CONCEPT COMPONENT ANALYSIS: A PRINCIPLED APPROACH FOR CONCEPT EXTRACTION IN LLMS

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

023

024

025

026

027

028

029

031

033

037

040

041

042

043

044 045

046 047

048

051

052

ABSTRACT

Developing human understandable interpretation of large language models (LLMs) becomes increasingly critical for their deployment in essential domains. Mechanistic interpretability seeks to mitigate the issues through extracts human-interpretable process and concepts from LLMs' activations. Sparse autoencoders (SAEs) have emerged as a popular approach for extracting interpretable and monosemantic concepts by decomposing the LLM internal representations into a dictionary. Despite their empirical progress, SAEs suffer from a fundamental theoretical ambiguity: the well-defined correspondence between LLM representations and human-interpretable concepts remains unclear. This lack of theoretical grounding gives rise to several methodological challenges, including difficulties in principled method design and evaluation criteria. In this work, we show that, under mild assumptions, LLM representations can be approximated as a linear mixture of the log-posteriors over concepts given the input context, through the lens of a latent variable model where concepts are treated as latent variables. This motivates a principled framework for concept extraction, namely Concept Component Analysis (ConCA), which aims to recover the log-posterior of each concept from LLM representations through a unsupervised linear unmixing process. We explore a specific variant, termed sparse ConCA, which leverages a sparsity prior to address the inherent ill-posedness of the unmixing problem. We implement 12 sparse ConCA variants and demonstrate their ability to extract meaningful concepts across multiple pre-trained LLMs, showcasing clear advantages over SAEs.

1 Introduction

One of the critical questions surrounding the practical application of LLMs is the extent to which and how the concepts they espouse are ground in reality. The more general question is whether a model trained only on natural language can develop representations of concepts grounded in the real world (Bowman, 2024; Naveed et al., 2023). Understanding this relationship is crucial, as it informs not only how we interpret model mechanism, but also how we can systematically analyze, evaluate, and manipulate these representations. A promising approach to investigating such questions is to extract meaningful semantic units, i.e., human-interpretable concepts, embedded within the models' internal representations and behaviors (Singh et al., 2024). By studying these units, we can begin to probe which aspects of a model's behavior are aligned with human-interpretable concepts, and how multiple concepts interact to generate model outputs.

1.1 REVISITING SAES FOR CONCEPT EXTRACTION

Sparse autoencoders (SAEs). Recently, SAEs have been explored for this purpose (Elhage et al., 2022; Bricken et al., 2023; Huben et al., 2023), offering a potential perspective through which to analyze model behavior, including how such concepts interact and compose to generate the next token. Technically, SAEs learn a set of features whose *linear* combinations can reconstruct the internal representations of LLMs, while enforcing a *sparsity* prior on the features, in the hope that each feature corresponds to a monosemantic concept (Huben et al., 2023; Gao et al., 2025; Braun et al., 2024; Rajamanoharan et al., 2024a;b; Mudide et al., 2024; Chanin et al., 2024; Lieberum et al., 2024; He et al., 2024; Karvonen et al., 2024; Bussmann et al., 2024).

Figure 1: We introduce a latent variable generative model in which observed the input context \mathbf{x} and next token y, arises from an unknown underlying process over latent concepts \mathbf{z} (Sec. 2.1). Under this model, we show that LLM representations $\mathbf{f}_{\mathbf{x}}(\mathbf{x})$, learned by next-token prediction, can be approximated as a linear mixture of the column vector obtained by stacking log-posteriors of individual latent concepts $\log p(z_i|\mathbf{x})$, conditioned on the input, i.e., $\mathbf{f}_{\mathbf{x}}(\mathbf{x}) \approx \mathbf{A} \left[[\log p(z_1 \mid \mathbf{x})]_{z_1}; \ldots; [\log p(z_\ell \mid \mathbf{x})]_{z_\ell} \right] + \mathbf{b}$, where \mathbf{A} is a mixing matrix and \mathbf{b} is a constant (Sec. 2.2). Motivated by this, we propose Concept Component Analysis (ConCA), a method for linearly unmixing LLM representations $\mathbf{f}_{\mathbf{x}}(\mathbf{x})$ to recover the log-posteriors over individual latent concepts $\log p(z_i|\mathbf{x})$ (Sec. 3).

Hypotheses Behind SAEs. Linearity and sparsity, the two key components of SAEs, are jointly expected to promote the emergence of monosemantic and interpretable concepts. The justification for these two components primarily relies on two key hypotheses, (i) the linear representation hypothesis and (ii) the superposition hypothesis. The former suggests that concepts are often encoded linearly in LLMs (Tigges et al., 2023; Nanda et al., 2023; Moschella et al., 2022; Park et al., 2023; Li et al., 2024; Gurnee et al., 2023; Rajendran et al., 2024; Jiang et al., 2024), enabling them to be recovered via linear decoding. The latter argues that LLMs tend to represent more features than they have neurons for, leading to overlapping (i.e., superimposed) representations within the same neurons (Elhage et al., 2022). To make such representations reliable and interpretable, features should activate sparsely, reducing interference between them (Elhage et al., 2022; Huben et al., 2023).

1.2 MOTIVATION AND CONTRIBUTIONS

While these two hypotheses support SAEs, the deeper theoretical question remains unresolved.

Key Problem. What is the theoretical relationship between LLM representations and human-interpretable concepts?

A Deeper Look into SAEs. Without a clear answer, both principled method design and evaluation become major concerns. In terms of method design, for example, while the decoder in SAEs reconstructs representations through *linear* combinations of learned features, the encoder typically includes a *nonlinear* activation function, typically Relu, following a linear layer. This asymmetry raises a concern about the rationale for introducing the nonlinear activation functions. Moreover, it remains unclear whether sparsity should be imposed directly on the feature space learned by SAEs, or instead on a transformed space derived from it, given the unclear relationship between these features and the underlying concepts. This unclear relationship, on the evaluation side, also makes principled assessment difficult, i.e., it remains unclear what criteria should be used to determine whether a feature meaningfully captures a concept, as also recognized in recent works (Makelov et al., 2024; Gao et al., 2025; Kantamneni et al., 2025).

Contributions. We propose a principled approach for extracting concepts from LLM representations, grounded in a well-defined theoretical relationship between the representations and human-interpretable concepts (see Figure 1). We begin by analyzing this relationship through the lens of a latent variable model, in which text data are generated by an unknown process over latent, human-interpretable concepts. We show that, under mild conditions, LLM representations learned by next-token prediction frameworks can be approximately expressed as a linear mixture of the logarithm of the posteriors of individual latent concepts, conditioned on the input context. Based on this insight, we introduce a principled approach, that we label Concept Component Analysis

(ConCA), which aims to invert the linear mixture to recover the log-posterior of each concept in an unsupervised manner. We propose a specific variant of ConCA, referred as Sparse ConCA, which incorporates a sparsity prior to regularize the solution space, motivated by the widespread adoption of the superposition hypothesis. We emphasize that alternative regularization strategies remain flexible and open for future exploration. We evaluate the proposed Sparse ConCA using linear probing with counterfactual text pairs, a theoretically motivated supervised method for concept extraction, and benchmark its performance against SAE variants across multiple model scales and architectures (Pythia (Biderman et al., 2023), Gemma3 (Team et al., 2025), Qwen3 (Team, 2025)). We further test it on a downstream task spanning 113 datasets, empirically confirming the advantages of ConCA.

2 What Do Representations in LLMs Learn?

In this section we establish a theoretical connection between LLM representations learned through next-token prediction framework and human-interpretable concepts. To this end, we first construct a latent variable model (LVM) in which observed text data are generated by an unknown process over latent variables representing human-interpretable concepts. We then show that, when LLMs are trained on the observed data using a next-token prediction framework, their learned representations can be approximated as a linear mixture of the log-posteriors of individual latent variables, conditioned on the input context. This perspective not only deepens our understanding of how human-interpretable concepts are organized within LLM representations, but more importantly, it provides a principled foundation for extracting concepts from the representations.

2.1 PRELIMINARY: A DISCRETE LATENT VARIABLE GENERATIVE MODEL FOR TEXT

We begin by a LVM in which human-interpretable concepts are modeled as latent variables governing the generation of text data (Liu et al., 2025a). Formally, both the observed context $\mathbf x$ and the next token y are assumed to be generated from a set of latent variables $\mathbf z$. Here $\mathbf x$ and y serve as input to the next-token prediction objective used to train LLMs. A human-interpretable concept is formally defined as a latent variable z_i that captures a human-interpretable factor underlying the generation of text data, such as a topic, sentiment, syntactic role, or tense. Notably, arbitrary interdependencies or structural relationships among the latent variables are allowed. We assume the observed variables $\mathbf x \in \mathcal V^n$ and $y \in \mathcal V$, and the latent variables $\mathbf z = (z_1, \dots, z_\ell) \in \mathcal V_1 \times \dots \times \mathcal V_\ell$ to be discrete¹, with $z_i \in \mathcal V_i, |\mathcal V_i| = k_i, i = 1, \dots, \ell$. Under this formulation, the joint distribution over the observed context $\mathbf x$ and next token y is given by:

$$p(\mathbf{x}, y) = \sum_{\mathbf{z}} p(\mathbf{x}|\mathbf{z}) p(y|\mathbf{z}) p(\mathbf{z}), \qquad (1)$$

where $p(\mathbf{z})$ is a prior over the latent concepts, and $p(\mathbf{x}|\mathbf{z})$ and $p(y|\mathbf{z})$ model the conditional generation of context and next token, respectively.

2.2 Representations in LLMs Linearly Encode Log-Posteriors over Concepts

Intuitively, since the latent concepts z characterize the underlying generative factors of the text data, as defined in Eq. 1, the representations learned from such data should encode information about these concepts. To examine in detail how these representations capture latent concepts, we now turn to the next-token prediction framework, which serves as the standard training framework for LLMs. Specifically, the next-token prediction framework models the conditional distribution of the next token y given the input context x^2 , as follows:

$$p(y|\mathbf{x}) = \frac{\exp\left(\mathbf{f}(\mathbf{x})^T \mathbf{g}(y)\right)}{\sum_{u_i} \exp\left(\mathbf{f}(\mathbf{x})^T \mathbf{g}(y_i)\right)}.$$
 (2)

Here, y_i denotes a specific value of the output token y, $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^m$ maps the input \mathbf{x} into a m-dimensional (depending on the specific model used) representation space, and $\mathbf{g}(y) \in \mathbb{R}^m$ retrieves the classifier weight vector corresponding to token y, i.e., the look-up table used for prediction.

¹A detailed justification for the discrete assumption can be found in Liu et al. (2025a).

²More rigorously, this assumes a parametric form of the conditional distribution $p(y|\mathbf{x})$ as a softmax over inner products in an optimally discriminative representation space. Such optimality assumption is canonical for establishing clear and meaningful identifiability results.

Given the generative model from Eq. 1 and the inference model from Eq. 2, our goal is to formally characterize how the learned representations f(x) relate to the latent concepts z. In particular, we seek to establish a precise mathematical relationship, thereby serving as the theoretical foundation for concept component analysis developed in Sec. 3. We now present the following key result:

Theorem 2.1. Suppose latent variables \mathbf{z} and the observed variables \mathbf{x} and y follow the generative models defined in Eq. 1. Assume the following holds:

- (i) (Diversity Condition) There exist m+1 values of y, such that the matrix $\mathbf{L} = (\mathbf{g}(y=y_1) \mathbf{g}(y=y_0), ..., \mathbf{g}(y=y_m) \mathbf{g}(y=y_0))$ of size $m \times m$ is invertible,
- (ii) (Informational Sufficiency Condition) The conditional entropy of the latent concepts given the context is close to zero, i.e., $H(\mathbf{z}|\mathbf{x}) \to 0$,

then the representations f(x) in LLMs, which are learned through the next-token prediction framework, are related to the true latent variables z, by the following relationship:

$$\mathbf{f}(\mathbf{x}) \approx \mathbf{A} \left[\left[\log p(z_1 \mid \mathbf{x}) \right]_{z_1}; \dots; \left[\log p(z_\ell \mid \mathbf{x}) \right]_{z_\ell} \right] + \mathbf{b}, \tag{3}$$

where **A** is a $m \times (\sum_{i=1}^{\ell} k_i)$ matrix, and **b** is a bias vector³.

Justification for Conditions (i) and (ii). Condition (i) is closely related to the data diversity assumption in earlier work for identifiability analysis in the context of nonlinear independent component analysis (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019; Khemakhem et al., 2020), and has recently been employed to identifiability analyses of latent variables in the context of LLMs (Roeder et al., 2021; Marconato et al., 2025; Liu et al., 2025a). Intuitively, Condition (i) implies that there is a sufficiently large number of distinct values of y that the m difference vectors $\mathbf{g}(y_i) - \mathbf{g}(y_0)$ (for $i=1,\ldots,m$) span the image of g. This is a mild assumption, as pointed out by Roeder et al. who emphasized that the set of m+1 values $\{y_i\}_{i=0}^m$ required to generate difference vectors $\mathbf{g}(y_i) - \mathbf{g}(y_0)$ that are linearly dependent has measure zero, given that both the initialization and subsequent updates of the parameters of g are stochastic. Turning to Condition (ii), it can be seen as a mild relaxation of a standard invertibility assumption commonly adopted for identifiability analysis within causal representation learning community, i.e., the mapping from z to x in the generative model (Eq. 1) is assumed to be deterministic and invertible. This implies $H(\mathbf{z} \mid \mathbf{x}) = 0$, to ensure exact recovery of the latent variables. By contrast, our assumption only requires that $H(\mathbf{z} \mid \mathbf{x}) \to 0$, allowing for approximate invertibility from z to x in practice. This relaxation also implies that only an approximate recovery is achievable, as shown in Eq. 3.

Inspiration: Eq. 3 in Theorem 2.1 implies that LLM representations, learned through the next-token prediction framework, are essentially a linear mixture of the log-posteriors of individual latent concepts given the input context, that is, the $\log p(z_i|\mathbf{x})$. This provides a theoretical foundation for exploring individual concepts by linearly unmixing the representations, which motivates the development of our ConCA framework in Sec. 3.

3 ConCA: A Principled Approach for Concept Extraction in LLMs

Grounded in Theorem 2.1, we now introduce ConCA, a principled approach that recovers the log posteriors of individual latent concepts conditional on the input context, i.e., $\log p(z_i|\mathbf{x})$, by inverting the linear mixture in Eq. 3, in a unsupervised way. This enables us to decompose LLM representations $\mathbf{f}(\mathbf{x})$ into interpretable concept-level components.

3.1 CHALLENGES IN DESIGNING CONCA

Recovering $\log p(z_i|\mathbf{x})$ from $\mathbf{f}(\mathbf{x})$ presents two main challenges:

³Here, $[\log p(z_i \mid \mathbf{x})]_{z_i}$ denotes the column vector of log-probabilities of all possible values of z_i . $[[\log p(z_1 \mid \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell \mid \mathbf{x})]_{z_\ell}]$ represents the column vector obtained by stacking these vectors.

A Key Challenges: ① Ill-posed inverse problem: The inversion of Eq. 3 is inherently ill-posed because there exist many possible solutions that produce the same LLM representations. Without additional constraints or regularization, the solution space is large and ambiguous, leading to non-unique decompositions. ② Underdetermined problem and overfitting: The issue above is particularly critical when the dimension of the latent concept space exceeds that of the observed representations (i.e., $\ell > m$), corresponding to the well-known underdetermined case. This occurs because, from the model's perspective, the number of degrees of freedom to be estimated increases, which not only significantly expands the set of possible solutions but also amplifies the risk of overfitting.

To address challenge ①, we impose a sparsity prior, requiring that for each context x, only a small subset of latent concepts z is activated. We refer to this variant as *sparse ConCA*. This inductive bias is motivated by two considerations: (i) it aligns with the superposition hypothesis, a widely discussed phenomenon in the study of SAEs, and (ii) sparsity ensures the identifiability of latent factors under certain assumptions, i.e., the individual log-probabilities of latent concepts can be uniquely recovered, as established in the theory of sparse dictionary learning (Elad & Bruckstein, 2002; Gribonval & Schnass, 2010; Spielman et al., 2012; Arora et al., 2014). Importantly, we highlight the following:

\bigstar Highlight: Unlike SAEs, which recover concepts loosely, like a blurry sketch, sparse ConCA recovers a clearly defined concepts, i.e., the log-posteriors $\log p(z_i|\mathbf{x})$.

This key distinction fundamentally changes how sparsity should be interpreted and enforced. In SAEs and sparse coding, sparsity is directly imposed on the latent feature space, where values near zero correspond to inactive features. In ConCA, however, the situation is inverted. Specifically, the latent feature space in ConCA corresponds to the log-posteriors, i.e., $\log p(z_i|\mathbf{x})$. A value of $\log p(z_i|\mathbf{x}) = 0$ corresponds to $p(z_i|\mathbf{x}) = 1$, meaning the concept z_i is *fully active* rather than inactive. Consequently, sparsity in ConCA should be enforced in the exponential form of the latent feature space, i.e., the posteriors $p(z_i|\mathbf{x})$, ensuring that only a small subset of concepts is truly active.

Despite its advantages, sparsity alone does not fully resolve the challenge of overfitting, particularly in underdetermined settings where the dimensionality of \mathbf{z} is much higher than that of \mathbf{f} , as mentioned in challenge \bigcirc . While the sparsity prior helps restrict the solution space, it does not guarantee generalizable or semantically meaningful decompositions in practical scenarios. Although theoretical results provide identifiability guarantees under ideal conditions, real-world challenges, such as limited data and optimization difficulties, often violate these conditions, leading to potential overfitting and less reliable concept recovery. In such settings, multiple sparse solutions may fit the observed representation equally well, and some may capture meaningless noise or non-semantic patterns rather than true underlying concepts. Therefore, techniques to mitigate overfitting may be both useful and even necessary in real applications.

3.2 Sparse Conca: Architecture and Training Objective

According to the analysis above, we propose sparse ConCA as follows:

$$\hat{\mathbf{z}} = \mathcal{R}(\mathbf{W}_e \mathbf{f}(\mathbf{x}) + \mathbf{b}_e), \qquad \hat{\mathbf{f}}(\mathbf{x}) = \mathbf{W}_d \hat{\mathbf{z}} + \mathbf{b}_d.$$
 (4)

This is a typical autoencoder architecture, where $\mathcal{R}(\cdot)$ denotes a general regularization module applied to mitigate overfitting, including but not limited to Dropout, and LayerNorm, as the analysis above to address the challenge ②. \mathbf{W}_e and \mathbf{W}_d are learnable weight matrices of the encoder and decoder, respectively, and \mathbf{b}_e , \mathbf{b}_d are the corresponding biases. The vector $\hat{\mathbf{z}}$ corresponds to an estimate of $[\log p(z_i \mid \mathbf{x})]_{z_i}$. Let the set of all learnable parameters be $\Theta = \{\mathbf{W}_e, \mathbf{b}_e, \mathbf{W}_d, \mathbf{b}_d\}$. We train the proposed sparse ConCA by minimizing the following objective with respect to Θ :

$$\min_{\Theta} \quad \mathbb{E}_{\mathbf{x}} \left[||\hat{\mathbf{f}}(\mathbf{x}) - \mathbf{f}(\mathbf{x})||_{2}^{2} + \alpha \mathcal{S}(\mathbf{g}(\hat{\mathbf{z}})) \right], \tag{5}$$

where we apply $\mathbf{g}(\cdot)$ to the representations $\hat{\mathbf{z}}$ (corresponding to log-posterior in theory), to map them back into the probability domain, where sparse activation patterns can be meaningfully enforced, as motivated by the analysis above to address challenge ①. Ideally, the exact $\exp(\cdot)$ function would be optimal, but it is prone to numerical instability and exploding gradients when $\hat{\mathbf{z}}$ takes large values.

Aspect	SAEs	ConCA	
Theoretical grounding	(i) Linear representation hypothesis(ii) Superposition hypothesis	Theorem 2.1	
Objective	Recover monosemantic features	Recover $\log p(z_i \mathbf{x})$	
Architecture	Encoder: linear + nonlinear activation Decoder: linear	Encoder: linear + module for overfitting Decoder: linear	
Role of sparsity	On feature space	On exp-transformed feature space	
Evaluation criterion	Heuristic, lacks principled metric	Theoretically motivated (Sec. 4)	

Table 1: Comparison between SAEs and the proposed ConCA. ConCA provides a principled, theoretically grounded framework for disentangling LLM representations, while SAEs are largely motivated by empirical hypotheses.

Therefore, we employ a smooth surrogate in practice, see Sec. 4 for further implementation details. This regularization function $S(\cdot)$ is then applied so as to encourage sparsity on $g(\hat{\mathbf{z}})$. This can be implemented using standard sparsity constraints such as L_1 regularization or structured sparsity variants ⁴. The hyperparameter α controls the trade-off between reconstruction fidelity and sparsity, allowing the model to be tuned to the expected degree of sparsity.

The key distinctions between our proposed ConCA framework and SAEs are summarized in Table 1.

4 EXPERIMENTS

We train the proposed sparse ConCA on a subset of the Pile (the first 200 million tokens) (Gao et al., 2020). The regularization function $\mathcal{R}(\cdot)$ is implemented using 4 normalization strategies, including LayerNorm (Ba et al., 2016), Dropout (Srivastava et al., 2014), BatchNorm (Ioffe & Szegedy, 2015), and GroupNorm (Wu & He, 2018). For the function $g(\cdot)$, not exponential function directly, we explore the exponential with 3 different activation functions, SELU (Klambauer et al., 2017), SoftPlus (Dugas et al., 2000), and ELU (Clevert et al., 2015). Although they are not exact exponentials, these functions preserve exponential-like behavior for small (i.e., negative) values, ensure numerical and gradient stability, and provide smooth surrogates suitable for applying sparsity regularization. In total, we implement 12 sparse ConCA variants across these configurations. Sparsity, i.e., $S(\cdot)$, is primarily enforced via L_1 normalization in this work, other choices remain flexible. To evaluate the effect of model scale, we use representations from Pythia models of varying sizes: 70M, 1.4B, and 2.8B Biderman et al. (2023). To assess model generalization, we also test across different architectures, including Pythia-1.4B, Gemma3-1b (Team et al., 2025), and Qwen3-1.7B (Team, 2025). We compare the proposed sparse ConCA with various SAE variants, including top-k SAE (Gao et al., 2025), batch-top-k SAE (Bussmann et al., 2024), p-annealing SAE (Karvonen et al., 2024).

We evaluate sparse ConCA using two metrics designed to assess both faithfulness and interpretability:

- Reconstruction loss captures how well the original LLM representations are preserved after decomposition. Since our goal is to reveal the internal structure of the model without altering its behavior, low reconstruction loss is essential to ensure that concept extraction introduces minimal distortion. Specifically, we use mean squared error (MSE) as our reconstruction loss metric.
- Pearson correlation quantifies how well the ConCA-extracted features align with theoretically consistent supervised estimates of $\log p(z_i|\mathbf{x})$ for each latent concept z_i . Specifically, for each latent concept z_i , we construct counterfactual pairs that differ only in the value of z_i while keeping all other variables unchanged, and train a linear classifier to predict this difference, yielding a supervised estimate of $\log p(z_i|\mathbf{x})$. This estimator is theoretically motivated, see Sec. $\mathbf{F}^{\mathbf{z}}$. We then compute the Pearson Correlation (PC) between this supervised estimate of $\log p(z_i|\mathbf{x})$ and the unsupervised ConCA feature. Higher correlation indicates more accurate recovery.

⁴We emphasize that sparsity is a design choice, other forms of regularization are potentially applicable. For instance, non-negativity (Lee & Seung, 1999; Hoyer, 2004) or bounded-range constraints (Cruces, 2010; Erdogan, 2013), given that the learned features are expected to correspond to probabilities.

⁵We note that Liu et al. (2025a) provide a similar approach, but our result is derived from Theorem 2.1.

Figure 2: Ablation study of 4 different normalization methods and 3 activation functions. For GroupNorm, the number of groups (num_groups) is set to 4, 8, 16, or 32. Left axis shows Mean of Pearson Correlation (MPC), right axis shows MSE. Each subplot corresponds to one combination of normalization method and activation function, with each configuration run three times.

To compute Pearson correlation, we require counterfactual text pairs as mentioned above. However, constructing such counterfactual pairs is highly challenging due to the complexity and subtlety of natural language, as noted in prior works (Park et al., 2023; Jiang et al., 2024), and remains non-trivial even for human annotators. For our evaluation, we adopt 27 counterfactual pairs from Park et al. (2023), each differing in a single concept, as testing dataset. These pairs were derived from the Big Analogy Test dataset (Gladkova et al., 2016).

Ablation Study We first conduct an ablation study over normalization strategies, activation functions, and sparsity strength as mentioned above, to understand the design choices of sparse ConCA. In total, this yields 21 configurations (For GroupNorm, the number of groups (num_groups) is set to 4, 8, 16, and 32, respectively). Each configuration is trained with varying sparsity coefficients $\alpha \in \{1e^{-1}, 5e^{-2}, 1e^{-2}, \dots, 5e^{-5}\}$, and every experiment is repeated three times with training on Pythia-70M. We report results on the two key evaluation metrics as mentioned, i.e., reconstruction loss and Pearson correlation. Both metrics are summarized in Figure 2, where the left *y*-axis shows correlation and the right *y*-axis shows reconstruction loss.

Findings. Three main observations emerge:

• Normalization. The primary role of normalization methods in our framework is to mitigate overfitting. For GroupNorm, increasing the number of groups (num_groups) tends to result in slightly higher reconstruction loss. Conversely, LayerNorm achieves the lowest reconstruction

Figure 3: Comparison of SAE variants and the proposed ConCA variant across different scales and architectures. The left two shows the results for Pythia family with varying sizes (70m, 1.4b, 2.8b), while the right compares different architectures across multiple models (Gemma-3-1b, Pythia-1.4b, Qwen3-1.7b). Pearson correlation (left axis) and MSE (right axis) are reported for each method.

Figure 4: Rank-based fraction of features exhibiting significant changes between counterfactual pairs for SAE and ConCA variants. ConCA shows smaller feature variations, indicating more stable feature responses under counterfactual pairs.

loss among the considered methods (Dropout, BatchNorm). This trend suggests that full-feature normalization, as performed by LayerNorm, better preserves the overall structure of LLM representations. This may be because, LayerNorm stabilizes per-sample activations and preserves global feature correlations, which helps ConCA recover concept log-posteriors more faithfully and generalize better than the others.

- Activation. The purpose of the activation functions is to serve as a surrogate for the exact $\exp(\cdot)$ function, enabling more effective enforcement of sparsity. Roughly, for GroupNorm, all three activations (SELU, ELU, and SoftPlus) perform similarly, with Pearson correlation values around 0.725–0.73. In the context of LayerNorm and Dropout, SoftPlus appears slightly better than the other two, whereas for BatchNorm, SELU seems slightly better.
- Sparsity. The sparsity coefficient α controls a trade-off: too large a value may introduce excessive information loss, while too small a value fails to induce meaningful structure. Overall, across the range $[5e^{-3}, \ldots, 1e^{-2}]$, the performance in both reconstruction loss and Pearson correlation remains relatively stable.

Takeaway. The ablation study demonstrates that careful choices of normalization and activation functions significantly improve the performance of sparse ConCA. In the following experiments, considering both reconstructuion loss and Pearson Correlation, we focus on the most promising configurations: GroupNorm with num_groups= 4 and Softplus, LayerNorm with Softplus, BatchNorm with Softplus, labeled as Groupnorm, LayerNorm, and BatchNorm in the following, respectively. For all of these, the sparsity hyperparameter, we set $\alpha=1e^{-4}$. These design choices are consistent across repeated trials, highlighting the stability of the proposed sparse ConCA.

Comparison on Counterfactual Pairs. We next conduct experiments comparing various SAE variants, including including Topk SAE (Gao et al., 2025), Batch-Topk SAE (Bussmann et al., 2024), P-anneal SAE (Karvonen et al., 2024), and the proposed ConCA configurations mentioned in Takeaway above. We conduct these experiments across different scales of the Pythia family to evaluate the scalability and effectiveness of each method. Each method is run across multiple random seeds to ensure robustness, and we present both the mean and standard deviation of the metrics. The left in Figure 3 highlights how the proposed ConCA configurations consistently achieve higher Pearson correlation while maintaining competitive reconstruction loss compared to the SAE variants, as model size increases from Pythia-70m to Pythia-2.8b. This performance advantage is mainly due to the theoretical grounding of ConCA. Specifically, ConCA employs a principled framework with

Figure 5: Test AUC of SAE variants and the proposed ConCA variants under different few-shot settings across 113 datasets (left), and out-of-distribution tasks across 8 datasets (right), respectively. An example of visualization can be found in Sec. I.

sparsity on the exponentiated feature space, whereas SAEs rely on heuristic assumptions, resulting in more interpretable and accurate monosemantic concepts across Pythia scales. Notably, when considering both MSE and Pearson correlation, the LayerNorm configuration emerges as the better choice. The advantages of ConCA are further highlighted across different model families, including Gemma-3-1b, Pythia-1.4b, and Qwen3-1.7B, as shown in the right of Figure 3. ConCA configurations generally outperform SAE variants in both reconstruction and Pearson correlation, demonstrating the robustness and broad applicability of ConCA. Figure 4 shows the rank-based fraction of features that change significantly between counterfactual pairs, indicating that ConCA produces smaller feature variations than SAE variants under counterfactual conditions. See Sec. H for details on how this metric is computed and for additional visualization results.

Downstream Tasks In the final stage, we conduct a series of few-shot linear probing experiments to evaluate how well the features extracted by SAEs and ConCA capture monosemantic, human-interpretable concepts. This evaluation is particularly relevant because disentangled representations tend to transfer easily and robustly, making them especially suitable for few-shot learning and out-of-distribution shift tasks (Fumero et al., 2023).

To this end, we collect 113 binary classification datasets from Kantamneni et al. (2025) and use them to train linear classifiers on features extracted by SAEs and ConCA variants under limited training samples, specifically 4, 8, 16, 32, and 128 samples drawn randomly. After training, we evaluate the linear classifiers and report the Area Under the Receiver Operating Characteristic Curve (AUC). The left in Figure 5 shows that ConCA outperforms SAE variants in few-shot settings in term of AUC, particularly for LayerNorm and GroupNorm variants, highlighting the advantages of the proposed ConCA than SAEs variants.

Furthermore, we extend our evaluation to 8 *out-of-distribution* (OOD) datasets from Kantamneni et al. (2025), which are designed to test robustness under distributional shifts. These datasets include fictional character substitution, random letter insertion, name order reversal, multilingual translation perturbations, as well as OOD splits from GLUE-X. As shown in the right in Figure 5, ConCA consistently achieves superior performance across nearly all OOD settings, indicating that the representations it learns generalize more robustly under distributional shifts.

The improvements above are likely attributable to ConCA's principled framework, grounded in Theorem 2.1, which motivates theorem-driven method design by enforcing sparsity in the exponentiated feature space and leveraging normalization to avoid overfitting, thereby yielding transferable features under both few-shot and OOD scenarios.

5 CONCLUSION

Observing the lack of a clear theoretical understanding behind SAEs motivated us to formalize the relationship between LLM representations and human-interpretable concepts. We showed that, under mild assumptions, LLM representations can be approximated as linear mixtures of the log-posteriors of latent concepts. Building on this insight, we introduced ConCA, including a sparse variant, to recover these concept posteriors in an unsupervised manner. Empirical results across multiple models and benchmarks demonstrate that ConCA extracts features that outperform SAE variants in both faithfulness and utility. Looking forward, our framework opens the door to principled analysis, manipulation, and evaluation of LLM representations, as well as exploration of alternative regularization strategies to further enhance interpretability.

Ethics Statement. This work follows the ICLR Code of Ethics. Our study does not involve human subjects, personally identifiable data, or sensitive information. We do not foresee major ethical concerns or potential negative societal impacts.

Reproducibility Statement. We provide detailed model descriptions, training settings, and evaluation protocols in the main text and appendix. All code, datasets, and hyperparameters will be released upon publication to ensure full reproducibility.

REFERENCES

- Michael Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for designing over-complete dictionaries for sparse representation. *IEEE Transactions on signal processing*, 54(11): 4311–4322, 2006.
- Kartik Ahuja, Divyat Mahajan, Yixin Wang, and Yoshua Bengio. Interventional causal representation learning. In *ICML*, pp. 372–407. PMLR, 2023.
- Sanjeev Arora, Rong Ge, and Ankur Moitra. New algorithms for learning incoherent and overcomplete dictionaries. In *Conference on Learning Theory*, pp. 779–806. PMLR, 2014.
- Sanjeev Arora, Rong Ge, Tengyu Ma, and Ankur Moitra. Simple, efficient, and neural algorithms for sparse coding. In *Conference on learning theory*, pp. 113–149. PMLR, 2015.
- Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint arXiv:1607.06450*, 2016.
- Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In *International Conference on Machine Learning*, pp. 2397–2430. PMLR, 2023.
- Samuel R Bowman. Eight things to know about large language models. Critical AI, 2(2), 2024.
- Dan Braun, Jordan Taylor, Nicholas Goldowsky-Dill, and Lee Sharkey. Identifying functionally important features with end-to-end sparse dictionary learning. *Advances in Neural Information Processing Systems*, 37:107286–107325, 2024.
- Johann Brehmer, Pim De Haan, Phillip Lippe, and Taco Cohen. Weakly supervised causal representation learning. *arXiv preprint arXiv:2203.16437*, 2022.
- Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary learning. *Transformer Circuits Thread*, 2023.
- Simon Buchholz, Goutham Rajendran, Elan Rosenfeld, Bryon Aragam, Bernhard Schölkopf, and Pradeep Ravikumar. Learning linear causal representations from interventions under general nonlinear mixing. *arXiv* preprint arXiv:2306.02235, 2023.
- Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders. *arXiv preprint arXiv:2412.06410*, 2024.
- Yichao Cai, Yuhang Liu, Erdun Gao, Tianjiao Jiang, Zhen Zhang, Anton van den Hengel, and Javen Qinfeng Shi. On the value of cross-modal misalignment in multimodal representation learning. *arXiv preprint arXiv:2504.10143*, 2025.
- David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, Satvik Golechha, and Joseph Bloom. A is for absorption: Studying feature splitting and absorption in sparse autoencoders. *arXiv preprint arXiv:2409.14507*, 2024.

- Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by exponential linear units (elus). *arXiv* preprint arXiv:1511.07289, 4(5):11, 2015.
- Sergio Cruces. Bounded component analysis of linear mixtures: A criterion of minimum convex perimeter. *IEEE Transactions on Signal Processing*, 58(4):2141–2154, 2010.
 - Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating second-order functional knowledge for better option pricing. *Advances in neural information processing systems*, 13, 2000.
 - Bogdan Dumitrescu and Paul Irofti. *Dictionary learning algorithms and applications*. Springer, 2018.
 - Julian Eggert and Edgar Korner. Sparse coding and nmf. In 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), volume 4, pp. 2529–2533. IEEE, 2004.
 - Michael Elad. Sparse and redundant representations: from theory to applications in signal and image processing. Springer Science & Business Media, 2010.
 - Michael Elad and Alfred M Bruckstein. A generalized uncertainty principle and sparse representation in pairs of bases. *IEEE Transactions on Information Theory*, 48(9):2558–2567, 2002.
 - Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superposition. *Transformer Circuits Thread*, 2022.
- Alper T Erdogan. A class of bounded component analysis algorithms for the separation of both independent and dependent sources. *IEEE Transactions on Signal Processing*, 61(22):5730–5743, 2013.
- Marco Fumero, Florian Wenzel, Luca Zancato, Alessandro Achille, Emanuele Rodolà, Stefano Soatto, Bernhard Schölkopf, and Francesco Locatello. Leveraging sparse and shared feature activations for disentangled representation learning. In *Advances in Neural Information Processing Systems*, 2023.
- Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for language modeling. *arXiv preprint arXiv:2101.00027*, 2020.
- Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In *The Thirteenth International Conference on Learning Representations*, 2025.
- Anna Gladkova, Aleksandr Drozd, and Satoshi Matsuoka. Analogy-based detection of morphological and semantic relations with word embeddings: what works and what doesn't. In *Proceedings of the NAACL Student Research Workshop*, pp. 8–15, 2016.
- Rémi Gribonval and Karin Schnass. Dictionary identification—sparse matrix-factorization via ℓ_1 -minimization. *IEEE Transactions on Information Theory*, 56(7):3523–3539, 2010.
- Yuqi Gu and David B Dunson. Bayesian pyramids: Identifiable multilayer discrete latent structure models for discrete data. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 85(2):399–426, 2023.
- Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bertsimas. Finding neurons in a haystack: Case studies with sparse probing. *arXiv preprint arXiv:2305.01610*, 2023.
- Zhengfu He, Wentao Shu, Xuyang Ge, Lingjie Chen, Junxuan Wang, Yunhua Zhou, Frances Liu, Qipeng Guo, Xuanjing Huang, Zuxuan Wu, et al. Llama scope: Extracting millions of features from llama-3.1-8b with sparse autoencoders. *arXiv preprint arXiv:2410.20526*, 2024.

- Patrik O Hoyer. Non-negative matrix factorization with sparseness constraints. *Journal of machine learning research*, 5(Nov):1457–1469, 2004.
 - Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse autoencoders find highly interpretable features in language models. In *The Twelfth International Conference on Learning Representations*, 2023.
 - Aapo Hyvarinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning and nonlinear ica. *Advances in neural information processing systems*, 29, 2016.
 - Aapo Hyvarinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ica using auxiliary variables and generalized contrastive learning. In *The 22nd international conference on artificial intelligence and statistics*, pp. 859–868. PMLR, 2019.
 - Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In *International conference on machine learning*, pp. 448–456. pmlr, 2015.
 - Yibo Jiang, Goutham Rajendran, Pradeep Ravikumar, Bryon Aragam, and Victor Veitch. On the origins of linear representations in large language models. *arXiv preprint arXiv:2403.03867*, 2024.
 - Subhash Kantamneni, Joshua Engels, Senthooran Rajamanoharan, Max Tegmark, and Neel Nanda. Are sparse autoencoders useful? a case study in sparse probing. *arXiv preprint arXiv:2502.16681*, 2025.
 - Adam Karvonen, Benjamin Wright, Can Rager, Rico Angell, Jannik Brinkmann, Logan Smith, Claudio Mayrink Verdun, David Bau, and Samuel Marks. Measuring progress in dictionary learning for language model interpretability with board game models. *Advances in Neural Information Processing Systems*, 37:83091–83118, 2024.
 - Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvarinen. Variational autoencoders and nonlinear ica: A unifying framework. In *International conference on artificial intelligence and statistics*, pp. 2207–2217. PMLR, 2020.
 - Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, and Bryon Aragam. Learning latent causal graphs via mixture oracles. *Advances in Neural Information Processing Systems*, 34:18087–18101, 2021.
 - Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing neural networks. *Advances in neural information processing systems*, 30, 2017.
 - Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and Percy Liang. Concept bottleneck models. In *International conference on machine learning*, pp. 5338–5348. PMLR, 2020.
 - Lingjing Kong, Guangyi Chen, Biwei Huang, Eric P Xing, Yuejie Chi, and Kun Zhang. Learning discrete concepts in latent hierarchical models. *arXiv preprint arXiv:2406.00519*, 2024.
 - Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix factorization. *nature*, 401(6755):788–791, 1999.
 - Tobias Leemann, Michael Kirchhof, Yao Rong, Enkelejda Kasneci, and Gjergji Kasneci. When are post-hoc conceptual explanations identifiable? In *Uncertainty in Artificial Intelligence*, pp. 1207–1218. PMLR, 2023.
 - Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time intervention: Eliciting truthful answers from a language model. *Advances in Neural Information Processing Systems*, 36, 2024.
 - Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse autoencoders everywhere all at once on gemma 2. *arXiv preprint arXiv:2408.05147*, 2024.

- Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang, and Javen Qinfeng Shi. Identifying weight-variant latent causal models. *arXiv preprint* arXiv:2208.14153, 2022.
- Yuhang Liu, Zhen Zhang, Dong Gong, Erdun Gao, Biwei Huang, Mingming Gong, Anton van den Hengel, Kun Zhang, and Javen Qinfeng Shi. Beyond DAGs: A latent partial causal model for multimodal learning. *arXiv preprint arXiv:2402.06223*, 2024a.
- Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang, and Javen Qinfeng Shi. Identifiable latent neural causal models. *arXiv preprint arXiv:2403.15711*, 2024b.
- Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang, and Javen Qinfeng Shi. Identifiable latent polynomial causal models through the lens of change. In *The Twelfth International Conference on Learning Representations*, 2024c.
- Yuhang Liu, Dong Gong, Yichao Cai, Erdun Gao, Zhen Zhang, Biwei Huang, Mingming Gong, Anton van den Hengel, and Javen Qinfeng Shi. I predict therefore i am: Is next token prediction enough to learn human-interpretable concepts from data? *arXiv* preprint arXiv:2503.08980, 2025a.
- Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang, and Javen Qinfeng Shi. Latent covariate shift: Unlocking partial identifiability for multi-source domain adaptation. *Transactions on Machine Learning Research*, 2025b.
- Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning research*, 9(Nov):2579–2605, 2008.
- Aleksandar Makelov, George Lange, and Neel Nanda. Towards principled evaluations of sparse autoencoders for interpretability and control. *arXiv preprint arXiv:2405.08366*, 2024.
- Emanuele Marconato, Andrea Passerini, and Stefano Teso. Interpretability is in the mind of the beholder: A causal framework for human-interpretable representation learning. *Entropy*, 25(12): 1574, 2023.
- Emanuele Marconato, Sébastien Lachapelle, Sebastian Weichwald, and Luigi Gresele. All or none: Identifiable linear properties of next-token predictors in language modeling. *arXiv preprint arXiv:2410.23501*, 2024.
- Emanuele Marconato, Sebastien Lachapelle, Sebastian Weichwald, and Luigi Gresele. All or none: Identifiable linear properties of next-token predictors in language modeling. In *The 28th International Conference on Artificial Intelligence and Statistics*, 2025.
- Riccardo Massidda, Atticus Geiger, Thomas Icard, and Davide Bacciu. Causal abstraction with soft interventions. In *Conference on Causal Learning and Reasoning*, pp. 68–87. PMLR, 2023.
- Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Francesco Locatello, and Emanuele Rodolà. Relative representations enable zero-shot latent space communication. *arXiv* preprint arXiv:2209.15430, 2022.
- Anish Mudide, Joshua Engels, Eric J Michaud, Max Tegmark, and Christian Schroeder de Witt. Efficient dictionary learning with switch sparse autoencoders. *arXiv preprint arXiv:2410.08201*, 2024.
- Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models of self-supervised sequence models. *arXiv preprint arXiv:2309.00941*, 2023.
- Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language models. *arXiv preprint arXiv:2307.06435*, 2023.
- Tuomas Oikarinen, Subhro Das, Lam M Nguyen, and Tsui-Wei Weng. Label-free concept bottleneck models. *arXiv preprint arXiv:2304.06129*, 2023.

- Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry of large language models. *arXiv preprint arXiv:2311.03658*, 2023.
 - Eleonora Poeta, Gabriele Ciravegna, Eliana Pastor, Tania Cerquitelli, and Elena Baralis. Concept-based explainable artificial intelligence: A survey. *arXiv preprint arXiv:2312.12936*, 2023.
 - Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoencoders. *arXiv preprint arXiv:2404.16014*, 2024a.
 - Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse autoencoders. *arXiv preprint arXiv:2407.14435*, 2024b.
 - Goutham Rajendran, Simon Buchholz, Bryon Aragam, Bernhard Schölkopf, and Pradeep Ravikumar. Learning interpretable concepts: Unifying causal representation learning and foundation models. *arXiv preprint arXiv:2402.09236*, 2024.
 - Geoffrey Roeder, Luke Metz, and Durk Kingma. On linear identifiability of learned representations. In *International Conference on Machine Learning*, pp. 9030–9039. PMLR, 2021.
 - Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. *Proceedings of the IEEE*, 109(5):612–634, 2021.
 - Lisa Schut, Nenad Tomasev, Tom McGrath, Demis Hassabis, Ulrich Paquet, and Been Kim. Bridging the human-ai knowledge gap: Concept discovery and transfer in alphazero. *arXiv preprint arXiv:2310.16410*, 2023.
 - Gesina Schwalbe. Concept embedding analysis: A review. arXiv preprint arXiv:2203.13909, 2022.
 - Anna Seigal, Chandler Squires, and Caroline Uhler. Linear causal disentanglement via interventions. *arXiv* preprint arXiv:2211.16467, 2022.
 - Xinwei Shen, Furui Liu, Hanze Dong, Qing Lian, Zhitang Chen, and Tong Zhang. Weakly supervised disentangled generative causal representation learning. *The Journal of Machine Learning Research*, 23(1):10994–11048, 2022.
 - Chandan Singh, Jeevana Priya Inala, Michel Galley, Rich Caruana, and Jianfeng Gao. Rethinking interpretability in the era of large language models. *arXiv preprint arXiv:2402.01761*, 2024.
 - Daniel A Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-used dictionaries. In *Conference on Learning Theory*, pp. 37–1. JMLR Workshop and Conference Proceedings, 2012.
 - Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine learning research*, 15(1):1929–1958, 2014.
 - Armeen Taeb, Nicolo Ruggeri, Carina Schnuck, and Fanny Yang. Provable concept learning for interpretable predictions using variational autoencoders. *arXiv* preprint arXiv:2204.00492, 2022.
 - Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical report. *arXiv preprint arXiv:2503.19786*, 2025.
 - Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.
 - Curt Tigges, Oskar John Hollinsworth, Atticus Geiger, and Neel Nanda. Linear representations of sentiment in large language models. *arXiv preprint arXiv:2310.15154*, 2023.
 - Burak Varici, Emre Acarturk, Karthikeyan Shanmugam, Abhishek Kumar, and Ali Tajer. Score-based causal representation learning with interventions. *arXiv* preprint arXiv:2301.08230, 2023.

- Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably isolates content from style. In *NeurIPS*, 2021.
- Julius von Kügelgen, Michel Besserve, Liang Wendong, Luigi Gresele, Armin Kekić, Elias Bareinboim, David Blei, and Bernhard Schölkopf. Nonparametric identifiability of causal representations from unknown interventions. *Advances in Neural Information Processing Systems*, 36, 2023.
- Yuxin Wu and Kaiming He. Group normalization. In *Proceedings of the European conference on computer vision (ECCV)*, pp. 3–19, 2018.
- Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin, Chris Callison-Burch, and Mark Yatskar. Language in a bottle: Language model guided concept bottlenecks for interpretable image classification. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 19187–19197, 2023.

Appendix

Table of Contents

A Related Work	17
B Limitations and Discussion	18
C Comparison of the result in Liu et al. (2025a)	19
D Lemmas in the Context of $H(\mathbf{z} \mid \mathbf{x}) \to 0$	20
E Proof of Theorem 2.1	23
F Justification for Log-Posterior Estimation via Linear Probing	25
G Experimental Details	26
H Visualization of Counterfactual Pair Experiments	28
I Visualization of Classification Tasks	31
J Acknowledgment of LLMs Usage	31

A RELATED WORK

Sparse Autoencoders and Dictionary Learning The proposed ConCA framework is closely related to Sparse Autoencoders (SAEs) (Rajamanoharan et al., 2024a;b; Gao et al., 2025; Braun et al., 2024; Bricken et al., 2023; Huben et al., 2023; Gao et al., 2025; Mudide et al., 2024; Chanin et al., 2024; Lieberum et al., 2024; He et al., 2024; Karvonen et al., 2024; Bussmann et al., 2024), as both aim to extract and monosemantic human-interpretable concepts from LLM representations in order to provide mechanistic explanations for their success. However, the two approaches differ fundamentally in their theoretical foundations. ConCA is grounded in a rigorous theoretical framework, as established in Theorem 2.1, while SAEs rely on assumptions such as the linear representation hypothesis and the superposition hypothesis. This foundational difference leads to notable divergences in both method design and evaluation protocols, as discussed in the Introduction. In addition, our work is also closely connected to the well-established framework of dictionary learning (Dumitrescu & Irofti, 2018; Eggert & Korner, 2004; Elad, 2010; Elad & Bruckstein, 2002; Aharon et al., 2006; Arora et al., 2015). Specifically, this work bridges next-token prediction framework and dictionary learning by showing that LLM representations acquired through the next-token prediction framework can be further meaningfully decomposed using dictionary learning-like techniques.

Causal Representation Learning This work is also related to causal representation learning (Schölkopf et al., 2021), which seeks to identify latent causal variables from observational data (Brehmer et al., 2022; Von Kügelgen et al., 2021; Massidda et al., 2023; von Kügelgen et al., 2023; Ahuja et al., 2023; Seigal et al., 2022; Shen et al., 2022; Liu et al., 2022; Buchholz et al., 2023; Varici et al., 2023; Liu et al., 2024c; 2025b; 2024b;a; Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019; Khemakhem et al., 2020; Cai et al., 2025; Rajendran et al., 2024). Most of those works focus on continuous latent and observed variables, we explore the setting of discrete variables. A subset of studies has investigated causal representation learning in discrete spaces (Gu & Dunson, 2023; Kong et al., 2024; Kivva et al., 2021), but these typically assume specific graphical structures and rely on invertible mappings from latent to observed variables. In contrast, our approach does not require such assumptions, offering greater flexibility.

Identifiability Analysis for LLMs Several prior studies (Marconato et al., 2024; Roeder et al., 2021) have explored identifiability within the inference space, revealing alignments between representations obtained from distinct inference models. However, these findings remain confined to the inference space and do not extend to identifying the true latent variables in latent variable models. More recently, Jiang et al. (2024) examined the emergence of linear structures under a different generative framework, attributing them to the implicit bias introduced by gradient-based optimization. In contrast, our approach offers a theoretical explanation rooted in identifiability theory, directly linking the observed linear patterns to the ground-truth latent structure. This shift in perspective provides a deeper and more principled understanding of the underlying mechanisms.

Concept Discovery Concept discovery aims to extract human-interpretable concepts from pretrained models, and has emerged as a key area within machine learning (Schut et al., 2023; Yang et al., 2023; Marconato et al., 2023; Oikarinen et al., 2023; Koh et al., 2020; Schwalbe, 2022; Poeta et al., 2023; Taeb et al., 2022). While empirical methods have flourished, theoretical understanding of when and how such concepts can be reliably identified remains limited. In contrast, the proposed ConCA is grounded in rigorous theoretical results. The work of Leemann et al. (2023) investigates concept identifiability under the assumption that the non-linear mapping is known a priori. In contrast, our results establish identifiability guarantees without requiring such prior knowledge. A recent advance by Rajendran et al. (2024) offers formal identifiability results for continuous latent concepts under a likelihood-matching framework, while our work focuses on discrete concepts, and approaches the problem from a different angle, i.e., rooted in the next-token prediction paradigm, which underpins modern LLMs training. This shift in both focus and framework allows us to derive new identifiability guarantees tailored to the discrete setting.

B LIMITATIONS AND DISCUSSION

Theoretical limitations. Our theoretical analysis in Theorem 2.1 relies on several assumptions, including the Diversity Condition (i) and the Informational Sufficiency Condition (ii). While we provide justifications and argue that these assumptions are likely mild in practice, they represent idealized conditions that may not hold exactly in real-world datasets. Nonetheless, we believe they are reasonable: most have been introduced in prior work, and some, such as the Informational Sufficiency Condition (ii), are already considered relaxations in previous identifiability analyses within the causal representation learning community.

Methodological limitations. In addition, sparse ConCA applies regularization to recover concept-level posteriors, but in practice we do not use the exponential function directly on $\hat{\mathbf{z}} \approx [\log p(z_i|\mathbf{x})]_{z_i}$. Instead, we employ exponential-like activation functions, such as SELU, SoftPlus, and ELU, which approximate exponential behavior for small input values while ensuring numerical stability and smooth gradients. As a result, the sparsity prior only approximately reflects true posterior activation. Additionally, underdetermined settings $(\ell > m)$ and deviations from theoretical assumptions can lead to multiple plausible solutions, some capturing noise rather than meaningful concepts.

Discussion. Despite the theoretical, methodological, and evaluation limitations discussed above, sparse ConCA provides a principled framework for understanding and decomposing LLM representations at the concept level. The approach highlights the potential of leveraging sparsity and structured priors to recover interpretable latent factors, even under underdetermined settings or approximate assumptions. Furthermore, our work emphasizes the importance of carefully designed evaluation frameworks, as concept-level recovery in natural language remains inherently challenging. We hope that these insights will motivate future research to incorporate additional probabilistic constraints, explore alternative regularization strategies, and develop larger and more diverse benchmarks to better evaluate and improve concept extraction methods in LLMs. Ultimately, sparse ConCA serves as a starting point for building more interpretable, reliable, and theoretically grounded tools for analyzing complex representations in LLM.

Aspect	Our Theorem 2.1	Liu's Theorem C.1
Diversity Condition 1	Requires only $m+1$ distinct y values	Requires $\prod_i k_i + 1$ distinct y values
Diversity Condition 2	Not required	Required
Representations	$\mathbf{A}[\ldots;[\log p(z_i \mathbf{x})]_{z_i};\ldots]+\mathbf{b}$	$\mathbf{A}[\log p(\mathbf{z} = \mathbf{z}_i \mathbf{x})]_{\mathbf{z}_i} + \mathbf{b}$
Interpretability	Mixture of <i>component-wise</i> $p(z_j \mathbf{x})$	Mixture of <i>joint</i> $[\log p(\mathbf{z} = \mathbf{z}_i \mathbf{x})]_{\mathbf{z}_i}$

Table 2: Comparison of Our Theorem and Liu's Theorem in terms of assumptions and results. This table highlights that our theorem requires weaker assumptions and provides more interpretable, component-wise results.

C COMPARISON OF THE RESULT IN LIU ET AL. (2025A)

The theoretical result Theorem 2.1 in this work is totally different with that of Liu et al. (2025a). For comparison, here we re-write the result in Liu et al. (2025a) as follows:

Theorem C.1 (Liu et al. (2025a)). Suppose latent variables z and the observed variables x and y follow the generative models defined in Eq. 1, and assume that z takes values in a finite set of cardinality k. Assume the following holds:

- (i) (Diversity Condition 1) There exist $\prod_i k_i + 1$ values of y, so that the matrix $\mathbf{L} = (\mathbf{g}(y = y_1) \mathbf{g}(y = y_0), ..., \mathbf{g}(y = y_k) \mathbf{g}(y = y_0))$ of size $\prod_i k_i \times \prod_i k_i$ is invertible,
- (ii) (Diversity Condition 2) There exist k+1 distinct values of y, i.e., $y_0,...,y_k$, such that the matrix $\hat{\mathbf{L}} = ([p(\mathbf{z} = \mathbf{z}_i|y = y_1) p(\mathbf{z} = \mathbf{z}_i|y = y_0)]_{\mathbf{z}_i},...,[p(\mathbf{z} = \mathbf{z}_i|y = y_k) p(\mathbf{z} = \mathbf{z}_i|y = y_0)]_{\mathbf{z}_i})$ of the size $k \times k$ is invertible
- (iii) (Approximate Invertibility Condition) The mapping from \mathbf{z} to (\mathbf{x}, y) is approximately invertible in the sense that the posterior $p(\mathbf{z} \mid \mathbf{x}, y)$ is sharply peaked, i.e., there exists a most probable \mathbf{z}^* such that $p(\mathbf{z} = \mathbf{z}^* \mid \mathbf{x}, y) \ge 1 \epsilon$ for some $\epsilon \in [0, 1)$ with $\epsilon \to 0$.

Then the true latent variables \mathbf{z} are mathematically related to the representations in LLMs, i.e., $\mathbf{f}(\mathbf{x})$, which are learned through the next-token prediction framework, by the following relationship:

$$\mathbf{f}(\mathbf{x}) \approx \mathbf{A}[\log p(\mathbf{z} = \mathbf{z}_i | \mathbf{x})]_{\mathbf{z}_i} + \mathbf{b},$$
 (6)

where $\mathbf{A} = (\hat{\mathbf{L}}^T)^{-1}\mathbf{L}$, and \mathbf{b} is a bias vector.

We compare our Theorem 2.1 with Theorem C.1 mainly from the following (Also see Table 2 for a summary of the comparison.):

- Assumptions: Our Theorem 2.1 eliminates the need for Diversity Condition 2 ((ii)). Furthermore, compared to Diversity Condition 1 ((i)), our assumption requires only m + 1 distinct values of y, where m is the dimensionality of the learned LLM representations. In contrast, Condition (i) requires k + 1 values, where k is the number of possible configurations of the discrete latent variable z (i.e., the number of distinct values z can take). Since it is generally believed that m < k, our assumption is strictly weaker. This belief is partly supported by the commonly discussed the superposition hypothesis (Elhage et al., 2022).</p>
- Results: Our result shows that the LLM representation $f(\mathbf{x})$ approximates a mixture over the individual components of the latent variable \mathbf{z} , i.e., $\mathbf{f}(\mathbf{x}) \approx \mathbf{A} [\log p(z_1 \mid \mathbf{x}), \dots, \log p(z_\ell \mid \mathbf{x})] + \mathbf{b}$, whereas Theorem C.1 describes $\mathbf{f}(\mathbf{x})$ as a mixture over the full configurations of the joint latent variable \mathbf{z} , i.e., $\mathbf{f}(\mathbf{x}) \approx \mathbf{A} [\log p(\mathbf{z} = \mathbf{z}_i \mid \mathbf{x})]_{\mathbf{z}_i} + \mathbf{b}$. Most importantly, our result support that one can estimate each distribution $p(z_j \mid \mathbf{x})$ by unmixing a linear combination, offering a more interpretable and component-wise understanding of the learned representation.

D Lemmas in the Context of $H(\mathbf{z} \mid \mathbf{x}) \to 0$

For ease of exposition in the following sections, we first introduce the following lemmas.

Lemma D.1 (Factorization of the Posterior as Conditional Entropy Vanishes). *Suppose latent causal variables* $\mathbf{z} = (z_1, \dots, z_\ell)$ *and observed variable* \mathbf{x} *follow the causal generative model defined in Eq. 1. Then:*

$$p(\mathbf{z} \mid \mathbf{x}) \approx \prod_{i=1}^{\ell} p(z_i \mid \mathbf{x}), \quad as \ H(\mathbf{z} \mid \mathbf{x}) \to 0.$$
 (7)

Intuition. When $H(\mathbf{z} \mid \mathbf{x}) = 0$, the observation \mathbf{x} uniquely determines every coordinate z_i , so no residual dependence remains between them. If the conditional entropy is merely small, the remaining dependencies are weak and the posterior is well-approximated by $\prod_i p(z_i \mid \mathbf{x})$.

Proof. Define the product of marginals as:

$$q(\mathbf{z} \mid \mathbf{x}) := \prod_{i=1}^{\ell} p(z_i \mid \mathbf{x}). \tag{8}$$

The Kullback–Leibler divergence between $p(\mathbf{z} \mid \mathbf{x})$ and $q(\mathbf{z} \mid \mathbf{x})$ is

$$D_{\mathrm{KL}}(p(\mathbf{z} \mid \mathbf{x}) || q(\mathbf{z} \mid \mathbf{x})) = \mathbb{E}_{p(\mathbf{z} \mid \mathbf{x})} \left[\log \frac{p(\mathbf{z} \mid \mathbf{x})}{\prod_{i=1}^{\ell} p(z_i \mid \mathbf{x})} \right].$$
(9)

Recall that conditional entropy satisfies

$$H(\mathbf{z} \mid \mathbf{x}) = -\mathbb{E}_{p(\mathbf{z} \mid \mathbf{x})} \log p(\mathbf{z} \mid \mathbf{x}), \tag{10}$$

and similarly for each marginal,

$$H(z_i \mid \mathbf{x}) = -\mathbb{E}_{p(z_i \mid \mathbf{x})} \log p(z_i \mid \mathbf{x}). \tag{11}$$

Thus,

$$D_{\mathrm{KL}}(p(\mathbf{z} \mid \mathbf{x}) || q(\mathbf{z} \mid \mathbf{x})) = \mathbb{E}_{p(\mathbf{z} \mid \mathbf{x})} \left[\log p(\mathbf{z} \mid \mathbf{x}) - \sum_{i=1}^{\ell} \log p(z_i \mid \mathbf{x}) \right]$$
(12)

$$= -H(\mathbf{z} \mid \mathbf{x}) - \sum_{i=1}^{\ell} \mathbb{E}_{p(\mathbf{z} \mid \mathbf{x})} \left[-\log p(z_i \mid \mathbf{x}) \right]$$
 (13)

$$= \sum_{i=1}^{\ell} H(z_i \mid \mathbf{x}) - H(\mathbf{z} \mid \mathbf{x}), \tag{14}$$

where we have used the law of total expectation to replace $\mathbb{E}_{p(\mathbf{z}|\mathbf{x})}[-\log p(z_i \mid \mathbf{x})]$ by $H(z_i \mid \mathbf{x})$.

By the chain rule of entropy, for each i we have

$$H(\mathbf{z} \mid \mathbf{x}) - H(z_i \mid \mathbf{x}) = H(\mathbf{z}_{-i} \mid z_i, \mathbf{x}), \tag{15}$$

where \mathbf{z}_{-i} denotes all components except z_i . Since entropy is non-negative for discrete case,

$$H(\mathbf{z} \mid \mathbf{x}) \ge H(z_i \mid \mathbf{x}). \tag{16}$$

Then, if $H(\mathbf{z} \mid \mathbf{x}) \to 0$, we necessarily have

$$H(z_i \mid \mathbf{x}) \to 0$$
, for all $i = 1, \dots, \ell$. (17)

Combining the above,

$$D_{\mathrm{KL}}(p(\mathbf{z} \mid \mathbf{x}) || q(\mathbf{z} \mid \mathbf{x})) = \sum_{i=1}^{\ell} H(z_i \mid \mathbf{x}) - H(\mathbf{z} \mid \mathbf{x}) \to 0.$$
 (18)

Lemma D.2 (Exact Linear Representation of Joint Log Posterior via Full Marginals). Let $\mathbf{z} = (z_1, \dots, z_\ell) \in \mathcal{V}_1 \times \dots \times \mathcal{V}_\ell$ to be discrete, with $z_i \in \mathcal{V}_i, |\mathcal{V}_i| = k_i, i = 1, \dots, \ell$, then there exists a fixed (assignment-independent) selector matrix $\mathbf{S} \in \{0, 1\}^{M \times \sum_i k_i}$ with $M = \prod_i k_i$ such that

$$[\log p(\mathbf{z} \mid \mathbf{x})]_{\mathbf{z}} \approx \mathbf{S} [[\log p(z_1 \mid \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell \mid \mathbf{x})]_{z_\ell}], \tag{19}$$

where the approximation becomes accurate as $H(\mathbf{z} \mid \mathbf{x}) \to 0$ (i.e., the posterior concentrates on a few high-probability assignments). The j-th row of \mathbf{S} selects, for each i, the entry in $[\log p(z_1 \mid \mathbf{x})]_{z_1}, \ldots, [\log p(z_\ell \mid \mathbf{x})]_{z_\ell}]$ corresponding to the value of z_i in the j-th joint assignment $\mathbf{z}^{(j)}$.

Intuition. The vector $\left[[\log p(z_1 \mid \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell \mid \mathbf{x})]_{z_\ell} \right]$ stacks all single-variable log-posteriors. The selector matrix \mathbf{S} picks, for each joint assignment, the corresponding entries in $\left[[\log p(z_1 \mid \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell \mid \mathbf{x})]_{z_\ell} \right]$ so that $\mathbf{S} \left[[\log p(z_1 \mid \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell \mid \mathbf{x})]_{z_\ell} \right]$ reconstructs the joint log-posterior $[\log p(\mathbf{z} \mid \mathbf{x})]_{\mathbf{z}}$. Under low conditional entropy $H(\mathbf{z} \mid \mathbf{x}) \to 0$, only a few joint assignments dominate, making this approximation accurate.

Proof. Let $M = \prod_i k_i$ and enumerate all joint assignments as $\mathcal{V}^{\ell} = \{\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(M)}\}$. Consider the vector

$$[\log p(\mathbf{z} \mid \mathbf{x})]_{\mathbf{z}} \in \mathbb{R}^M, \tag{20}$$

whose *j*-th entry is $\log p(\mathbf{z}^{(j)} \mid \mathbf{x})$.

Step 1 (Factorization under low entropy). By Lemma D.1, as $H(\mathbf{z} \mid \mathbf{x}) \to 0$,

$$p(\mathbf{z} \mid \mathbf{x}) \approx \prod_{i=1}^{\ell} p(z_i \mid \mathbf{x}) \implies \log p(\mathbf{z}^{(j)} \mid \mathbf{x}) \approx \sum_{i=1}^{\ell} \log p(z_i^{(j)} \mid \mathbf{x})$$
 (21)

where $z_i^{(j)}$ denotes the value of the *i*-th latent variable in the *j*-th joint assignment $\mathbf{z}^{(j)}$.

Step 2 (Construction of selector matrix). Construct $\mathbf{S} \in \{0,1\}^{M \times \sum_i k_i}$ so that its j-th row has exactly one 1 in each block corresponding to variable z_i , selecting the entry that corresponds to the value of z_i in $\mathbf{z}^{(j)}$, and all other entries in that row are 0.

Then for each j,

$$(\mathbf{S}\left[\left[\log p(z_1 \mid \mathbf{x})\right]_{z_1}; \dots; \left[\log p(z_\ell \mid \mathbf{x})\right]_{z_\ell}\right])_j = \sum_{i=1}^{\ell} \log p(z_i^{(j)} \mid \mathbf{x}) \approx \log p(\mathbf{z}^{(j)} \mid \mathbf{x}), \tag{22}$$

so the linear map exactly reproduces the sum of marginal log-probabilities for the joint assignment.

Step 3 (Validity under low entropy). Because the posterior concentrates on a few high-probability assignments as $H(\mathbf{z} \mid \mathbf{x}) \to 0$, the sum-of-marginals approximation is accurate for the entries corresponding to these assignments. Thus

$$[\log p(\mathbf{z} \mid \mathbf{x})]_{\mathbf{z}} \approx \mathbf{S}[[\log p(z_1 \mid \mathbf{x})]_{z_1}; \dots; [\log p(z_{\ell} \mid \mathbf{x})]_{z_{\ell}}], \tag{23}$$

as claimed. The matrix ${\bf S}$ is fixed (assignment-independent) and encodes the mapping from full marginal logs to joint-log vector.

Lemma D.3 (Expectation difference vanishes with conditional entropy). Suppose latent causal variables \mathbf{z} and observed variable \mathbf{x} follow a generative model. For any two values y_0 and y_i , as $H(\mathbf{z} \mid \mathbf{x}) \to 0$,

$$\mathbb{E}_{p(\mathbf{z}|y_i)}[\log p(\mathbf{z} \mid \mathbf{x})] - \mathbb{E}_{p(\mathbf{z}|y_0)}[\log p(\mathbf{z} \mid \mathbf{x})] \longrightarrow 0.$$

Intuition. When \mathbf{x} almost fully determines \mathbf{z} , the expectation $\mathbb{E}_{p(\mathbf{z}|y)}[\log p(\mathbf{z} \mid \mathbf{x})]$ becomes nearly independent of y, so the difference between any two values of y vanishes.

Proof. Let

$$\mathbf{z}^* = \arg\max_{z} p(z \mid \mathbf{x}), \quad \varepsilon = 1 - p(\mathbf{z}^* \mid \mathbf{x}).$$
 (24)

Since $H(\mathbf{z} \mid \mathbf{x}) \to 0$, the conditional distribution $p(\mathbf{z} \mid \mathbf{x})$ becomes increasingly concentrated on \mathbf{z}^* , i.e., $\varepsilon \to 0$.

Now, for any fixed y, as $\varepsilon \to 0$, the posterior satisfies

$$p(\mathbf{z}^* \mid \mathbf{x}) = 1 - \varepsilon, \tag{25}$$

and for all $\mathbf{z} \neq \mathbf{z}^*$, we have

$$p(\mathbf{z} \mid \mathbf{x}) \approx \varepsilon.$$
 (26)

We can then decompose the expectation:

$$\mathbb{E}_{p(\mathbf{z}|y)}[\log p(\mathbf{z} \mid \mathbf{x})] = p(\mathbf{z}^* \mid y) \log p(\mathbf{z}^* \mid \mathbf{x}) + \sum_{\mathbf{z} \neq \mathbf{z}^*} p(\mathbf{z} \mid y) \log p(\mathbf{z} \mid \mathbf{x})$$
(27)

(28)

Note that:

- $\log(1-\epsilon) \approx 0$, when $\epsilon \to 0$,
- $\log p(\mathbf{z} \mid \mathbf{x}) \approx \log \epsilon$ for all $\mathbf{z} \neq \mathbf{z}^*$, when $\epsilon \to 0$,
 - and for $\mathbf{z} \neq \mathbf{z}^*$, $p(\mathbf{z} \mid y)$ is bounded.

Hence, for any y, when $\epsilon \to 0$,

$$\mathbb{E}_{p(\mathbf{z}|y)}[\log p(\mathbf{z} \mid \mathbf{x}, y)] \to \log \epsilon, \tag{29}$$

which is independent of the specific value of y. As a result, taking the difference for two distinct values y_0 and y_i :

$$\mathbb{E}_{p(\mathbf{z}|y_i)}[\log p(\mathbf{z} \mid \mathbf{x}, y_i)] - \mathbb{E}_{p(\mathbf{z}|y_0)}[\log p(\mathbf{z} \mid \mathbf{x}, y_0)] \to 0.$$

This completes the proof.

E Proof of Theorem 2.1

Theorem 2.1. Suppose latent variables z and the observed variables x and y follow the generative models defined in Eq. 1. Assume the following holds:

- (i) (Diversity Condition) There exist m+1 values of y, so that the matrix $\mathbf{L} = (\mathbf{g}(y = y_1) \mathbf{g}(y = y_0), ..., \mathbf{g}(y = y_m) \mathbf{g}(y = y_0))$ of size $m \times m$ is invertible,
- (ii) (Informational Sufficiency Condition) The conditional entropy of the latent concepts given the context is close to zero, i.e., $H(\mathbf{z}|\mathbf{x}) \to 0$,

then the representations $\mathbf{f}(\mathbf{x})$ in LLMs, which are learned through the next-token prediction framework, are related to the true latent variables \mathbf{z} , by the following relationship:

$$\mathbf{f}(\mathbf{x}) \approx \mathbf{A} \left[[\log p(z_1 \mid \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell \mid \mathbf{x})]_{z_\ell} \right] + \mathbf{b}, \tag{30}$$

where **A** is a $m \times (\sum_{i=1}^{\ell} k_i)$ matrix, **b** is a bias vector.

Intuition. Each LLM representation f(x) encodes a combination of all latent concepts. Under the Diversity, observing representations across multiple diverse outputs y provides linearly independent constraints that reveal how all latent concepts contribute together, i.e., the joint posterior. When the latent concepts are nearly determined by x, i.e., the Informational Sufficiency Condition, the joint posterior decomposes into marginal posteriors, allowing f(x) to be expressed as a linear mixture of the log-posteriors of individual concepts.

Proof. Recall that next-token prediction can be viewed as a multinomial logistic regression model, where the conditional distribution is approximated as

$$p(y|\mathbf{x}) = \frac{\exp\left(\mathbf{f}(\mathbf{x})^{\top}\mathbf{g}(y)\right)}{\sum_{y'}\exp\left(\mathbf{f}(\mathbf{x})^{\top}\mathbf{g}(y')\right)}.$$
 (31)

Here, $\mathbf{f}(\mathbf{x})$ and $\mathbf{g}(y)$ denote the learned representations of \mathbf{x} and y, respectively, both lying in \mathbb{R}^m .

On the other hard, under the latent-variable formulation in Eq. 1, the conditional distribution is given by marginalization:

$$p(y|\mathbf{x}) = \sum_{\mathbf{z}} p(y|\mathbf{z}) p(\mathbf{z}|\mathbf{x}). \tag{32}$$

Equating Eq. 31 and Eq. 32, we obtain

$$\frac{\exp\left(\mathbf{f}(\mathbf{x})^{\top}\mathbf{g}(y)\right)}{\sum_{y'}\exp\left(\mathbf{f}(\mathbf{x})^{\top}\mathbf{g}(y')\right)} = \sum_{\mathbf{z}} p(y|\mathbf{z}) p(\mathbf{z}|\mathbf{x}). \tag{33}$$

Taking logarithms on both sides, one arrives at

$$\mathbf{f}(\mathbf{x})^{\top}\mathbf{g}(y) - \log Z(\mathbf{x}) = \log \sum_{\mathbf{z}} p(y|\mathbf{z}) p(\mathbf{z}|\mathbf{x}), \tag{34}$$

where $Z(\mathbf{x}) = \sum_{y'} \exp(\mathbf{f}(\mathbf{x})^{\top} \mathbf{g}(y'))$ is the partition function.

We now focus on the right-hand side. Using Bayes' rule and the conditional independence assumption $y \perp \mathbf{x} \mid \mathbf{z}$, we can decompose:

$$\log p(y|\mathbf{x}) = \mathbb{E}_{p(\mathbf{z}|y)} \left[\log \frac{p(y, \mathbf{z}|\mathbf{x})}{p(\mathbf{z}|y, \mathbf{x})} \right]$$
(35)

$$= \mathbb{E}_{p(\mathbf{z}|y)}[\log p(\mathbf{z}|\mathbf{x})] + \mathbb{E}_{p(\mathbf{z}|y)}[\log p(y|\mathbf{z})] - \mathbb{E}_{p(\mathbf{z}|y)}[\log p(\mathbf{z}|y,\mathbf{x})]. \tag{36}$$

Combining Eq. equation 34 and Eq. equation 36, we arrive at

$$\mathbf{f}(\mathbf{x})^{\top}\mathbf{g}(y) - \log Z(\mathbf{x}) = \mathbb{E}_{p(\mathbf{z}|y)}[\log p(\mathbf{z}|\mathbf{x})] - \mathbb{E}_{p(\mathbf{z}|y)}[\log p(\mathbf{z}|y,\mathbf{x})] + b_y, \tag{37}$$

where we set $b_y := \mathbb{E}_{p(\mathbf{z}|y)}[\log p(y|\mathbf{z})]$ for notational convenience.

 For concreteness, let y_0, y_1, \dots, y_m denote the outcomes satisfying the diversity condition in condition (i). In particular, for $y = y_0$ we have

$$\mathbf{f}(\mathbf{x})^{\top}\mathbf{g}(y_0) - \log Z(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}|y_0) \log p(\mathbf{z}|\mathbf{x}) - h_{y_0} + b_{y_0},$$
(38)

with $h_{y_0} := \sum_{\mathbf{z}} p(\mathbf{z}|y_0) \log p(\mathbf{z}|y_0, \mathbf{x})$. Similarly, for $y = y_1$,

$$\mathbf{f}(\mathbf{x})^{\mathsf{T}}\mathbf{g}(y_1) - \log Z(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}|y_1) \log p(\mathbf{z}|\mathbf{x}) - h_{y_1} + b_{y_1}.$$
(39)

Subtracting Eq. equation 38 from Eq. equation 39, we obtain

$$\left(\mathbf{g}(y_1) - \mathbf{g}(y_0)\right)^{\top} \mathbf{f}(\mathbf{x}) = \left(\sum_{\mathbf{z}} \left(p(\mathbf{z}|y_1) - p(\mathbf{z}|y_0)\right) \log p(\mathbf{z}|\mathbf{x})\right) - (h_{y_1} - h_{y_0}) + (b_{y_1} - b_{y_0}).$$

$$(40)$$

Since y can take m+1 distinct values, Eq. 40 yields m linearly independent equations. Collecting them together, we obtain

$$\underbrace{\left(\mathbf{f}_{y}(y_{1}) - \mathbf{f}_{y}(y_{0}), \dots, \mathbf{f}_{y}(y_{\ell}) - \mathbf{f}_{y}(y_{0})\right)^{\top}}_{\mathbf{I}^{\top}} \mathbf{f}_{\mathbf{x}}(\mathbf{x})$$
(41)

$$= \underbrace{\left([p(\mathbf{z}|y_1) - p(\mathbf{z}|y_0)]_{\mathbf{z}}, \dots, [p(\mathbf{z}|y_\ell) - p(\mathbf{z}|y_0)]_{\mathbf{z}} \right)^{\top}}_{\hat{\mathbf{L}}} [\log p(\mathbf{z}|\mathbf{x})]_{\mathbf{z}}$$

$$- \underbrace{\left[h_{y_1} - h_{y_0}, \dots, h_{y_\ell} - h_{y_0} \right]}_{\mathbf{h}_{y_\ell}} + \underbrace{\left[b_{y_1} - b_{y_0}, \dots, b_{y_\ell} - b_{y_0} \right]}_{\mathbf{b}_{y_\ell}}. \tag{42}$$

By the diversity condition, the matrix $\mathbf{L} \in \mathbb{R}^{m \times m}$ is invertible. Hence we can solve for $\mathbf{f}_{\mathbf{x}}(\mathbf{x})$:

$$\mathbf{f}_{\mathbf{x}}(\mathbf{x}) = (\mathbf{L}^{\top})^{-1} \hat{\mathbf{L}} [\log p(\mathbf{z}|\mathbf{x})]_{\mathbf{z}} - (\mathbf{L}^{\top})^{-1} \mathbf{h}_{y} + \underbrace{(\mathbf{L}^{\top})^{-1} \mathbf{b}_{y}}_{\mathbf{b}}.$$
 (43)

Then, as $H(\mathbf{z} \mid \mathbf{x}) \to 0$, by lemmas D.2 and D.3, we have:

$$\mathbf{f}_{\mathbf{x}}(\mathbf{x}) = (\mathbf{L}^{\top})^{-1} \hat{\mathbf{L}} \underbrace{\mathbf{S} \left[[\log p(z_1 \mid \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell \mid \mathbf{x})]_{z_\ell} \right]}_{\text{by Lemma C.2}} - \underbrace{(\mathbf{L}^{\top})^{-1} \mathbf{h}_y}_{\text{by Lemma C.3, } \to 0} + \mathbf{b}. \tag{44}$$

Finally, defining $\mathbf{A} = (\mathbf{L}^{\top})^{-1} \hat{\mathbf{L}} \mathbf{S}$ completes the proof.

F JUSTIFICATION FOR LOG-POSTERIOR ESTIMATION VIA LINEAR PROBING

Corollary 3.1. Suppose Theorem 2.1 holds, i.e.,

$$\mathbf{f}(\mathbf{x}) \approx \mathbf{A} \left[\left[\log p(z_1 \mid \mathbf{x}) \right]_{z_1}; \dots; \left[\log p(z_\ell \mid \mathbf{x}) \right]_{z_\ell} \right] + \mathbf{b}. \tag{45}$$

Let \mathbf{x}_0 and \mathbf{x}_1 be two counterfactual samples that differ only in the i-th latent concept z_i , each with its own ground-truth label. Then the corresponding representations $(\mathbf{f}(\mathbf{x}_0), \mathbf{f}(\mathbf{x}_1))$ are linearly separable with respect to these labels. In particular, there exists a weight matrix \mathbf{W} such that $\mathbf{W} \tilde{\mathbf{A}}^{(i)} \approx \mathbf{I}$, and the associated logits recover the marginal posterior $[p(z_i \mid \mathbf{x})]_{z_i}$ over all possible values of z_i . In the context where z_i is binary, the logits reduce to a two-dimensional vector, and the softmax recovers the marginal posterior $p(z_i = 0 \mid \mathbf{x})$, or equivalently, $p(z_i = 1 \mid \mathbf{x}) = 1 - p(z_i = 0 \mid \mathbf{x})$.

Intuition. The key idea is that each latent concept contributes to the representation along a distinct linear direction. Changing only one concept shifts the representation along its direction, so a simple linear classifier can isolate this change and recover the marginal posterior. For binary concepts, this reduces to a one-dimensional separation, while for multi-class concepts, each class corresponds to its own direction.

Proof. Consider the approximation

$$\mathbf{f}(\mathbf{x}) \approx \mathbf{A}\mathbf{g}(\mathbf{x}) + \mathbf{b}, \quad \mathbf{g}(\mathbf{x}) = [[\log p(z_1 \mid \mathbf{x})]_{z_1}; \dots; [\log p(z_\ell \mid \mathbf{x})]_{z_\ell}].$$

For the counterfactual samples \mathbf{x}_0 and \mathbf{x}_1 differing only in z_i , we pass the representations into a linear classifier with weights \mathbf{W} . The classifier produces logits

$$logits \approx W(Ag(x) + b), \tag{46}$$

where **logits** is a vector over all possible values of z_i . In the binary case, this is a two-dimensional vector

$$[\log p(z_i = 0 \mid \mathbf{x}), \log p(z_i = 1 \mid \mathbf{x})]^{\top},$$

and in the multi-class case, it contains one entry per category.

For correct classification under cross-entropy loss, the logits should recover the log-posterior for all categories (up to an additive constant):

$$logits = \left[\log p(z_i = k \mid \mathbf{x})\right]_k + const, \tag{47}$$

where k indexes all possible values of z_i , and the constant does not affect the softmax output.

Comparing equation 46 and equation 47, we require

$$\mathbf{W}\,\tilde{\mathbf{A}}^{(i)} \approx \mathbf{I},\tag{48}$$

where $\tilde{\mathbf{A}}^{(i)}$ is the block of columns of \mathbf{A} associated with all possible values of z_i . This condition ensures that the classifier isolates the contribution from z_i and produces the correct logits.

Binary case: When z_i is binary, $\tilde{\mathbf{A}}^{(i)}$ has two columns, and the logits reduce to a two-dimensional vector $[\log p(z_i=0\mid \mathbf{x}), \log p(z_i=1\mid \mathbf{x})]^{\top}$. After softmax, we directly obtain the marginal posterior

$$p(z_i = 0 \mid \mathbf{x}), \qquad p(z_i = 1 \mid \mathbf{x}) = 1 - p(z_i = 0 \mid \mathbf{x}).$$

Therefore, the counterfactual pair $(\mathbf{x}_0, \mathbf{x}_1)$ is linearly separable with respect to their ground-truth labels in both the general multi-class and binary cases.

G EXPERIMENTAL DETAILS

Training Data For all experiments, we use pre-trained LLMs downloaded from https://huggingface.co/, including Pythia-70m, 1.4b, 2.8b (Biderman et al., 2023), Gemma3-1b (Team et al., 2025), and Qwen3-1.7b (Team, 2025). LLM representations are extracted from these models using the first 200 million tokens of the Pile dataset, obtained from https://huggingface.co/datasets/EleutherAI/the_pile_deduplicated (Gao et al., 2020). For each token, we record the corresponding representation from the model's last hidden layer, aligned with Theorem 2.1. These pre-extracted representations form the training data for the proposed sparse ConCA and SAEs.

Table 3: Counterfactual concept pairs used for evaluation, adapted from Park et al. (2023).

#	Concept	Example	Word Pair Counts
Verl	b inflections		
1	$\operatorname{verb} \longrightarrow 3pSg$	(accept, accepts)	50
2	$\operatorname{verb} \longrightarrow \operatorname{Ving}$	(add, adding)	50
3	$\operatorname{verb} \longrightarrow \operatorname{Ved}$	(accept, accepted)	50
4	$Ving \longrightarrow 3pSg$	(adding, adds)	50
5	$Ving \longrightarrow Ved$	(adding, added)	50
6	$3pSg \longrightarrow Ved$	(adds, added)	50
7	$verb \longrightarrow V + able$	(accept, acceptable)	50
8	$verb \longrightarrow V + er$	(begin, beginner)	50
9	$verb \longrightarrow V + tion$	(compile, compilation)	50
10	$verb \longrightarrow V + ment$	(agree, agreement)	50
Adj	ective transformations		
11	$adj \longrightarrow un + adj$	(able, unable)	50
12	$adj \longrightarrow adj + ly$	(according, accordingly)	50
21	$adj \longrightarrow comparative$	(bad, worse)	87
22	$adj \longrightarrow superlative$	(bad, worst)	87
23	$frequent \longrightarrow infrequent$	(bad, terrible)	86
Size	, thing, noun		
13	$small \longrightarrow big$	(brief, long)	25
14	thing \longrightarrow color	(ant, black)	50
15	thing \longrightarrow part	(bus, seats)	50
16	$country \longrightarrow capital$	(Austria, Vienna)	158
17	pronoun \longrightarrow possessive	(he, his)	4
18	$male \longrightarrow female$	(actor, actress)	52
19	$lower \longrightarrow upper$	(always, Always)	73
20	$noun \longrightarrow plural$	(album, albums)	100
Lan	guage translations		
24	English → French	(April, avril)	116
25	French → German	(ami, Freund)	128
26	French → Spanish	(annee, año)	180
27	German \longrightarrow Spanish	(Arbeit, trabajo)	228

Testing Data for Results in Figures 2 and 3. For evaluation, we use counterfactual text pairs that differ in only a single concept while keeping all other aspects unchanged. We emphases again that constructing such pairs is challenging due to the complexity of natural language, as also highlighted in Park et al. (2023); Jiang et al. (2024). We adopt 27 high-precision counterfactual concepts from Park et al. (2023), derived from the Big Analogy Test dataset (Gladkova et al., 2016), as our testing dataset. Table 3 lists the 27 concepts, one illustrative pair per concept, and the number of pairs used for evaluation. Despite its modest size, this benchmark suffices to meaningfully distinguish method performance and validate the sensitivity of our evaluation framework.

```
1404
         Algorithm 1 Evaluation of SAE/ConCA Concepts via Supervised Linear Classification
1405
         Require: Trained SAEs/ConCA, 27 counterfactual pairs \{\mathbf{x}_i\}_{i=1}^{27}
1406
         Ensure: Mean Pearson correlation between SAE features and concept logits
1407
           1: Step 1: Obtain concept logits
1408
          2: for i = 1 to 27 do
1409
                 Train LogisticRegression on the i-th counterfactual pair
1410
                 Compute logit s_i = \text{logit}(c^k = 1 | \mathbf{f}(\mathbf{x}_i))
1411
          5: end for
1412
          6: Stack logits to form s = (s_1, s_2, ..., s_{27})
1413
          7: Step 2: Extract SAEs and ConCA latent features
          8: for i = 1 to 27 do
1414
                 Pass \mathbf{f}(\mathbf{x}_i) through SAE to get latent \hat{\mathbf{z}}_i
          9:
1415
         10:
                 Compute element-wise exponentiation \tilde{\mathbf{z}}_i = \exp(\hat{\mathbf{z}}_i)
1416
         11: end for
1417
         12: Stack features to form \tilde{\mathbf{z}} \in \mathbb{R}^{27 \times D}
1418
         13: Step 3: Compute correlation matrix
1419
         14: for d = 1 to D do
1420
         15:
                 Compute Pearson correlation R_d = C(\mathbf{s}, \tilde{\mathbf{z}}_{:,d}) (D denotes SAEs/ConCA's feature dimension)
1421
         16: end for
1422
         17: Step 4: Solve assignment problem
1423
         18: Apply Hungarian algorithm on R to obtain optimal assignment.
1424
         19: Compute assigned Pearson correlations
         20: Step 5: Aggregate metric
1425
         21: Report mean Pearson correlation across the 27 concepts.
1426
```

Testing Data for Downsteam Tasks in Figure 5. For the few-show learning setting in Figure 5, we leverage a previously collected set of 113 binary classification datasets from Kantamneni et al. (2025), covering diverse tasks including challenging cases such as front-page headline detection and logical entailment. Each dataset provides prompts and binary targets (0 or 1), with prompt lengths ranging from 5 to 1024 tokens. Refer to Table 3 in Kantamneni et al. (2025) for details. For the out-of-distribution task in Figure 5, we also leverage 8 datasets from Kantamneni et al. (2025). These include: These include: 2 preexisting GLUE-X datasets designed as "extreme" versions of tasks testing grammaticality and logical entailment, 3 datasets with altered language, i.e., Tanslated to Frech, Spanish, and German, and 3 datasets with syntactic modifications substitutions of names (Fictional Characters, Random Letter Inserted, and Reversed Name Order) with cartoon characters. Probes are trained in standard settings and evaluated on these out-of-distribution test examples. Both two dataset can be downloaded from https://github.com/JoshEngels/SAE-Probes/tree/main.

Training Pipeline. All ConCA and SAE variants use a feature dimension of 2^{15} , based on empirical settings from sparse SAEs. They are trained for 20,000 optimization steps with a batch size of 10,000, using the Adam optimizer with an initial learning rate of 1×10^{-4} and a linear warm-up over the first 200 steps. For the top-k and batch-top-k SAEs, k is set to 32. P-annealing SAEs incorporate a sparsity warm-up of 400 steps with an initial sparsity penalty coefficient 0.1. All experiments are run

on a server equipped with 4 NVIDIA A100 GPUs.

Pearson correlation coefficient We use the PCC as the evaluation metric, as described in experiments. Algorithm 1 summarizes the procedure: for each of the 27 counterfactual concept pairs, we first obtain concept logits using a supervised linear classifier. The same inputs are then passed through the trained SAE to extract latent features, which are exponentiated and stacked into a feature matrix. We compute the Pearson correlation between each SAE feature and the corresponding concept logit, and solve the assignment problem using the Hungarian algorithm to account for permutation indeterminacy. The mean Pearson correlation across all concepts is reported as the final evaluation score.

AUC. The Area Under the Curve (AUC) is used to evaluate the performance of a binary classifier for concept prediction. The ROC curve plots the True Positive Rate (TPR) against the False Positive

Figure 6: Rank-based fraction of significant features for SAE and ConCA variants across three counterfactual pair concepts: [3pSg - Ved], [adj - adj + ly], and [adj - comparative]. For each concept, the top-32 features with highest differences are selected, and points show the fraction of features exhibiting significant changes (mean \pm std across seeds). Higher fractions indicate more variant features.

Rate (FPR) at different threshold levels, illustrating the trade-off between correctly predicting positive instances and incorrectly predicting negative instances. The AUC measures the total area under this curve, ranging from 0 to 1. An AUC of 1.0 indicates perfect classification, 0.5 corresponds to random guessing, and values closer to 0 indicate poor performance. This metric provides an aggregate, threshold-independent measure of the classifier's ability to discriminate between the two classes.

Linear Probing in Downstream Tasks. In our few-shot experiments, we first apply different SAEs and ConCA variants to the representations of pretrained LLMs to obtain feature embeddings. We then train a logistic regression classifier (using the LogisticRegression implementation from the scikit-learn package) on these features with limited labeled examples. To mitigate overfitting given the high dimensionality of the features, we employ an L2 penalty and select the regularization strength through cross-validation. In our out-of-distribution shift experiments, we again train a logistic regression classifier on the extracted features. To avoid overfitting to the in-distribution validation split, we fix the regularization strength to its default value (i.e., C=1.0 in LogisticRegression) instead of tuning it via cross-validation. This ensures a fairer and more stable evaluation under distribution shift.

H VISUALIZATION OF COUNTERFACTUAL PAIR EXPERIMENTS

To more clearly illustrate the advantages of the proposed ConCAs, we perform a visualization analysis based on features extracted by ConCA and SAE variants from counterfactual pairs. Specifically, we first select the top 32 (k in top-k) features with the highest average absolute difference between a counterfactual pair, focusing on the most significant variations while avoiding dilution from less responsive features. We then compute the rank-based fraction of significant features over these 32 features across multiple thresholds to ensure robustness. The fraction measures the proportion of selected features exhibiting significant changes, providing a metric of feature sensitivity and stability in response to a single concept change. Intuitively, if the learned features are expected to capture a single concept as much as possible, their responses should be small—that is, the fraction will be low. The results are visualized using scatter plots with mean and standard deviation to capture both distribution and central tendency. This analysis highlights how ConCAs capture selective and meaningful feature variations, complementing the quantitative metrics reported earlier. For GroupNorm, we apply the same procedure independently within each group. That is, the 32 selection and rank-based fraction calculation are performed per group, and the final metric is obtained by averaging across all groups. This ensures that group-level normalization does not interfere across groups, making the evaluation consistent for GroupNorm settings. Algorithm 2 summarizes the procedure.

Figures 4, 6–13 show the rank-based fraction of significant features for the proposed ConCA and SAE variants across 27 counterfactual pairs, on Pythia-2.8b. The LayerNorm configuration exhibits the smallest fractions, indicating more stable or less variant feature changes under counterfactual conditions. In contrast, the Batch-Topk and Topk SAE variants produce larger fractions, reflecting more variable feature responses. BatchNorm and Panneal configurations display similar intermediate behavior. Overall, these trends are broadly aglined with the MPC results shown in Figure 3.

Figure 7: Rank-based fraction of significant features for SAE and ConCA variants across three counterfactual pair concepts: [English - French], [French - German], and [French - Spanish].

Figure 8: Rank-based fraction of significant features for SAE and ConCA variants across three counterfactual pair concepts: [frequent - infrequent], [German - Spanish], and [lower - upper].

Figure 9: Rank-based fraction of significant features for SAE and ConCA variants across three counterfactual pair concepts: [male - female], [noun - plural], and [pronoun - possessive].

Figure 10: Rank-based fraction of significant features for SAE and ConCA variants across three counterfactual pair concepts: [small - big], [thing - color], and [thing - part].

Figure 11: Rank-based fraction of significant features for SAE and ConCA variants across three counterfactual pair concepts: [verb - 3pSg], [verb - V + able], and [verb - V + er].

Figure 12: Rank-based fraction of significant features for SAE and ConCA variants across three counterfactual pair concepts: [verb - V + ment], [verb - V + tion], and [verb - Ved].

Figure 13: Rank-based fraction of significant features for SAE and ConCA variants across three counterfactual pair concepts: [verb - Ving], [Ving - Ved], and [Ving - Ved].

1620 Algorithm 2 Compute Rank-Based Fraction of Significant Features for Counterfactual Pairs 1621 **Require:** Features of counterfactual pair $(\mathbf{z}_s, \mathbf{z}_t)$, k, normalization, number of groups G 1622 **Ensure:** Fraction of significant features 1623 1: Compute element-wise absolute difference: $diff = |\mathbf{z}_s - \mathbf{z}_t|$ 1624 2: **if** normalization == "Group" **then** 1625 Split diff , \mathbf{z}_s , \mathbf{z}_t into G groups 3: 1626 for g = 1 to G do 4: 1627 5: Select top- $k_q = \max(1, k/G)$ elements in group g based on diff 1628 Convert group features $\mathbf{z}_{s}^{g}, \mathbf{z}_{t}^{g}$ to percentile ranks 6: 1629 7: Compute absolute rank differences for top- k_a elements Evaluate significance across multiple thresholds $T = \{0.1, 0.2, 0.3, 0.4, 0.5\}$ 8: 1630 9: Compute average fraction of significant features for group g1631 10: end for 1632 Average fractions across groups to obtain overall fraction 11: 1633 12: **else** 1634 13: Select top-k elements globally based on diff 1635 14: Convert selected features \mathbf{z}_s , \mathbf{z}_t to percentile ranks 15: Compute absolute rank differences for top-k elements 1637 16: Evaluate significance across multiple thresholds $T = \{0.1, 0.2, 0.3, 0.4, 0.5\}$ 1638 17: Compute average fraction of significant features 1639 18: **end if** 19: return Overall fraction of significant features 1640 1641

I VISUALIZATION OF CLASSIFICATION TASKS

1642 1643

1644 1645

1646

1647

1648

1649

1650

1651

1652

1653 1654

1655 1656

1657

1658

1659

1668 1669

1671 1672 1673 To better understand why ConCA features transfer effectively under the few-shot setting, we visualize the features extracted by the proposed ConCA and SAEs variants from test data using t-SNE. By projecting all features into 2D space, we can observe the structure and separability of learned representations, providing intuition for the superior downstream performance of ConCA compared to SAE variants. Figure 14 provides t-SNE visualization (Maaten & Hinton, 2008) of features of testing data, extracted by SAE and ConCA variants, on a example of the few-shot task, which shows that ConCA configurations (e.g., LayerNorm, BatchNorm, GroupNorm) produce more compact and well-separated clusters, indicating more stable and discriminative representations compared to SAE variants.

J ACKNOWLEDGMENT OF LLMs USAGE

We acknowledge that large language models (LLMs) were used in this work only for word-level tasks, including correcting typos, improving grammar, and refining phrasing. No substantive content, results, or scientific interpretations were generated by LLMs. All scientific ideas, analyses, and conclusions presented in this manuscript are solely the work of the authors.

Figure 14: Visualization of features extracted by SAE and ConCA variants on a example of fewshot classification task datasets. Each point represents a test sample, colored by its class label. ConCA configurations (e.g., LayerNorm, BatchNorm, GroupNorm) produce more compact and well-separated clusters, indicating more stable and discriminative representations compared to SAE variants.