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ABSTRACT

In federated learning systems, the unexpected quitting of participants is inevitable.
Such quittings generally do not incur serious consequences in horizontal federated
learning (HFL), but they do bring damage to vertical federated learning (VFL),
which is underexplored in previous research. In this paper, we show that there are
two major vulnerabilities when passive parties unexpectedly quit in the deployment
phase of VFL — severe performance degradation and intellectual property (IP)
leakage of the active party’s labels. To solve these issues, we design PlugVFL
to improve the VFL model’s robustness against the unexpected exit of passive
parties and protect the active party’s IP in the deployment phase simultaneously.
We evaluate our framework on multiple datasets against different inference attacks.
The results show that PlugVFL effectively maintains model performance after the
passive party quits and successfully disguises label information from the passive
party’s feature extractor, thereby mitigating IP leakage.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017; Yang et al., 2019b) is a distributed learning method
that allows multiple parties to collaboratively train a model without directly sharing their data, thereby
preserving their data privacy. FL was initially proposed as Horizontal Federated Learning (HFL) to
enable collaborative learning across devices (Sun et al., 2022). In this case, data is "horizontally" split,
where the devices share the same feature space but have different samples. Another FL framework is
Vertical Federated Learning (VFL), which focuses on scenarios where various parties have data with
different feature spaces but share overlapping samples (Liu et al., 2019; 2021a). Different from HFL,
VFL is mostly deployed in cross-silo scenarios. Suppose a service provider, referred to as active party,
owns data and labels of its clients and wishes to train a deep learning model. The service provider
may collaborate with other parties, namely passive parties, that possess different data features of the
same clients to boost the model’s performance. Instead of explicitly sharing the raw data, the passive
parties transmit the extracted representations to the active party for training and inference.

Active party (Service provider)

Passive party

cat

dog
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Figure 1: The passive party might quit in the deployment phase, which would cause a substantial
performance drop. The passive party could also extract representations containing the information of
the active party’s labels using its feature extractor, leading to IP leakage of the active party.
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The collaboration of devices in HFL happens in the training phase, and the global model is deployed
on each device for local inference in the deployment phase. In contrast, VFL requires the parties to
collaborate in both the training and deployment phases. During the deployment phase, the active
party still requires the representations uploaded by passive parties to conduct inference. However, in
real-world scenarios, it is possible for passive parties to quit unexpectedly at inference time due to
network crashes, system maintenance, or termination of collaborations. When unexpected quitting
happens, the service provider faces two challenges: (1) a substantial performance drop; (2) potential
intellectual property (IP) leakage through the passive party’s feature extractor. This paper shows
that the drop in model performance caused by the passive party’s quitting results in a model that
performs worse than one trained by the active party alone, ultimately undermining the motivation
for VFL. Furthermore, the passive parties can retain access to their feature extractors even after
terminating the collaboration. These feature extractors are trained using the active party’s labels,
which are valuable IP. From these feature extractors, the passive parties can extract representations
containing the information of the active party’s labels. Although previous studies made efforts
towards mitigating label information leakage through inference attacks on gradients during the
training phase (Chaudhuri & Hsu, 2011; Ghazi et al., 2021), the robustness and IP protection of VFL
in the deployment phase remain under-explored.

In this paper, we design a framework named PlugVFL to solve the two challenges simultaneously.
Specifically, to alleviate the performance drop when passive parties quit unexpectedly, PlugVFL
applies an alternative training method that can reduce the co-adaptation of feature extractors across
parties. To prevent the IP leakage of the active party’s labels, we propose a defense that minimizes
the mutual information (MI) between the representations of the passive party and the true labels. We
formulate the defense into an adversarial training algorithm that jointly minimizes the variational MI
upper bound and prediction loss.

Our key contributions are summarized as follows:

• We reveal two vulnerabilities caused by the unexpected quitting of parties in the deployment
phase of VFL, including severe performance drop and active party’s label leakage.

• we design a VFL framework PlugVFL to preserve the VFL model’s performance against the
unexpected exit of passive parties and protect the active party’s IP in the deployment phase
simultaneously.

• We empirically evaluate the performance of our framework with different datasets. Our
results show that PlugVFL can improve the accuracy after the passive party’s exit by more
than 8% on CIFAR10. PlugVFL also prevents the passive party from fine-tuning a classifier
that outperforms random guess levels even using the entire labeled dataset with only less
than 2% drop in the VFL model accuracy, outperforming baselines significantly.

2 RELATED WORK

2.1 VERTICAL FEDERATED LEARNING

Vertical federated learning (VFL) has been an emerging research area. In contrast to (horizontal)
federated learning (HFL), VFL adopts a different scheme for data partitioning (Hardy et al., 2017;
Yang et al., 2019b). In VFL, different parties will have various parts of the data of an overlapping
individual. There has been an amount of research devoted to VFL. Specifically, Hardy et al. (2017)
proposes a protocol involving a trusted third party to manage the communication utilizing homo-
morphic encryption. Others have been following Hardy et al. (2017), where Nock et al. (2018)
is working on assessing the protocols and Yang et al. (2019a;c) are focusing on algorithm design
concerning optimization. Additionally, VFL algorithms on traditional machine learning, such as
tree-boosting (Cheng et al., 2021), gradient boosting (Wu et al., 2020; Fu et al., 2021), random
forest (Liu et al., 2020), linear regression (Zhang et al., 2021), and logistic regression (Hu et al.,
2019; Liu et al., 2019) are also proposed. Another line of research is working on communication
efficiency (Liu et al., 2019), which decreases the communication frequency by leveraging stale
gradients on local training. Besides, the assumption of overlapping individuals in VFL among parties
produces a challenge for applying VFL in the real world, where FedMVT (Kang et al., 2020) proposes
to estimate representations and labels to alleviate the gap.
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2.2 IP LEAKAGE IN VFL

Intellectual Property (IP) is drawing more and more attention as the rapid growth of commercial
deployment of deep learning, especially in federated learning scenarios, whose primary concern
is privacy. IP leakage can be divided into data IP leakages, such as deep leakage from gradients
(DLG) (Zhu et al., 2019; Zhao et al., 2020), model inversion (Fredrikson et al., 2015) and their
variants (Geiping et al., 2020; Jin et al., 2021; Yin et al., 2021; Melis et al., 2019; Jiang et al., 2022),
and model IP leakage, such as model extraction attacks (Tramèr et al., 2016; Orekondy et al., 2019a;
Pal et al., 2019; Correia-Silva et al., 2018; Truong et al., 2021), where multiple defensive methods
have also been proposed to tackle data IP leakage (So et al., 2020; Mo et al., 2021; Abadi et al., 2016;
Bonawitz et al., 2017) and model IP leakage (Juuti et al., 2019; Orekondy et al., 2019b).

In VFL, we categorize IP stealing attacks into two types, i.e., feature inference (Luo et al., 2021;
He et al., 2019; Jiang et al., 2022; Jin et al., 2021) and label inference (Fu et al., 2022b; Li et al.,
2021; Liu et al., 2021b). Specifically, Luo et al. (2021) proposes general attack methods for complex
models, such as Neural Networks, by matching the correlation between adversary features and target
features, which can be seen as a variant of model inversion (Fredrikson et al., 2015; Sun et al., 2021).
He et al. (2019); Jiang et al. (2022) also propose variants of model inversion attack in VFL. While
all these attacks are in the inference phase, Jin et al. (2021) proposes a variant of DLG (Zhu et al.,
2019) which can perform attacks in the training phase. For label inference, Li et al. (2021) proposes
an attack method and a defense method for two-party split learning on binary classification problems,
a special VFL setting. Additionally, Fu et al. (2022b) proposes three different label inference attack
methods considering different settings in VFL: direct label inference attack, passive label inference
attack, and active label inference attack. Defensive methods have also been proposed. For example,
Liu et al. (2021b) proposes manipulating the labels following specific rules to defend the direct label
inference attack, which can be seen as a variant of label differential privacy (label DP) (Chaudhuri &
Hsu, 2011; Ghazi et al., 2021) in VFL. However, all these defending methods focus on preventing
data IP leakage from gradients in the training phase. To the best of our knowledge, we are the first to
provide an analysis of label IP protection in the VFL deployment phase.

3 PROBLEM DEFINITION AND MOTIVATION

3.1 VERTICAL FEDERATED LEARNING SETTING

Suppose K parties train a model. There is a dataset1 across all parties with size N : D = {xi, yi}Ni=1.
The feature vector xi ∈ Rd is splitted among K parties {xki ∈ Rdk}Kk=1, where dk is the feature
dimension of party k, and the labels Y = {yi}Ni=1 are owned by one party. The parties with only
features are referred to as passive parties, and the party with both features and labels is referred to as
the active party. We denote party 1 as the active party, and other parties are passive parties.

Each party (say the k-th) adopts a representation extractor fθk(·) to extract representations of local
data Hk = {Hk

i }Ni=1 = {fθk(xki )}Ni=1 and sends them to the active party, who possesses labels and a
predictor. The overall training objective of VFL is formulated as

min
Θ
L(Θ;D) ≜

1

N

N∑
i=1

L
(
SθS

(
H1
i , ..., H

K
i

)
, yi

)
, (1)

where Θ = [θ1; ...; θK ; θS ], S denotes a trainable head model on active party to conduct classification,
and L denotes the loss function. The objective of each passive party k is to find an optimal θ∗k while
not sharing local data {xki }Ni=1 and parameters θk. The objective of the active party is to optimize
θ1 and θS while not sharing θ1, θS and true labels Y . The active party calculates the gradients of
received representations and send { ∂L

∂Hk }k∈[2,...,K] back to passive parties.

Notably, the passive parties still have to communicate with the active party during the inference phase.
For a new data xi, the passive parties send the extracted representations {Hk

i }k∈[2,...,K] to the active
party, and the active party generates the prediction SθS

(
H1
i , ...,H

K
i

)
.

1We assume the alignment between overlapping samples is known as a prior. In some applications, private
set intersection could be used before running VFL to find the sample alignment.
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Table 1: Results before and after party 2 quits
on CIFAR10.

Accuracy(%)
Before party 2 quits 74.53
After party 2 quits 51.24
Party 1 standalone 62.84

Table 2: Accuracy of the model on party 2 by
conducting MC attack and collecting labels to train
from scratch.

Accuracy(%)
MC attack (400 labels) 58.02
Train from scratch w. all the labels 59.73

3.2 PERFORMANCE DROP AFTER PARTIES QUIT

During the deployment phase, some passive parties (say the k-th party) could quit unexpectedly due
to a network crash or the termination of collaboration. Without the representations uploaded by party
k, the active party can still conduct inference by setting Hk

i as a zero vector. However, there will be a
substantial performance drop. We conduct two-party experiments on CIFAR10 to investigate this
performance drop. We follow previous works (Liu et al., 2019; Kang et al., 2022) to split CIFAR10
images into two parts and assign them to the two parties using ResNet18 as backbone models. The
active party (party 1) and passive party (party 2) collaborate to train the models. We evaluate and
compare the inference accuracy before and after party 2 quits in the deployment phase. When party
2 quits, party 1 sets H2

i as a zero vector and conducts inference. Zero vectors are used because the
passive party typically does not allow the active party to utilize its representations in any way (e.g.,
an average vector) after the termination of collaboration. We set the standalone results as a baseline,
where the active party trains a model independently without ever collaborating with the passive party.

The results (shown in Tab. 1) demonstrate that the accuracy drops more than 20% after party 2 quits.
Furthermore, the VFL model after party 2 quits achieves even lower accuracy than the model party 1
trained without any collaboration, undermining the motivation of VFL.

3.3 IP LEAKAGE OF LABELS IN THE DEPLOYMENT PHASE

The collaborative training process enables passive parties to extract representations useful for the task
of VFL, which is learned from the labels of the active party. Even after the collaboration ends, the
passive parties will retain access to the representation extractors. These extractors allow the passive
parties to fine-tune classifier heads with very few labeled data and conduct inference with decent
accuracy after quitting the collaboration. Given the active party’s significant investment of effort and
money in labeling the data, these extractors retained by the passive parties constitute costly IP leakage
of these labels. To demonstrate the extent of IP leakage by the feature extractors of the passive
parties, we follow the experimental setup in Sec. 3.2 and let party 2 conduct model completion (MC)
attack (Fu et al., 2022a) to train a classifier using a small number of labeled samples. We report the
test accuracy of the complete model of party 2 created by the MC attack. For comparison, we also
assume party 2 annotates all the training data to train a model from scratch.

We report the accuracy in Tab. 2. By fine-tuning a classifier with the extractor, the passive party can
achieve comparable accuracy using less than 1% of the labeled data compared to training a model
from scratch with all the labels. This demonstrates that the label information from the active party is
leaked and embedded in the passive party’s extractor.

4 METHOD

4.1 OVERVIEW OF PLUGVFL

Without loss of generality, we formulate our PlugVFL framework in the two-party scenario. Suppose
the passive party (party 2) and active party (party 1) have sample pairs

{(
x1i , x

2
i , yi

)}N
i=1

drawn from
a distribution p

(
x1, x2, y

)
, and the representations of party k is calculated as hk = fθk(x

k). We use
hk, xk and y here to represent random variables, while Hk

i , xki and yi stand for deterministic values.
Then the training of our framework is to achieve three goals:

• Goal 1: To preserve the performance of VFL, the main objective loss should be minimized.
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Figure 2: Overview of PlugVFL: The active party conducts alternative training to preserve the
performance against the exit of the passive party. IP of labels is protected by optimizing LA and LR
to reduce label information in passive parties’ representations.

• Goal 2: To preserve the performance after party 2 quits, the objective loss without the
representations of party 2 should be minimized.

• Goal 3: To reduce the IP leakage of labels from party 2, θ2 should not be able to extract
representations h2 containing much information about the true label y.

Formally, we have three training objectives:

Prediction performance: min
θ1,θ2,θS

L
(
SθS

(
h1, h2

)
, y
)
,

Robustness against quitting: min
θ1,θ2,θS

L
(
SθS

(
h1, 0

)
, y
)
,

Label IP protection:min
θ2

I(h2; y),

(2)

where SθS
(
h1, 0

)
is the prediction when the server does not receive the representations h2 uploaded

by party 2. I(h2; y) is the mutual information between h2 and y, which indicates the information h2
preserves for the label variable y. We minimize this mutual information to protect the active party’s
labels’ IP from being steal by the passive party.

4.2 EFFICIENT ALTERNATIVE TRAINING TO ACHIEVE ROBUSTNESS

A trivial way to improve the robustness against quitting is to combine the training objectives
L
(
SθS

(
h1, h2

)
, y
)

and L
(
SθS

(
h1, 0

)
, y
)

on the server. However, the server has to conduct
training of SθS twice, which involves computational overhead. To improve the efficiency, we propose
an alternative training method to achieve the second goal. Specifically, for each communication round
(i.e., an iteration of training in VFL), the active party omits the representations from the passive party
with probability p. The expectation of the training objective is formulated as

EpL(Θ;D) = (1− p)L
(
SθS

(
h1, h2

)
, y
)
+ pL

(
SθS

(
h1, 0

)
, y
)
, (3)

which is a weighted sum of the first and the second goal with weight p. Notably, a larger p sets a
larger weight for L

(
SθS

(
h1, 0

)
, y
)
. Thus, p can be chosen based on the chance that party 2 quits.

The intuition behind alternative training is to reduce the co-adaptation between the head predictor
and local extractors. The severe performance drop after the quitting of passive parties comes from the
co-adaptation of the hidden neurons of the head predictor SθS and the neurons of local extractors fθk ,
where a hidden neuron of the predictor SθS only depends on the pattern of several specific neurons of
specific parties’ extractors. The dropout was proposed as an effective solution to co-adaptation (Baldi
& Sadowski, 2013). Similar to dropout, which omits some neurons, our proposed alternative training
method omits the passive party, which solves the party-wise co-adaptation in VFL.

4.3 VARIATIONAL TRAINING OBJECTIVE OF LABEL PROTECTION

The mutual information term (i.e., goal 3) is hard to compute in practice as the random variable h2
is high-dimensional. In addition, computing mutual information requires knowing the distribution
p(y|h2), which is difficult to obtain. To derive a tractable estimation of the mutual information
objective, we leverage CLUB (Cheng et al., 2020) to formulate a variational upper-bound:

I
(
h2; y

)
≤ IvCLUB

(
h2; y

)
:= Ep(h2,y) log qψ

(
y|h2)− Ep(h2)p(y) log qψ

(
y|h2) , (4)
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Algorithm 1 Training algorithm of PlugVFL.← means information is sent to the active party;←
means information is sent to the passive party; red steps are conducted on the passive party.

Input: Dataset
{(
x1i , x

2
i , yi

)}N
i=1

; Learning rate η.
Output: θ1; θS ;ψ.
1: Initialize θ1; θS ;ψ;
2: for a batch of data

{(
x1i , x

2
i , yi

)}
i∈B

do
3: {H2

i }i∈B←{fθ2
(
x2i

)
}i∈B;

4: LA ← 1
|B|

∑
i∈B

log gψ
(
yi|H2

i

)
;

5: ψ ← ψ + η∇ψLA;
6: Randomly generate binary mask vectors {mi}

with probability p to be zeros;
7: LC ←

1
|B|

∑
i∈B
L
(
SθS

(
fθ1

(
x1i

)
,mi ⊙H2

i

)
, yi

)
;

8: θ1 ← θ1 − η∇θ1LC ;
9: θS ← θS − η∇θSLC ;

10: {yk′i}i∈B ← randomly sample {yk′i}i∈B from
{yi}i∈[N ].

11: LR ← 1
|B|

∑
i∈B
− log gψ

(
yk′i |H

2
i

)
;

12: {∇H2
i
L}i∈B←
{∇H2

i
[(1− λ)LC + λ(LA + LR)]}i∈B;

13: ∇θ2L ← 1
|B|

∑
i∈B
∇H2

i
L∇θ2H2

i

14: θ2 ← θ2 − η∇θ2L;
15: end for

where qψ
(
y|h2

)
is a variational distribution with parameters ψ to approximate p

(
y|h2

)
. To reduce

the computational overhead, we apply vCLUB-S MI estimator (Cheng et al., 2020), which is an
unbiased estimator of IvCLUB. The label IP protection objective is equivalent to the following:

min
θ2

I(h2; y)⇔ min
θ2

ÎvCLUB-S(h
2; y) = min

θ2

1

N

N∑
i=1

[
max
ψ

log qψ
(
yi|H2

i

)
− log qψ

(
yk′i |H

2
i

)]
. (5)

The details can be found in Apendix B.

4.4 TRAINING PROCEDURE

We use gψ to parameterize qψ in Eq. (5). By combining Eq. (5) and the prediction objective with
alternative training using a hyperparameter λ, the overall objective has three terms. The first term is the
prediction objective with alternative training, denoted as LiC = L

(
SθS

(
fθ1

(
x1i

)
,mi ⊙ fθ2

(
x2i

))
, yi

)
,

where mi is a binary vector whose elements will be set as 0’s with the probability of p. The second
term is an adversarial training objective, where an auxiliary predictor gψ is trained to capture label
information while the feature extractor fθ2 is trained to extract as little label information as possible,
denoted as LiA = −CE

(
gψ

(
fθ2

(
x2i

))
, yi

)
. The third term regularizes fθ2 to capture the information

of a randomly selected label, denoted as LiR = CE
(
gψ

(
fθ2

(
x2i

))
, yk′i

)
. The loss LA and LR are

formulated from Eq. (5). We reorganize the overall training objective as:

θ1, θ2, θS , ψ = argmin
1

N

N∑
i=1

min
θ2

[
(1− λ) min

θ1,θS
LiC + λmax

ψ
LiA + λLiR

]
. (6)

Our algorithm is summarized in Alg. 1. For each batch of data, we first optimize θ1 and θS based
on the primary task loss. Then we optimize the auxiliary predictor ψ. Finally, θ2 is optimized with
(1−λ)LC+λLA+λLR. Note that θ1, θS and ψ are owned by the active party, and their optimization
does not require additional information from the passive party except the representations h2, which
are uploaded to the active party even without defense. For the passive party, the training procedure of
local extractor θ2 does not change, making our defense concealed from the passive party.

5 EXPERIMENTS

We evaluate our proposed PlugVFL on multiple datasets. We focuse on two-party scenarios following
the VFL literature (Fu et al., 2022b; Liu et al., 2019; 2020; 2021a; Yang et al., 2019b).

Baselines. To thoroughly analyze PlugVFL, we first evaluate PlugVFL against performance drop
and label leakage separately and compare with the baselines achieving the same goal, respectively.
To our knowledge, PlugVFL is the first approach to mitigate the performance drop after the passive
party quits in VFL. But we still compare with a baseline, where the active party trains an additional
head model without the quitting party to make predictions if the passive party quits, which we call
Multi-head training. For defense against label leakage, we evaluate PlugVFL against two attacks:
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Figure 3: Results of PlugVFL on CIFAR10.
The black dashed line denotes the accuracy of
the model that party 1 trains independently.

Table 3: Results of PlugVFL on CIFAR100.

Accuracy before
party 2 quits(%)

Accuracy after
party 2 quits(%)

p = 0 44.95 26.65
p = 0.05 44.58 32.01
p = 0.1 44.29 32.03
p = 0.3 42.11 33.05
p = 0.5 40.29 33.85
Standalone N/A 34.02
Multi-head
training 39.17 32.72

(1) Passive Model Completion (PMC) (Fu et al., 2022b) attack assumes that the passive party has
access to an auxiliary labeled dataset. The passive party utilizes this auxiliary dataset to fine-tune a
classifier that can be applied to its local feature extractor. (2) Active Model Completion (AMC) (Fu
et al., 2022b) attack is included as an adaptive attack method when the passive party is aware of
our method. The passive party conducts AMC to trick the federated model to rely more on its
feature extractor so as to increase its expressiveness. The passive party conducts AMC attack by
actively adapting its local training configurations. We compare PlugVFL with four existing defense
baselines: (1) Noisy Gradient (NG) (Fu et al., 2022a) is proven effective against privacy leakage
in FL by adding Laplacian noise to gradients. (2) Gradient Compression (GC) (Fu et al., 2022a)
prunes gradients that are below a threshold magnitude, such that only a part of gradients are sent to
the passive party. (3) Privacy-preserving Deep Learning (PPDL) (Shokri & Shmatikov, 2015) is a
comprehensive privacy-enhancing method including three defense strategies: differential privacy,
gradient compression, and random selection. (4) DiscreteSGD (DSGD) (Fu et al., 2022a) conducts
quantization to the gradients sent to the passive party such that the discrete gradients are used to
update the adversarial party’s extractor.

Datasets. We evaluate PlutVFL on CIFAR10 and CIFAR100. We follow Liu et al. (2019); Kang
et al. (2022); Liu et al. (2021a); Yang et al. (2019b) to split images into halves.

Hyperparameter configurations. For both CIFAR10 and CIFAR100, we use ResNet18 as back-
bone models with batch size 32. We apply SGD optimizer with learning rate 0.01. We apply a 3-layer
MLP to parameterize gψ for PlugVFL. For NG defense, we apply Laplacian noise with mean of
zero and scale between 0.0001-0.01. For GC baseline, we set the compression rate from 90% to
100%. For PPDL, we set the Laplacian noise with scale of 0.0001-0.01, τ = 0.001 and θ between 0
and 0.01. For DSGD, we set the number of gradient value’s levels from 1 to 2 and added Laplacian
noise with the same scale as PPDL. To simulate the realistic settings in that the passive party uses
different model architectures to conduct MC attacks, we apply different model architectures (MLP &
MLP_sim) for MC attacks. The detailed architectures can be found in Appendix A. The passive party
has 40 and 400 labeled samples to conduct MC attacks for CIFAR10 and CIFAR100, respectively.

Evaluation metrics. (1) Utility metric (Model accuracy): We use the test data accuracy of the
classifier on the active party to measure the performance. (2) Robustness metric (Attack accuracy):
We use the test accuracy of the passive party’s model after MC attack to evaluate the effectiveness of
our IP protecting method. The lower the attack accuracy, the higher the robustness against IP leakage.

5.1 RESULTS OF PERFORMANCE PRESERVATION AGAINST UNEXPECTED EXIT

To evaluate the effectiveness of the alternative training against performance drop, we first conduct
experiments by setting λ as 0 in Eq. (6). We set p from 0 to 0.5 to simulate the settings that the
passive party has different levels of reliability. We evaluate the trade-off between the accuracy before
and after the passive party quits in the deployment phase. The results of CIFAR10 are shown in Fig. 3,
and the results of CIFAR100 are shown in Tab. 3. The upper bound of the test accuracy after party
2 quits is the accuracy of the model that party 1 trains independently (standalone). For CIFAR10,
PlugVFL can improve the accuracy after party 2 quits by more than 7% with nearly no accuracy
drop before party 2 quits. By applying alternative training, the active party can achieve nearly the
same accuracy as retraining a model locally after the passive party quits by sacrificing less than 1.5%
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Figure 4: Results of model accuracy v.s. attack
accuracy on CIFAR10 and CIFAR100 against
PMC attack. The black dashed line denotes the
accuracy of that party 1 trains independently.
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Figure 5: Results of model accuracy v.s. attack
accuracy on CIFAR10 and CIFAR100 against
AMC attack. The black dashed line denotes the
accuracy of that party 1 trains independently.

accuracy before the passive party quits. Multi-head training can also mitigate the accuracy drop after
party 2 quits. However, it cannot achieve a better trade-off than ours since it introduces computational
overhead increasing exponentially with K.

For CIFAR100, PlugVFL improves the accuracy after party 2 quits by more than 5.5% with less than
0.5% accuracy drop before party 2 quits. It is shown that applying alternative training by just setting a
relatively small p value can significantly improve the robustness of VFL against unexpected quitting,
demonstrating the effectiveness of PlugVFL in solving the problem of party-wise co-adaptation.

A naïve solution for mitigating the accuracy drop is to fine-tune the head model after a passive party
quits. However, this process is time-consuming, and the service provider cannot afford to shut down
the service while fine-tuning. Therefore, achieving a decent accuracy before fine-tuning is crucial.

5.2 RESULTS OF DEFENSE AGAINST LABEL LEAKAGE

To evaluate the effectiveness of PlugVFL against label IP leakage, we conduct experiments setting p
as 0 in alternative training. We evaluate PlugVFL on two datasets against two attack methods. We
set different defense levels for our methods (i.e., different λ values in Eq. (6)) and baselines to show
the trade-off between the model accuracy and attack accuracy. The defense results against PMC and
AMC attacks are shown in Fig. 4 and Fig. 5, respectively. To evaluate the effectiveness of our defense
in extreme cases, we also conduct experiments that the passive party has the whole labeled dataset to
perform MC attacks, of which the results are shown in sub-figures (e) and (f) of Fig. 4 and Fig. 5.

For defense against PMC on CIFAR10, our PlugVFL can achieve 10% attack accuracy (equal to
random guess) by sacrificing less than 2% model accuracy, while the other defenses drop model
accuracy by more than 12% to achieve the same defense performance. Similarly, our PlugVFL can
achieve 1% attack accuracy on CIFAR100 while maintaining a model accuracy drop of less than
3%. In contrast, the other defenses drop model accuracy by more than 9% to achieve the same
attack accuracy. Even if the passive party conducts attacks using the whole labeled training dataset,
PlugVFL can reduce attack accuracy to random guess with less than 3% model accuracy drop.
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Figure 6: The results of PlugVFL against perfor-
mance drop and label IP leakage simultaneously.
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Figure 7: Defense results on model accuracy
and attack accuracy with and without LR on
CIFAR10 against PMC attack.

Our method achieves similar results against AMC. PlugVFL can achieve high defense performance
of an attack accuracy rate of random guess with nearly no model accuracy drop. Notably, the other
baselines improve the attack accuracy of AMC in some cases (Fig. 5.(a) and (c)). The reason is
that, by applying AMC, the model updating of the passive party is adaptive to the defense methods,
making the global classifier rely more on the passive party’s feature extractor.

Notably, the baselines achieve low attack accuracy only when the test accuracy degrades to nearly
independent training level, that is, baselines can only achieve strong defense performance by severely
limiting the expressiveness of the passive party’s feature extractor. Our method can achieve a better
trade-off between the model utility and the defense performance because PlugVFL only reduces the
information of the true labels in the representations extracted by the passive party’s feature extractor,
while the general information of the data is preserved in the passive party’s representations.

5.3 RESULTS OF THE INTEGRATED FRAMEWORK

We evaluate PlugVFL against performance drop and label leakage simultaneously under PMC-
CIFAR10-whole and PMC-CIFAR100-whole settings. The passive party quits in the deployment
phase and tries to conduct a model completion attack using the labeled dataset. We set p = 0.05
and λ from 0 to 1 for PlugVFL. The results in Fig. 6 show that by applying alternative training, the
active party achieves 5% higher accuracy than without alternative training if the passive party quits.
Further, we prevent the passive party from achieving an attack accuracy higher than random guess
levels using its feature extractor by sacrificing less than 3% model accuracy for both datasets. Thus,
our proposed PlugVFL can improve the robustness of VFL against unexpected quitting and protect
the active party’s label IP effectively.

5.4 OBJECTIVE ANALYSIS OF PLUGVFL

The training objective Eq. (6) of PlugVFL consists of 3 terms: LC , LA and LR. LC maintains the
model utility. LA is the adversarial objective to reduce the information of labels in the passive party’s
representations. LR is also derived from the goal of mutual information reduction, but it is non-trivial
to describe its functionality. To analyze the effect of LR, we conduct experiments that train with and
without the objective LR under the setting PMC-CIFAR10-whole. The results are shown in Fig. 7.
Notably, LR does not influence the model accuracy, but the defense performances differ. It is shown
that without LR, the attack accuracy can also degrade to 10% in some communication rounds, but
the degradation is much slower than training with LR. In addition, applying LR can stabilize the
defense’s performance. Thus, LR can boost and stabilize the performance of PlugVFL.

6 CONCLUSION

We propose a framework PlugVFL that maintains model performance after the passive party quits
VFL in the deployment phase and mitigates the active party’s label IP leakage simultaneously. The
experimental results show that PlugVFL can improve the robustness against unexpected quitting and
protect the active party’s IP effectively. In this paper, we evaluate the two-party scenario, but our
theory and algorithm are naturally extendable to settings with more parties.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Pierre Baldi and Peter J Sadowski. Understanding dropout. Advances in neural information processing
systems, 26, 2013.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1175–1191, 2017.

Kamalika Chaudhuri and Daniel Hsu. Sample complexity bounds for differentially private learning.
In Proceedings of the 24th Annual Conference on Learning Theory, pp. 155–186. JMLR Workshop
and Conference Proceedings, 2011.

Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, Dimitrios Papadopoulos, and Qiang
Yang. Secureboost: A lossless federated learning framework. IEEE Intelligent Systems, 36(6):
87–98, 2021.

Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, and Lawrence Carin. Club: A
contrastive log-ratio upper bound of mutual information. In International conference on machine
learning, pp. 1779–1788. PMLR, 2020.

Jacson Rodrigues Correia-Silva, Rodrigo F Berriel, Claudine Badue, Alberto F de Souza, and Thiago
Oliveira-Santos. Copycat cnn: Stealing knowledge by persuading confession with random non-
labeled data. In 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE,
2018.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC conference on
computer and communications security, pp. 1322–1333, 2015.

Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu, Shanqing Guo, Jun Zhou, Alex X.
Liu, and Ting Wang. Label inference attacks against vertical federated learning. In 31st USENIX
Security Symposium (USENIX Security 22), pp. 1397–1414, Boston, MA, August 2022a. USENIX
Association. ISBN 978-1-939133-31-1. URL https://www.usenix.org/conference/
usenixsecurity22/presentation/fu-chong.

Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu, Shanqing Guo, Jun Zhou, Alex X
Liu, and Ting Wang. Label inference attacks against vertical federated learning. In 31st USENIX
Security Symposium (USENIX Security 22), pp. 1397–1414, 2022b.

Fangcheng Fu, Yingxia Shao, Lele Yu, Jiawei Jiang, Huanran Xue, Yangyu Tao, and Bin Cui.
Vf2boost: Very fast vertical federated gradient boosting for cross-enterprise learning. In Proceed-
ings of the 2021 International Conference on Management of Data, pp. 563–576, 2021.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-how
easy is it to break privacy in federated learning? Advances in Neural Information Processing
Systems, 33:16937–16947, 2020.

Badih Ghazi, Noah Golowich, Ravi Kumar, Pasin Manurangsi, and Chiyuan Zhang. Deep learning
with label differential privacy. Advances in neural information processing systems, 34:27131–
27145, 2021.

Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Patrini, Guillaume Smith,
and Brian Thorne. Private federated learning on vertically partitioned data via entity resolution
and additively homomorphic encryption. arXiv preprint arXiv:1711.10677, 2017.

Zecheng He, Tianwei Zhang, and Ruby B Lee. Model inversion attacks against collaborative inference.
In Proceedings of the 35th Annual Computer Security Applications Conference, pp. 148–162,
2019.

10

https://www.usenix.org/conference/usenixsecurity22/presentation/fu-chong
https://www.usenix.org/conference/usenixsecurity22/presentation/fu-chong


Under review as a conference paper at ICLR 2024

Yaochen Hu, Peng Liu, Linglong Kong, and Di Niu. Learning privately over distributed features: An
admm sharing approach. arXiv preprint arXiv:1907.07735, 2019.

Xue Jiang, Xuebing Zhou, and Jens Grossklags. Comprehensive analysis of privacy leakage in
vertical federated learning during prediction. Proceedings on Privacy Enhancing Technologies,
2022(2):263–281, 2022.

Xiao Jin, Pin-Yu Chen, Chia-Yi Hsu, Chia-Mu Yu, and Tianyi Chen. Cafe: Catastrophic data leakage
in vertical federated learning. Advances in Neural Information Processing Systems, 34:994–1006,
2021.

Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. Prada: protecting against dnn model
stealing attacks. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
512–527. IEEE, 2019.

Yan Kang, Yang Liu, and Tianjian Chen. Fedmvt: Semi-supervised vertical federated learning with
multiview training. arXiv preprint arXiv:2008.10838, 2020.

Yan Kang, Yang Liu, and Xinle Liang. Fedcvt: Semi-supervised vertical federated learning with
cross-view training. ACM Transactions on Intelligent Systems and Technology (TIST), 13(4):1–16,
2022.

Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang, Junyuan Xie, Virginia Smith,
and Chong Wang. Label leakage and protection in two-party split learning. arXiv preprint
arXiv:2102.08504, 2021.

Yang Liu, Yan Kang, Xinwei Zhang, Liping Li, Yong Cheng, Tianjian Chen, Mingyi Hong, and
Qiang Yang. A communication efficient collaborative learning framework for distributed features.
arXiv preprint arXiv:1912.11187, 2019.

Yang Liu, Yingting Liu, Zhijie Liu, Yuxuan Liang, Chuishi Meng, Junbo Zhang, and Yu Zheng.
Federated forest. IEEE Transactions on Big Data, 8(3):843–854, 2020.

Yang Liu, Tao Fan, Tianjian Chen, Qian Xu, and Qiang Yang. Fate: An industrial grade platform for
collaborative learning with data protection. The Journal of Machine Learning Research, 22(1):
10320–10325, 2021a.

Yang Liu, Zhihao Yi, Yan Kang, Yuanqin He, Wenhan Liu, Tianyuan Zou, and Qiang Yang. De-
fending label inference and backdoor attacks in vertical federated learning. arXiv preprint
arXiv:2112.05409, 2021b.

Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, and Beng Chin Ooi. Feature inference attack on model
predictions in vertical federated learning. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE), pp. 181–192. IEEE, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended
feature leakage in collaborative learning. In 2019 IEEE symposium on security and privacy (SP),
pp. 691–706. IEEE, 2019.

Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and Nicolas Kourtellis.
Ppfl: privacy-preserving federated learning with trusted execution environments. In Proceedings
of the 19th annual international conference on mobile systems, applications, and services, pp.
94–108, 2021.

Richard Nock, Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Giorgio Patrini, Guillaume Smith,
and Brian Thorne. Entity resolution and federated learning get a federated resolution. arXiv
preprint arXiv:1803.04035, 2018.

11



Under review as a conference paper at ICLR 2024

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing functionality of
black-box models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4954–4963, 2019a.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Prediction poisoning: Towards defenses
against dnn model stealing attacks. arXiv preprint arXiv:1906.10908, 2019b.

Soham Pal, Yash Gupta, Aditya Shukla, Aditya Kanade, Shirish Shevade, and Vinod Ganapathy. A
framework for the extraction of deep neural networks by leveraging public data. arXiv preprint
arXiv:1905.09165, 2019.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, pp. 1310–1321,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450338325. doi:
10.1145/2810103.2813687. URL https://doi.org/10.1145/2810103.2813687.
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A MODEL ARCHITECTURE

The passive party uses models with different architectures (MLP and MLP_sim) to conduct MC
attacks. MLP_sim has one FC layer. MLP has three FC layers with a hidden layer of size 512× 256.

B VARIATIONAL TRAINING OBJECTIVE OF LABEL PROTECTION

The prediction objective is usually easy to calculate (e.g., cross-entropy loss for classification). The
mutual information term (i.e., goal 3) is hard to compute in practice as the random variable h2 is
high-dimensional. In addition, the mutual information requires knowing the distribution p(y|h2),
which is difficult to compute. To derive a tractable estimation of the mutual information objective,
we leverage CLUB (Cheng et al., 2020) to formulate a variational upper-bound:

I
(
h2; y

)
≤ IvCLUB

(
h2; y

)
:= Ep(h2,y) log qψ

(
y|h2)− Ep(h2)p(y) log qψ

(
y|h2) , (7)

where qψ
(
y|h2

)
is a variational distribution with parameters ψ to approximate p

(
y|h2

)
. To reduce

the computational overhead of the defense, we apply the sampled vCLUB (vCLUB-S) MI estimator
in Cheng et al. (2020), which is an unbiased estimator of IvCLUB and is formulated as

ÎvCLUB-S(h
2; y) =

1

N

N∑
i=1

[
log qψ

(
yi|H2

i

)
− log qψ

(
yk′i |H

2
i

)]
, (8)

where k′i is uniformly sampled from indices {1, ..., N}. It is notable that to guarantee the first
inequality of Eq. (7), qψ

(
y|h2

)
should satisfy

KL
(
p
(
h2, y

)
||qψ

(
h2, y

))
≤ KL

(
p
(
h2) p (y) ||qψ (

h2, y
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, (9)

which can be achieved by minimizing KL
(
p
(
h2, y

)
||qψ

(
h2, y

))
:

min
ψ

KL
(
p
(
h2, y

)
||qψ

(
h2, y

))
= min

ψ
Ep(h2,y)

[
log

(
p
(
y|h2) p (h2))− log
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(10)

Since the first term has no relation to ψ, we just need to minimize Ep(h2,y) − log
(
qψ

(
y|h2

))
. With

samples
{(
x1i , x

2
i , yi

)}N
i=0

, we can derive an unbiased estimation

max
ψ

1

N
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log qψ
(
yi|H2

i

)
. (11)

With Eq. (7), Eq. (8) and Eq. (11), the objective of label IP protection can be achieved by optimizing

min
θ2

I(h2; y)

⇔ min
θ2
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(12)
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