
| 1837 | Exp                    | $[-20, 20]$ | $0.7029 \pm 0.0081$ | $10.59 \pm 2.10$ |
| 1838 | Exp                    | $[-30, 30]$ | $0.7055 \pm 0.0148$ | $11.18 \pm 0.85$ |
| 1839 | Exp                    | $[-40, 40]$ | $0.7020 \pm 0.0077$ | $11.03 \pm 0.97$ |
| 1840 | Exp                    | $[-50, 50]$ | $0.7006 \pm 0.0018$ | $10.65 \pm 0.55$ |
| 1841 | <b>SoftPlus (ours)</b> | —           | $0.7324 \pm 0.0002$ | $7.63 \pm 0.40$  |
| 1842 |                        |             |                     |                  |

1843  
 1844 Table 4: Performance comparison of exponential and SoftPlus activation variants under clamped toy  
 1845 settings. SoftPlus achieves consistently higher Pearson correlation and lower MSE, even when the  
 1846 exponential is artificially stabilized.

1847  
 1848 Our second experiment is to verify the performance of our ConCA and SAEs on the learned repre-  
 1849 sentations. To this end, we train SAEs (Panneal), and ConCA (LayerNorm). We compute Pearson  
 1850 correlation between logits obtained by linear probing trained on counterfactual pair, and features  
 1851 obtained by SAEs and ConCA. The results are as follows: ConCA: 0.813 (std: 0.031) SAEs: 0.635  
 1852 (std: 0.046). We emphasize that the scope of this work focuses on the theoretical guarantee in  
 1853 Theorem 2.1, which addresses identifiability up to the linear mixtures. Achieving unique recovery  
 1854 of individual concepts is substantially challenging. While additional assumptions, such as sparsity  
 1855 conditions familiar from compressed sensing, can in principle support uniqueness, it remains unclear  
 1856 whether the mixing matrix  $\mathbf{A}$  in our setting satisfies the specific sparsity or incoherence conditions  
 1857 required. Exploring these assumptions is an interesting direction for future work.

## 1858 N VERIFYING EXPONENTIAL SUBSTITUTES ON PYTHIA-70M

1859 A core modeling choice in ConCA is the replacement of the exponential function with numerically  
 1860 stable surrogates such as SoftPlus, motivated by the fact that LLM activations lie in ranges that  
 1861 make the true exponential function prone to gradient explosion and instability. To further validate  
 1862 this design choice, we conduct an additional controlled experiment where the exponential function  
 1863 becomes numerically stable.

1864 Specifically, we construct a toy setting by clamping the final-layer hidden activations of Pythia-70m  
 1865 to bounded ranges where exponential function can be safely evaluated without numerical overflow.  
 1866 We consider the four clamping windows as shown in Table 4. We additionally include LayerNorm and  
 1867 the same sparsity penalty used in our SoftPlus variant to ensure comparability. We then train ConCA  
 1868 variants using the true exponential under these artificially stabilized conditions, and compare them  
 1869 with our SoftPlus-based variant. Performance is evaluated using both Pearson correlation (between  
 1870 recovered concepts and linear-probe ground truth) and MSE reconstruction error.

1871 Three observations emerge: Exp becomes usable only under artificial clamping. Even when stabilized,  
 1872 exp-based ConCA exhibits lower Pearson correlation (0.69–0.72) and higher MSE (10–12) across all  
 1873 clamp settings. SoftPlus consistently outperforms exp, achieving both the highest correlation (0.73)  
 1874 and the lowest MSE (7–8), despite being evaluated under more challenging, unclamped activation  
 1875 distributions. Together, these findings demonstrate that the surrogate activations used in ConCA are  
 1876 not only numerically safer but also better aligned with empirical behavior, even in settings explicitly  
 1877 constructed to favor the exponential function. This experiment thus reinforces our modeling choice  
 1878 and supports the theoretical motivation behind replacing exp in ConCA.

## 1881 O ACTIVATION PATCHING EVALUATION

1882 Activation patching is widely regarded as one of the strongest tests of functional interpretability.  
 1883 Unlike reconstruction-based metrics (e.g., MSE) or alignment metrics (e.g., Pearson correlation), acti-  
 1884 vation patching directly measures whether a representation—after being encoded and reconstructed by  
 1885 a concept-extraction model—still leads the LLM to make similar token-level predictions. To evaluate  
 1886 this, we measure how substituting an internal hidden state with its ConCA/SAE reconstruction affects  
 1887 the LLM’s output logits. If a dictionary model faithfully captures the underlying functional structure,  
 1888 the LLM’s predictions should remain largely unchanged.



Figure 17: Activation patching comparison across ConCA and SAE variants on Pythia-70M using 10,000 cached hidden activations from The Pile. (a) Argmax Match (higher is better): ConCA variants preserve the model’s top prediction more reliably than SAE baselines. (b) Top-10 Overlap (higher is better): ConCA reconstructions retain substantially more of the model’s predictive structure. (c) Jensen–Shannon Divergence (lower is better): ConCA achieves lower distributional distortion, indicating higher functional faithfulness.

We use 10k randomly sampled token activations from The Pile activation dataset of Pythia-70m. Sampling is performed once, cached, and reused across models to ensure perfect comparability. For each sampled activation, we: 1: feed the original hidden state into the model’s final prediction layer to obtain the baseline logits. 2: reconstruct the hidden state using either our ConCA or SAEs. 3: feed the reconstructed activation back into the model and compare the resulting logits with the baseline. We report three widely used functional metrics: Argmax Match: whether the top predicted token stays the same. Top-10 Overlap: fraction of overlapping tokens in the top-10 predictions. Jensen–Shannon Divergence: distributional distance between original and reconstructed logits (lower is better). Each metric is averaged over all 10,000 activations.

The results in Figure 17 show that ConCA-BatchNorm achieves the best overall performance across metrics. SAE-top-k and SAE-batch-top-k show the largest divergence, indicating functional mismatch despite good sparsity. ConCA variants exhibit lower variance, suggesting more stable behavior across diverse activations. This experiment demonstrates that: ConCA reconstructions lead the LLM to make more similar predictions, confirming that ConCA retains functional information more faithfully than SAEs.

## P EXPERIMENTS ON ADDITIONAL COUNTERFACTUAL CONCEPT PAIRS

While the original 27 counterfactual concept pairs from Park et al. (2023) provide clean, expert-curated evaluations along several core linguistic axes (verb inflections, adjective morphology, noun attributes, and multilingual translations), they cover only a small portion of the semantic space relevant to modern LLM behavior. In particular, many practically important concepts, such as sentiment polarity, toxicity, factuality, stance, politeness, or degree/intensity—are not represented in the original benchmark. These dimensions are widely studied in interpretability and safety research, and their inclusion offers a more comprehensive evaluation of concept alignment.

To complement the original dataset, we construct 23 additional counterfactual concept pairs, each designed to capture a single semantic concept for linear probing and our theoretical disentanglement analysis. For every concept, we curate 50 pairs where only the targeted semantic attribute changes while all other factors (POS category, morphological structure, lexical frequency, etc.) remain controlled.

These new concepts span five broader semantic families—sentiment polarity, toxicity/politeness, factuality/truthfulness, stance/subjectivity, and degree/intensity—and are summarized in Table 5. Importantly, the pairs were constructed to satisfy the same identifiability constraints emphasized in our main text: each pair differs in one concept, preventing confounding correlations across multiple latent factors. This makes the dataset suitable both for linear probing and for measuring concept-level disentanglement.

A concise overview of the 23 added concepts is provided (full list and examples in Table 5). Overall, the results in the left in Figure 18 show that the ConCA variants demonstrate substantially stronger alignment than standard SAE baselines. In Pythia-70M, ConCA methods outperform SAEs by a large margin, indicating more faithful feature extraction in low-capacity language models. As model size increases to 1.4B and 2.8B, all methods improve, but ConCA retains a consistent advantage: LayerNorm-ConCA yields the highest and most stable correlations across scales, followed closely

1944 Table 5: Additional counterfactual concept pairs (sentiment, toxicity, factuality/truthfulness, stance,  
 1945 politeness). Each concept contains 50 pairs.

1946

| #                                | Concept                        | Example Pair            | Word Pair Counts |
|----------------------------------|--------------------------------|-------------------------|------------------|
| <i>Sentiment polarity</i>        |                                |                         |                  |
| 1                                | positive → negative            | (happy, sad)            | 50               |
| 2                                | positive → neutral             | (amazing, average)      | 50               |
| 3                                | negative → neutral             | (terrible, ordinary)    | 50               |
| <i>Toxicity</i>                  |                                |                         |                  |
| 4                                | toxic → neutral                | (stupid, silly)         | 50               |
| 5                                | toxic → polite                 | (idiot, friend)         | 50               |
| 6                                | rude → polite                  | (shut up, please speak) | 50               |
| <i>Factuality / Truthfulness</i> |                                |                         |                  |
| 7                                | true → false                   | (earth, flat-earth)     | 50               |
| 8                                | factual → nonfactual           | (oxygen, magic-power)   | 50               |
| 9                                | real → fictional               | (doctor, wizard)        | 50               |
| <i>Stance / Subjectivity</i>     |                                |                         |                  |
| 10                               | supportive → opposed           | (agree, oppose)         | 50               |
| 11                               | approving → disapproving       | (praise, blame)         | 50               |
| 12                               | subjective → objective         | (biased, neutral)       | 50               |
| <i>Politeness / Formality</i>    |                                |                         |                  |
| 13                               | polite → impolite              | (sorry, shut-up)        | 50               |
| 14                               | formal → informal              | (assist, help)          | 50               |
| 15                               | respectful → disrespectful     | (sir, dude)             | 50               |
| <i>Emotion / Tone</i>            |                                |                         |                  |
| 16                               | calm → angry                   | (calm, furious)         | 50               |
| 17                               | excited → bored                | (excited, uninterested) | 50               |
| 18                               | friendly → hostile             | (friendly, hostile)     | 50               |
| <i>Intensity / Degree</i>        |                                |                         |                  |
| 19                               | mild → strong                  | (warm, hot)             | 50               |
| 20                               | weak → strong                  | (soft, solid)           | 50               |
| 21                               | low-certainty → high-certainty | (maybe, definitely)     | 50               |
| <i>Common semantic axes</i>      |                                |                         |                  |
| 22                               | general → specific             | (animal, dog)           | 50               |
| 23                               | concrete → abstract            | (chair, justice)        | 50               |

1981

1982

1983 by GroupNorm and BatchNorm. In contrast, SAE-Top-k and Batch-Top-k lag significantly behind,  
 1984 and Panneal improves with scale but remains below ConCA. These results indicate that ConCA’s  
 1985 normalization-driven design leads to more stable and interpretable feature learning, particularly in  
 1986 smaller models where dictionary training is more brittle.

1987

1988

## Q DETAILED RESULTS OF FIGURE 3

1989

1990 While Figure 3 includes error bands reflecting variability across random seeds, many of these standard  
 1991 deviations are extremely small and therefore not visually distinguishable in the plots. To make these  
 1992 differences explicit, we report the full numerical mean and std values for each method–model pair in  
 1993 Tables 6 and 7.

1994

1995

## R RELATION WITH LINEAR REPRESENTATION HYPOTHESIS

1996

1997

In Theorem 2.1, the mixing matrix  $\mathbf{A}$  offers a way to interpret how latent semantic information may  
 be organized within the representation space of LLMs. At a high level,  $\mathbf{A}$  can be viewed as describing



Figure 18: Pearson correlation and MSE between predicted concept logits and matched dictionary features across model scales (Pythia-70M, 1.4B, 2.8B) and dictionary learning methods. Mean  $\pm$  standard deviation over three random seeds is shown. ConCA variants achieve higher Pearson correlation than SAE baselines, with the performance gap most visible in smaller models and remaining stable as scale increases.

| Method     | Model       | Pearson (MPC)        | MSE                   |
|------------|-------------|----------------------|-----------------------|
| BatchNorm  | pythia-70m  | $0.6500 \pm 0.00552$ | $8.3305 \pm 4.10287$  |
|            | pythia-1.4b | $0.7543 \pm 0.00004$ | $1.6418 \pm 0.00135$  |
|            | pythia-2.8b | $0.7630 \pm 0.00132$ | $2.4657 \pm 0.04794$  |
| GroupNorm  | pythia-70m  | $0.7285 \pm 0.00094$ | $9.0071 \pm 1.36961$  |
|            | pythia-1.4b | $0.7914 \pm 0.00222$ | $6.3021 \pm 0.09493$  |
|            | pythia-2.8b | $0.8038 \pm 0.00059$ | $7.1652 \pm 0.30648$  |
| LayerNorm  | pythia-70m  | $0.7325 \pm 0.00015$ | $7.6272 \pm 0.40461$  |
|            | pythia-1.4b | $0.7958 \pm 0.00009$ | $5.2756 \pm 0.09484$  |
|            | pythia-2.8b | $0.8074 \pm 0.00178$ | $3.5708 \pm 0.45880$  |
| Batch-TopK | pythia-70m  | $0.5687 \pm 0.00691$ | $24.6165 \pm 0.10317$ |
|            | pythia-1.4b | $0.6856 \pm 0.00205$ | $24.3850 \pm 0.08773$ |
|            | pythia-2.8b | $0.7037 \pm 0.00211$ | $23.7690 \pm 0.07034$ |
| TopK       | pythia-70m  | $0.5851 \pm 0.01090$ | $22.9035 \pm 0.03389$ |
|            | pythia-1.4b | $0.6969 \pm 0.00399$ | $22.7108 \pm 0.10553$ |
|            | pythia-2.8b | $0.7074 \pm 0.00810$ | $22.5243 \pm 0.03869$ |
| Panneal    | pythia-70m  | $0.6474 \pm 0.00816$ | $7.7097 \pm 0.08165$  |
|            | pythia-1.4b | $0.7413 \pm 0.00234$ | $5.7218 \pm 0.08165$  |
|            | pythia-2.8b | $0.7613 \pm 0.00205$ | $6.3563 \pm 0.03300$  |

Table 6: Comparison of Pearson correlation (MPC) and MSE across normalization methods and Pythia model scales. Each cell reports mean  $\pm$  standard deviation over random seeds.

how the log-posteriors of latent concepts might be linearly combined inside hidden activations. This perspective is related to the broader *Linear Representation Hypothesis*, which suggests that certain semantic attributes in neural representations may interact in an approximately linear manner.

Under this view, each column of  $\mathbf{A}$  may be interpreted as indicating a possible direction associated with a particular latent factor, while differences across rows could correspond to the kinds of *difference vectors* often observed in counterfactual pairs or steering-vector analyses. In particular, when two inputs differ only in one latent concept, their representation difference may align with the corresponding column of  $\mathbf{A}$ , reminiscent of the vector arithmetic phenomena discussed in both word embeddings and modern LLMs.

Such observations hint that  $\mathbf{A}$  may induce a geometric structure in which examples sharing similar latent concept values tend to cluster along certain affine subspaces, while changes in concept values correspond to movement along interpretable directions. From this perspective, the mixing matrix provides a possible explanation for why linear unmixing methods like ConCA can recover meaningful concept-level variations in practice. Of course, these interpretations are exploratory, and the precise geometric structure may depend on various factors such as model architecture, data distribution, and training objective.

| Method     | Model         | Pearson (MPC)         | MSE                   |
|------------|---------------|-----------------------|-----------------------|
| BatchNorm  | Qwen3-1.7B    | $0.7281 \pm 0.000050$ | $3.3193 \pm 0.00026$  |
|            | gemma-3-1b-pt | $0.6853 \pm 0.00374$  | $1.5604 \pm 0.00057$  |
|            | pythia-1.4b   | $0.7543 \pm 0.00004$  | $1.6418 \pm 0.00135$  |
| GroupNorm  | Qwen3-1.7B    | $0.7979 \pm 0.000023$ | $6.1347 \pm 0.00051$  |
|            | gemma-3-1b-pt | $0.7791 \pm 0.00123$  | $6.5240 \pm 0.05917$  |
|            | pythia-1.4b   | $0.7914 \pm 0.00222$  | $6.3021 \pm 0.09493$  |
| LayerNorm  | Qwen3-1.7B    | $0.7900 \pm 0.000034$ | $5.9607 \pm 0.05288$  |
|            | gemma-3-1b-pt | $0.7738 \pm 0.000019$ | $6.1671 \pm 0.12262$  |
|            | pythia-1.4b   | $0.7958 \pm 0.00009$  | $5.2756 \pm 0.09484$  |
| Batch-TopK | Qwen3-1.7B    | $0.6926 \pm 0.01003$  | $18.1650 \pm 0.11887$ |
|            | gemma-3-1b-pt | $0.6617 \pm 0.00301$  | $44.4503 \pm 0.20351$ |
|            | pythia-1.4b   | $0.6856 \pm 0.00205$  | $24.3850 \pm 0.08773$ |
| Panneal    | Qwen3-1.7B    | $0.7345 \pm 0.00500$  | $3.1175 \pm 0.03114$  |
|            | gemma-3-1b-pt | $0.6770 \pm 0.00419$  | $2.7399 \pm 0.02055$  |
|            | pythia-1.4b   | $0.7413 \pm 0.00234$  | $5.7218 \pm 0.08165$  |
| TopK       | Qwen3-1.7B    | $0.7027 \pm 0.00024$  | $15.0734 \pm 0.03822$ |
|            | gemma-3-1b-pt | $0.6758 \pm 0.00334$  | $42.6148 \pm 0.18811$ |
|            | pythia-1.4b   | $0.6969 \pm 0.00399$  | $22.7108 \pm 0.10553$ |

Table 7: Comparison of Pearson correlation (MPC) and MSE across methods and architectures. Values are mean  $\pm$  standard deviation over random seeds.